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Abstract: A new program for multilevel (QM/QM and/or QM/MM) approaches is presented that is able to com-
bine different computational descriptions for different regions in a transparent and flexible manner. This program,
designated QUILD (for QUantum-regions Interconnected by Local Descriptions), uses adapted delocalized coordi-
nates (Int J Quantum Chem 2006, 106, 2536) for efficient geometry optimizations of equilibrium and transition-state
structures, where both weak and strong coordinates may be present. The Amsterdam Density Functional (ADF) pro-
gram is used for providing density functional theory and MM energies and gradients, while an interface to the
ORCA program is available for including RHF, MP2, or semiempirical descriptions. The QUILD optimization setup
reduces the number of geometry steps needed for the Baker test-set of 30 organic molecules by !30% and for a
weakly-bound test-set of 18 molecules by !75% compared with the old-style optimizer in ADF, i.e., a speedup of
roughly a factor four. We report two examples of using geometry optimizations with numerical gradients, for spin-
orbit relativistic ZORA and for excited-state geometries. Finally, we show examples of its multilevel capabilities for
a number of systems, including the multilevel boundary region of amino acid residues, an SN2 reaction in the gas-
phase and in solvent, and a DNA duplex.
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Introduction

Herein, we present a new multilevel QM/QM and/or QM/MM
approach and program: QUILD for QUantum-regions Intercon-
nected by Local Descriptions. QUILD allows a (complex) mo-
lecular system to be decomposed into arbitrary, interpenetrating
domains such that each type of interaction can be described with
a different method, i.e., the density functional that performs best
for that type of interaction or process. This is a pragmatic (of
course not a fundamental) approach to cope with the present-day
shortcomings of density functional theory (DFT), which features
density functionals that perform satisfactorily for a number but
not all types of interactions and phenomena (vide infra).

The application of traditional multilevel (QM/QM or QM/
MM) approaches within computational-chemistry studies is ever
more often used, because it permits to use a highly accurate
method for the most important region while treating the interac-
tions with the surrounding regions at a lower, yet sufficiently
accurate method.1,2 The QM/MM setup (see Fig. 1), where only
the region of interest is treated with quantum chemistry methods

while the interactions with and within the surrounding regions is
described with classical molecular mechanics force fields, is one
of the computationally most economical multilevel approaches.
However, its accuracy and applicability depend largely on the ac-
curacy and availability of force field parameters for the system
under study. Although specialized force fields are available for
certain classes of chemical systems, as the AMBER,3

CHARMM,4 or GROMOS5 force fields for proteins and nucleic
acids, or OPLS6 for organic solvents, they usually do not include
the parameters for nonstandard biochemical systems or organic
solvents. Moreover, the force field parameters may be specifically
designed or constructed for obtaining correct macroscopic proper-
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ties in large-scale molecular dynamics (MD) simulations. The
application of the same force field parameters in small-scale ge-
ometry optimizations of relatively small systems may turn out to
give (microscopic) results that are less satisfactory. For that rea-
son, it may be more advantageous to use quantum-chemical meth-
ods whenever possible, i.e. the QM/QM multilevel approach.

Because of the computational efficiency, the availability of
basis sets for the whole Periodic System, and the generally accu-
rate results, DFT7–9 has become the method of choice for the
majority of recent computational chemistry studies and can these
days almost routinely be used for relatively large system sizes
of up to a few hundred atoms.10–18 However, one must always
remain cautious with the choice of DFT functional and/or basis
set, and make sure that the particular functional is able to give a
correct description for the interactions that are important for the
system under study. For instance, the performance of functionals
that include the recent OPTX exchange functional19 is superior
to those containing Becke88 exchange20 for, among others,21–23

the accuracy of geometries,24,25 spin state splittings,26,27 reaction
barriers,24,28,29 or zero-point vibrational energies.24 As the
improvements can be linked directly to the specific formulation
of the OPTX functional26,29 and its resulting improved perform-
ance for atomic exchange energies,19 one would naively think

that inclusion of the OPTX functional would always lead to
improved performance. Unfortunately, this is not the case for
weakly-bound systems, as shown recently for hydrogen-bond-
ing30 and p-stacking31 in DNA. Moreover, a functional that per-
forms well30,32 for hydrogen-bonding interactions (BP8620,33),
does not necessarily give equally good results for p-stacking31

or reaction barriers.24,28,29 As a result, at present there does not
seem to be a DFT functional that is equally accurate for hydro-
gen-bonding, p-stacking, reactions barriers, and intramolecular
interactions. Therefore, for a study on for instance the structure
of DNA duplexes, the aforementioned multilevel QUILD
approach is needed with one DFT functional for the description
of hydrogen-bonding interactions, and another for the description
of p-stacking (see Fig. 2). Thus, although QUILD may be used
in a similar fashion as traditional QM/QM methods, i.e., to
reduce the computational cost, its main purpose is to increase
the effective accuracy of a DFT (or other type of) computation.

Knowledge of molecular structure is another important aspect
of scientific studies into the details of chemical and physical
phenomena. Having efficient and reliable optimization techni-
ques available is therefore a vital prerequisite, especially when
studying larger systems or weakly-bound systems that are more
difficult to optimize (vide infra). Recently,34 we have proposed
an adaptation of the delocalized coordinates setup as originally
reported by Baker et al.35; the delocalized coordinates are easy
to construct and function well for strong (intramolecular) coordi-
nates. Our adaptation enables their use also in the case of weak
coordinates by employing a screening function that distinguishes
weak from strong coordinates.

