
Quincy: Fair Scheduling for Distributed Computing
Clusters

Michael Isard, Vijayan Prabhakaran, Jon Currey,
Udi Wieder, Kunal Talwar and Andrew Goldberg

Microsoft Research, Silicon Valley — Mountain View, CA, USA
{misard, vijayanp, jcurrey, uwieder, kunal, goldberg}@microsoft.com

ABSTRACT

This paper addresses the problem of scheduling concur-

rent jobs on clusters where application data is stored on

the computing nodes. This setting, in which schedul-

ing computations close to their data is crucial for per-

formance, is increasingly common and arises in systems

such as MapReduce, Hadoop, and Dryad as well as many

grid-computing environments. We argue that data in-

tensive computation benefits from a fine-grain resource

sharing model that differs from the coarser semi-static

resource allocations implemented by most existing clus-

ter computing architectures. The problem of scheduling

with locality and fairness constraints has not previously

been extensively studied under this model of resource-

sharing.

We introduce a powerful and flexible new framework

for scheduling concurrent distributed jobs with fine-grain

resource sharing. The scheduling problem is mapped to

a graph datastructure, where edge weights and capacities

encode the competing demands of data locality, fairness,

and starvation-freedom, and a standard solver computes

the optimal online schedule according to a global cost

model. We evaluate our implementation of this frame-

work, which we call Quincy, on a cluster of a few hun-

dred computers using a varied workload of data- and

CPU-intensive jobs. We evaluate Quincy against an ex-

isting queue-based algorithm and implement several poli-

cies for each scheduler, with and without fairness con-

straints. Quincy gets better fairness when fairness is re-

quested, while substantially improving data locality. The

volume of data transferred across the cluster is reduced

by up to a factor of 3.9 in our experiments, leading to a

throughput increase of up to 40%.

Categories and Subject Descriptors

D.4.1 [Operating Systems]: Process Management—

Scheduling

General Terms

Algorithms, Design, Performance

 0

 100

 200

 300

 400

 500

 600

10 100 1000

N
u

m
b

e
r 

o
f 

jo
b

s

Running time in minutes

Figure 1: Distribution of job running times from a production

cluster used inside Microsoft’s search division. The horizontal axis

shows the running time in minutes on a log scale, and the vertical axis

shows the number of jobs with the corresponding running time.

Run
time(m) 5 10 15 30 60 300

% Jobs 18.9 28.0 34.7 51.31 72.0 95.7

Table 1: Job running time. The table shows the same data as Figure 1

but here presented as the percentage of jobs under a particular running

time in minutes.

1. INTRODUCTION

Data-intensive cluster computing is increasingly im-

portant for a large number of applications including web-

scale data mining, machine learning, and network traffic

analysis. There has been renewed interest in the subject

since the publication of the MapReduce paper describing

a large-scale computing platform used at Google [7].

One might imagine data-intensive clusters to be used

mainly for long running jobs processing hundreds of ter-

abytes of data, but in practice they are frequently used

for short jobs as well. For example, the average comple-

tion time of a MapReduce job at Google was 395 sec-

onds during September 2007 [8]. Figure 1 and Table 1

show data taken from a production cluster used by Mi-

crosoft’s search division logging the duration of every

job submitted over a period of 39 days from Septem-

ber 2008 to November 2008. While there are large jobs

that take more than a day to complete, more than 50% of

the jobs take less than 30 minutes. Our users generally

strongly desire some notion of fair sharing of the cluster

1



resources. The most common request is that one user’s

large job should not monopolize the whole cluster, de-

laying the completion of everyone else’s (small) jobs. Of

course, it is also important that ensuring low latency for

short jobs does not come at the expense of the overall

throughput of the system. Section 5.2 sets out the exact

definition of unfairness that we use to evaluate our sys-

tem. Informally, however, our goal is that a job which

takes t seconds to complete given exclusive access to a

cluster should require no more than Jt seconds of execu-

tion time when the cluster is shared among J concurrent

jobs. Following Amdahl’s law, most jobs cannot contin-

uously make use of the resources of the entire cluster, so

we can hope that many jobs will complete in fewer than

Jt seconds.

Many of the problems associated with data-intensive

computing have been studied for years in the grid and

parallel database communities. However, a distinguish-

ing feature of the data-intensive clusters we are interested

in is that the computers in the cluster have large disks di-

rectly attached to them, allowing application data to be

stored on the same computers on which it will be pro-

cessed. Maintaining high bandwidth between arbitrary

pairs of computers becomes increasingly expensive as

the size of a cluster grows, particularly since hierarchical

networks are the norm for current distributed comput-

ing clusters [7, 17]. If computations are not placed close

to their input data, the network can therefore become a

bottleneck. Additionally, reducing network traffic sim-

plifies capacity planning. If a job is always allocated a

certain fraction of the cluster’s computing resources then

ideally its running time should remain approximately the

same. When concurrent jobs have high cross-cluster net-

work traffic, however, they compete for bandwidth, and

modeling this dynamic network congestion greatly com-

plicates performance prediction. For these reasons, op-

timizing the placement of computation to minimize net-

work traffic is a primary goal of a data-intensive comput-

ing platform.

The challenge for a scheduling algorithm in our setting

is that the requirements of fairness and locality often con-

flict. Intuitively this is because a strategy that achieves

optimal data locality will typically delay a job until its

ideal resources are available, while fairness benefits from

allocating the best available resources to a job as soon as

possible after they are requested, even if they are not the

resources closest to the computation’s data.

This paper describes our experience comparing a set

of schedulers and scheduling policies that we operate on

clusters containing hundreds of computers. The clus-

ters are shared between tens of users and execute mul-

tiple jobs concurrently. Our clusters run the Dryad dis-

tributed execution engine [17], which has a similar low-

level computational model to those of MapReduce[7],

Hadoop [3] and Condor [29]. We believe that the Dryad

computational model is well adapted to a fine-grain re-

source sharing strategy where every computer in the clus-

ter is in general multiplexed between all of the running

jobs. This is in contrast to traditional grid and high-

performance computing models in which sets of cluster

computers are typically assigned for exclusive use by a

particular job, and these assignments change only rarely.

We examine this argument in detail in Section 2.1.

The main contribution of this paper is a new, graph-

based framework for cluster scheduling under a fine grain

cluster resource-sharing model with locality constraints.

We discuss related work in Section 7, however the prob-

lem of scheduling under this resource-sharing model has

not been extensively studied before, particularly when

fairness is also a goal. We show for the first time a

mapping between the fair-scheduling problem for clus-

ter computing and the classical problem of min-cost flow

in a directed graph. As we demonstrate in Section 6, the

global solutions found by the min-cost flow algorithm

substantially outperform greedy scheduling approaches.

The graph-based formulation is also attractive from a

software-engineering standpoint, since scheduling poli-

cies and tuning parameters are specified simply by ad-

justing weights and capacities on a graph datastructure,

analogous to a declarative specification. In contrast, most

previous queue-based approaches encode policies using

heuristics programmed as imperative subroutines and this

can lead to increased code complexity as the heuristics

become more sophisticated.

The structure of this paper is as follows. Section 2

sets out the details of our computing clusters and the

type of jobs that they are designed to execute. Section 3

describes several traditional queue-based scheduling al-

gorithms that we use as a baseline for our experiments.

Section 4 introduces the mapping between scheduling

and min-cost flow, and explains the design of the Quincy

scheduler in detail. In Sections 5 and 6 we outline our

experimental design and evaluate the performance of the

system on a medium-sized cluster made up of several

hundred computers. After reviewing related work in Sec-

tion 7, we conclude with a discussion of lessons learned,

limitations of the approach, and opportunities for future

work.

2. THE PROBLEM SETTING

This section describes our computing environment, the

type of jobs we execute, the definition of fairness we

adopt, and the broad class of scheduling algorithms we

consider. Not all distributed jobs or scheduling policies

fit into our framework, but we postpone a discussion of

how our system might be generalized until Section 8.

We assume a homogeneous computing cluster under a

single administrative domain, with many users compet-

2



ing for the cluster resources. There is a hierarchical net-

work in which each rack contains a local switch and the

rack switches are interconnected via a single core switch,

so communication between computers in the same rack

is “cheaper” than communication between racks. Our

methods extend trivially to networks with no hierarchy

(where the cost of communication is approximately equal

between any pair of computers) and those with a deeper

hierarchy.

2.1 Computational model

Our clusters are used to run jobs built on the Dryad

distributed execution platform [17, 31]. Each job is man-

aged by a “root task” which is a process, running on

one of the cluster computers, that contains a state ma-

chine managing the workflow of that job. The compu-

tation for the job is executed by “worker tasks” which

are individual processes that may run on any computer.

A worker may be executed multiple times, for example

to recreate data lost as a result of a failed computer, and

will always generate the same result. This computational

model is very similar to that adopted by MapReduce [7],

Hadoop [3] and Condor [29] and the ideas in this paper

should be readily applicable to those systems.

A job’s workflow is represented by a directed acyclic

graph of workers where edges represent dependencies,

and the root process monitors which tasks have com-

pleted and which are ready for execution. While run-

ning, tasks are independent of each other so killing one

task will not impact another. This independence between

tasks is in contrast to multi-processor approaches such as

coscheduling [24] and programming models like MPI [2]

in which tasks execute concurrently and communicate

during their execution. In fact, the data-intensive com-

putational model leads to a somewhat different approach

to resource sharing compared to traditional high perfor-

mance computing clusters.

When a cluster is used to execute MPI jobs, it makes

sense to devote a specific set of computers to a particular

job, and change this allocation only infrequently while

the job is running, for example when a computer fails or

a higher priority job enters the system. This is because

MPI jobs are made up of sets of stateful processes com-

municating across the network, and killing or moving a

single process typically requires the restart of all of the

other processes in the set. In addition, high-performance

computing clusters traditionally do not have a large quan-

tity of direct-attached storage so while it may be advanta-

geous to ensure that the processes in a job are scheduled

close to each other in network topology, the exact set of

computers they run on does not have a major effect on

performance. It is therefore not usually worth moving a

job’s processes once they have been allocated a fixed set

of resources.

In contrast, workloads for systems such as Dryad and

MapReduce tend to be dominated by jobs that process

very large datasets stored on the cluster computers them-

selves. It generally makes sense to stripe each large data-

set across all the computers in the cluster, both to prevent

hot spots when multiple jobs are concurrently reading

the same data and to give maximum throughput when

a single job is executing. In addition, as noted above,

tasks run independently so they can start and complete in

a staggered fashion as resources become available, and

killing a task only forfeits the work that task has done

without affecting other running processes. Since tasks

are staggered rather than executing in lockstep, most jobs

fluctuate between periods in which they have many more

ready tasks than there are available cluster resources, and

periods in which a few straggler tasks are completing.

