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Abstract
Many interesting applications of hyperbolic systems of equations are stiff, and require the 
time step to satisfy restrictive stability conditions. One way to avoid small time steps is 
to use implicit time integration. Implicit integration is quite straightforward for first-order 
schemes. High order schemes instead also need to control spurious oscillations, which 
requires limiting in space and time also in the linear case. We propose a framework to 
simplify considerably the application of high order non-oscillatory schemes through the 
introduction of a low order implicit predictor, which is used both to set up the nonlinear 
weights of a standard high order space reconstruction, and to achieve limiting in time. In 
this preliminary work, we concentrate on the case of a third-order scheme, based on diag-
onally implicit Runge Kutta ( ���� ) integration in time and central weighted essentially 
non-oscillatory ( ����� ) reconstruction in space. The numerical tests involve linear and 
nonlinear scalar conservation laws.

Keywords Implicit schemes · Essentially non-oscillatory schemes · Finite volumes · 
���� and ����� reconstructions
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1 Introduction

Hyperbolic systems of conservation laws in one dimension can be written in the form
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where u(x, t) is the unknown solution, and f(u) is the flux function. The system is hyperbolic 
provided the Jacobian of f, J(f), has real eigenvalues and a complete set of eigenvectors.

These systems model propagation phenomena, where initial and boundary data travel 
and interact along the eigenvectors of the system, with finite speed. The eigenvalues of 
J(f), which depend on the solution itself when the flux is a nonlinear function of u, are 
the propagation speeds of the system. The size of the eigenvalues can span different 
orders of magnitude in many applications, and this fact introduces difficulties in the 
numerical integration of hyperbolic systems of PDE’s.

In this paper, we will consider the method of lines (MOL), which is a very popular 
approach in the integration of hyperbolic systems. See for instance the textbook [32], and 
the classic review [39], but other approaches are also effective, as in [18]. In our case, we 
introduce a grid in the computational domain of points xj . Here for simplicity we will con-
sider a uniform grid, so all points are separated by a distance h = xj − xj−1 . The computa-
tional domain � is thus covered with a mesh of cells �j = [xj − 1∕2 h, xj + 1∕2 h] , such that 
∪j�j = � . Introducing the cell averages of the exact solution u(t)j =

1

h
∫
�j
u(x, t) dx , the 

hyperbolic system (1) can be written as

which gives the exact evolution of the cell averages in terms of the difference of the fluxes 
at the cells interfaces. To transform this relation in a numerical scheme, one introduces 
reconstruction algorithms, R , whose task is to estimate the value of the solution at the cell 
interfaces from cell averages, and numerical fluxes F  , which estimate the flux at the cell 
interfaces. Thus, the structure of a numerical scheme in the method of lines approach can 
be written as follows. 

i) Define a reconstruction algorithm R({u}) such that the exact solution u at time t is 
approximated with u(x, t) =

∑
j Rj(x;t)�j(x) , where �j is the characteristic function of 

the interval �j , and Rj is the restriction of R to the interval �j . Typically, Rj is a poly-
nomial of degree dj , which changes in time because it is defined starting from the time-
dependent cell averages. In this paper, we will assume that dj ≡ d is constant.

ii) Compute the boundary extrapolated data (BED) at the cell interfaces u+
j+1∕2

= Rj+1(xj +
h

2
) 

and u−
j+1∕2

= Rj(xj +
h

2
) . Recall that the two BED’s computed at the same interface are 

different, with u+
j+1∕2

− u−
j+1∕2

= O(hd+1) when the flow is smooth enough.
iii) Choose a smooth enough numerical flux function F(a, b) such that F(a, a) = f (a) , 

with the stability property that F  be an increasing function of the first argument and a 
decreasing function of the second argument.

iv) Then the solution of the PDE is approximated by the solution of the system of ODE’s 

 with Fj+1∕2 = F(u−
j+1∕2

, u+
j+1∕2

).
It is well known that for explicit schemes the time step Δt must satisfy the CFL con-
dition, namely � = Δt∕h ⩽ c∕maxu |f �(u)| , for a constant c, 1 ⩾ c > 0 , the Courant 
number. Thus the numerical speed 1∕� must be faster than all the waves present in the 

(1)ut + f (u)x = 0,

(2)
duj

dt
= −

1

h

[
f
(
u
(
xj +

1

2
h, t

))
− f

(
u
(
xj −

1

2
h, t

))]
,

(3)
duj

dt
= −

1

h

(
Fj+1∕2 − Fj−1∕2

)
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system. Since the error in the numerical solution depends on the difference between the 
numerical and the actual speed, it follows that in explicit schemes the waves which are 
better approximated are the fastest waves.