The purpose of this contribution is 3-fold. First, we want to
introduce the program and explain the philosophy. The benefit
of our multilevel approach is not only that it can be used to
make the calculations cheaper and therefore feasible, but also
that the best method for any type of interaction can be used as
we need for DNA. For describing DNA, we use one DFT func-
tional (see Fig. 2, in blue) for treating the complete system, and
another (Fig. 2, in pink and yellow) for p-stacking between the

Figure 1. Schematic drawing of QM/MM setup of a protein where
the active site (region 1, in yellow) is treated by QM methods, and
is surrounded by the protein environment (region 2, in blue) and a
solvent layer (region 3, in blue) that are both treated at the MM
level. [Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]

Figure 2. Schematic drawing of QM/QM treatment of DNA, where the p-stacking between the bases
(regions 1–4, in yellow and pink, see also Scheme 2) is treated at a different level than the H-bonding
and intramolecular interactions (numbers in italics refer to steps in QM/QM scheme, see text). [Color
figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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DNA bases. This is achieved by making the definition of the
regions flexible, i.e., there is no need to have a layered structure
as in the ONIOM approach (represented in Fig. 3). An arbitrary
splitting of the total system into different regions is permitted
with, therefore, possibly overlapping regions; this resembles a
quilt, hence the name of the program. Second, we want to check
our program by comparing the performance of the geometry
optimization setup (both at RHF/STO-3G and PW91/TZ2P) with
literature values for the Baker test set36 of 30 organic molecules,
and compare the results to optimization with the old-style opti-
mizer in Amsterdam Density Functional (ADF). Furthermore,
we compare the performance for a set of weakly bound systems,
where the improvement of using the adapted delocalized coordi-
nates is most obvious. Third, we want to show the capabilities
of QUILD by showing geometry optimizations using numerical
gradients, and, most importantly, the application of the multile-
vel QM/QM approach to a number of systems that include the
treatment and accuracy of the multilevel boundary region, solva-
tion effects on a bimolecular nucleophilic substitution (SN2)
reaction, and finally the treatment of a DNA duplex system.

Computational Details

The generation of the delocalized coordinates, screening func-
tions, etc., and the actual geometry optimization scheme was
performed within the QUILD37 (QUantum-regions Intercon-
nected by Local Descriptions) program, which has been devel-
oped for enabling QM/QM calculations, and which functions as
a wrapper around the ADF,38,39 NEWMM, and ORCA pro-
grams. The QUILD program constructs all input files for exam-
ple ADF, runs ADF, and collects all data; ADF, NEWMM (inte-
grated into the ADF package), and ORCA are used only for the
generation of the energy and gradients. The QUILD program
consists of a combination of a shell script and a Fortran90 part.
The Fortran90 part takes care of the more involved dealings
such as input handling, setting up the coordinates, making new
coordinates within geometry optimizations, and writes the input
files. The shell script executes these input files consecutively,
and re-executes at regular intervals the Fortran90 executable to
rewrite the input files and monitor the progress being made.

A numerical evaluation of the energy gradients (2-fold finite
difference with step sizes to be chosen by the user, default
value 1.0 3 1025 au; see Table S4 for dependence of optimized
geometry of hydrogen-peroxide on this parameter) in QUILD
enables the use of geometry optimization techniques for any meth-
odology within either of these programs, also for those for which
only the energy expression is known or implemented (for instance
meta-GGA or hybrid functionals, Spin-Orbit ZORA40 within
ADF) and for which geometry optimizations are otherwise out of
reach (see for example ref. 28 for geometry optimizations with
meta-GGA functionals that would otherwise have been impossi-
ble). Below we report examples of using numerical gradients for
Spin-Orbit ZORA, Scalar ZORA, and nonrelativistic calculations
for group 16 hydrides and halogen dimers, as well as for the first
singlet and triplet excited states of formaldehyde.

Similarly, the QUILD program also facilitates the use of
spin-projection techniques for gradients, i.e., it enables the ge-
ometry optimization of pure spin states for systems that suffer
from spin-contamination (see for example ref. 27). Moreover, as
the geometry optimization and the quantum-chemistry are sepa-
rated, the QUILD setup enables to use different symmetry repre-
sentations for the geometry (within QUILD) and the quantum-
chemistry (within ADF). Therefore, for a study on for instance
metalloporphyrins, the programs allows to use C2v symmetry
within ADF (for convenience with the iron 3d-orbitals), and S4
symmetry for the geometry. Although this separation could in
principle be achieved also by creating a Z-matrix that enforces
the S4 symmetry, this Z-matrix may not be optimally suited for
geometry optimizations.

All DFT calculations were performed with the ADF (version
2006.01)38,39 program developed by Baerends et al. The MOs
were expanded in a large uncontracted set of Slater-type orbitals
(TZ2P),41 which is of triple-f quality, augmented by two sets of
polarization functions (e.g., 3d and 4f on C, N, O; 2p and 3d on
H); the core electrons (e.g., 1s for 2nd period, 1s2s2p for 3rd pe-
riod, etc.) were treated by the frozen core (FC) approximation.39

An auxiliary set of s, p, d, f, and g STOs was used to fit the mo-
lecular density and to represent the Coulomb and exchange
potentials accurately in each SCF cycle. The numerical integra-
tion and solving the SCF equations was in most cases performed
at high accuracy (ACCINT 5 8.0, SCF convergence criterium
1.0 3 1028; both parameters were imposed at every geometry
step) to avoid inconsistencies due to numerical noise when com-
paring the different optimization strategies in the first part of the
results section.

Energies and gradients were mainly calculated using the local
density approximation (LDA; Slater exchange and VWN42 corre-
lation) with nonlocal (PW9143,44) corrections added self-consis-
tently. This xc-functional is one of the best (pure) DFT function-
als for the accuracy of geometries,25 with an estimated unsigned
error of 0.8 pm in combination with the TZ2P basis set. Further-
more, it is able to treat weak interactions correctly.30,45

The RHF and AM1 calculations were performed with the
ORCA program using conventional SCF techniques, and high
convergence criteria imposed (1.0 3 1027 au for tolerance of
energy, density, and DIIS equations).

The starting geometries for the Baker test set have been
obtained from the supporting information in the article by

Figure 3. Schematic drawing of QM/QM/MM setup of a protein
where the active site (region 1, in yellow) is treated by a high-level
QM method, and is surrounded by the protein environment (region
2, in pink) treated at low-level QM, and a solvent layer (region 3, in
blue) that is treated at the MM level. [Color figure can be viewed in
the online issue, which is available at www.interscience.wiley.com.]
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Bakken and Helgaker,46 which, however, contains two small
typographical errors (for ACANIL01 and neopentane). The cor-
rected coordinates are given in the supporting information of the
present article, which also includes the starting geometries for
the molecules in the weak-coordinates set.