The number of computers it is worth assigning to a job is

therefore continuously changing.

Consequently, a natural way to share a cluster between

multiple Dryad jobs is to multiplex access to all the clus-

ter computers across all running jobs, so a computer is in

general assigned to a different job once its current task

completes, rather than giving any job a long-term pri-

vate allocation. This is the primary reason that new ap-

proaches such as the scheduling framework described in

this paper are needed, and standard techniques such as

gang scheduling [10] are not applicable to our setting.

In this paper we consider two broad techniques for giv-

ing a job its fair share of the cluster’s resources: running

the job’s worker tasks in sub-optimal locations instead of

waiting for the ideal computer to be available, which re-

duces latency but increases network traffic; and killing

running tasks of one job to free resources for another

job’s tasks, which can improve the latter job’s latency

without sacrificing its data locality but wastes the work

of the preempted task. Since both of these strategies can

harm overall throughput, there is potentially a penalty to

be paid for improving fairness. As we show in Section 6,

scheduling algorithms that optimize a global cost func-

tion do a better job of managing this tradeoff than those

which rely on greedy heuristics.

2.2 Cluster architecture

Figure 2 shows an outline of our cluster architecture.

There is a single centralized scheduling service running

in the cluster maintaining a batch queue of jobs. At any

given time there may be several concurrent jobs sharing

the resources of the cluster and others queued waiting for

admission. When a job is started the scheduler allocates

a computer for its root task. If that computer fails the job

will be re-executed from the start. Each running job’s

root task submits its list of ready workers, and their input

data summaries as defined below in Section 2.3, to the

scheduler. The scheduler then matches tasks to comput-

3



Scheduler

RS RS
CS Cluster

Submit jobs

Job2 workflow

Job1 workflow
w2

1

w1
2

w3
1 w2

2r2

r1

Job1: r1; w2
1, w3

1, w4
1, w5

1, w6
1, w7

1

Job2: r2; w1
2, w2

2, w3
2, w4

2

Figure 2: The cluster scheduling architecture. The figure shows a

small cluster with 6 computers organized into two racks. Each rack

contains a switch RS that communicates with a core switch CS. Each

running job j first starts a root task rj that submits worker tasks to the

scheduler according to a job-specific workflow. The scheduler deter-

mines which tasks should be active at any given time, matches them to

available computers, and sets them running. The worker tasks shown

in gray are ready to run but have not yet been assigned to a computer.

ers and instructs the appropriate root task to set them run-

ning. When a worker completes, its root task is informed

and this may trigger a new set of ready tasks to be sent

to the scheduler. The root task also monitors the execu-

tion time of worker tasks, and may for example submit

a duplicate of a task that is taking longer than expected

to complete [7, 17]. When a worker task fails because of

unreliable cluster resources, its root task is responsible

for back-tracking through the dependency graph and re-

submitting tasks as necessary to regenerate any interme-

diate data that has been lost. The scheduler may decide

to kill a worker task before it completes in order to al-

low other jobs to have access to its resources or to move

the worker to a more suitable location. In this case the

scheduler will automatically instruct the worker’s root so

the task can be restarted on a different computer at a later

time.

The scheduler is not given any estimates of how long

workers will take, what resources they will consume, or

given insight into the upcoming workers that will be sub-

mitted by jobs once running tasks complete. Section 8

discusses ways in which our system could be enhanced

if such information were available.

2.3 Data locality

A worker task may read data from storage attached to

computers in the cluster. These data are either inputs to

the job stored as (possibly replicated) partitioned files in

a distributed file system such as GFS [12] or interme-

diate output files generated by upstream worker tasks.

A worker is not submitted to the scheduler until all of

its input files have been written to the cluster, at which

time their sizes and locations are known. Consequently

the scheduler can be made aware of detailed information

about the data transfer costs that would result from exe-

cuting a worker on any given computer. This information

is summarized as follows.

When the nth worker in job j, denotedwj
n, is ready, its

root task rj computes, for each computer m, the amount

of data that wj
n would have to read across the network

if it were executed on m. The root rj then constructs

two lists for task wj
n: one list of preferred computers and

one of preferred racks. Any computer that stores more

than a fraction δc of wj
n’s total input data is added to

the first list, and any rack whose computers in sum store

more than a fraction δr of wj
n’s total input data is added

to the second. In practice we find that a value of 0.1 is

effective for both δc and δr. These settings ensure that

each list has at most ten entries and avoids marking ev-

ery computer in the cluster as “preferred” when a task

reads a large number of approximately equal-sized in-

puts, for example when a dataset is being re-partitioned.

Some schedulers, including our flow-based algorithms,

can make use of fine-grain information about the number

of bytes that would be transferred across the network as a

result of scheduling wj
n on computer m. The precise in-

formation we send to the Quincy scheduler is described

in the Appendix.

2.4 Fairness in a shared cluster

As stated in the introduction, our goal for fairness is

that a job which runs for t seconds given exclusive access

to a cluster should take no more than Jt seconds when

there are J jobs concurrently executing on that cluster.

In practice we only aim for this guarantee when there is

not heavy contention for the cluster, and we implement

admission control to ensure that at most K jobs are exe-

cuting at any time. When the limit of K jobs is reached

subsequent jobs are queued and started, in order of sub-

mission time, as running jobs complete. During periods

of contention there may therefore be a long delay be-

tween a job’s submission and its completion, even if its

execution time is short. Setting K too large may make it

hard to achieve fairness while preserving locality, since

it increases the likelihood that several jobs will be com-

peting for access to data stored on the same computer.

However with too small a value of K some cluster com-

puters may be left idle if the jobs do not submit enough

tasks. Section 8 briefly discusses possible mechanisms

for setting K adaptively.

A job is instantaneously allocated a fraction α of the

cluster by allowing it to run tasks on αM of the cluster’s

M computers. The allocated fraction α can change over

the running time of the job as other jobs enter and leave

the system, as can the particular computers that the job’s

tasks are scheduled on. Of course this is a simplified

model of sharing. We do not currently attempt to give

jobs a fair share of network resources, or account for the

resources consumed when a job’s task reads remote data

4



from a computer that is assigned to another job. Also, we

currently restrict each computer to run only one task at

a time. This is a conservative policy that is partly deter-

mined by the fact that jobs do not supply any predictions

about the resource consumption of their workers. Sec-

tion 8 discusses ways of relaxing some of these restric-

tions.

Our implementation aims to give each running job an

equal share of the cluster. However, the methods we de-

scribe can straightforwardly be extended to devote any

desired fraction of the cluster to a given job, and a system

could implement priorities and user quotas by choosing

these fractions appropriately. In the case that controlling

end-to-end job latency is important even when the cluster

is suffering contention, one could implement a more so-

phisticated queueing policy, for example to let jobs that

are predicted to complete quickly “jump the queue” and

begin execution ahead of jobs that are expected to be

long-running.

3. QUEUE-BASED SCHEDULING

This section describes a number of variants of a queue-

based scheduling approach that we will use as a baseline

for comparisons with our new flow-based framework. It

seems natural to use a set of queues as the fundamental

datastructure for a locality-based scheduler. The Hadoop

scheduler adopts this model [1] and, while there are no

published details of the MapReduce scheduler [7], it ap-

pears that queue-based approaches are the standard de-

sign for the public state of the art. (As far as we know,

the Condor project [29] does not include any schedulers

that make use of fine-grain locality information.)

We include fairly sophisticated variants of the queue-

based approach that, we believe, extend previously pub-

lished work. This exhaustive treatment is an attempt to

provide a fair comparison between queue-based schedul-

ing and flow-based scheduling as organizing frameworks,

rather than concentrating on a particular implementation.

We are familiar with queue-based schedulers since they

have been used extensively by Dryad in the past, and this

section surveys our good-faith attempt to implement ef-

fective fair scheduling in this model.

3.1 Outline of a queue-based architecture

The schedulers in this section maintain a number of

queues as illustrated in Figure 3: one for each computer

m in the cluster (denoted Cm), one for each rack l (de-

notedRl), and one cluster-wide queue denotedX . When

a worker task is submitted to the scheduler it is added to

the tail of multiple queues: Cm for each computer m
on its preferred computer list, Rl for each rack l on its

preferred rack list, and X . When a task is matched to a

computer using one of the algorithms below it is removed

from all the queues it had been placed in. This family of

C
1

C
2

R
1

C
3

C
4

R
2

XC
5

C
6

r1r2w
2

1 w
1

2 w
3

1 w
2

2

w
4

1 w
4

1

w
4

1w
5

1

w
5

1

w
6

1

w
6

1

w
6

1

w
6

1

w
6

1

w
7

1

w
7

1

w
7

1

w
3

2 w
3

2w
4

2

w
4

2

w
4

2

Figure 3: A queue-based greedy scheduler. The figure shows a

scheduler for a small cluster with three computers organized into two

racks. The scheduler maintains queues for each computer and rack, and

a cluster-wide queue denoted X . Two jobs are running with root tasks

on computers 5 and 3 respectively. Worker tasks are submitted to the

scheduler by the root tasks, annotated with a list of preferred computers

and a list of preferred racks. On arrival a worker task is added to the tail

of the queue for each of its preferred computers and racks, and also to

the tail of the cluster-wide queue. For example, job 1 submitted task 6

with preferred computers 1 and 4 and racks 1 and 2. When a computer

becomes free the scheduler chooses among the available tasks to run

on it using one of the policies described in Section 3. When a task is

matched to a computer it is removed from all the queues it had been

added to.

algorithms ignores exact data transfer sizes and treats all

preferred computers as equal.

When a new job is started its root task is assigned

a computer at random from among the computers that

are not currently executing root tasks, and any worker

task currently running on that computer is killed and re-

entered into the scheduler queues as though it had just

been submitted. K must be small enough that there are

at least K + 1 working computers in the cluster in order

that at least one computer is available to execute worker

tasks.

3.2 Baseline algorithm without fairness

The simplest algorithm we consider schedules worker

tasks independent of which job they come from, so there

is no attempt to achieve fairness. Whenever a computer

m becomes free, the first ready task on Cm, if any, is

dispatched to m. If Cm does not have any ready tasks,

then the first ready task on Rl is dispatched to m, where

l is m’s rack. If neither Cm nor Rl contains a ready task

then the first ready task, if any, on X is dispatched to m.

We refer to this algorithm as “G” for “greedy.”

This algorithm aims to keep all computers busy at all

times as long as there are worker tasks available to run. It

will always try to match tasks to their preferred comput-

ers or racks where possible, in order of task submission.

This can have two adverse effects on latency: if a job sub-

mits a large number of tasks on every computer’s queue

5



then other jobs will not execute any workers until the first

job’s tasks have been run; and in a loaded cluster a task

that has no preferred computers or racks may wait for

a long time before being executed anywhere since there

will always be at least one preferred task ready for every

computer or rack.

