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Abstract

Toll-like Receptor 3 (TLR3) is a pathogen pattern recognition receptor that plays a key role in innate immunity. TLR3
signalling has numerous functions in liver, both in health and disease. Here we report that TLR3 is expressed by quiescent
hepatic stellate cells (HSC) where it functions to induce transcription and secretion of functional interferons as well as a
number of other cytokines and chemokines. Upon transdifferentiation into myofibroblasts, HSCs rapidly loose the ability to
produce interferon gamma (IFNc). Mechanistically, this gene silencing may be due to Polycomb complex mediated
repression via methylation of histone H3 lysine 27. In contrast to wild type, quiescent HSC isolated from tlr3 knockout mice
do not produce IFNc in response to Poly(I:C) treatment. Therefore, quiescent HSC may contribute to induction of the
hepatic innate immune system in response to injury or infection.

Citation: Wilson CL, Mann J, Walsh M, Perrugoria MJ, Oakley F, et al. (2014) Quiescent Hepatic Stellate Cells Functionally Contribute to the Hepatic Innate
Immune Response via TLR3. PLoS ONE 9(1): e83391. doi:10.1371/journal.pone.0083391

Editor: Lena Alexopoulou, Centre d’Immunologie de Marseille-Luminy, CNRS-Inserm, France

Received June 6, 2013; Accepted November 4, 2013; Published January 8, 2014

Copyright: ß 2014 Wilson et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The present study was supported by the National Institutes of Health (NIH) grants (U01AA018663, P50AA11199, R24AA12885), Newcastle Biomedical
Research Centre, the Wellcome Trust (WT086755MA to D.A.M. and M.K.), Medical Research Council grants (MK/K001949/1 to D.A.M., J.M., F.O. and G0700890 to
D.A.M., M.C.W. and F.O.) and the European Commission FP7 program grant ‘INFLA-CARE’ (EC Contract No. 223151; http://inflacare.imbb.forth.gr/ to D.A.M., M.P.,
C.B., D.D.P. and P.P.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Derek.Mann@ncl.ac.uk

. These authors contributed equally to this work.

Introduction

Hepatic stellate cells (HSC) are specialised pericytes of the liver

sinusoids found in the Space of Dissè, a basement membrane-like

structure located between columns of hepatocytes and sinusoidal

endothelial cells [1]. The most characterised function of HSCs is

the ability to transdifferentiate from a quiescent phenotype into

highly proliferative, contractile and wound-healing myofibroblast

[2]. This so-called activated HSC (aHSC) produces vast quantities

of fibril-forming collagens and promotes net deposition of fibrotic

extracellular matrix, a process important for repair following

infection or trauma to the liver. However, in the chronically

injured liver, this normal physiological process may become

dysregulated and lead to the development of fibrosis [1].

The role of quiescent HSCs (qHSC) has received much less

attention. A known key function is storage of Vitamin A which is

found in numerous intracellular droplets [3,4]. Additionally,

several investigators have described that qHSC possess multiple

thorn-like cytoplasmic extensions which can protrude into the

sinusoidal space or make direct contact with hepatocytes. These

membrane projections have been shown to function as a leading

edge for the qHSC and play a role in sensing of extracellular

factors that influence HSC phenotype. Given the anatomical

location of qHSCs and their morphology, they have the potential

to operate as sinusoidal sentinels, detecting mechanical or

biochemical alterations in hepatocytes, endothelial cells, within

the Space of Dissè or even within the sinusoidal spaces [4].

The innate immune system serves as a ‘‘first defence’’

responding to acute tissue trauma or infection by mounting

protective anti-microbial and wound-healing response. These

responses are mediated by a variety of immune cells including

recruited neutrophils, mast cells, eosinophils, natural killer (NK)

cells and tissue macrophages. The molecular triggers for innate

immunity are pattern recognition receptors (PRRs) [5] including

the IL-1 Receptors [6] (reviewed in [7]), members of the Toll-like

Receptor (TLR) family [8] and Nucleotide Oligomerisation

Domain (NOD)-like receptor families [9]. A total of 13 distinct

mammalian TLRs (TLR1-13) have been identified to date and

each responds to specific ligands of microbial origin or from the

intracellular contents of damaged or dying host cells. Upon

engagement by their ligands, the TLRs trigger a cascade of

intracellular signalling pathways that culminate in induction of

genes encoding interferons, cytokines and chemokines required for

the recruitment and activation of innate immune cells [10].