Capping Atoms in QM/QM and QM/MM Calculations:
the AddRemove47 Scheme

In the case of multilevel approaches where the boundary
between regions cuts through covalent bonds, one has to take
care of the dangling bonds. For instance in the case of the appli-
cation of QM/QM to a small protein, where the active site is
treated at high-level QM and the remainder at low-level QM,
one has to perform three calculations: one at low-level QM for
the whole protein, one at high-level QM for the active site, and
one at low-level QM for the active site (see Fig. 1). The energy
(and gradient, Hessian) is then obtained as:

Etotal ¼ Elow prot:ð Þ þ Ehigh act: siteð Þ & Elow act: siteð Þ (1)

The treatment of the active site in the latter two calculations
has to deal with the dangling bonds at which the active site is
cut off. This is most conveniently handled by adding capping
atoms (usually hydrogens), which are positioned along the vec-
tor of the dangling covalent bond, and at a distance that corre-
sponds to the sum of the covalent radii of the capping atom and
the atom to which the capping atom is attached. Because the
capping atoms are added to the active site for both the high- and
low-level QM calculation (and at exactly the same position),
with a presumably similar effect in both cases, the interactions
of the capping atoms with the true active site atoms are in good
approximation cancelled out (the total effect is removed)
between the low- and high-level QM calculations. This is the
AddRemove model47 for link atoms, which was previously
shown to perform well for geometries around the boundary
between the QM and MM region in QM/MM calculations. The
AddRemove model47 has several advantages: it is simple and
the energy and gradients are treated in similar fashion (unlike
other models that project the gradients of the capping atoms
onto the gradients of the real atoms):

gtotal ¼ glow prot:ð Þ þ ghigh act: siteð Þ & glow act: siteð Þ (2)

Furthermore, the capping atoms follow the real atoms, at a
predefined distance, and therefore no artificial degrees of free-
dom are added by including the capping atoms.

Performance of Geometry Optimization Setup

Before presenting the results for a number of QM/QM and QM/
MM applications, we would first like to show the performance
of our geometry optimization setup. Baker36 proposed a test set
of 30 molecules that can be used for comparing different optimi-
zation strategies, with a convergence criterion for the gradient of
3.0 3 1024.36 In our previous contribution,34 we introduced an

additional set of weakly-bound molecules, which is extended for
the current contribution to 18 molecules with their starting geo-
metries preoptimized at MP2/6-311G*.

Previously, we compared our own PW91/TZ2P results for the
Baker test set with RHF/STO-3G data taken from the literature.
This comparison is not entirely fair in the sense that it is a pri-
ori unclear whether the performance benefits or suffers from the
more accurate PW91 treatment. Therefore, we decided to reex-
amine the performance of our geometry optimization setup in
two steps: first, at RHF/STO-3G (through the interface with
ORCA) for the Baker test set to be able to compare with values
from the literature; and second, at PW91/TZ2P for the Baker
and weak test sets where we compare the use of either Cartesian
or delocalized coordinates within QUILD with the performance
of Cartesians within the old-style optimizer in ADF.

For the Baker test set, the total number of geometry cycles
needed at the RHF/STO-3G level with quasi-Newton methods
ranges from 240 (Baker),36 196 (Eckert, Pulay, and Werner),48

215 (Lindh, Bernhardsson, Karlström, and Malmqvist)49 to 185
(Bakken and Helgaker).46 Note that the latter number can be
reduced to 111, when the exact Hessian is used at every step
(i.e. using Newton-Raphson techniques).46 Using the QUILD
scheme for geometry optimization, we need only 167 geometry
steps for completely optimizing the Baker test-set (see Table 1).
This is 18 geometry steps less than the results by Bakken and
Helgaker, the best result from the literature so far. Our results
presented here improve upon the ones reported in our previous
contribution due to an improved initial Hessian, and using a
dynamic trust radius (see supporting information). Note also that
the Bakken–Helgaker results46 were obtained using a rational
function (RF) approach for restricting the step length, which
when using extra-redundant internal coordinates was shown to
be 17 steps (29%) more efficient than the RSO approach we
use. At the RHF/STO-3G level we also find an improvement
when using the RF approach, but only a very modest one (a
reduction with 2). More importantly, within QUILD the RF

Table 1. Number of Geometry Cyclesa for Optimizing Molecules of the

Baker (30 Molecules) and Weak (18 Molecules) Test Sets, Compared for
Various Geometry Optimization Schemes.

Test set

Baker,

RHF/STO-3G

Baker,

PW91/TZ2P

Weak,

PW91/TZ2P

Baker36 240 – –
Lindh49 215 – –

Eckert48 196 – –

Bakken46 185 – –
This work

ADFcart
b – 222 748

QUILDcart – 214 (218)c 242 (293)c

QUILDdeloc 167 164 (171)c 175 (230)c

aFull details can be found in Tables S1–S3 in the supporting informa-

tion.
bUsing old-style optimizer in ADF.
cValue in parentheses is obtained when not discriminating between

strong and weak coordinates, i.e., with weight w 5 1 for all primitives,

see eqs. (7)–(10) in supporting information.
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approach performs less than RSO for the DFT calculations.
Therefore, the RF approach will not be discussed any further.

Also included in Table 1 are the number of iterations needed
for the Baker test set at the PW91/TZ2P level, obtained either
with QUILD or the old-style optimizer in ADF. When using
Cartesian coordinates, the difference between QUILD and the
old-style optimizer in ADF is rather small (222 for ADF vs. 214
for QUILD). This can be improved upon significantly by using
the adapted delocalized coordinates,34 where we only need 164
geometry steps (a reduction of !30%). The influence of using a
screening function to distinguish between strong and weak
coordinates is shown to have only a small effect on the perform-
ance for the Baker test set (see Table 1). When setting the
weights [see eqs. (7)–(10) in supporting information] explicitly to
one, the number of geometry steps needed increases only slightly
for the Baker test set, from 164 to 171 for the adapted delocalized
coordinates and from 214 to 218 for Cartesian coordinates.