3.3 Simple greedy fairness

A simple concept of fairness can be used to reduce the

chance that a job that starts up and submits a large num-

ber of workers to all the scheduler’s queues will starve

subsequent jobs from receiving resources on which to

run their tasks. We implement the same fairness scheme

as the Hadoop Fair Scheduler [1]. In our implementation

it is achieved by “blocking” a job, which is defined as fol-

lows. When a job is blocked its waiting tasks will not be

matched to any computers, thus allowing unblocked jobs

to take precedence when starting new tasks. The match-

ing procedure in Section 3.2 above pulls the first “ready”

task from a queue. In the simple greedy algorithm every

task in any queue is always considered to be ready. In or-

der to implement simple fairness we instead define a task

to be ready only if its job is not blocked. For now we do

not consider killing running tasks, so any workers that

have already been started when a job becomes blocked

continue to run to completion.

Now, whenever a computer becomes free and we want

to match a new task to it, we must first determine which

jobs are blocked. At this time each job is given an instan-

taneous allocation corresponding to the number of com-

puters it is currently allowed to use. Job j gets a baseline

allocation of A∗
j = min(⌊M/K⌋, Nj) where the cluster

containsM computers, there areK running jobs, andNj

is the number of workers that j currently has either run-

ning or sitting in queues at the scheduler. If
∑

j A
∗
j < M

the remaining slots are divided equally among jobs that

have additional ready workers to give final allocations

Aj where
∑

j Aj = min(M,
∑

j Nj). As jobs start and

end, and new workers are submitted or stop running, the

allocation for a given job will fluctuate. This fair-sharing

allocation procedure could easily be replaced by a differ-

ent algorithm, for example one that takes into account job

priorities or group quotas and allocates different numbers

of tasks to different running jobs.

The simplest fair algorithm we consider is denoted

“GF” and blocks job j whenever it is running Aj tasks

or more. This prevents j from scheduling any more tasks

until its running total falls below its allocation, allowing

other tasks to gain their share of the cluster. In the steady

state where all jobs have been running for a long time,

each job always receives exactly its allocated number of

computers. Whenever a new job starts up, however, or a

job that had a small number of ready tasksNj < ⌊M/K⌋
submits a new batch of tasks, there will be a period of un-

fairness while pre-existing tasks from now-blocked jobs

are allowed to run to completion. This period can be pro-

longed in the case that some jobs include very long-lived

worker tasks.

3.4 Fairness with preemption

The problem of a job “hogging” the cluster with a

large number of long-running tasks can be addressed by

a more proactive approach to fairness: when a job j is

running more than Aj workers, the scheduler will kill its

over-quota tasks, starting with the most-recently sched-

uled task first to try to minimize wasted work. We refer

to this algorithm as “GFP.”

As long as a job’s allocation never drops to zero, it

will continue to make progress even with preemption en-

abled, since its longest-running task will never be killed

and will therefore eventually complete. To achieve this

starvation-freedom guarantee the cluster must contain at

least 2K working computers if there are K concurrent

jobs admitted: one for each job’s root task and one to

allocate to a worker from each job.

3.5 Sticky slots

One drawback of simple fair scheduling is that it is

damaging to locality. Consider the steady state in which

each job is occupying exactly its allocated quota of com-

puters. Whenever a task from job j completes on com-

puterm, j becomes unblocked but all of the other jobs in

the system remain blocked. Consequently m will be as-

signed to one of j’s tasks again: this is referred to as the

“sticky slot” problem by Zaharia et al. [32] because m
sticks to j indefinitely whether or not j has any waiting

tasks that have good data locality when run on m.

A straightforward solution is to add some hysteresis,

and we implement a variant of the approach proposed by

Zaharia et al. With this design a job j is not unblocked

immediately if its number of running tasks falls below

Aj . Instead the scheduler waits to unblock j until either

the number of j’s running tasks falls below Aj −MH ,

where MH is a hysteresis margin, or ∆H seconds have

passed. In many cases this delay is sufficient to allow

another job’s worker, with better locality, to “steal” com-

puterm. Variants of GF and GFP with hysteresis enabled

are denoted “GFH” and “GFPH” respectively.

4. FLOW-BASED SCHEDULING

As queue-based scheduling approaches are extended

to encompass fairness and preemption, the questions of

which of a job’s tasks should be set running inside its

quota Aj , or which should be killed to make way for an-

other job, become increasingly important if we wish to

achieve good locality as well as fairness. In the previous

section we adopted heuristics to solve these problems,

based around a greedy, imperative approach that consid-

6



ered a subset of the scheduler’s queues at a time, as each

new task arrived or left the system.

In this section we introduce a new framework for con-

current job scheduling. The primary datastructure used

by this approach is a graph that encodes both the struc-

ture of the cluster’s network and the set of waiting tasks

along with their locality metadata. By assigning appro-

priate weights and capacities to the edges in this graph,

we arrive at a declarative description of our scheduling

policy. We can then use a standard solver to convert this

declarative policy to an instantaneous set of scheduling

assignments that satisfy a global criterion, considering

all jobs and tasks at once.

The primary intuition that allows a graph-based declar-

ative description of our problem is that there is a quan-

tifiable cost to every scheduling decision. There is a

data transfer cost incurred by running a task on a par-

ticular computer; and there is also a cost in wasted time

to killing a task that has already started to execute. If we

can at least approximately express these costs in the same

units (for example if we can make a statement such as

“copying 1 GB of data across a rack’s local switch costs

the same as killing a vertex that has been executing for

10 seconds”) then we can seek an algorithm to try to min-

imize the total cost of our scheduling assignments.

Having chosen a graph-based approach to the schedul-

ing problem, there remains the question of exactly what

graph to construct and what solver to use. In this paper

we describe a particular form of graph that is amenable

to exact matching using a min-cost flow solver. We refer

to this combination of graph construction and matching

algorithm as the Quincy scheduler, and show in Section 6

that it outperforms our queue-based scheduler for every

policy we consider.

4.1 Min-cost flow

We choose to represent the instantaneous scheduling

problem using a standard flow network [11]. A flow net-

work is a directed graph each of whose edges e is anno-

tated with a non-negative integer capacity ye and a cost

pe, and each of whose nodes v is annotated with an in-

teger “supply” ǫv where
∑

v ǫv = 0. A “feasible flow”

assigns a non-negative integer flow fe ≤ ye to each edge

such that, for every node v,

ǫv +
∑

e∈Iv

fe =
∑

e∈Ov

fe

where Iv is the set of incoming edges to v and Ov is the

set of outgoing edges from v. In a feasible flow, ǫv +
∑

e∈Iv

fe is referred to as the flow through node v. A

min-cost feasible flow is a feasible flow that minimizes
∑

e fepe.

It is possible to specify a minimum flow ze ≤ ye for an

edge e from node a to node b without altering the other

costs or capacities in the graph. This is achieved by set-

ting a’s supply to ǫa − ze, b’s supply to ǫb + ze, and e’s
capacity to ye − ze, and we make use of this construc-

tion to set both upper and lower bounds for fairness as

described below.

Known worst-case complexity bounds on the min-cost

flow problem for a graph with E edges and V nodes are

O(E log(V )(E + V log(V ))) [23] and O(V E log(V P )
log(V 2/E)) [14], where P is the largest absolute value

of an edge cost. For this paper we use an implementation

of the latter algorithm, described in [13] and provided

free for research and evaluation by IG systems at www.

igsystems.com.

4.2 Encoding scheduling as a flow network

The scheduling problem described in Section 2 can be

encoded as a flow network as shown in Figure 4 and

explained in detail in the Appendix. This graph corre-

sponds to an instantaneous snapshot of the system, en-

coding the set of all worker tasks that are ready to run

and their preferred locations, as well as the running lo-

cations and current wait times and execution times of all

currently-executing workers and root tasks. One benefit,

and potential pitfall, of using a flow network formulation

is that it is easy to invent complicated weights and graph

structures to attempt to optimize for particular behaviors.

For elegance and clarity we have attempted to construct

the simplest possible graph, with the fewest constants to

set, that allows us to adjust the tradeoff between latency

and throughput. The only hard design constraint we have

adopted is starvation-freedom: we can prove as sketched

in the Appendix that under weak assumptions every job

will eventually make progress, even though at any mo-

ment some of its tasks may be preempted to make way

for other workers.

The overall structure of the graph can be interpreted

as follows. A flow of one unit along an edge in the

graph can be thought of as a “token” that corresponds

to the scheduling assignment of one task. Each submit-

ted worker or root task on the left hand side receives one

unit of flow as its supply. The sink node S on the right

hand side is the only place to “drain off” the flow that

enters the graph through the submitted tasks, so for a

feasible flow each task must find a path for its flow to

reach the sink. All paths from a task in job j to the sink

lead either through a computer or through a node Uj that

corresponds to leaving the task unscheduled. Each com-

puter’s outgoing edge has unit capacity, so if there are

more tasks than computers some tasks will end up un-

scheduled. By controlling the capacities between Uj and

the sink we can control fairness by setting the maximum

and minimum number of tasks that a job may leave un-

scheduled, and hence the maximum and minimum num-

ber of computers that the algorithm can allocate to it for

running tasks.

7



U
1

U
2

X

R
1

R
2

C
1

C
2

C
4

C
5

C
3

C
6

S
r1

r2

w
2

1

w
3

1

w
4

1

w
5

1

w
6

1

w
7

1

w
1

2

w
2

2

w
3

2

w
4

2

Figure 4: The Quincy flow-based scheduler graph. The figure shows

a graph corresponding to the same set of jobs and tasks as the queue-

based scheduler in Figure 3. There are nodes in the graph for each

root and worker task that the scheduler knows about, as well as an “un-

scheduled node” Uj for each job j. There is also a node Cm for each

computer m, a “rack aggregator” node Rl for each rack l, and a “clus-

ter aggregator” node X . S is the sink node through which all flows

drain from the graph. Each root task has a single outgoing edge to the

computer where it is currently running. Each worker task in job j has

an edge to j’s unscheduled node Uj , to the cluster-aggregator node X ,

and to every rack and computer in its preferred lists. Workers that are

currently executing (shown shaded) also have an edge to the computer

on which they are running. Graph edges have costs and capacities that

are not shown in the figure. The Appendix has a detailed explanation

of the structure of this graph and the costs and capacities that allow us

to map a min-cost feasible flow to a fair scheduling assignment.

Unlike the queue-based algorithms described in Sec-

tion 3, a flow-based algorithm can easily make use of

fine-grain information about the precise number of bytes

of input a given worker task wj
n would read across the

rack and core switches if executed on a given computer

m. This information is encoded in our graph construc-

tion using the costs on each of the edges leading from

graph node wj
n to computer nodes Cm, rack aggregators

Rl, and the cluster aggregator X . The cost on the edge

from wj
n to Cm is a function (given in the Appendix) of

the amount of data that would be transferred across m’s

rack switch and the core switch if wj
n were run on com-

puter m. The cost on the edge from wj
n to Rl is set to the

worst-case cost that would result if the task were run on

the least favorable computer in the lth rack. The cost on

the edge from wj
n to X is set to the worst-case cost for

running the task on any computer in the cluster.