Activated human HSCs express TLR4 and are able to respond

to its ligand lipopolysaccharide (LPS) with activation of IKK/NF-

kB and subsequent expression of a variety of pro-inflammatory

cytokines [11]. Mouse HSCs are reported to express TLR2, 4 and

9 and are responsive to their respective ligands which induce the

secretion of IL-6, TGFb1 and MCP1 [12–14]. Recent studies by
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Seki et al, have described how TLR4 on activated mouse HSC is

required for sensitising the cells to TGFb1, specifically by

promoting down-regulation of the TGFb1 pseudo-receptor Bambi

[13]. The observation that mice lacking TLR4 or its downstream

adaptor Myd88 were resistant to fibrosis induced by a variety of

different injury mechanisms highlighted the importance of innate

immune receptor in hepatic wound-healing response.

In the present study, we have addressed the question of which

TLRs are expressed and functional on qHSC. We focused on

TLR3, a sensor of dsRNA, which is expressed at relatively high

levels on both qHSC and aHSC but has distinct functions in these

two phenotypic states. Our data suggest that engagement of TLR3

on qHSC results in induction of interferons (a,b and c) and

cytokine (IL-6) gene expression. However, aHSC lose the capacity

to induce interferons in response to TLR3, but retain TLR3-

induction of IL-6. Our data suggest that qHSC may play a

significant contributing role to TLR3-mediated interferon-depen-

dent innate immune responses.

Materials and Methods

Ethics statement
All animal experiments were undertaken in accordance with

appropriate licences for animal experiments which were issued/

approved by local ethical committee and UK Home Office.

Animals and models of liver disease
Chronic CCl4 liver injury model. Fibrogenesis was induced

by 4-week CCl4 treatment of 250 g adult Sprague-Dawley rats.

Rats were injected intraperitoneally (IP) twice weekly with CCl4/

olive oil mix in a 1:3vol/vol ratio at 2 ml/g body weight. Twenty-

four hours after the final CCl4 administration, animals were

sacrificed and blood and tissues harvested.

Acute CCl4 liver injury. Single dose of CCl4 was given by IP

injection prepared as CCl4/olive oil in a 1:1vol/vol ratio at 2 ml/g

body weight to both rats and mice. Animals were sacrificed at

varying times after injury (as stated in figures and figure legends)

and tissues harvested for histological and molecular analysis.

SDS-PAGE and Immunoblotting
SDS-PAGE and immunoblotting was performed as previously

described [15]. Primary antibodies recognising TLR3 (AnaSpec),

IRAK1, TRAF6 (Santa Cruz) were used at 1:1000 dilution and

GAPDH (Abcam) at 1:2000. Membranes were probed with the

appropriate secondary antibody (anti-mouse Sigma; anti-rabbit

Cell Signalling Technologies) and proteins visualised using

chemiluminescence (Pierce).

Immunocytochemistry
Formalin fixed, paraffin embedded tissue was dewaxed and

rehydrated in decreasing concentrations of ethanol. Sections

underwent antigen retrieval in citric saline solution and were

subsequently permeabilized with 0.1% saponin in 0.5% bovine

serum albumin (BSA). Toll-like receptor 3 primary antibody

(AnaSpec) was used in a concentration of 1:1000 and incubated at

room temperature for 1 hour. Coverslips were mounted in DAPI-

containing fluorescent mounting media.

Quantitative Reverse Transcriptase-Polymerase Chain
Reaction (qRT-PCR)
Total RNA was purified from isolated cells or whole liver using

the RNeasy Mini Kit (Qiagen, UK). cDNA was generated using

random hexamer primers and MMLV reverse transcriptase

enzyme (Promega, UK). Quantitative PCR was performed on

an ABI 7500 with a 3 step amplification program: 20 sec at 94uC,

40 cycles of 20 sec at 55uC, 30 sec at 72uC and 5 sec at 94uC. All

reactions were normalised to GAPDH and relative level of

transcriptional difference calculated using the following equation:

1/(2A)6100. (Primer sequences are listed in Table 1).