The set of weakly-bound molecules contains 18 dimers, rang-
ing from ion-dipole complexes to van der Waals (polarizability–
polarizability) complexes. This weak set was studied at the
PW91/TZ2P level with Cartesian and adapted delocalized coor-
dinates in QUILD, and Cartesians in the old-style optimizer in
ADF. Contrary to what we saw for the Baker set, we observe
now a dramatic difference between the QUILD geometry optimi-
zation setup and the old-style optimizer in ADF. The latter
needs 748 geometry steps to completely optimize all 18 mole-
cules to a gradient maximum of 1.0 3 1025 au, which is
reduced to 242 steps when using Cartesians within QUILD (see
Table 1). A further reduction to 175 geometry steps is observed
when using the adapted delocalized coordinates within QUILD,
i.e. a 4-fold improvement compared to the old-style optimizer in
ADF.

This significant reduction in the number of steps is not only
the result of distinguishing weak from strong coordinates. When
using a weight of 1.0 for all coordinates [see eqs. (7)–(10) in
supporting information], the number of necessary steps increases
to still only 293 (Cartesian) and 230 (adapted delocalized), i.e.
an increase of 20–25%. Two factors influencing the improved
performance within QUILD are most likely the initial Hessian
that contains less noise within QUILD, and the use of regulated
GDIIS. Note also the smooth performance of the QUILD opti-
mizer that for all of the 18 weakly-bound systems converges to
the minimum within 15 cycles with the adapted delocalized
coordinates (see Table S3 in the supporting information),
irrespective of whether the weak interactions result from ion-
dipole (H2O'''H3O

1), dipole–dipole (H2O'''H2O, HF'''HF),
dipole-polarizability (Ar'''HF), or polarizability–polarizability
(CH4''''CH4) interactions.

Geometry Optimizations Using
Numerical Gradients

The first example of using the numerical gradients setup within
QUILD is given by the structures of group 16 hydrides (H2O,
H2S, H2Se, H2Te, H2Po) and group 17 dimers (F2, Cl2, Br2, I2,
At2). For these systems we performed geometry optimizations
with three Hamiltonians, i.e., nonrelativistic, scalar relativistic

ZORA,39,40 and spin-orbit relativistic ZORA.39,40 For the first
two Hamiltonians the analytical gradient is also available
(although for scalar ZORA with a slight mismatch, vide infra),
which helps to get an estimate of the accuracy of the obtained
geometry. The obtained angles and distances are given in Table
2. The relativistic corrections start to have an impact on the ge-
ometry from the third period onward; for instance for H2Se the
inclusion of scalar relativistic effects reduce the SeH distance by
0.006 Å. The effect becomes larger for H2Te (20.014 Å) and
H2Po (20.021 Å), and only for H2Po do the spin-orbit correc-
tions seem to have an effect by enlarging the HPo distance again
by 0.01 Å. Moreover, for the halogen dimers does the effect of
relativistic corrections start to have an impact from the third pe-
riod onwards. Similar to those observed for the group 16
hydrides, the scalar relativistic corrections result in a reduction
of the distance, which is counteracted by the spin-orbit correc-
tions that lead to increasing distances. The opposing effect of
scalar versus spin-orbit corrections is best shown by the At
dimer, where the distance decreases by 0.03 Å due to the scalar
corrections, and then increases by 0.09 Å because of the spin-
orbit corrections (see Table 2).

Table 2. Distances (Å) and Angles (deg.) for Group 16 Hydrides

and Halogen Dimers Obtained with Numerical Gradient Using
Nonrelativistic, Scalar Relativistic, or Spin-Orbit Relativistic

Hamiltonian, at PW91/TZ2P.a

NRb SR-ZORAc SO-ZORAd

Gr16 dist
H2O 0.970 (0.969) 0.969 (0.969) 0.969

H2S 1.353 (1.353) 1.353 (1.352) 1.353

H2Se 1.482 (1.483e) 1.476 (1.478f) 1.476
H2Te 1.684 (1.684) 1.670 (1.670) 1.671

H2Po 1.781 (1.782) 1.760 (1.761) 1.770

Gr16 angles

H2O 104.37 (104.35) 104.31 (104.27) 104.31
H2S 91.53 (91.68) 91.43 (91.58) 91.43

H2Se 90.42 (89.68e) 90.28 (89.52f) 90.28

H2Te 90.02 (89.89) 89.81 (89.70) 89.78

H2Po 88.99 (89.07) 89.20 (89.09) 89.07
Gr17 dimer dists

F2 1.419 (1.419) 1.420 (1.420) 1.420

Cl2 2.017 (2.018) 2.018 (2.019) 2.018

Br2 2.323 (2.323) 2.314 (2.317) 2.317
I2 2.717g (2.717g) 2.695 (2.695) 2.709

At2 2.908g (2.908g) 2.875 (2.875) 2.966

aValues in parentheses refer to results with analytical gradients (that for

Scalar-ZORA do not correspond exactly to the correct gradients).
bNonrelativistic Hamiltonian, using basis sets from nonrelativistic data-

base.
cHamiltonian with ZORA scalar relativistic corrections included self-con-

sistently, using basis sets from ZORA relativistic database.
dHamiltonian with ZORA Spin-Orbit relativistic corrections included

self-consistently, using basis sets from ZORA relativistic database.
eWith corresponding all-electron basis the values are respectively 1.478

Å for the HSe distance, and 90.438 for the HSeH angle (see text).
fWith corresponding all-electron basis the values are respectively 1.475
Å for the HSe distance, and 90.25( for the HSeH angle (see text).
gObtained with the basis from ZORA relativistic database.
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Odd behavior is observed for the angle of H2Se, for which a
difference of !0.78 is observed between using either the analyti-
cal or the numerical gradient (see Table 2). As the discrepancy
occurs for both the nonrelativistic and the scalar ZORA calcula-
tions, it cannot be caused by the incomplete analytical ZORA
gradient. The latter is known to contain a slight mismatch
between the energy expression and the potential, which leads to
a geometry with zero gradient that does not exactly coincide
with the energy minimum (difference of !0.1 pm). The cause of
the discrepancy is more likely to result from the projecting out
of the FC electrons,39,41 as the corresponding all-electron basis
set results in an H2Se angle (both with numerical and analytical
gradients) that matches the value obtained with frozen-core and
numerical gradients.