In principle we could eliminate the cluster and rack

aggregator nodes X and Rl from the graph construction

and insert an edge between every task and every com-

puter weighted by the exact cost of running the task on

that computer. This would cause both the communi-

cation bandwidth between the root task and the sched-

uler and the number of edges in the graph to scale lin-

early with the number of computers in the cluster, so we

adopt the conservative approximation above. Since, as

noted in Section 2.3, the preferred lists for each task are

of bounded size, the communication bandwidth and the

number of edges needed for a given job remain constant

as a function of the size of the cluster.

The cost on the edge connecting wj
n to Uj represents

the penalty for leaving wj
n unscheduled. This increases

over time so that a worker that has been queued for a long

time is more likely to be set running than one which was

recently submitted, and can also be used to encode prior-

ities if some workers within a task should be scheduled

in preference to others.

Finally, when a task starts running on computer m
we add an additional cost, increasing with time, to all

edges from that task to nodes other than Cm, to enforce

a penalty for killing or moving it and thereby wasting the

work it has consumed. All the edge costs are set out in

detail in the Appendix.

The tradeoffs controlling Quincy’s behavior are pa-

rameterized using just three scaling weights for the costs:

ω which sets the cost of waiting in the queue, and ξ and ψ
which determine the cost of transferring data across the

core switch and a rack switch respectively. As we shall

see in the next section, setting higher data costs causes

Quincy to optimize more aggressively for data locality,

preempting and restarting tasks when more suitable com-

puters become available. Choosing the right parameters

to match the network capacity has a substantial perfor-

mance benefit.

The min-cost flow algorithm performs a global search

for the instantaneous optimal scheduling solution, with

respect to the costs we have assigned, subject to fair-

ness constraints. The scheduler updates the graph when-

ever a salient event occurs (a worker task completes, a

new task is submitted, etc.), and on a regular timer event

since some costs are time-dependent as explained above.

Whenever the graph is updated the scheduler computes a

new min-cost flow then starts or kills tasks as necessary

to reflect the matching induced by the flow.

The particular scheduling problem presented by our

cluster computation model maps very elegantly to min-

cost flow. We believe there are many other scheduling

tasks that could benefit from a similar flow-based solu-

tion, however the constraints imposed by the graph en-

coding mean it is not suitable for all problems. We dis-

cuss these issues in more detail in Section 8.

4.3 Controlling fairness policy

As explained in the previous section, the capacities on

the outgoing edge of job j’s unscheduled nodeUj control

the number of running tasks that the job will be allocated.

This allocation controls the fairness regime, and we con-

8



sider four regimes. Here, Ej is the minimum number

of running tasks job j may receive and Fj is the maxi-

mum number of running tasks it may get. Each job j has

submitted Nj worker tasks where
∑

j Nj = N , and the

cluster contains M computers.

• Fair sharing with preemption: For this policy, fair

sharesAj are computed as described in Section 3.3, and

Ej = Fj = Aj so job j is constrained to use exactly

its share of the cluster computers. Unlike the greedy al-

gorithm in Section 3, Quincy may kill tasks at any time

in pursuit of a lower-cost flow solution, so a running

task may be killed even if its job’s allocation does not

decrease—in which case another task from that job will

be started to maintain its allocation. This policy is de-

noted “QFP” for Quincy with Fairness and Preemption.

• Fair sharing without preemption: Fair shares are

computed as above but if a job is already running more

than its fair share of workers its allocation is increased

to that total and the allocations for other jobs are pro-

portionally decreased. In addition the capacities of all

edges to all nodes except the current running computer

are set to zero for running tasks, so Quincy is prevented

from preempting any running worker. This policy is de-

noted “QF”.

• Unfair sharing with preemption: Each job j is al-

lowed as many computers as necessary to minimize the

overall cost of the scheduling assignments, so Ej = 1
and Fj = Nj . However, if N ≤ M we set Ej =
Fj = Nj to reduce the chance of idle computers when

there are waiting tasks. A computer may be left idle

for example if a waiting task wj
n has a strong data-

locality preference for a computer that is currently oc-

cupied but the wait-time cost has not yet overcome the

cost of scheduling the task in a suboptimal location.

This policy is denoted “QP.”

• Unfair sharing without preemption: Allocations are

set as for QP but capacities are adjusted as for QF to

prevent Quincy from preempting any running jobs. This

policy is denoted “Q”.

Note that selecting between policies is achieved simply

by changing a set of edge capacities. While the imple-

mentations in Section 3.3 are not conceptually compli-

cated, implementing them efficiently is certainly more

complex than modifying a single datastructure.

5. EXPERIMENTAL DESIGN

Our cluster contained 243 computers each with 16 GB

of RAM and two 2.6 GHz dual-core AMD Opteron pro-

cessors, running Windows Server 2003. Each computer

had 4 disk drives and the workload data on each com-

puter was striped across all 4 drives. The computers were

organized into 8 racks, each containing between 29 and

31 computers, and each computer was connected to a 48-

port full-crossbar GBit Ethernet switch in its local rack

via GBit Ethernet. Each local switch was in turn con-

nected to a central switch via 6 ports aggregated using

802.3ad link aggregation. This gave each local switch up

to 6 GBits per second of full duplex connectivity. Our

research cluster had fairly high cross-cluster bandwidth,

however hierarchical networks of this type do not scale

easily since the central switch rapidly becomes a bot-

tleneck, so many clusters are less well provisioned than

ours for communication between computers in different

racks. Consequently for some experiments (which we

denote “constrained network”) in Section 6 we removed

5 of the six uplinks from each local switch reducing its

full-duplex connectivity to 1 GBits per second.

5.1 Applications

Our experimental workload consists of a selection of

representative applications that are run concurrently. We

consider a small set of applications, but we can run each

application with a variety of inputs. A particular applica-

tion reading from a particular set of inputs is called an ap-

plication instance. A given application instance always

uses the same input partitions across all experiments.

Each experiment runs a list of application instances,

and experiments that compare between policies run the

same instances started in the same order. Each experi-

ment has a concurrency value K and at the beginning of

the experiment we start the first K instances in the list.

Every time an instance completes the next instance in the

list is started. The applications in our experiments are as

follows:

• Sort. This application sorts a set of 100 byte records

that have been distributed into S partitions. We consider

three instances of Sort with S = 10, 40, and 80, denoted

Sort10, Sort40, and Sort80 respectively. Each parti-

tion contains around 4 GB of data and the partitions are

spread randomly over the cluster computers in order to

prevent hot spots. The application starts by reading all

the input data, sampling it to compute balanced ranges,

then range partitioning it into S partitions. Sort redis-

tributes all of its input data between computers during

this repartitioning and is therefore inherently network-

intensive. Once the data has been repartitioned each

computer sorts its range and writes its output back to

the cluster.

• DatabaseJoin. This application implements a 3-way

join over two input tables of size 11.8 GB and 41.8 GB

respectively, each range-partitioned into 40 partitions

using the same ranges and arranged on the cluster so

that matching ranges are stored on the same computer.

The application spends most of its time in two phases,

each using 40 tasks. In the first phase each task reads a

matching pair of partitions and writes its output into 40

buckets, one for each range. In the second phase each

9



task reads one partition from the larger of the input ta-

bles along with 40 inputs generated by the tasks in the

first phase. This second phase is inherently network-

intensive but has a strong locality preference for the

computer where the input table partition is stored. We

run two instances of the DatabaseJoin application called

DatabaseJoin40 and DatabaseJoin5. For the first, the

inputs are distributed over 40 computers each of which

holds a single partition. For the second the inputs are

only distributed across 5 computers in the same rack,

each of which stores 8 partitions. DatabaseJoin5 rep-

resents a classic tradeoff between throughput and data-

locality: if all 40 tasks are run concurrently they must

transfer most of their inputs across the network. In or-

der to minimize network transfers only 5 tasks can be

run at a time.

• PageRank. This is a graph-based computation with

three iterations. Its input dataset is divided into par-

titions, each around 1 GB, stored on 240 computers.

Each iteration is in two phases. Each task in the first

phase reads from an input partition and from the out-

put of the previous iteration, and writes 240 buckets.

Each task in the second phase reads one bucket from

each of the first-phase outputs, repartitioning the first-

phase output. Tasks in the first phase have strong local-

ity preference to execute where their input partition is

stored, but second-phase tasks have no locality prefer-

ence. PageRank is inherently network-intensive.

• WordCount. This application computes the occur-

rence frequency of each word in a large corpus and re-

ports the ten most common words. There are ten in-

stances with inputs divided into 2, 4, 5, 6, 8, 10, 15, 20,

25, and 100 partitions respectively, and each partition

is about 50 MB in size. WordCount performs extensive

data reduction on its inputs, so if it is scheduled opti-

mally it transfers very little data over the network.

• Prime. This is a compute-intensive application which

reads a set of integers and checks each for primality us-

ing a naive algorithm that uses O(n) computations to

check integer n. This algorithm was deliberately se-

lected to have a high ratio of CPU usage to data transfer.

There are two types of instance: PrimeLarge which tests

500,000 integers per partition, and PrimeSmall which

checks 40,000 integers per partition. We use a single in-

stance of PrimeLarge with 240 partitions and 13 Prime-

Small instances with 2, 4, 5, 6, 8, 10, 15, 20, 25, 500,

1000, 1500, and 2000 partitions respectively. No Prime

instance transfers much data regardless of where it is

scheduled.

Together these instances comprise 30 jobs with a mix

of CPU, disk, and network intensive tasks. We always

start PrimeLarge first, and the first thing it does is occupy

most computers with worker tasks that take 22 minutes

to complete. This simulates the case that one job man-

ages to “hog” the resources, e.g. by starting up overnight

while the cluster is unloaded. Schedulers that do not

preempt tasks must share out a small number of remain-

ing computers until PrimeLarge’s workers start complet-

ing. The experiments in Section 6.3 remove PrimeLarge

from the workload, and confirm that even without a sin-

gle large job occupying the cluster we still see a large

discrepancy between the fairness of different implemen-

tations.

5.2 Metrics

We use the following metrics to evaluate scheduling

policies:

• Makespan. This is the total time taken by an experi-

ment until the last job completes.

• System Normalized Performance (SNP). SNP is the

geometric mean of all the ANP values for the jobs in

an experiment, where ANP stands for the “Application

normalized performance” of a job [34]. ANPj , the ANP

of job j, is the ratio of j’s execution time under ideal

conditions to j’s execution time in the experiment of in-

terest. Larger values of ANP and hence SNP are better,

where a value of 1 is ideal.