Reagents
TLR ligands. Rat and mouse HSCs were incubated with

TLR ligands (InvivoGen) as detailed in figure legends. The ligands

and their concentration in cell culture were (unless otherwise

stated) - TLR2 (Lipoteichoic (LTA), 100 ng/ml), TLR3 (Poly

(I:C), 1 mg/ml), TLR4 (lipopolysaccharide (LPS), 100 ng/ml),

TLR5 (flagellin, 1 mg/ml), TLR7/8 (Imiquimod, 1 mg/ml) and

TLR9 (stimulatory CpG ODN, 10 mg/ml). IL-1a was used at a

concentration of 2 ng/ml (Peptroech 211-11A), IFNc at 100 ng/

ml (Peprotech 315-05). Transcriptional inhibitors, actinomycin D

and 5,6-Dichlorobenzimidazole Riboside (DRB) were purchased

from Sigma Aldrich (A9415 and D1916 respectively). The C13-

GT was used at a concentration of 20 mg/gram of body weight.

Clodronate-liposomes were a kind gift from Professor Mirco

Ponzoni and injected intraperitoneally at a concentration of

25 mg/gram of body weight.

Table 1. Table of primers.

Species Gene Forward Reverse

Rat Collagen ttcacctacagcacgcttgtg gatgactgtcttgccccaagt

Rat b-actin agccatgtacgtagcccatcc ctccagctgtggtggtgaa

Rat a-SMA cgaagcgcagagcaagaga catgtcgtcccagttggtgat

Rat IL-1b ttcaaatctcacagcagcat catcccacgagtcacagagg

Rat IL-6 acaagataacaagaaagacaaa Agtcttttatctcttgtttga

Rat Interferon a ggctcggctctgtgctttct atttgtgccaggagtgtgaa

Rat Interferon b actgggtggaatgagactat taaagtagtcgtggatgtca

Rat Interferon c ggatgctatggaaggaaaga gcgattcgatgacacttatg

Rat CCL2/MCP1 ggaccagaaccaagtgagatc gaggtggttgtggaaaagaga

Rat CCL5/RANTES catccctcaccgtcatcctc tctgggttggcacacacttg

Rat TNF-a gccaccacgctcttctgtct cctctgcttggtggtttgctac

Rat MxA actccatcctgcaaacatttgggc accagttgcacttactggtgtcct

Rat TIMP1 gcaactcggacctggtcataa cggcccgtgatgagaaact

Rat TLR1 tccagtatcttaatatcagtg catataggcagggcatcaaa

Rat TLR2 tgtcagtggccagaaaagatg agattgttgttactaacatc

Rat TLR3 agccttcaacgactgatgct atttctagattctcaagacc

Rat TLR4 gtaaagaatttagaagaagg gagcaatctcatattcaaag

Rat TLR5 cctgctcagcttcaactata ctaagattgggcaggtttct

Rat TLR6 taatattaaattgaatgatga gttaagttgtaaatattgag

Rat TLR7 aaaactgttattatcgaaat gctgtgacattgttatct

Rat TLR8 tagaggagagggattggg tcatccattagcctctgcaa

Rat TLR9 tcaatggctctcagttcctg aagggctggctgttgtagct

Rat TLR10 tggcaagagccagtttgt cccagagcaggtcaactttat

Rat TLR11 cctttcctcctacatcccattc cctctgtatttctgggcactt

Rat TLR12 ctgtgtctactctgcttcc aaggcatcaggaggtaga

Rat TLR13 - like cagaggccattagtgacatacc ccagagcagacagattagtgaaa

doi:10.1371/journal.pone.0083391.t001
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tlr
2/2

3 knockout mice
The knockout mice were obtained from Dr Lars Eckmann,

University of Southern California, San Diego, USA. Authors wish

to thank Dr Eckmann for his help and support with breeding and

supplying the mice. The knockout mice were originally generated

as described in [16].

Hepatic Stellate Cell isolation
Rat and mouse HSCs were isolated from 250 g male Sprague-

Dawley rats and 25–30 g adult male mice respectively, by

sequential perfusion with collagenase B (Roche) and pronase

(Roche) and quiescent HSCs separated by discontinuous density

centrifugation in 11.5% Optiprep (Sigma Aldrich D1556). Mouse

and rat primary HSCs were maintained at 37uC (5% CO2) in

Dulbecco’s Modified Eagle’s Media supplemented with 16% foetal

bovine serum (FBS), 100 U/ml penicillin, 100 mg/ml streptomy-

cin, 2 mM L-glutamine (Life Technologies). Culturing of freshly

isolated quiescent HSC on tissue culture plastic leads to their

activation over a period of 7 to 10 days and spontaneous

acquisition of a myofibroblast phenotype, which is thought to be

highly representative of in vivo HSC activation.

