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ABSTRACT

Motivation: Many metagenomic studies compare hundreds to thou-

sands of environmental and health-related samples by extracting and

sequencing their 16S rRNA amplicons and measuring their similarity

using beta-diversity metrics. However, one of the first steps—to clas-

sify the operational taxonomic units within the sample—can be a com-

putationally time-consuming task because most methods rely on

computing the taxonomic assignment of each individual read out of

tens to hundreds of thousands of reads.

Results: We introduce Quikr: a QUadratic, K-mer–based, Iterative,

Reconstruction method, which computes a vector of taxonomic as-

signments and their proportions in the sample using an optimization

technique motivated from the mathematical theory of compressive

sensing. On both simulated and actual biological data, we demon-

strate that Quikr typically has less error and is typically orders of mag-

nitude faster than the most commonly used taxonomic assignment

technique (the Ribosomal Database Project’s Naı̈ve Bayesian

Classifier). Furthermore, the technique is shown to be unaffected by

the presence of chimeras, thereby allowing for the circumvention of

the time-intensive step of chimera filtering.

Availability: The Quikr computational package (in MATLAB, Octave,

Python and C) for the Linux and Mac platforms is available at http://

sourceforge.net/projects/quikr/.

Contact: koslicki.1@mbi.osu.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Reconstructing the taxonomic composition of a bacterial com-

munity taken from an environmental sample (be it a human-
associated, ocean, or soil sample) is critical for understanding

the role that such a community might play in affecting change

in that environment. A popular reconstruction approach (Cole

et al., 2009; Jumpstart Group, 2012; Lan et al., 2012; Wang and

Zhang, 2011, Wang et al., 2007) is to use 16S rRNA amplicon
sequencing (like Roche’s 454 technology) to produce many

(�400000–1 000000) moderate-length (�400–700bp) reads of

specific variable regions of the 16S rRNA gene and then indi-

vidually classify these reads using a custom database with

BLAST or in a Bayesian framework like the Ribosomal

Database Project’s (RDP) Naı̈ve Bayesian Classifier (NBC)

(Wang et al., 2007). RDP’s NBC is widely used owing to its

speed but it can still take several days to assign millions of

reads on a desktop computer, thereby alienating users who do

not have access to large computer clusters.
We introduce a method that enables desktop analysis: we take

a novel approach by reconstructing all taxonomic concentrations

of a bacterial community simultaneously (as opposed to read-by-

read classification). This allows for orders of magnitude decrease

in execution time while maintaining comparable (and often

better) reconstruction fidelity. This method, based on ideas

from compressive sensing, was inspired by and tangentially

related to (Amir and Zuk, 2011) wherein sparsity-promoting al-

gorithms were used to analyze mixtures of dye-terminator reads

resulting from Sanger sequencing. Here, however, we take a

k-mer–based approach that is designed for high-throughput

sequencing technologies. This is similar in spirit to the k-mer–

based approach in (Meinicke et al., 2011) but herein we use a

distribution estimation procedure based on compressive sensing.

Put briefly, our method measures the frequency of k-mers (for a

fixed k�6) in a database of 16S rRNA genes for known bacteria,

calculates the frequency of k-mers in the given sample, and then

reconstructs the concentrations of the bacteria in the sample by

solving an underdetermined system of linear equations under

a sparsity assumption. To solve this system, we employ

MATLAB’s (MATLAB, 2012) iterative implementation of typ-

ical nonnegative least squares and hence we refer to this method

asQuikr: QUadratic, Iterative, K-mer–based Reconstruction. We

point out that Quikr has not yet been optimized for performance

but still demonstrates orders of magnitude speed improvement

over RDP’s NBC.

2 METHODS

2.1 k-mer training matrix

The training step consists of converting an input database of 16S rRNA

sequences into a k-mer training matrix. For a fixed k-mer size, we calcu-

late the frequency of each k-mer in each database sequence. Hence, given

a database of 16S rRNA sequences D ¼ fd1, . . . , dMg, the ði, jÞ
th entry of

the k-mer training matrix AðkÞ is the frequency of the ith k-mer (in lex-

icographic order) in the jth sequence dj.

Herein, we consider two different databases of 16S rRNA sequences.

The first database, Dsmall, is the same as the training database for RDP’s

NBC version 7. This database consists of 10 046 sequences and will allow

for direct comparison of Quikr to RDP’s NBC.*To whom correspondence should be addressed.
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The second database, Dlarge, consists of the 275727 sequences that

remained after applying TaxCollector (Giongo et al., 2010) to the

entire RDP 16S rRNA database 10.28. Applying TaxCollector had the

net effect of labeling each sequence with taxonomic information obtained

from NCBI (Benson et al., 2009; Sayers et al., 2009), discarding duplicate

sequences and discarding sequences that were missing genus labels.