The second example of using numerical gradients is the ge-
ometry optimization of the first singlet and triplet excited states
of formaldehyde. In this case, we perform at each displaced ge-
ometry a TD-DFT calculation and add the excitation energy to
the ground state energy at the displaced geometry to obtain the
numerical derivative of the excited state energies. The optimized
geometry for the ground state, first singlet excited state, and first
triplet excited state is given in Table 3, where also some results
from the literature50,51 are given for reference. The purpose of
the current contribution is not to get the best possible DFT result
for these excited states, but merely to show the possibility to
calculate the excited state geometries. Therefore, we simply
used the same DFT setup as for the other calculations (PW91/
TZ2P). The obtained adiabatic excitation energies and structures
of the excited states compare reasonably well with either ab ini-
tio or experimental data, that is, the first triplet excited state lies
below the first singlet excited state, which are both found around
3.0–3.5 eV above the ground state. Moreover, the increase in

C&&O distance by !0.10 Å, changes in HCH angle (an increase
for singlet excited state, a decrease for triplet excited state) and
the out-of-plane bending observed in both the ab initio and
experimental data are well reproduced by our approach (see
Table 3).

Multilevel QM/QM and QM/MM Results

The main part of the results section will deal with examples of
using the QUILD program for multilevel QM/QM or QM/MM
approaches. Whenever the boundary between two regions cuts
through covalent bonds, the AddRemove scheme47 (vide supra)
has been used to satisfy the valence of dangling bonds.

The setup of a multilevel QM/MM or QM/QM scheme is
easy to construct in the QUILD program, by dividing a molecule
into different regions: for instance for a DNA duplex (see Fig.
2) regions 1–4 comprise the four bases, while region 5 contains
the remaining atoms. At each geometry step, a sequence of cal-
culations is performed (see Fig. 2). First the whole system is
computed at BP86 (I, in blue). Second, for the left-side p-
stacked basepair (regions 1 and 2) two series of calculations are
carried out: one at LDA (IIa, in yellow) and one at BP86 (IIb,
in blue). These series comprise three jobs: first with the stacked
base pair (regions 1 and 2), followed by a second job of one of
the bases (region 1), and a third with the other base (region 2)
to give only the interaction between the bases. Note that the
interactions within region 1 and within region 2 are still
described at BP86. Only the interaction between the two regions
is described at LDA. Third and finally, the corresponding series
of calculations for the right-side p-stacked basepair: one at LDA
(IIIa, in pink) and one BP86 (IIIb, in blue). All individual jobs
are taken care of by the QUILD program. The user only has to
specify in the QUILD input block which description to use for
which regions, as shown in Scheme 1 below.

The aforementioned regions (molecular fragments) and
descriptions (quantum chemical methods, program packages)
also have to be defined in the input (a full example input file is
given in the supporting information).

The total energy expression for the QM/QM scheme is finally
obtained as a combination of the different energies from the
aforementioned calculations (where E1 stands for BP86 and E2

for LDA in this example):

Etot ¼ E1 1& 5ð Þ þ DE2 1& 2ð Þ & DE1 1& 2ð Þ
þ DE2 3& 4ð Þ & DE1 3& 4ð Þ

DEx a& bð Þ ¼ Ex a& bð Þ & Ex að Þ & Ex bð Þ ð3Þ

Table 3. Geometrical Parameters (Å, deg.) for Optimized Structures of

Singlet and Triplet First Excited States of Formaldehyde.

RCO RCH ffHCH ha Energyb

Ground. st.

CASSCFc 1.210 1.118 115.1 0

CCSD(T)d 1.208 1.098 116.3 0
PW91/TZ2Pe 1.207 1.115 116.0 0

Exp.c 1.208 1.116 116.5 0
1(n ? p*) exc. st.
CASSCFc 1.358 1.109 116.8 37.7 3.48

MRDCIc 1.335 1.116 120.2 34.5 3.50

PW91/TZ2Pe 1.306 1.101 116.4 37.1 3.59

Exp.c 1.323 1.098/1.103 118.8/118.1 34.0 3.50
3(n ? p?) exc. st.

CASSCFc 1.335 1.112 113.9 43.7 3.08

MRDCIc 1.313 1.100 116.3 40.0 3.22

CCSD(T)d 1.314 1.090 115.6 41.4 3.22
PW91/TZ2Pe 1.305 1.106 112.9 48.9 2.88

Exp.c 1.307 1.084 121.8 41.1 3.12

aOut-of-plane bending angle.
bAdiabatic relative energy w.r.t. ground state, in eV.
cFrom ref. 50.
dFrom ref. 51.
eThis work.

Scheme 1. Input example of multi-level energy expression setup.
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The results of applying the aforementioned QM/QM setup on
a DNA duplex is given below. The energy expression of eq. (1)
is simplified whenever entire regions are replaced instead of the
DEx(a–b) interactions between regions as given above. For
instance, for the protein system of Figure 1, the total energy
expression would simply be (where E1 stands for MM and E2

for DFT in this example):

Etot ¼ E1 1& 3ð Þ þ E2 1ð Þ & E1 1ð Þ

Results for QM/QM, QM/MM, and QM Study
on Amino Acids

The first systems we studied with multi-level approaches, consist
of the dipeptide form of three amino acid residues, i.e.,
HCONHCaHaRCONH2 molecules where R represents the amino
acid residue sidechain (see Scheme 2). The studied residues are

cysteine (Cys), methionine (Met), and tyrosine (Tyr). In all cases
were the molecules divided into two regions (see Scheme 2), the
first (region A) consists of the sidechain atoms R with the back-
bone C-alpha and its attached hydrogen (CaHa), the second
(region B) consists of the remaining (dipeptide) atoms. The mol-
ecules were studied with different multilevel choices: (i) QM at
BP86/TZ2P; (ii) region A at BP86/TZ2P, region B at MM level
using AMBER95 force field; (iii) region A at BP86/TZ2P,
region B at BP86/DZP; (iv) region A at BP86/TZ2P, region B at
BP86/DZ; (v) region A at BP86/TZ2P, region B at LDA/TZ2P;
(vi) region A at BP86/TZ2P, region B at LDA/DZ; (vii) region
A at BP86/TZ2P, region B at AM1; and (viii) region A at
BP86/TZ2P, region B at RHF/STO-3G.