Murine Macrophage isolation
Bone marrow cells were isolated from the femurs of C57/Blk6

mice as previously described [17]. Briefly, cells were differentiated

into macrophages by culturing for 7 days with media supplement-

ed with 5% horse serum (Sigma Aldrich H1270) and 10% of L929

cell line conditioned media (that contains M-CSF).

Enzyme linked Immunosorbent Assay
Culture supernatant concentration of IL-6 was measured using

a rat IL-6 Quantikine ELISA according to manufacturer’s

instructions (R&D Systems Minneapolis, MN).

Fluorescence activated cell sorting (FACS)
Cells were incubated at 4uC for 1 hr with 24G2 antibody that

prevents non-specific Fc receptor binding, followed by 1 hr

incubation at 4uC with anti MHC class II-FITC conjugated

antibody (eBioscience 11-0920-82). Following incubation, cells

were washed and resuspended in 2% FBS in phosphate-buffered

saline. Up to 10,000 events were analysed on FACScan/FACS

Canto II (BD, Oxford, UK) using Flowjo software (FlowJo, Inc).

Chromatin Immunoprecipitation Assay
Antibodies used for immunoprecipitation were purchased from:

histone H3 di methyl K27 (H3K27me2, Abcam) and Histone H3

trimethyl K27 (H3K27me3, Diagenode). 10 mg of each antibody

or appropriate irrelevant antibody control were used in each ChIP

reaction as described previously [18]. Primers used for detection of

relevant rat genomic sequences were: IFNc 243 kb sense 59-

aaggtcaagccataacattc-39 and antisense 59- cagggatgaacaaggaccag-

39; IFNc 20.5 kb sense 59- cttttgtaaccgaacgccttc-39 and antisense

59- cttttacttcacaccatttg-39; IFNc 0.4 kb sense 59- tcggtgaggtgttcgtt-

gac-39 and antisense 59- aagaatgaaaaccatgaagg-39 and IFNc

1.1 kb sense 59- gagttgagtttatttgtgg-39 and antisense 59-

ctgtggagttttgttgaatg-39. Each PCR reaction was performed in

triplicate and the analysis was repeated three times from

independent ChIP experiments. A signal intensity value for each

sample was calculated from the average of the experiments.

Average values of eluates were normalized to average values of

control antibody sample and expressed as fold enrichment above

background (i.e. control antibody) [18].

Statistical Analysis
Data are expressed as means 6 standard error of the mean

(SEM). All P values were calculated using a two-tailed paired or

unpaired Student t test. Statistically significant data is represented

in figures where *, **, and *** denote P values of ,0.05, ,0.01

and ,0.001, respectively.

Results

TLR3 is expressed and functional in quiescent and
activated HSC
To determine relative expression of TLRs between qHSC and

aHSC we measured transcript expression for TLR1-13 in freshly

isolated or culture-activated rat HSC. TLR2, 3, 7, 8 and 13

transcripts were all induced with culture activation and were

expressed at relatively high levels compared with other TLRs

(Figure 1A). The highest expressed TLR transcripts in qHSC were

TLR3 (27.57615.16 RLTD) and TLR13 (14.5468.09 RLTD)

(p,0.05 compared with other TLR transcripts). Western blot

analysis confirmed that TLR3 protein is expressed in both qHSC

and aHSC, however no significant change in expression occurred

with activation (Figure 1B). Furthermore, we confirmed presence

of TLR3 in qHSC (culture day 1) by immunocytochemistry

(Figure 1C). As no previous studies have reported a role for TLR3

in qHSC we determined if they are responsive to the TLR3 ligand

Poly(I:C). As illustrated in Figure 1D, qHSCs treated with

Poly(I:C) underwent a transient increase in IL-6 mRNA transcript

that peaked between 2 (9.7 RLTD, p,0.001) and 4 (10.54 RLTD,

p,0.001) hours following treatment (Figure 1D). By contrast

qHSC were unresponsive to IL-1a (Figure 1D) which may be

explained by absence of key downstream signalling factors TRAF6

and IRAK1 in quiescent HSC, which are subsequently induced

during HSC activation (Figure 1E). As expected, aHSC were fully

responsive to IL-1a treatment which stimulated the expression of

IL-6 and TIMP-1 indicating a profibrogenic phenotype

(Figure 1F). Maximal induction of IL-6 and TIMP-1 occurred

after 8 hours of IL-1a treatment (7.6961.14 RLTD, 4.360.62

RLTD, respectively p,0.001)

We next determined the function of TLR3 alongside other

TLRs in aHSC. Culture-activated rat HSCs were exposed

between 0 and 24 hours to TLR2 (LTA), TLR3 (Poly(I:C)),

TLR4 (LPS), TLR5 (flagellin) or TLR7 (imiquimod) agonists.