Training the RDP’s NBC with the database Dlarge would lead to prohibi-

tively long classification times (417min per read on a 2.0GHz Intel

E7-4820 processor) and so demonstrates how Quikr can incorporate

much more known information than RDP’s NBC.

Forming the k-mer training matrix for Dsmall and Dlarge took�15 s and

15min, respectively, on a 2.0GHz Intel E7-4820 processor.

2.2 Sample k-mer frequencies

Given a sample dataset of 16S rRNA reads, we calculate the frequency of

all k-mers in the entire sample. We refer to this vector sðkÞ as the sample

k-mer frequency vector. Note that the calculation of sðkÞ is an easily par-

allelizable problem that can be computed efficiently in an online fashion.

2.3 Sparsity promoting quadratic optimization

We assume that the given environmental sample only contains bacteria

that exist in the database D ¼ fd1, . . . , dMg being used. Hence, we can

represent the composition of the sample as a vector x with non-negative

entries summing to one (i.e. a probability vector) where xi is the concen-

tration of the organism with 16S rRNA sequence di. However, as will be

demonstrated in section 3.5, the Quikr method still performs well when

the sample does contain novel bacteria not in the database being used.

We consider the idealized situation, in which sample noise and errors

introduced by short reads are ignored. The problem at hand is then to

reconstruct the bacterial concentrations x by solving the underdetermined

linear system

AðkÞx ¼ sðkÞ, ð1Þ

Under the plausible assumption that relatively few bacteria from the

database D are actually present in the given sample (that is, x is a

sparse vector), we can solve equation (1) by modifying some techniques

from compressive sensing. We use a variant of basis-pursuit denoising

(Chen et al., 1998), which reduces to a non-negative least squares prob-

lem. The details regarding this sparsity promoting, iterative, quadratic

optimization procedure are contained in the Supplementary Material.

Occasionally, Quikr experiences convergence issues. However, as de-

tailed in the Supplementary Material, filtering out the shortest sequences

from a given sample solved this issue in every situation we encountered.

2.4 Reconstruction metrics

There are a variety of metrics used in the literature to asses bacterial

community reconstruction fidelity (for example see Amir and Zuk,

2011; Clemente et al., 2011; Rosen et al., 2008, Segata et al., 2012 and

Wang et al., 2007). We denote the actual and predicted concentrations of

the bacteria as probability vectors x and x�, respectively. The reconstruc-

tion metric primarily used herein is the ‘1 distance between x and x�:

jjx� x�jj‘1 . This quantity takes values between 0 and 2 (with perfect

reconstruction being jjx� x�jj‘1 ¼ 0) and is commonly referred to as

‘total error’ (as it is the total of the absolute errors). We also use precision,

sensitivity, specificity and accuracy; these error metrics vary between 0

and 1 (with higher values reflecting better reconstruction fidelity).

The definitions of these quantities are contained in the Supplementary

Material. Note that the correlation between x and x� is not an

effective reconstruction metric because the sparsity of x and x�

and the high number of true negatives typically make

corrðx, x�Þ :¼ x>x�=ðjjxjj2jjx
�jj2Þ too close to the optimal value 1.

The term reconstruction fidelity will be used to communicate generic-

ally how well x� approximates x.

2.5 Simulated data

To test the performance of the Quikr method, the shotgun/amplicon read

simulator Grinder (Angly et al., 2012) was used to generate a large variety

of simulated 454 pyrosequencing datasets. These datasets were designed

to mimic reads generated by Roche’s GS FLX and FLXþ amplicon

systems, so read-length distributions were set to be normally distributed

with a mean of 400 or 700bp and a standard deviation of 50 or 100bp.

The primers B27F, B357F and BU968F were chosen to target the V1-V3,

V3-V5 and V6-V9 variable regions, respectively. Only forward primers

were used because amplicon sequencing allows for filtering on sequencing

direction. Three different diversity values were chosen to be 102, 103 and

104, and abundance was modeled by a power-law or exponential distri-

bution with parameters 0.705 and 1, respectively. Because most sequen-

cing errors in these systems are due to homopolymer errors, such errors

were modeled by using Balzer’s model (Balzer et al., 2010). Chimera

percentages were set at 0, 10 and 30%. Since only amplicon sequencing

is considered, no copy or length bias was employed.