• Slowdown norm. We compute some scaled lp norms

of the slowdown factors of the jobs across each exper-

iment, where the slowdown of job j is σj = 1/ANPj .

The quantities we report are l1 = (
∑

j σj)/J , l2 =
√

(
∑

j σ
2

j )/
√

(J ) and l∞ = maxj σj where J is the

number of jobs in the experiment.

• Unfairness. This is the coefficient of variation of the

ANPs for all the jobs in an experiment. If a scheduling

policy is fair all applications will be affected equally, so

lower Unfairness is generally better (though see below)

with an ideal value of 0.

• Data Transfer (DT). This is the total amount of data

transferred by all tasks during an experiment. We split

DT into 3 components: data read from local disk, across

a rack switch, and across the central switch.

We report a large number of metrics because no single

metric exactly captures our informal goal, which is that

a job that takes t seconds when given exclusive access to

the cluster should take no more than Jt seconds when J
jobs are running concurrently. Ideally we would like any

job that needs less than 1/J of the cluster’s capacity to

continue to execute in t seconds even when the cluster

is shared among J jobs—and a job should only see the

worst-case slowdown of a factor of J in the case that it

would be able to make full use of the entire cluster if

given exclusive access.

While a high value of Unfairness may be indicative

that a policy is “unfair” in our informal sense, a zero

10



value for Unfairness may not be what we want, since

it is achieved when there is exactly equal slowdown for

all jobs. As noted in the preceding paragraph, however,

we expect an ideal scheduler to produce ANPs that vary

between 1 and 1/J , and hence have imperfect Unfair-

ness. The same problem occurs with other fairness met-

rics such as Jain’s index [18].

SNP and the slowdown norms are different ways of av-

eraging the performance of all the jobs in an experiment

and we include a variety to show that they all exhibit a

similar directional trend across experiments.

Makespan is a useful metric to understand the overall

throughput of the cluster, and we use it to verify that im-

provements in Unfairness and SNP do not come at the

expense of being able to run fewer jobs per hour on the

shared cluster. DT allows us to visualize the tradeoffs

the schedulers are making and predict how performance

would vary if network resource were provisioned differ-

ently.

6. EVALUATION

In this section we run a set of applications under differ-

ent network conditions and compare their performance

when scheduled by the queue-based and flow-based al-

gorithms under various policies. We aim to highlight sev-

eral major points. First, we show that, for our experimen-

tal workload, adopting fairness with preemption gives

the best overall performance regardless of the scheduler

implementation that is used. Second we compare queue-

based and flow-based schedulers with each policy, and

determine that Quincy, our flow-based implementation,

generally provides better performance and lower network

utilization. Finally, we show that when the network is a

bottleneck, drastically reducing cross-cluster communi-

cation has a substantial positive effect on overall through-

put and demonstrate that Quincy, unlike the queue-based

approach, is easy to tune for different behavior under dif-

ferent network provisioning setups.

For all the experiments in this paper we set the wait-

time factor ω to 0.5 and the cost ψ of transferring 1 GB

across a rack switch to 1. For most experiments ξ, the

cost of transferring 1 GB across the core switch, is set to

2. However for some experiments with policy QFP we

set ξ = 20 and these are denoted QFPX.

6.1 Ideal unconstrained network timings

We first analyze the behaviors of different schedul-

ing algorithms when the network is well-provisioned. In

these experiments each rack uses its full 6 GBit link to

the central switch.

We start by estimating the ideal running time for each

instance, since this is used as the baseline for computing

ANP and hence SNP, Unfairness and all the slowdown

norms. We ran our 30-instance experiment three times

Makespan Data Tranfer (TB)
(s) Total Cross rack Cross cluster

G 5239 2.49 0.352 (14%) 0.461 (18%)
Q 5671 2.49 0.446 (18%) 0.379 (15%)

QP 5087 2.49 0.177 (7%) 0.131 (5%)

Table 2: Ideal execution metrics. The table shows the mean across

three experiments of Makespan and DT computed under policies G, Q,

and QP when K = 1 so only a single job is permitted to execute at a

time. DT is broken down to show the amount transferred within and

across racks.

Application (Partitions, Running Time (s))

PrimeSmall (2,14), (4,14), (5,14), (6,14),
(8,15), (10,15), (15,15),
(20,17), (25,17), (500,29),
(1000,44), (1500,57), (2000,71)

CPU PrimeLarge (240,1360)
Word (2,44), (4,45), (5,47), (6,48),

(8,49), (10,47), (15,52),
(20,56), (25,54), (100,61)

DatabaseJoin (40,309), (5,365)

NW Sort (10,365), (40,409), (80,562)

Pagerank (240,877)

Table 3: Job classification based on ideal network traffic. The ta-

ble lists the mean running time of our application instances measured

under ideal conditions in our unconstrained network. Instances are di-

vided into CPU-bound and network-bound sets labeled CPU and NW

respectively. Each instance is listed as a pair giving the number of input

partitions and its mean running time in seconds.

with concurrency K = 1 under each of three different

policies: G (greedy), Q (Quincy with preemption dis-

abled), and QP (Quincy with preemption), and the mean

Makespan and DT for each policy are shown in Table 2.

QP performs best (and also has the lowest standard de-

viation, at 1.4% of the mean), so we selected the mean

of each job’s running time across the three QP experi-

ments as the job’s ideal baseline. The times are shown

in Table 3. Note that many instances run for only a few

seconds: when we run concurrent experiments these very

short instances have high variance in SNP across exper-

iments because their running time can be strongly af-

fected by startup costs such as transmitting application

binaries across a congested network.

Even when jobs are run in isolation, allowing Quincy

to perform preemption results in a dramatic improvement

in cross-cluster data transfer and hence a small improve-

ment in running time. This can be explained by exam-

ining the behavior of the PageRank instance. The sec-

ond phase of each iteration has no locality preference,

so tasks are run on arbitrary computers. As each task

in the second phase of iteration 1 completes, the corre-

sponding task in the first phase of iteration 2 is submit-

ted and a greedy scheduler must assign it to the computer

that has just become available, which in general does

not store that task’s inputs. We observe that Quincy fre-

quently moves such poorly located tasks a few seconds

11



after starting them when more appropriate computers are

released. Also note that it does not preempt the second-

phase tasks that are about to complete, since they have

been running much longer and are expensive to dislodge.

The hysteresis described in Section 3.5 would not help

here since only one job is executing. A more complex

form of hysteresis could be designed for a queue-based

scheduler in order to address this issue, however we be-

lieve Quincy provides a more elegant solution.

6.2 Unconstrained network experiments

We next focus on the performance of the scheduling

policies. We set the concurrency to K = 10 which is

large enough to keep cluster utilization high for most of

the duration of the experiment. We average all results

across three experiments for each policy. Figure 5 shows

the average running time of each job under each policy,

compared to the ideal running time for that job, and Fig-

ure 6 shows all the metrics we use to summarize perfor-

mance. The standard deviations for all policies with fair-

ness and preemption are below 1.5% of the mean, how-

ever removing either condition can lead to high variance

in performance, up to a standard deviation of 19.5% of

the mean for QF’s Makespan.

Policies that do not allow preemption see worst-case

slowdowns of around a factor of 100 for some small jobs

and so are clearly unfair in our informal sense. Adding

fairness constraints without enabling preemption actu-

ally increases the Unfairness of both the queue-based and

flow-based schedulers. Figure 5 suggests this increase in

Unfairness can be attributed mostly to a speedup of some

small CPU-bound jobs (increasing the variance of the

ANP but actually improving the informal fairness of the

cluster as discussed in Section 5.2), and indeed the slow-

down norms improve slightly when fairness is added.

The three policies that combine fairness with preemp-

tion are clearly the most effective across our range of

metrics. All have worst-case slowdown l∞ well under a

factor of 10. GFP (the queue-based scheduler with fair-

ness and preemption) has noticeably worse slowdown for

the network-bound jobs than QFP or QFPX and this can

be explained by the mean data transfer chart in Figure 6,

since GFP is the least effective at enforcing data locality

and thus transfers the most data through the core network

switch. This also explains the slightly worse slowdown

(by a few seconds) that GFP sees for very short jobs com-

pared with QFP and QFPX, since job startup time is in-

creased in a congested network as binaries are copied to

the computers where the job will execute. As expected,

QFPX reduces data transfer across the core switch com-

pared with QFP. In the unconstrained network this does

not lead to a substantial increase in performance and in

fact the slowdown norms get slightly worse as more tasks

are preempted and moved in order to improve locality.

0

1000

2000

3000

4000

5000

K=1 G Q QP GF QF GFP QFP QFPX

Scheduling policy

M
e

a
n

 m
a

ke
sp

a
n

(s
)

Scheduling policy

S
N

P

0

0.1

0.2

0.3

0.4

0.5

0.6

G Q QP GF QF GFP QFP QFPX

All workloads
NW-bound workloads
CPU-bound workloads

1

10

100

G Q QP GF QF GFP QFP QFPX

l2

l∞

l1

Scheduling policy

S
lo

w
d

o
w

n
n

o
rm

U
n

fa
ir

n
e

ss

Scheduling policy

0

0.2

0.4

0.6

0.8

G Q QP GF QF GFP QFP QFPX

All workloads
NW-bound workloads
CPU-bound workloads

0

0.5

1

1.5

2

G Q QP GF QF GFP QFP QFPX

Cross rack Same rack Same computer

Scheduling policy

M
e

a
n

 d
a

ta
 t

ra
n

sf
e

r 
(T

B
)

Figure 6: Performance metrics for experiments using an uncon-

strained network.