The aim of studying these three different amino acid residues
is to investigate how the different multilevel scheme options
influence the boundary region between different QM/MM or
QM/QM regions. As the bonds at or close to this boundary are
very likely to be affected most by the choice of using multilevel
schemes, we compare here the bond lengths for the bonds
between Ca and its bonded atoms. The Ca&&Ha distance does
not change significantly (see Table 4) compared to scheme i
when using either MM or DFT for region B (schemes ii–vi), but
shows a somewhat larger increase (0.01 Å) when using RHF or
AM1 for region B (schemes vii–viii).

Likewise, the Ca&&Cb distance remains more or less constant
(deviation of !0.01 Å) around 1.54 Å, irrespective of the nature
of the side chain and which multilevel scheme is used. This was
to be anticipated as the Ca&&Cb atoms are in region A that is
always treated at the BP86/TZ2P level. The only exception is
scheme vii, where region B is described at the semiempirical
AM1 level, when the Ca&&Cb distance goes to 1.59–1.60 Å.
Apparently, the AM1 treatment of region B pulls that hard on

Scheme 2. Amino acid residues studied with QM/QM, QM/MM,
and QM schemes (central atoms in black comprise region A,
remaining (dipeptide) atoms in grey region B).

Table 4. Backbone Distances (Å) for Amino Acid Residues with Different Multilevel Schemes.

Scheme i ii iii iv v vi vii viii

Region A BP86/TZ2P BP86/TZ2P BP86/TZ2P BP86/TZ2P BP86/TZ2P BP86/TZ2P BP86/TZ2P BP86/TZ2P
Region B BP86/TZ2P AMBER95 BP86/DZP BP86/DZ LDA/TZ2P LDA/DZ AM1 RHF/STO-3G

Cys

Ca&&N(dp) 1.456 1.473 1.455 1.470 1.431 1.445 1.437 1.483

Ca&&C(dp) 1.556 1.544 1.554 1.556 1.522 1.524 1.535 1.565
Ca&&Cb 1.536 1.541 1.537 1.532 1.535 1.532 1.602 1.546

Ca&&Ha 1.097 1.099 1.098 1.096 1.100 1.100 1.110 1.105

Met
Ca&&N(dp) 1.456 1.472 1.454 1.470 1.425 1.441 1.435 1.479

Ca&&C(dp) 1.542 1.539 1.541 1.544 1.513 1.515 1.547 1.563

Ca&&Cb 1.546 1.548 1.549 1.545 1.554 1.550 1.601 1.555

Ca&&Ha 1.097 1.097 1.098 1.096 1.101 1.100 1.111 1.107
Tyr

Ca&&N(dp) 1.467 1.469 1.466 1.480 1.441 1.455 1.438 1.487

Ca&&C(dp) 1.560 1.544 1.557 1.559 1.534 1.531 1.551 1.567

Ca&&Cb 1.535 1.553 1.533 1.529 1.540 1.530 1.589 1.552
Ca&&Ha 1.101 1.101 1.102 1.100 1.105 1.104 1.114 1.113

MADa 0.010 0.002 0.006 0.021 0.015 0.031 0.016

MAXb 0.018 0.003 0.014 0.034 0.032 0.066 0.027

aMean absolute deviation (Å) with respect to QM values of scheme i, excluding Ca&&Ha.
bMaximum absolute deviation (Å) with respect to QM values of scheme i, excluding Ca&&Ha.
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Ca that the Ca&&Cb distance increases by !0.06 Å. At the same
time, the Ca&&N (dp) distance within scheme vii is lower than
the parent QM calculation (scheme i) by 0.02–0.03 Å, while the
Ca&&C (dp) distance is more or less equal. Also with schemes v
and vi, where region B is treated with LDA, do we observe a
decrease of the Ca&&N (dp) and Ca&&C (dp) distances. Interest-
ingly, the QM/MM calculation (scheme ii) gives geometries
around the QM/MM boundary region that follow closely those
of the reference QM calculation (scheme i), and the QM/QM
calculations where the BP86 functional is used for region B, but
with a smaller basis set (schemes iii and iv). The mean absolute
deviations with respect to the QM distances of scheme i are,
respectively, 0.010, 0.002, 0.006 Å for schemes ii–iv.

Apart from AM1, which leads to a significant increase of the
Ca&&Cb distance, all multilevel schemes studied here do not
seem to disturb the boundary region significantly, when used
with the AddRemove47 link-atom scheme. However, other link-
atom schemes may lead to larger distortions of the boundary
region, as previously shown for the IMOMM and ONIOM2
schemes within QM/MM calculations.47