In all, 216 different simulated datasets were generated with over 172

million reads, resulting in over 78 billion bases.

2.6 Mock communities

To benchmark the Quikr method on real biological data, we examined

the mock microbial communities developed in (Haas et al., 2011). These

communities contain staggered concentrations of 16S rRNA genes for

each of 21 different organisms that span a diverse range of properties (GC

content, genome size, etc.). This mock microbial community was then

sequenced independently at four different institutions with primers de-

signed to target the V1-V3, V3-V5 and V6-V9 variable regions resulting in

12 different 454 datasets with an average read length of 439bp and stand-

ard deviation 38bp. Detail regarding the precise conditions under which

this data was obtained appears in (Haas et al., 2011, pages 499–500).

2.7 Human microbiome data

To further benchmark the Quikr method on real biological data, we

applied the Quikr method to the Human Microbiome Project’s (HMP;

The Human Microbiome Project Consortium, 2012) trimmed sequences

resulting from SRA study id SRP002395. This dataset consists of ap-

proximately 72 million reads over 5034 samples targeting the V1–V3

and V6–V9 variables regions.

3 RESULTS

3.1 Speed comparison

We performed all benchmarks against RDP’s NBC because this

is considered to be the fastest 16S rRNA classifier to date (Liu
et al., 2008). Figure 1 shows a log-log plot of the number of reads
analyzed versus time for RDP’s NBC version 10.28 with training

set 7 (this is the same as database Dsmall, see section 2.1) and
Quikr with k¼ 6 using the database Dsmall. Note the significant

improvement in speed: it takes Quikr well less than 1min to
analyze over 1 million reads. While RDP’s NBC computational
complexity in the number of reads N is approximately OðNÞ, on

this data Quikr is approximately OðN1=5Þ.

3.2 Simulated data results

The Quikr method was applied to all 216 simulated datasets

using k-mer sizes in the range k ¼ 1, . . . , 6 for both databases
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Dsmall and Dlarge. We observed that at the genus level the mean ‘1
error decreased roughly linearly (linear regression R2 ¼ 0:953) as

a function of k-mer size. However, the total algorithm time

increased exponentially. This behavior is to be expected owing

to the exponential increase in number of k-mers as a function of

k. These patterns were observed at all taxonomic ranks with both

training databases. We recommend using the k-mer size k¼ 6, as

this provides a good trade-off between reconstruction fidelity

and execution time.
For comparison purposes, we also classified the simulated

data using the popular RDP’s NBC (Wang et al., 2007) version

10.28 with training set 7 (this is the same training data as the

database Dsmall). Figure 2 compares the timing, mean ‘1 error at
various taxonomic ranks, as well as precision, sensitivity, speci-

ficity and accuracy at the genus level between Quikr (using k-mer

size k¼ 6) and RDP’s NBC.
As part (a) of Figure 2 shows, Quikr is orders of magnitude

faster than RDP’s NBC no matter which training database is

used. Indeed, using Dlarge, Quikr took an average of 1730 s per

dataset (or 520 reads per second). Using Dsmall, Quikr took an

average of only 26.4 s per dataset (or 34 091 reads per second).

Compare this with RDP’s NBC taking an average of 23 978 s per

dataset (or 38 reads per s).
Part (b) in Figure 2 demonstrates that both methods show an

increase in mean ‘1 error as one moves to lower taxonomic ranks.

At the genus level and using the training database Dlarge, Quikr

shows a 46.5% improvement in ‘1 error over RDP’s NBC. Using

the training databaseDsmall, Quikr has comparable error to RDP’s

NBC down to the family level. Using this smaller database, Quikr

results in more error than RDP’s NBC at the genus level.
Part (c) in Figure 2 shows that when using Dlarge, Quikr has

comparable specificity and accuracy, and only slightly lower

averages for precision and sensitivity when compared with

RDP’s NBC at the genus level. This pattern continues when

using the database Dsmall except here Quikr is much less sensitive

than RDP’s NBC but shows comparable precision, specificity

and accuracy.
These results demonstrate that when using the training data-

base Dsmall, Quikr is an extremely fast method that gives a good

high-level characterization of a given sample. When using the

training database Dlarge, Quikr is a fast and accurate classifica-

tion method even down to the genus level.

3.3 Mock communities results

We analyzed the 12 mock communities with the Quikr method

for k-mer size k¼ 6 with both training databases Dlarge and

Dsmall, as well as the RDP’s NBC version 10.28 with training

set 7 (which is the same as database Dsmall). Figure 3 compares

Fig. 2. Comparison of Quikr to RDP’s NBC on simulated data.