12



G

K=1

F F F F F F F F F O O O O O F F F F F F F F F O F O F O O O

Application

1

1e1

1e2

1e3

1e4

M
e

a
n

 e
x
e

c
u

ti
o

n
 t

im
e

 (
s
) Q

K=1

F F F F F F F F F O O O O O F F F F F F F F F O F O F O O O

Application

1

1e1

1e2

1e3

1e4

M
e

a
n

 e
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

QP

K=1

F F F F F F F F F O O O O O F F F F F F F F F O F O F O O O

Application

1

1e1

1e2

1e3

1e4

M
e

a
n

 e
x
e

c
u

ti
o

n
 t

im
e

 (
s
) GF

K=1

F F F F F F F F F O O O O O F F F F F F F F F O F O F O O O

Application

1

1e1

1e2

1e3

1e4

M
e

a
n

 e
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

QF

K=1

F F F F F F F F F O O O O O F F F F F F F F F O F O F O O O

Application

1

1e1

1e2

1e3

1e4

M
e

a
n

 e
x
e

c
u

ti
o

n
 t

im
e

 (
s
) GFP

K=1

F F F F F F F F F O O O O O F F F F F F F F F O F O F O O O

Application

1

1e1

1e2

1e3

1e4

M
e

a
n

 e
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

QFP

K=1

F F F F F F F F F O O O O O F F F F F F F F F O F O F O O O

Application

1

1e1

1e2

1e3

1e4

M
e

a
n

 e
x
e

c
u

ti
o

n
 t

im
e

 (
s
) QFPX

K=1

F F F F F F F F F O O O O O F F F F F F F F F O F O F O O O

Application

1

1e1

1e2

1e3

1e4

M
e

a
n

 e
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Figure 5: Average running time of each job for each policy using an unconstrained network with concurrency K = 10, compared with the

ideal running time for that job with K = 1. Time in seconds is shown on a logarithmic scale on the vertical axis. Jobs are listed in the order

given in Table 3. Jobs labeled “F” generally “fit” within their quota of 1/10th of the cluster’s computers and an ideal scheduler should therefore run

them with little or no slowdown. Jobs labeled “O” sometimes “overflow” their quota and thus might experience a slowdown from the ideal running

time even under perfect scheduling. We classify the rightmost six jobs as network-bound, while the remainder are CPU-bound.

13



The Makespan chart in Figure 6 shows that overall

throughput is remarkably similar across policies when

the cluster is equipped with a fast network, and only

the very poor placement decisions from GFP substan-

tially hurt throughput. The data transfer chart shows that

data transferred across and within racks increases when

the fairness constraint is added because tasks might be

placed at suboptimal locations to guarantee fair machine

allocation. When preemption is enabled the total data

transfered increases slightly due to wasted reads by tasks

that are subsequently preempted. With preemption, the

data transferred across racks by the greedy algorithm in-

creases, while it decreases under Quincy. This is because

the flow-based scheduler can preempt and move tasks

to better locations, unlike the greedy scheduler. Finally,

when the flow-based scheduler is tuned with higher costs

for cross rack transfers, data transfers across racks are

reduced to about 9% of total data transferred.

Figure 7 illustrates the cluster utilization for two ex-

periments with policies QF and QFP that differ only in

whether or not preemption is enabled. The plots show

the effect of starting PrimeLarge first, since when pre-

emption is disabled almost no other jobs make progress

until PrimeLarge’s workers start to complete. This leads

to dramatically lower utilization in the latter part of the

epxeriment, and hence increased Makespan, for QF in

this run.

Our conclusion is that policies that enforce fairness

and include preemption perform best for this workload.

They can reduce Unfairness almost by a factor of two and

show dramatic improvements in SNP and the slowdown

norms, while sending substantially less data through the

core switch and causing a minimal degradation of Make-

span. Quincy performs better for this policy, under all

our metrics, than the queue-based approach. This is ex-

plained by the fact that Quincy is able to introduce fair-

ness without harming locality, while the queue-based ap-

proach greatly increases cross-cluster network traffic as

a side-effect of trying to improve fairness.

6.3 Results under a constrained network

Next, we evaluate our scheduling policies under a con-

strained network. We reduce the network capacity of the

cluster by changing the link bandwidth from each of the

8 racks to the central switch to a 1 GBit duplex link, re-

ducing it to 1/6 of its original capacity.

For these results we remove PrimeLarge from our ex-

periment because it is long-running and CPU-bound, and

obscures the Makespan results. Since GFP, QFP, and

QFPX give the best performance under the unconstrained

network, we compare only these policies for these ex-

periments. We also measure the running time for our

instances with concurrency 1 under the constrained net-

work to compute the ideal running time, and we use the

0 500 1000 1500 2000 2500 3000 3500

Time (seconds)

0

50

100

C
lu

s
te

r 
u

ti
liz

a
ti
o

n
 (

%
)

0 500 1000 1500 2000 2500 3000 3500

Time (seconds)

0

50

100

C
lu

s
te

r 
u

ti
liz

a
ti
o

n
 (

%
)

Figure 7: Cluster utilization without and with preemption. Shaded

regions correspond to application instances, and their area indicates the

number of running workers belonging to that instance. The top graph

shows QF, with QFP below. The black region is PrimeLarge which

occupies most of the cluster at the start and cannot be preempted by QF.

QFP shares resources more fairly and completes sooner. Both stages of

the final two iterations of PageRank are clearly visible in the lower plot.

results obtained using the QFPX scheduler since it results

in the shortest execution times.

Figure 8 shows our summary metrics for the experi-

ments with a constrained network, and Figure 9 shows

the average running time of each job in each experiment

compared to its ideal running time.

When the network is constrained, the amount of data

transferred across the core switch determines the perfor-

mance of the system as a whole. Table 4 shows that

QFP and QFPX transfer less data than GFP both within

racks and across the cluster. The power of the flow-based

scheduler to optimize the network bandwidth can be seen

by the fact that, when told that cross cluster reads are

much more expensive than reads within a rack, it reduces

the cross cluster transfers to 8% of the total transfer in

QFPX trading off with a slight increase within racks and

a slight increase in the total due to aggressive preemp-

tion.

QFPX performs better than QFP and GFP across all

the metrics. The SNP of network-bound instances im-

proves by 32% over QFP and 87% over GFP. While the

QFPX settings improve SNP for CPU intensive instances

as well, as expected the improvement is moderate when

compared with QFP. Along with improving data locality

14



0

1000

2000

3000

K=1 GFP QFP QFPX
Scheduling policy

M
e

a
n

 m
a

ke
sp

a
n

(s
)

0

0.2

0.4

0.6

0.8

GFP QFP QFPX

All workloads

NW-bound workloads

CPU-bound workloads

Scheduling policy

S
N

P

0

1

2

3

4

5

GFP QFP QFPX

S
lo

w
d

o
w

n
 n

o
rm

Scheduling policy

l2

l∞

l1

0

0.1

0.2

0.3

0.4

GFP QFP QFPX

All workloads
NW-bound workloads
CPU-bound workloads

U
n

fa
ir

n
e

ss

Scheduling policy

0

0.5

1

1.5

2

2.5

GFP QFP QFPX

Cross rack Same rack Same computer

Scheduling policy

M
e

a
n

 d
a

ta
 t

ra
n

sf
e

r 
(T

B
)

Figure 8: Performance metrics using a constrained network.

DT (TB)
Total Same rack Cross cluster

ideal 2.47 0.405 (16%) 0.124 (5%)
GFP 2.54 1.095 (43%) 0.760 (30%)

QFP 2.53 0.776 (31%) 0.437 (17%)

QFPX 2.56 0.905 (35%) 0.192 (8%)

Table 4: DT using a constrained network. The table presents

presents the mean data transferred for different scheduling policies

measured across three runs of each experiment using a constrained net-

work.

and performance, QFPX also improves Unfairness com-

pared with the other policies, particularly for network-

bound instances, and shows a slight improvement in all

the slowdown norms.

6.4 Hysteresis in a queue-based scheduler

We ran experiments using GFH and GFPH, the queue-

based policies with hysteresis that are defined in Sec-

tion 3.5. These policies improve data locality compared

to GF or GFP at the expense of Makespan, however they

still transferred substantially more data than Quincy.

6.5 Solver overhead

In order to understand the overhead of using min-cost

flow, we measured the time Quincy took to compute each

network flow solution. Across all experiments, the aver-

age cost to solve our scheduling graph was 7.64 ms and

the maximum cost was 57.59 ms. This means Quincy

is not a bottleneck in our cluster. We simulated graphs

that Quincy might have to solve in a much larger cluster

of 2500 computers running 100 concurrent jobs, and the

computation time increased to a little over a second per

solution. It might be acceptable to use this implemen-

tation directly, simply waiting a second or two between

scheduling assignments, however we believe our imple-

mentation can be made to run much faster by comput-

ing incremental min-cost solutions as tasks are submitted

and complete instead of starting from scratch each time

as we do currently.

7. RELATED WORK

The study of scheduling algorithms for parallel com-

puting resources has a long history [20]. The problem

of assigning jobs to machines can in general be cast as

a job-shop scheduling task [16], however theoretical re-

sults for job-shop problems tend to be quite general and

not directly applicable to specific implementations.

Scheduling Parallel Tasks. Ousterhout introduced the

concept of coscheduling for multiprocessors [24], where

cooperating processes are scheduled simultaneously to

improve inter-process communication. In contrast to co-

scheduling, which runs the same task on all processors at

once using an externally-controlled context switch, im-

plicit scheduling [9] can be used to schedule communi-

15



GFP

K=1

F F F F F F F F F O O O O F F F F F F F F F O F O F O O O

Application

1

1e1

1e2

1e3

1e4

M
e

a
n

 e
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

QFP

K=1

F F F F F F F F F O O O O F F F F F F F F F O F O F O O O

Application

1

1e1

1e2

1e3

1e4

M
e

a
n

 e
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

QFPX

K=1

F F F F F F F F F O O O O F F F F F F F F F O F O F O O O

Application

1

1e1

1e2

1e3

1e4

M
e

a
n

 e
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Figure 9: Average running time of each job for each policy using a

constrained network with concurrency K = 10, compared to the

ideal running time with K = 1. Labels on the horizontal axis are as

in Figure 5.

cating processes. Neither technique applies in our set-

ting in which running tasks do not communicate. Naik et

al. [21] compare three policies for allocating processors

to a set of parallel jobs: static, which statically partitions

the processors into disjoint sets during system configu-

ration; adaptive, which repartitions the processors when

jobs arrive and leave but never changes the allocations

during execution; and dynamic, which changes proces-

sor allocation as a program is executing. Dynamic par-

titioning is similar to our approach in that the number

of resources allocated to a job can change over time.

However Naik et al. assume that the data transfer cost

across any two processor is the same and this is not true

in our cluster setup. While their overriding goal is to im-

prove system performance, we also care about fairness,

especially for small jobs. Stone [28] developed a frame-

work based on network flow for partitioning sequential

modules across a set of processors, however his graph

construction is quite different to ours and does not have

efficient solutions when there are more than two pro-

cessors. There is an excellent survey by Norman and

Thanisch [22] of the mapping problem for parallel jobs

on multi-processors, however this field of research deals

with the offline problem of optimally scheduling a single

job and thus does not address fairness.