Results for QM/MM and QM Study on SN2
Reaction in Water

The second system we studied by a multilevel approach consists
of the bimolecular nucleophilic substitution (SN2) reaction of F2

with CH3Cl. We studied this reaction both in the gas-phase and
solvated in water, for which we used explicit solvent molecules
within the QM/MM scheme. Nucleophilic substitution reactions
with carbon as central particle are usually associated with a dou-
ble-well energy profile, wherein the reactants first form a reac-
tant complex (RC). The RC is stabilized by ion-dipole interac-
tions and is separated from a similar product complex (PC)
through a central barrier associated with the transition state
(TS). The depth of the wells, the barrier height and the reaction
energy depend on the difference in nucleophilicity between the
nucleophile and the leaving group. For instance, for the SN2
reaction between hydroxide and methylchloride, the difference
in nucleophilicity is sufficiently large to give a very exothermic
reaction with a single-well energy surface: the only stationary
intermediate point is a PC where the hydroxide is bound to car-
bon and the chloride has been expelled without barrier. How-
ever, here we study the reaction of fluoride with methylchloride,
where although the difference in nucleophilicity between fluo-
ride and chloride is substantial, the typical double-well energy
profile is present. Given in Figure 4 is the gas-phase energy pro-
file at the OLYP/TZ2P level. This level of theory gives
improved results for the geometries, complexation energy, and
energy barriers for SN2 reactions.28,52 The RC complex is stabi-
lized with respect to reactants by 14.5 kcal/mol, and after cross-
ing a small barrier of 0.3 kcal/mol, the PC complex is reached
that is 24.2 kcal/mol more stable than the RC. Note that the
value of the reaction barrier is underestimated at this level of
theory by 2–4 kcal/mol, both because of the basis set and the
DFT functional used.28 However, the purpose of the current con-
tribution is to focus on the effect of the solvent on the energy
profile, and not as much the ‘‘best’’ value for the reaction barrier

that might have been obtained at the mPBE0KCIS/QZ4P level28

(albeit with numerical gradients, vide supra). Finally, the prod-
ucts are found to be !32 kcal/mol more stable than reactants in
the gas-phase.

For studying the reaction in solvent, for each stationary point
along the energy profile water molecules were placed at random
within a box around the solute. The box has a cubic shape (with
a side of 19 Bohrs, containing 32 water molecules) for reactants
and products, and a rectangular shape (sides 19, 19 and 38
Bohrs, containing 64 water molecules) for RC, TS, and PC. To-
gether with the solute, these solvent boxes correspond to a mac-
roscopic density of 1.0 kg/l. The positions of the randomly
placed water molecules were subsequently improved in 20 ps of
MD simulations with the DRF90 program53 using simulated
annealing techniques. These MD simulations used an NVT en-
semble54 (at different temperatures, starting from 500 K and
ending at 2 K), and a soft wall-force potential53 to prevent the
water molecules from evaporating from the simulation box.

The lowest energy configuration from the MD simulations
was taken as starting point for QM/MM geometry optimizations
within QUILD. The solute was in these QM/MM calculations
again described at the OLYP/TZ2P level. The water molecules
and the interaction between the solute and waters were treated
with the AMBER95 force field, using the TIP3P model55 for
water. Within the QM/MM calculations in QUILD, a wall-force
potential similar to that of DRF90 was applied.

For protic solvents such as water, the solvent effect is largest
for those systems where the charge is localized more, and small-
est where the charge is more delocalized. This can be seen
clearly in the energy profile for the SN2 reaction (see Fig. 4),
where the reaction is exothermic (232.3 kcal/mol) in the gas-
phase and endothermic (119.6 kcal/mol) in water. This results
mostly from the solvation energy of F2, which is !43 kcal/mol
larger than that of Cl2, and thus accounts for more than 80% of
the solvent effect for the products. Also the differences in sol-
vent effect between the reactant (RC) or product (PC) complex
on one side, and the TS on the other, can be understood in terms
of the larger charge delocalization in the TS. Although all three
systems are destabilized in water compared to the gas-phase, for
the RC and PC the destabilization is a mere 10 kcal/mol with

Figure 4. Energy profile (kcal/mol) for bimolecular nucleophilic
substitution reaction of F2 1 CH3Cl in the gas phase and in water.
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respect to the reactants, while for the TS it is !25 kcal/mol (see
Fig. 4).

The presence of the solvent shifts the position of the several
stationary points along the reaction coordinate to some extent.
The RC complex, which in the gas-phase occurs at a C&&F dis-
tance of 2.51 Å, is in the solvent environment found with a
C&&F distance of 2.78 Å. This shift of 0.27 Å happens mainly
because of the preferential interactions of F2 with the solvent,
which compete with the ion-dipole interactions of the RC com-
plex. Because of the larger delocalization of charge in the RC
complex compared to the reactants, the RC complex is destabi-
lized in the solvent compared with the gas-phase situation; the
gas-phase complexation energy of !15 kcal/mol is largely
reduced in the solvent to only 4.6 kcal/mol. Also the position of
the TS along the reaction coordinate shifts because of the sol-
vent environment, but unlike the RC complex that is encoun-
tered earlier, the TS occurs later, that is, in the gas-phase the
C&&F distance of the TS is 2.15 Å, while in solvent it shifts to
2.07 Å. Similar to the RC complex, within the PC complex the
distance of the ion shifts substantially due to its solvation, that
is, in the gas-phase the C&&Cl distance is 3.56 Å, while in sol-
vent it increases to 3.95 Å.

Results for QM/QM, QM/MM, and QM Study
on DNA Duplexes

Finally, we would like to present an example of the QM/QM
scheme for which the QUILD program has been designed. From
studies on p-stacking of DNA bases and related systems,31,56,57

it is known that standard DFT functionals as BP86, B3LYP, or
OPBE do not give a proper description of the favorable p-stack-
ing interactions, but generally result in repulsive energy surfaces.
Recent studies31,56 showed, however, the existence of a few
DFT functionals that are able to correctly give the favorable p-
stacking interactions. Interesting in this respect are the KT1 and
the related KT2 functional,58 which were constructed to repro-
duce the near-exact multiplicative Zhang-Morrison-Parr (ZMP)
potential from coupled cluster Brueckner (BD) densities. As a
result, the KT1/KT2 functionals produce NMR chemical shifts
that in general show smaller deviations from experimental chem-
ical shifts than those from standard DFT functionals. Further-
more, the ZMP potential, constructed from Brueckner (BD(T))

coupled cluster densities, gives dispersion forces in good agree-
ment with near-exact dispersion forces.59 Therefore, it is to be
expected that the KT1, KT2 functionals behave properly for dis-
persion forces as well. The application of these functionals, and
surprisingly also LDA, to p-stacking of DNA bases indeed
showed excellent results compared to MP2 and CCSD(T) data.31