Measurement of IL-6 mRNA expression revealed a strong

induction upon activation of TLR3 with Poly(I:C) (9.0661.41

RLTD, p=0.001) and TLR4 with LPS (7.8263.3 RLTD,

p= 0.056) which peaked at 5 and 4 hours, respectively. Weaker

responses were found in response to engagement of TLR2 (LTA)

(4.3161.6 p= 0.1), TLR5 (flagellin) and TLR7 (imiquimod) (data

not shown) both peaking earlier at 2 hours (Figure 2A). Addition-

ally, we monitored IL-6 secretion from aHSC in response to the

same TLR agonists over a 24 hr period by ELISA (Figure 2B).

LTA, LPS and imiquimod treatment was associated with a

minimal 4-fold increase in secreted IL-6 at 24 hours

(36226215 pg/ml, p,0.001; 3790664 pg/ml, p,0.001; respec-

tively, imiquimod data not shown). Poly(I:C) treatment resulted in

a 5-fold increase in secreted IL-6 by 8 hours (51506170 pg/ml,

p,0.001) further increasing to a 7-fold induction by 24 hours

(7480628 ng/ml, p,0.001)). We saw no increase in secreted IL-6

with Flagellin treatment, confirming lack of response of aHSC to

TLR5 signalling, at least in terms of IL-6 secretion (Figure 2B). We

conclude that qHSC and aHSC are able to mount inflammatory

cytokine responses following engagement of TLR3. However,

Poly(I:C) treatment failed to induce significantly higher levels of

TIMP-1, Collagen I or a-SMA transcripts (Figure 2C), suggesting

Role of TLR3 in Quiescent Hepatic Stellate Cells
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that it is unlikely that TLR3 functions as a modulator of the

fibrogenic activities of HSCs.

Activation of HSC decreases TLR3-mediated interferon
response and subsequent cytokine production
TLR3 plays a fundamental anti-viral role by producing

interferons (IFN) in response to viral dsRNA [19]. Given that

HSC express functional TLR3, we were intrigued to determine if

the activation of the receptor can trigger IFN production in these

cells. For this purpose we isolated HSC from 3 groups of rats;

control group which was given olive oil vehicle (qHSC); rats

administered CCl4 acutely for 48 hours (transitionary HSC) and

rats receiving a chronic CCl4 injury for 4 weeks (myofibroblastic

aHSC). HSC were subsequently treated for up to 24 hours with

Poly(I:C) prior to measurement of gene expression by qRT-PCR.

Figure 1. Quiescent and activated HSCs express Toll like receptors. (A) mRNA levels of TLR1-13 were quantified by qRT-PCR in three separate
preparations of primary rat qHSCs (day 0) and day 10 transdifferentiated myofibroblasts. Data are expressed as relative level of transcriptional
difference (RLTD) to TLR1 mRNA expression (n = 3). (B) Thirty micrograms of whole cell protein extract from three separate preparations of quiescent
rat HSCs (culture day 1) or activated myofibroblasts (culture day 10) were separated by SDS-PAGE and immunoblotted for TLR3 and GAPDH. (C) Toll-
like receptor 3 was visualised in the cytoplasm of rat qHSCs (ex vivo) culture day 1 (bar represents 75 mm). (D) Quiescent rat HSCs were treated with
Poly(I:C) (1 mg/ml) or IL-1a (2 ng/ml) for up to 24 hours; IL-6 mRNA was measured and normalised to b actin (n = 3). (E) Thirty micrograms of whole
cell protein extract from two separate preparations of quiescent HSCs or activated myofibroblasts (culture day 10) were separated by SDS-PAGE and
immunoblotted for IRAK1, TRAF6 and GAPDH. (F) Activated rat myofibroblasts were treated with IL-1a (2 ng/ml) for up to 24 hours; IL-6 and TIMP1
mRNA were measured and normalised to b actin (n = 3). (*p,0.05, ***p,0.001).
doi:10.1371/journal.pone.0083391.g001
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Figure 2. Hepatic stellate cells are responsive to stimulation by TLR ligands. (A) mRNA level of IL-6 was quantified by qRT-PCR in four
separate preparations of activated rat HSCs (culture day 10) treated with TLR2 ligand (LTA, 100 ng/ml), TLR3 ligand (Poly(I:C), 1 mg/ml), TLR4 ligand
(LPS, 100 ng/ml) or TLR5 ligand (Flagellin, 1 mg/ml) for up to 24 hours (n = 4). Expression level was normalised to b actin. (B) Secreted IL-6 protein was
measured by ELISA in conditioned media collected from activated HSCs treated with TLR ligands as in (A) following 2 h, 8 h or 24 h of stimulation
(n = 4). (C) mRNA levels of IL-6, TIMP1, aSMA and collagen I were quantified by qRT-PCR in four separate preparations of activated rat HSCs (culture
day 10) treated with TLR3 ligand (Poly(I:C), 1 mg/ml) for up to 24 hours. Expression level was normalised to b actin. (#p,0.1, *p,0.05,
**p,0.01***p,0.001).
doi:10.1371/journal.pone.0083391.g002