Throughout, RDP’s NBC version 10.28 with training set 7 was used.

(a) Algorithm execution time for RDP’s NBC and Quikr trained using

Dlarge and Dsmall. Whiskers denote range of the data, vertical black bars

designate the median and the boxes demarcate quantiles. (b) ‘1 error

averaged over all 216 simulated datasets versus taxonomic rank for

RDP’s NBC and Quikr trained using Dsmall and Dlarge. (c) Histogram

densities for other error metrics at the genus level for RDP’s NBC and

when Quikr was trained usingDsmall and Dlarge. The horizontal black bars

represent the mean

Fig. 1. Log–Log plot of number of reads versus time (in seconds) for

both RDP’s NBC and Quikr
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the timing, mean ‘1 error at various taxonomic ranks, as well as

the remaining error metrics at the genus level between Quikr and

RDP’s NBC. Similarly to the simulated data in section 3.2, with

training database Dlarge, Quikr is on average much faster than

RDP’s NBC, and significantly faster when using the train-

ing database Dsmall [(see part (a) of Fig. 3)]. As part (b) of

Figure 3 shows, the ‘1 errors of both methods are comparable.

Furthermore, when using the training database Dlarge, Quikr has

less error than RDP’s NBC at the genus level. Lastly, when

Quikr uses the training database Dlarge, both methods have com-

parable precision, sensitivity, specificity and accuracy (note

Quikr is slightly more precise, specific and accurate). When

using Dsmall, Quikr is significantly less sensitive than RDP’s

NBC, but the other error metrics give similar values.
Figure 4 shows the consensus/mean predicted phyla over all 12

mock communities for both the Quikr method (using database

Dsmall) and RDP’s NBC. The correlation between predicted and

actual concentrations for Quikr is 0.9724 versus RDP’s NBC

correlation of 0.9700. The concentrations for each phyla as pre-

dicted by Quikr are closer on average to the actual concentra-

tions than that of RDP’s NBC at the cost of a false-positive

phylum of Tenericutes. However, the mock communities con-

tained 18S rRNA of Candida albicans and the k-mer frequencies

of this species is closer to the average k-mer frequencies of the

Tenericutes than any other phyla. Future plans for Quikr include

developing a measure for novel taxa so as to address this issue of

potential false positives.

This demonstrates again that when using the training database

Dsmall, Quikr is an extremely fast method that gives a good high-

level characterization of a given sample. When using the training

database Dlarge, Quikr is a fast and very accurate classification

technique.

3.4 HMP results

To demonstrate that Quikr is fit for utilization on a desktop com-

puter, we analyzed the 5034 samples of HMP data on an iMac

with a 3.4GHz Intel i-7 processor. Using the default training

database Dsmall (which corresponds to RDP’s training set 7),

Quikr took 7.6h to analyze the entire HMP data set. Retraining

with the Greengenes (DeSantis et al., 2006) 91%-OTU database

of 5878 sequences, Quikr took only 4.8h to analyze the entire

HMP dataset. The results of analyzing the HMP data with the

Grenegenes database were then analyzed in QIIME (Caporaso

et al., 2010) to produce a PCoA plot, which is included in

Figure 5. This plot can be compared with Figure 1a in (Koren

et al., 2013) reproduced here as Figure 5c. To quantify the vari-

ability of a particular category (body site in this case), QIIME

(Caporaso et al., 2010) includes several methods, such as Adonis

and ANOSIM, which can asses the statistical significance of

groupings in a PCoA plot as well as indicate how much of the

variation is explained by such groupings. Because we did not have

the file that generated Figure 5c and are only demonstrating the

concept of applying Quikr for generating fast PCoA plots, we did

not investigate further such quantitative comparisons. The results

are qualitatively similar enough in their clustering and distinguish-

ing of body sites to conclude that Quikr is effective in facilitating

the transformation of raw reads into an accurate PCoA plot in

less than a workday on a typical scientist’s desktop computer.