Scheduling in a distributed computing cluster. Bent et

al. [6] describe BADFS which addresses many issues re-

lating to storage management and data locality in a clus-

ter setting similar to ours, but does not attempt to achieve

fairness. Amiri et al. [5] describe a system that dynami-

cally migrates data-intensive computations to optimize a

cost function, however the details of the optimization are

not given, and there is no mention of fairness. Zaharia

et al. [33] develop a scheduling algorithm called LATE

that attempts to improve the response time of short jobs

by executing duplicates of some tasks. Their approach

is complementary to our goal of ensuring fair sharing

of resources between jobs. Agrawal et al. [4] demon-

strate that Hadoop’s performance can be improved by

modifying its scheduling policy to favor shared scans be-

tween jobs that read from the same inputs. Their ap-

proach relies on correctly anticipating future job arrival

rates, which we do not yet incorporate into our schedul-

ing framework, however it may be possible to integrate

their approach with Quincy’s fair-sharing policies. Con-

dor [29] includes a variety of sophisticated policies for

matching resources to jobs [25] including cases where

resource requests are not independent [26, 30]. Condor

schedulers do not, however, support fine-grain locality-

driven resource matching. The closest work to our own

in this field is that of Zaharia et al. [32] which addresses

a similar problem using a queue-based scheduling ap-

proach.

Fair-share Scheduling. Proportional share scheduling

using priorities [19] is a classical technique but provides

only coarse control. Schroeder et al. [27] consider the

tradeoff between fairness and performance when sched-

uling parallel jobs, and Gulati et al. [15] describe a sched-

uler called PARDA that implements proportional-share

bandwidth allocation for a storage server being accessed

by a set of remote clients. However, none of these pre-

vious approaches takes account of data locality which is

crucial in our setting.

As far as we are aware, ours is the first work to model

fair scheduling as a min-cost flow problem.

8. DISCUSSION

Since our scheduling task maps very naturally to min-

cost flow, and this mapping leads to extremely effective

solutions, it may seem surprising that it has not been pre-

viously applied to similar problems in the past. Virtual-

machine (VM) placement and migration and many-core

16



operating system scheduling for example both superfi-

cially seem closely related.

We believe there are several reasons for the lack of

related work. One is that large shared clusters are a rel-

atively recent development. Batch time-sharing systems

did not historically have large numbers of independent

resources to allocate. Supercomputers and grid clusters

have long been massively parallel, but they are typically

scheduled using coarse-grained allocation policies and a

fixed set of computers is assigned to a job for a lengthy

period. Also, there are restrictions on our cost model that

make it easy to express as network flow. In particular:

• We can model the costs of assigning tasks to com-

puters as being independent. For example, we never

have a constraint of the form “tasks A and B must ex-

ecute in the same rack, but I don’t care which rack it

is.” Correlated constraints are very common when a

system must schedule processes that communicate with

each other while running, and this situation frequently

arises in VM placement problems and when executing

other distributed computational models such as MPI. It

is difficult to see how to encode correlated constraints

directly in a network flow model like Quincy’s.

• The capacities in our graph construction are naturally

one-dimensional. In many scheduling settings, each

task may consume less than 100% of a computer’s re-

sources. Their resource requirements may be modeled

as a multi-dimensional quantity, for example the amount

of CPU, disk IO and memory the task demands. Multi-

dimensional capacities cannot be easily represented by

Quincy’s flow network, though as we discuss below we

can model fractional capacities.

Nevertheless we are optimistic that there will turn out to

be numerous scheduling problems that can be encoded

using min-cost flow, and that Quincy’s effectiveness will

spur further research in the area.

A limitation of Quincy’s current design is that fairness

is expressed purely in terms of the number of comput-

ers allocated to a job, and no explicit attempt is made to

share the network or other resources. As we noted in Sec-

tion 1, Quincy’s ability to reduce unnecessary network

traffic does improve overall performance predictability

and consequently fairness, however when an application

does require cross-cluster communication this require-

ment does not get modeled by our system. We would like

to extend Quincy to take account of network congestion

in future work: one interesting idea is to monitor network

traffic and dynamically adjust Quincy’s costs to optimize

for reduced data transfer only when it is a bottleneck.

There are several straightforward extensions to Quincy

that we are currently exploring:

• We can easily support the allocation of multiple tasks

to a single computer by increasing the capacity of the

edge from each computer to the sink. It may also be ad-

vantageous to temporarily assign more tasks to a com-

puter than its capacity allows, and time-slice the tasks,

instead of preempting a task that has been running on

the computer for a long time.

• We could get better cluster utilization in some cases

by adaptively setting the job concurrency K, for ex-

ample opportunistically starting “spare” jobs if cluster

computers become idle, but reducing their worker task

allocation to zero if resource contention returns. In our

current design, the choice of K and the algorithm de-

termining appropriate allocations Aj for each job j are

completely decoupled from the scheduling algorithm.

A future design could unify these procedures, making

the admission and fairness policies adapt to the current

workload and locality constraints.

• There is a great deal of scope to incorporate predic-

tions about the running time of jobs and tasks, and the

known future workflow of jobs, into our cost model.

Pursuing this direction may lead us to move all of the

jobs’ workflow state machines into Quincy and dispense

with root tasks altogether.

In conclusion, we present a new approach to schedul-

ing with fairness on shared distributed computing clus-

ters. We constructed a simple mapping from the fair-

scheduling problem to min-cost flow, and can thus effi-

ciently compute global matchings that optimize our in-

stantaneous scheduling decisions. We performed an ex-

tensive evaluation on a medium-sized cluster, using two

network configurations, and confirmed that the global

cost-based matching approach greatly outperforms pre-

vious methods on a variety of metrics. When compared

to greedy algorithms with and without fairness, it can

reduce traffic through the core switch of a hierarchical

network by a factor of three, while at the same time in-

creasing the throughput of the cluster.

9. ACKNOWLEDGMENTS

We would like to thank Martín Abadi, Mihai Budiu,

Rama Kotla, Dahlia Malkhi, Chandu Thekkath, Renato

Werneck, Ollie Williams and Fang Yu for many helpful

comments and discussions. We would also like to thank

the SOSP committee for their detailed reviews, and our

shepherd Steve Hand for invaluable advice and sugges-

tions.

APPENDIX

This appendix sets out the detailed costs and capacities

used by the Quincy scheduler as outlined in Section 4.

Figure 4 shows a typical graph for a small problem set-

ting: a cluster with L = 2 racks and M = 6 computers

on which J = 2 jobs are currently executing. (The map-

ping trivially extends to a network with more than two

17



levels in its hierarchy.) Rack l contains Pl computers

with
∑

l Pl = M . Each job j has submitted Nj worker

tasks where
∑

j Nj = N . Job j has an allocation spec-

ified by Ej and Fj where 1 ≤ Ej ≤ Fj ≤ Nj . Ej

is the minimum number of worker tasks that job j must

currently be assigned and Fj is the maximum number of

running workers that the job is allowed. We discuss in

Section 4.3 how these allocation parameters should be

set.

As noted in Section 4.2 we use conservative approx-

imations to compute bounds on the data transfer costs

when a task is matched to a rack or cluster aggregator

node. The following quantities are used to compute these

approximations:

• (RX(wj
n),XX(wj

n)): these give an upper bound for

the number of bytes of input that wj
n might read across

the rack switch and the core switch respectively. They

are the values that will result if wj
n is placed on the

worst possible computer in the cluster with respect to

its inputs. They are computed exactly by the root task

and sent to the scheduler.

• (RR
l (wj

n),XR
l (wj

n)): these give an upper bound for

the number of bytes of input thatwj
n will read across the

rack switch and the core switch respectively if it is exe-

cuted on a computer in rack l. These numbers are com-

puted exactly and sent to the scheduler for every rack in

the task’s preferred list as defined in Section 2.3. For the

other racks they are approximated using (XX(wj
n)/P,

XX(wj
n)) where P is the number of racks in the cluster.

• (RC
m(wj

n),XC
m(wj

n)): these give the number of bytes

of input that wj
n will read across the rack switch and the

core switch respectively if is executed on computer m.

If m is in the task’s list of preferred computers these

numbers are computed exactly and sent to the sched-

uler, otherwise they are approximated using (RR
l (wj

n),
XR

l (wj
n)) where l is m’s rack.

The nodes in the graph are divided into sets, each rep-

resented by a column in Figure 4, and directed edges all

point from left to right in the figure. The number of nodes

in the graph is 2J + N + L + M + 2, and the number

of edges is 2J + L+ 2M + N , where N = O(N). The

node sets are as follows:

• Root task set: each job j has a node rj with supply

1 corresponding to its root task. rj has a single outgo-

ing edge with capacity 1 and cost 0. If the root task has

already been assigned a computer m the outgoing edge

goes to that computer’s node Cm and the scheduler has

no choice but to leave the root task running on that com-

puter. Otherwise the outgoing edge is connected to the

cluster aggregator node X in which case the task will

immediately be set running on some computer chosen

according to the global min-cost criterion. There will

always be a flow of 1 through rj .

• Worker task set: each submitted worker task from

job j has a corresponding node wj
n with supply 1. wj

n

has multiple outgoing edges each of capacity 1, corre-

sponding to the potential scheduling decisions for this

worker:

• Unscheduled: there is an edge to the job-wide un-

scheduled node Uj with a cost υj
n that is the penalty

for leaving wj
n unscheduled. If this edge gets flow 1

then the worker is not scheduled anywhere.

• AnyComputer: there is an edge to the cluster aggre-

gator node X with a cost αj
n that is the upper bound

of wj
n’s data cost on any computer. If this edge gets

flow 1 then the worker will be newly scheduled to a

computer that could be anywhere in the cluster.

• WithinRack: there is an edge to the rack node Rl

with a cost ρj
n,l for each rack l on wj

n’s preferred rack

list, where ρj
n,l is the upper bound of wj

n’s data cost

on any computer in l. If one of these edges gets flow 1

then the worker will be newly scheduled to a computer

that could be anywhere in the corresponding rack.

• Computer: there is an edge to the computer node

Cm for each computer m that is on wj
n’s preferred

computer list with a cost γj
n,m that is the cost of run-

ning wj
n on m. If the worker is currently running on

a computer m′ that is not in its preferred list there is

also an edge to m′. If one of these edges gets flow 1

then the worker will be scheduled to run on the corre-

sponding computer.

There will always be a flow of 1 throughwj
n. The values

assigned to costs υj
n, αj

n, ρj
n,l and γj

n,m are described

below.

• Job-wide unscheduled set: each job j has an un-

scheduled aggregator node Uj with supply Fj − Nj

and incoming edges from every worker task in j. It

has an outgoing edge to the sink node S with capac-

ity Fj − Ej and cost 0. These settings for supply and

capacity ensure that the flow f through Uj will always

satisfy Nj − Fj ≤ f ≤ Nj − Ej , and this means that

the number s of scheduled worker tasks for j will sat-

isfy Ej ≤ s ≤ Fj since each of the Nj workers wj
n

must send its flow somewhere. Thus Uj enforces the

fairness allocation for job j.

• Cluster aggregator: there is a single cluster-wide ag-

gregator node X with supply 0. This has an incoming

edge of capacity 1 from every worker task that has been

submitted by any job, and every root task that has not

yet been scheduled. It has an outgoing edge to each rack

node Rl with capacity Pl and cost 0. X will get a flow

between 0 and M .