Role of TLR3 in Quiescent Hepatic Stellate Cells
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HSC from untreated rats responded to Poly(I:C) with induction of

transcripts for IFNa, b and c (Figure 3A–C). However, HSC

isolated from acute and chronic CCl4-injured animals failed to

induce IFN gene expression to similar levels seen in quiescent

HSCs (Figure 3A–C). Additionally, we see failure of induction of

key cytokines CXCL10, TNF-a, MxA, CXCL1/KC and IL-1b in

transitionary and activated HSCs compared with quiescent HSCs

(Figure 3D). Similar to Wang and colleagues, we also found

indoleamine 2,3-dioxygenase was induced after stimulation of

qHSCs with Poly(I:C) [20], and this was subsequently reduced in

transitionary and activated HSCs (Figure 3D). However, these

findings were not universal and we found no change in induction

of cytokines such as CTGF, IL-10, MCP1 and CCL5 (Figure S1).

In all studies, HSC were pre-plated in order to remove

contaminating Kupffer cells (KC), however it remained possible

any remaining minor contamination with KC was responsible for

the observed TLR3 induction of IFN gene expression. To address

this issue, HSC were isolated from rats treated with clodronate-

liposomes for 48 hours to clear KC from the liver. Isolated qHSC

from clodronate-treated rats were then exposed to Poly(I:C) for 2,

8 and 24 hours prior to measurement of secreted IFNc in the

culture media. Media from control qHSC contained low levels of

IFNc, by contrast media from qHSC treated for 8 or 24 hours

with Poly(I:C) contained greater than 100 pg/ml levels of IFNc

(p,0.01 for both 8 and 24 hours)(Figure 3E). As a control for

these experiments we also determined IFNc production by qHSC

isolated from rats administered carrier liposomes only (Figure 3F),

these cells responded to Poly(I:C) by producing only slightly higher

levels of IFNc than qHSC from rats exposed to clodronate-

liposomes. Hence any KC contaminant in the qHSC cultures

makes only a minor contribution to the overall level of TLR3-

induced IFNc in the culture model. To confirm that qHSC

produce bioactive IFNc capable of modulating immune responses,

macrophages were exposed to media conditioned by qHSC

exposed to Poly(I:C) for 8 hours and induction of MHC class II

was measured by FACS. Macrophage class II expression was

increased in media from Poly(I:C) treated qHSC compared with

untreated media, though levels remain less than in macrophages

Figure 3. Activation of HSC decreases TLR3 mediated interferon and cytokine response. (A,B,C) HSCs were isolated from control, acute
CCl4 treated rats (single injection), or chronic CCl4 treated rats (4 weeks twice weekly injections); cells were seeded onto plates and treated with
Poly(I:C) (1 mg/ml) for up to 24 hours. Interferon a, b and c were measured and normalised to b actin. Data are expressed as RLTD. (D) Interferon-
inducible cytokines CXCL10, TNF-a, MxA, CXCL1/KC, IL-1b and indoleamine 2,3-dioxygenase were measured and normalised to b actin (n = 4). Data
are presented as fold change, Poly(I:C) stimulated to unstimulated. Secreted IFNc was measured by ELISA in the media of cultured HSCs isolated from
rats treated with either chlodronate-liposomes (E) or empty liposome control (F). (G) Expression of MHC class II on macrophages cultured in qHSC
conditioned media. Flow cytometric analysis of control macrophages (untreated), or macrophages incubated with control media, untreated qHSC
conditioned media, Poly(I:C) treated qHSC conditioned media or 100 ng/ml recombinant IFNc as positive control. (*p,0.05, **p,0.01, ***p,0.001).
doi:10.1371/journal.pone.0083391.g003