The structure of DNA is, however, not only held together by
p-stacking interactions within the DNA strands, but also by
hydrogen-bonding interactions between the DNA bases. The lat-
ter hydrogen-bonding interactions are strong and specific, and
well understood by high-level theoretical analyses at the BP86/
TZ2P level.30,32,60–63 Unfortunately, the functionals that give a
good description for the hydrogen-bonding interactions, fail for
the p-stacking interactions31; vice versa, the functionals that
work well for p-stacking do not give good hydrogen-bonding
interactions. Therefore, our QM/QM scheme where we can
exploit the strong points of each functional is mandatory for a
computational study on the structure of DNA. For instance, in
our QM/QM scheme we can use the BP86 functional for the
hydrogen-bonding (and intramolecular) interactions, and com-
bine it with e.g. LDA for the p-stacking interactions. This is
schematically indicated in Figure 2, where the total system is
described by BP86 (in blue), which is combined with p-stacking
interactions (described in yellow and pink) at the LDA level. As
an example of this QM/QM scheme, we report here the applica-
tion to a DNA (dGpdA)(dTpdC) duplex, as shown in Figure 5.

The QUILD-optimized H-bond lengths in the DNA duplex
(see Fig. 5 and Table 5) agree well with those observed previ-
ously for isolated Watson–Crick pairs of nucleic acids.30,32,60–63

Thus, for the G-C base pair in DNA duplex we find O6&&N4,
N1&&N3, and N2&&O2 hydrogen-bond lengths of 2.74, 2.88, and
2.82 Å (see Scheme 3). And for the A-T base pair, we find
N6&&O4 and N1&&N3 hydrogen-bond lengths of 2.85 and 2.82 Å
(Scheme 3). The stacking distances of 3.0–3.1 Å between the
stacked bases are somewhat shorter than experimentally observed
for long DNA helices, but this is most likely due to termination
effects in combination with the absence of the molecular envi-
ronment (counter-ions, water, etc.) in our model system. A simi-
lar pattern emerges in the case of MD simulations of proteins in
the absence of a solvent layer, which leads to compression of
the protein structure.

Figure 5. QM/QM optimized structure of DNA duplex (CG-TA);
see Table 5 for numerical values. [Color figure can be viewed in the
online issue, which is available at www.interscience.wiley.com.]

Table 5. Geometrical Parameters (Å) for Optimized Structure of DNA

Duplex (CG-TA).a

H-bonded basepair Distance Stacked basepair Distance

CG

N4(C)&&O6(G) 2.739 CT 2.949

N3(C)&&N1(G) 2.884 GA 3.018

O2(C)&&N2(G) 2.823
TA CG-TA 3.078

O4(T)&&N6(A) 2.853

N3(T)&&N1(A) 2.823

aSee Figure 5 for a visualization of the structure, and Scheme 3 for atom

numbers.
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Conclusions

We have presented the new program QUILD , which is designed
for performing calculations through a multilevel approach in
which different regions of a (supra)molecular system can be
described with various ab initio, DFT, semiempirical, and force
field methodologies. QUILD distinguishes itself from other mul-
tilevel approaches (e.g., ONIOM) by the fact that these regions
can be chosen arbitrarily and may in principle overlap or inter-
penetrate, i.e., they do not have to conform to a shell structure.
This generates a powerful flexibility that can be used not only to
make computations cheaper (e.g., by treating the active center at
a high level and the remainder of the system at a lower level of
theory) but also to tackle each type of interaction or phenom-
enon with the ‘‘best’’ methodology for that purpose (e.g., hydro-
gen bonding with BP86, stacking with LDA, and transition
states with OLYP). QUILD then seamlessly combines all regions
and quantum chemical approaches to yield the ‘‘optimal’’
description for the complete system.

Another important issue tackled here is how to obtain an
accurate structure, which may become troublesome for systems
held together by weak interactions. A major step forward has
been achieved by our adaptation of the delocalized coordinates
setup by Baker et al., in which we distinguish weak from strong
coordinates. Our setup for geometry optimization has also been
integrated into QUILD together with a model Hessian, Quasi-
Newton optimizer, regulated GDIIS, Restricted Second Order
model, and a dynamic trust radius. We have tested our geometry

optimization setup for two test sets: (i) the Baker test set for
strong coordinates (Baker test set), and (ii) a new test set of 18
weakly-bound molecules. For the Baker set, we need 167 geom-
etry steps at the RHF/STO-3G level for full optimization, and
164 at the PW91/TZ2P level. The screening of the coordinates,
i.e., distinguishing weak from strong coordinates, has almost no
effect on the performance, but we do see a significant reduction
(30%) in the number of steps when using our adapted delocal-
ized coordinates instead of Cartesians. When using Cartesian
coordinates for the Baker set, the performance with using either
the old-style optimizer in ADF or QUILD is similar. However,
for the set of weakly-bound molecules, this picture changes,
with the old-style optimizer in ADF needing more than four
times as many geometry steps as QUILD. Thus, QUILD
achieves a reduction of more than 75% for the number of geom-
etry steps needed. For the weakly-bound set, the screening of
the coordinates does have a beneficial effect: it reduces the num-
ber of geometry steps by 20–25%. The QUILD program also
allows for geometry optimization using numerical gradients, for
approaches within ADF or ORCA for which no analytical gradi-
ent is available yet, and we have shown this setup using two
examples, using nonrelativistic, scalar- and spin-orbit relativistic
ZORA treatment of halogen dimers and group 16 hydrides.

Finally, we have applied the QUILD program to a number of
multilevel (QM/MM or QM/QM) schemes. We studied the mul-
tilevel boundary region of amino acid residues, where we show
that the boundary region does not change dramatically due to
the multilevel setup when using the AddRemove link-atom
scheme. Next, we investigated the solvent effects on the energy
profile of a bimolecular nucleophilic substitution (SN2) reaction,
where we observe significant changes of the energy profile. Fur-
thermore, we investigated a DNA duplex system, the ultimate
goal of the QUILD project, using a QM/QM scheme in order to
take full advantage of the seamless combination of different
DFT functionals for different interactions.
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