3.5 Cross-validation

To gauge how well the Quikr method will perform when the

given sample contains 16S rRNA not in the database (simulating

novelty), we performed a 5-fold cross-validation. Throughout the

Fig. 3. Comparison of Quikr to RDP’s NBC using the mock commu-

nities. Throughout, RDP’s NBC version 10.28 with training set 7 was

used. (a) Algorithm execution time for RDP’s NBC and Quikr trained

using Dlarge and Dsmall. Whiskers denote range of the data, vertical black

bars designate the median and the boxes demarcate quantiles. (b) ‘1 error

averaged over all the mock communities versus taxonomic rank for

RDP’s NBC and for Quikr trained using Dsmall and Dlarge. (c)

Histogram densities for other error metrics at the genus level for

RDP’s NBC and Quikr trained using Dsmall and Dlarge. Horizontal

black bars represent the mean

2099

Quikr

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/29/17/2096/239249 by guest on 16 August 2022

.
,
,
Human microbiome project (
)
,
Utilizing 
ours
-
,
ours
to 
)
 (
)
Since 
 (
)


cross-validation, the k-mer size was fixed at k¼ 6. The database

Dlarge described in section 2.1 was partitioned into five disjoint

sets and one-fifth was set aside as testing data with the remaining

four-fifth used to form a new k-mer matrix as in section 2.1.

Grinder (Angly et al., 2012) parameters were then chosen to

generate a test sample from the testing data. In particular,

these parameters were chosen as follows: primers targeting the

V1-V3 variable regions, read lengths normally distributed with

mean 400bp and standard deviation 50bp, 800000 total reads,

exponential abundance model, diversity of 100 species, homopo-

lymer error model as in Balzer (Balzer et al., 2010) and 10%

chimera percentage. The mean of each reconstruction metrics

was then taken over the choice of which one-fifth was the testing

data. Lastly, an average was taken over 10 iterates of this pro-

cedure. RDP’s NBC was also used to classify the test samples.

Table 1 summarizes the results of this procedure for the ‘1 error
metric. Because Quikr has a smaller mean ‘1 error and tighter

variance, this demonstrates that even if the given sample contains

novel sequences not present in the database, the Quikr method will

still give high reconstruction fidelity down to the genus level.

Similar results were observed for the remaining error metrics.

Fig. 5. (a, b) QIIME (weighted Unifrac) analysis using the Greengenes 91% OTU database, which took �6h for QuikrþQIIME complete

analysis. Color legend: gut (black), oral (green), throat (light blue), skin (orange), nasal (bold blue) and urogenital (yellow). (c) Figure 1a from

(Koren et al., 2013)

Fig. 4. Actual phyla concentration versus consensus predicted concentra-

tion (mean over all 12 samples) for the reconstruction of the mock com-

munities via RDP’s NBC and Quikr (withDsmall). The mock communities

contained 18S rRNA for C.albicans whose k-mer frequency vector was

closest to the mean Tenericute k-mer frequency vector than any other

phyla

2100

D.Koslicki et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/29/17/2096/239249 by guest on 16 August 2022

5 
,
,
utilized 
Since 


3.6 Chimeras

The presence of chimeras in an amplicon sample can significantly

affect downstream analysis when using classification algorithms

such as Bayesian classifiers (Ashelford et al., 2005), and is pos-

sibly the culprit for overestimates of the so-called ‘rare biosphere’

(Edgar et al., 2011). Identifying and removing chimeras is a com-

putationally intensive and only partially solved problem (Edgar

et al., 2011, Haas et al., 2011; Huber et al., 2004; Quince et al.,

2011). It is therefore a significant advantage of the Quikr method

that it is completely unaffected by the presence of chimeras.

Quikr’s unaffectedness by chimeras is due to the k-mer frequency

of a chimera being well-estimated by the weighted sum of the

k-mer frequencies of the constituent sequences that generated the

chimera.
To present experimental evidence of this invariance, we se-

lected Grinder (Angly et al., 2012) parameters to be the same

as in section 3.5, but varied the percentage of chimeras from 0 to

100% in 10% increments, with 10 simulations being performed

at each increment. An ANOVA analysis resulted in P¼ 0.927,

hence there is no statistically significant evidence that the slope of

a linear regression deviates from zero. Figure 6 illustrates this

fact by plotting the mean ‘1 error and standard deviation over

the 10 simulations versus percent chimeras. Hence, it can be

concluded that it is unnecessary to filter for chimeras before

using the Quikr method.

4 DISCUSSION

Quikr represents a new paradigm in algorithms for bacterial

community reconstruction. By leveraging ideas from compressive

sensing, an entire sample can be analyzed quickly and accurately.

Depending on how it is trained, Quikr can be used as either an
extremely rapid, almost constant time, high-level community

profiling tool or else (using a larger training database) a fast,

extremely accurate technique. Besides improvements in speed,

other advantages include the ability to use massive training data-

bases (like Dlarge) that would be much too large for standard

techniques (like RDP’s NBC). Furthermore, Quikr is unaffected

by the presence of chimeras, so the time-consuming chimera-

removal step in standard analytic pipelines can be completely
circumvented.
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