Figure 4. Interferon gamma and IL-6 expression are TLR3 mediated and loss of ability to induce IFNc in aHSCs is associated with
transcriptional repression by Polycomb complex. (A) WT and tlr3

2/2 activated mHSCs were treated with Poly(I:C) (1 mg/ml) for 8 and 24 hours;
subsequently IFNc mRNA expression was measured by qPCR. Data are normalised to GAPDH and expressed as fold induction relative to control. (B)
IL-6 mRNA expression was measured in WT and tlr3

2/2 activated mHSCs in response to increasing concentrations of Poly(I:C). (C) Wild type qHSCs
were treated with transcriptional inhibitors Act D (1 mM) and DRB (80 mM) for 24 hours and IL-6 mRNA expression analysed by qRT-PCR. Data are
normalised to GAPDH and expressed as fold induction relative to untreated control. (D and E) One hundred micrograms of crosslinked chromatin
from quiescent and activated rat HSC was incubated with 10 mg of anti-trimethyl and anti-dimethyl H3K27 antibody and ChIP assay performed. Data
are expressed as fold enrichment relative to IgG control. (*p,0.05, **p,0.01, ***p,0.001).
doi:10.1371/journal.pone.0083391.g004
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cultured with media supplemented with maximal dose of

recombinant IFNc (Figure 3G).

As dsRNAs and Poly(I:C) are able to induce innate immune

responses via alternative pathways from those triggered by TLR3

(e.g. RIG-1 and MDA5) we wished to confirm that the IFN and

IL-6 responses we have described can be specifically attributed to

TLR3 signalling. We therefore compared responses to Poly(I:C)

between freshly isolated, quiescent wild type and tlr3
2/2 HSC.

Treatment of wild type qHSC with Poly(I:C) was again associated

with a time-dependent induction of IFNc which was not detected

with tlr3
2/2 qHSC (Figure 4A) (2.8360.8 RLTD WT control

p = 0.048). For measurement of the IL-6 response, we performed a

detailed Poly(I:C) dose-response with aHSC, ranging from 10 ng/

ml to 25 mg/ml (Figure 4B). For wild type aHSC, IL-6 induction

was observed at 1 mg/ml (2-fold), 10 mg/ml (6-fold) and 25 mg/ml

(10-fold). By contrast a modest 3-fold induction of IL-6 transcript

was observed with the highest 25 mg/ml dose for tlr3
2/2 cells

which is likely to be non-specific at this very high concentration of

Poly(I:C). Abrogation of TLR3 signalling resulted in a significant,

but incomplete reduction of IL-6 mRNA expression. We cannot

exclude the possibility that MDA5 or RIG-1 may play a role in this

setting, however, it is worth noting a complete absence of any

additional IL-6 production in tlr3
2/2 HSCs at 1 mg/ml of

Poly(I:C) which was the concentration used throughout all other

experiments. Treatment of wild type qHSC with transcriptional

inhibitors actinomycin D and 5,6-Dichlorobenzimidazole Ribo-

side (DRB) confirmed that TLR3 mediated activation of IL-6

expression is regulated at the transcriptional level (Figure 4C). To

investigate an explanation for the inability of aHSC to mount an

IFNc response following engagement of TLR3 we employed

chromatin immunoprecipitation (ChIP) to determine if chromatin

structure is modified at the IFNc gene. Di- and tri-methylation of

lysine 27 on Histone 3 (H3K27) is associated with transcription-

ally-repressed chromatin mediated by Polycomb proteins [21].

Activated HSC acquire the repressive dimethyl-H3K27 signature

within the downstream coding region of the IFNc gene

(Figure 4D). Additionally, relative to qHSC, aHSC show

enrichment of trimethyl-H3K27 in both the upstream promoter

and downstream coding regions (Figure 4E). These data suggest

that remodelling of the HSC epigenome during their transdiffer-

entiation to a myofibroblastic phenotype includes Polycomb-

mediated silencing of the IFNc gene.