• Rack aggregator set: each rack l has an aggregator

nodeRl with supply 0. Rl has incoming edges from the

cluster-wide aggregator X and each worker task with

18



l on its preferred rack list. Rl has an outgoing edge

with capacity 1 and cost 0 to the computer node Cm for

every computer m that is in its rack. Rl will get a flow

between 0 and Pl.

• Computer set: each computerm has a node Cm with

supply 0. Cm has incoming edges from its rack aggre-

gator Rl and each worker task with m on its preferred

list as well as any worker that is currently running on

m. Cm has an outgoing edge with capacity 1 to the

sink node S. The flow through Cm is 1 if there is a task

running on m and 0 otherwise.

• Sink: the graph contains a single sink node S with

supply −
∑

j(Fj + 1). This supply balances the supply

entering the graph at each worker and root task along

with the supply Fj − Nj introduced at each job-wide

unscheduled nodeUj to enforce the minimum flow con-

straint through Uj . The flow through S is always equal

to
∑

j(Nj + 1).

Once the solver has output a min-cost flow solution, the

scheduling assignment can be read from the graph by

finding, for each computer m, the incoming edge if any

that has unit flow. If this edge leads from a task the as-

signment is clear. If it leads from a rack aggregation node

then one of the tasks that sent flow to that node will be

assigned arbitrarily to run on m. Since there is a feasi-

ble flow, the number of tasks sending flow to the rack

aggregation node will be equal to the number of comput-

ers receiving flow from it, so all scheduled tasks will be

matched to a computer during this process.

In order to compute min-cost flow we first need to de-

termine the costs υj
n, αj

n, ρj
n and γj

n on the outgoing

edges from each wj
n.

The cost υj
n between worker wj

n and Uj can be used

to set priorities for workers to break ties and determine a

preference for scheduling one worker over another when

their other costs are approximately equal. We have found

it useful to set this cost proportional to the time that the

task has been waiting. So υj
n = ωνj

n where ω is a wait-

time cost factor and νj
n is the total number of seconds that

wj
n has spent unscheduled since it was submitted (this

may be summed over several timespans ifwj
n was started

and then killed one or more times).

We set αj
n, the cost of scheduling wj

n on an arbitrary

cluster computer, to ψRX(wj
n) + ξXX(wj

n) where ψ
is the cost to transfer one GB across a rack switch, ξ
is the cost to transfer one GB across the core switch,

and RX(wj
n) and XX(wj

n) are data sizes defined above.

The cost ρj
n,l of running wj

n on an arbitrary computer

in rack l is set to ψRR
l (wj

n) + ξXR
l (wj

n), and the cost

γj
n,m of starting wj

n on a preferred computer m is set to

ψRC
m(wj

n) + ξXC
m(wj

n).
If wj

n is already running on computer m′ then its cost

has two terms: a data term d∗ = ψRC
m′(wj

n)+ξXC
m′(wj

n)

and a preemption term p∗. p∗ is set to θj
n, the total num-

ber of seconds that wj
n has spent running on any com-

puter since it was submitted (this may be summed over

several timespans if wj
n was started and then killed one

or more times).

The term p∗ represents the amount of work already

invested inwj
n. We set γj

n,m′ , the cost to keepwj
n running

on computer m′, to d∗ − p∗ and thus leaving wj
n running

becomes increasingly appealing the longer it has been

executing. We set θj
n to the total running time of wj

n

rather than its current running time in order to guarantee

starvation-freedom as follows.

Since Quincy may preempt a worker task at any time,

even when a job has not exceeded its allocation of com-

puters, we must be sure that a job’s tasks will eventu-

ally complete so the job can make progress. In order to

achieve this guarantee we set a large maximum value Ω
for the data costs and wait-time costs of tasks that are

not currently running. Once θj
n for a task running on

computer m gets large enough, γj
n,m < −Ω and there-

fore the cost of evicting wj
n will be larger than the benefit

of moving any other task to run on m. It can easily be

shown that as long as job j does not keep submitting new

worker tasks, and Ej ≥ 1 so job j always has at least

one running task, eventually γj
n,m < −Ω for all of job

j’s running tasks and the tasks will run to completion.

We have no theoretical analysis of the stability of the

system, however empirically we have not observed any

unexpected reallocations of resources. Also, note that

the cost of leaving a task running in its current location

monotonically decreases over time, and if ω = 0 or there

are no tasks currently unscheduled all other costs in the

graph are constant. If a min-cost flow solution is mod-

ified strictly by decreasing the cost of edges that are al-

ready at full capacity, the flow assignment remains a min-

cost solution. Thus when there are no unscheduled tasks

the system is guaranteed not to change any scheduling

assignment until a task completes or a new task is sub-

mitted.

REFERENCES

[1] The hadoop fair scheduler. https://issues.
apache.org/jira/browse/HADOOP-3746.

[2] Open MPI. http://www.open-mpi.org/.
[3] Hadoop wiki. http://wiki.apache.org/hadoop/, April

2008.
[4] P. Agrawal, D. Kifer, and C. Olston. Scheduling Shared

Scans of Large Data Files. In Proc. VLDB, pages
958–969, 2008.

[5] K. Amiri, D. Petrou, G. Ganger, and G. Gibson. Dynamic
function placement for data-intensive cluster computing.
In Usenix Annual Technical Conference, 2000.

[6] J. Bent, D. Thain, A. C. Arpaci-Dusseau, R. H.
Arpaci-Dusseau, and M. Livny. Explicit Control in a
Batch-Aware Distributed File System. In Proc. NSDI,
March 2004.

19



[7] J. Dean and S. Ghemawat. Mapreduce: Simplified data
processing on large clusters. In Proc. OSDI, pages
137–150, December 2004.

[8] J. Dean and S. Ghemawat. Mapreduce: simplified data
processing on large clusters. Communications of the
ACM, 51(1):107–113, 2008.

[9] A. C. Dusseau, R. H. Arpaci, and D. E. Culler. Effective
distributed scheduling of parallel workloads.
SIGMETRICS Performance Evaluation Review,
24(1):25–36, 1996.

[10] D. Feitelson and L. Rudolph. Gang scheduling
performance benefits for finegrained synchronization.
Journal of Parallel and Distributed Computing,
16(4):306–18, 1992.

[11] L. R. Ford, Jr. and D. R. Fulkerson. Flows in Networks.
Princeton Univ. Press, Princeton, NJ, 1962.

[12] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google
File System. In Proceedings of the 19th ACM Symposium
on Operating Systems Principles (SOSP ’03), pages
29–43, October 2003.

[13] A. V. Goldberg. An Efficient Implementation of a Scaling
Minimum-Cost Flow Algorithm. J. Alg., 22:1–29, 1997.

[14] A. V. Goldberg and R. E. Tarjan. Finding Minimum-Cost
Circulations by Successive Approximation. Math. Oper.
Res., 15:430–466, 1990.

[15] A. Gulati, I. Ahmad, and C. A. Waldspurger. PARDA:
Proportional Allocation of Resources for Distributed
Storage Access. In Proceedings of the Seventh USENIX
Conference on File and Storage Technologies (FAST’09),
pages 85–98, February 2009.

[16] D. S. Hochbaum, editor. Approximation algorithms for
NP-hard problems. PWS Publishing Co., Boston, MA,
USA, 1997.

[17] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: Distributed data-parallel programs from
sequential building blocks. In Proc. Eurosys, pages
59–72, March 2007.

[18] R. Jain, D. Chiu, and W. Hawe. A Quantitative Measure
Of Fairness And Discrimination For Resource Allocation
In Shared Computer Systems. Technical Report TR-301,
DEC Research Report, September 1984.

[19] J. Kay and P. Lauder. A fair share scheduler.
Communications of the ACM, 31(1):44–55, 1988.

[20] B. W. Lampson. A scheduling philosophy for
multi-processing systems. In Proceedings of the first
ACM symposium on Operating System Principles
(SOSP’67), pages 8.1–8.24, 1967.

[21] V. K. Naik, S. K. Setia, and M. S. Squillante.
Performance analysis of job scheduling policies in
parallel supercomputing environments. In Proceedings of
Supercomputing, pages 824–833, November 1993.

[22] M. G. Norman and P. Thanisch. Models of machines and

computation for mapping in multicomputers. ACM
Comput. Surv., 25(3):263–302, 1993.

[23] J. B. Orlin. A Faster Strongly Polynomial Minimum Cost
Flow Algorithm. J. Oper. Res., 41:338–350, 1993.

[24] J. K. Ousterhout. Scheduling Techniques for Concurrent
Systems. In Proceedings of the Third International
Conference on Distributed Computing Systems
(ICDCS’82), pages 22–30, January 1982.

[25] R. Raman, M. Livny, and M. Solomon. Matchmaking:
Distributed Resource Management for High Throughput
Computing. In Proceedings of the 7th IEEE
International Symposium on High Performance
Distributed Computing (HPDC 7), July 1998.

[26] R. Raman, M. Livny, and M. Solomon. Policy driven
heterogeneous resource co-allocation with
gangmatching. In Proc. High Performance Distributed
Computing, pages 80–89, 2003.

[27] B. Schroeder and M. Harchol-Balter. Evaluation of task
assignment policies for supercomputing servers: The
case for load unbalancing and fairness. In Proceedings of
High Performance Distributed Computing (HPDC’00),
pages 211–219, 2000.

[28] H. Stone. Multiprocessor scheduling with the aid of
network flow algorithms. IEEE Transactions on Software
Engineering, SE-3(1):85–93, 1977.

[29] D. Thain, T. Tannenbaum, and M. Livny. Distributed
Computing in Practice: The Condor Experience.
Concurrency and Computation: Practice and
Experience, 17(2):323–356, February 2005.

[30] D. Wright. Cheap cycles from the desktop to the
dedicated cluster: combining opportunisitc and dedicated
scheduling with Condor. In Conference on Linux
Clusters: The HPC Revolution, 2001.

[31] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson,
P. K. Gunda, and J. Currey. DryadLINQ: A System for
General-Purpose Distributed Data-Parallel Computing
Using a High-Level Language. In Proc. OSDI, pages
1–14, San Diego, CA, December 2008.

[32] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy,
S. Shenker, and I. Stoica. Job Scheduling for Multi-User
MapReduce Clusters. Technical Report
UCB/EECS-2009-55, University of California at
Berkeley, April 2009.

[33] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and
I. Stoica. Improving MapReduce Performance in
Heterogeneous Environments. In Proc. OSDI, pages
29–42, San Diego, CA, December 2008.

[34] X. Zhang, S. Dwarkadas, G. Folkmanis, and K. Shen.
Processor Hardware Counter Statistics As A First-Class
System Resource. In Proceedings of 11th Workshop on
Hot Topics in Operating Systems (HOTOS’07), 2007.

20