Discussion

The innate immune response of the liver is essential for the

clearance of pathogenic microbes and initiation of the hepatic

wound-healing response to liver trauma or toxic damage. TLR3 is

an important component of the innate immune system providing a

sensor for dsRNA originating from RNA viruses or leakage from

damaged host cells [22]. In liver, TLR3 is expressed on

parenchymal and non-parenchymal cells as well as infiltrating

immune cells. Activation of TLR3 signalling in the liver leads to

inflammation and injury through induction of NK cell activation

and accumulation [23].

Augmentation of mouse liver-associated natural killer activity by

biologic response modifiers occurs largely via rapid recruitment of

large granular lymphocytes from the bone marrow [24]. TLR3

activated NK cells produce IFNc which has been shown to induce

apoptosis of activated HSC and to inhibit their proliferation. This

in turn limits further progression of liver fibrosis [25,26]. TLR3 is

further involved in numerous processes within the liver, ranging

from regeneration, viral hepatitis infection as well as autoimmune

disease (reviewed in [27]).

TLR3 along with TLR4 has been implicated in the control of

HCV replication via stimulation of IFNc [28,29]. Furthermore,

TLR3 signalling has been implicated as an important controller of

CD8+ T cell infiltration via the induction of IFNc and chemokines

such as CXCL9 [28]. This latter pathway has been proposed to

promote liver damage and possibly facilitate the development of

autoimmune hepatitis [30]. These observations suggest important

but complex functions for TLR3 in liver homeostasis and

immunity, as such it will be critical to define the cellular events

that regulate TLR3 responses if TLR3 signalling is to be targeted

therapeutically.

Non-parencymal liver cells that have previously been shown to

express TLR3 in the liver include resident KC and liver sinusoidal

endothelial cells (LSECs) [29,31]. Here, we provide evidence that

rodent HSC express TLR3 in both their quiescent and activated

phenotypes. Of note our data are in contrast to a recently

published study which reported an absence of TLR3 in quiescent

HSC. The reasons for this discrepancy are unclear but may relate

to differences in isolation procedures, or that while we mainly

focus our studies on rat HSC, the previous study utilised mouse

HSC [32]. Importantly we have also demonstrated an unexpected

innate immune function for qHSC, since they can express type I

and type II interferons in response to Poly(I:C) treatment and in a

TLR3-dependent manner. Interestingly this property of qHSC is

lost during transdifferentiation to their activated phenotype,

despite the cells retaining TLR3 expression and ability to elevate

their production of IL-6 in response to Poly(I:C) treatment. By

focusing on the IFNc gene we were able to show that aHSC

acquire transcriptionally repressive chromatin modifications that

may in part explain loss of IFNc production (Figure 4D and E).

Presumably this loss of IFNc response protects aHSC from the

previously documented anti-fibrogenic and pro-apoptotic actions

of IFNc, which if produced in an autocrine manner would act to

suppress their fibrogenic function [33].

Recent reports suggest that the HSC phenotype is more plastic

than previously thought, particularly in the context of liver injuries

that may periodically resolve and recur. It is proposed that aHSC

that avoid apoptosis during resolution of fibrogenesis can revert to

a more quiescent phenotype (iHSC), although in a state where

they are primed to activate more efficiently than naive qHSC

[34,35]. Given that iHSC may be within microenvironments

where liver damage is not fully resolved, it would be interesting to

determine if their phenotype reversion recovers their ability to

express IFNs in response to dsRNA. Chronic production of IFNs

by these cells in significant numbers and in the context of recurring

liver damage may promote immune dysfunction of relevance to

acute and chronic pathologies.

In summary, we have discovered an unexpected role for TLR3

in qHSC as a stimulator of type I and type II interferon expression

in response to Poly(I:C) treatment. We propose that prior to

activation, qHSC may contribute to the induction of the hepatic

innate immune response to injury or infection. Further investiga-

tion of the function of TLR3 on qHSC may therefore lead to

strategies for modulating the recruitment and activation of innate

immune cells during acute viral infections and drug-induced liver

injuries.

Supporting Information

Figure S1 HSCs were isolated from control, acute CCl4
treated rats (single injection), or chronic CCl4 treated

rats (4 weeks twice weekly injections); cells were seeded

onto plates and treated with Poly(I:C) (1 mg/ml) for up to

24 h. We found no change in the induction of CTGF, IL10,
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MCP1, and RANTES (CCL5) in transitionary or activated HSCs

compared with control.

(TIF)
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