Several systems of hyperbolic conservation laws are characterized by waves with very 
different speeds, and in many applications the phenomenon of interest travels with slow 
speeds, while the fastest waves which impose the CFL condition do not need to be accu-
rately represented. Low Mach problems in gas dynamics and kinetic problems close to 
equilibrium provide good examples.

Low Mach problems arise in gas dynamics when the flow is close to incompressibility. 
In these cases the actual speed of the gas is much slower than the acoustic waves, and 
if one is interested in the movement of the gas, accuracy in the propagation of sound is 
irrelevant. A huge literature has developed for these problems, here we mention just a few 
pioneering works, [13, 14] and some more recent developments [1, 7, 15, 16, 41].

A second example in which fast velocities constrain the CFL condition, but the signals 
carried by them do not need to be accurately represented, occurs in kinetic problems, espe-
cially close to equilibrium. In kinetic problems the typical evolution equation has the form

where f = f (x, t, v) is the distribution function for particles located at x, with velocity v at 
time t, and Q(f, f) is the collision term, accounting for the interaction between particles dur-
ing which the microscopic speeds v are modified. When the flow is close to equilibrium, 
the relevant phenomena travel with macroscopic speeds which have magnitude of order 
∫v f (x, t, v)dv and [∫v2 f (x, t, v)dv]1∕2 . Still, the CFL condition is based on the fastest micro-
scopic speeds, which are typically much larger. Several attempts have been proposed to 
go around this restriction, see the review [17], and [33]. Note that the microscopic speeds 
appear in the convective term only, and convection is linear in kinetic problems. Thus it is 
feasible to integrate these equations with implicit schemes, taking advantage of the linear-
ity of the convective terms, as in [36]. As we will see, Quinpi schemes are linear on lin-
ear problems. We expect, therefore, that their application will be particularly effective on 
kinetic problems.

The structure of the convective term of kinetic problems is exploited also by semi-
Lagrangian schemes, as in [6, 25], and the papers of the same series. Semi-Lagrangian 
schemes track characteristics, and therefore they are explicit, while satisfying automatically 
stability conditions. However, they need to interpolate the solution on the grid, because 
the foot of the characteristic, from which the solution is carried up to the next time level, 
typically does not coincide with a grid point. Enforcing a non-oscillatory interpolation will 
then widen the stencil. Moreover, especially when the problem is stiff, characteristics may 
cross the boundary of the domain, before hitting the surface of known data. This makes the 
construction of semi-Lagrangian schemes for problems on bounded domains quite tricky. 
On other applications of semi-Lagrangian schemes, see also [8].

Another setting in which convection is linear, and therefore more amenable to implicit 
integration, arises with relaxation systems of the form proposed in [29]. Relaxation leads 
to systems of PDE’s which have a kinetic form with linear transport, as in (4). Besides 
kinetic problems, diffusive relaxation leads to fast relaxation microscopic speeds, which 
again prompts the need for implicit time integration.

In this paper, we will propose numerical schemes for the implicit integration in time 
of hyperbolic systems of equations. This is a preliminary work. For the time being, we 
will focus on third-order implicit schemes for scalar conservation laws. As noted in [3], 

(4)ft + v ⋅ ∇xf = Q(f , f ),
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there are three levels of nonlinearity in high order implicit methods for conservation 
laws, which make implicit integration particularly challenging. The first level consists in 
the nonlinearity of the flux function, which is due to the physical structure of the model, 
and therefore is unavoidable. The other sources of nonlinearity are due to the need to 
prevent spurious oscillations, arising with high order numerical schemes. Even in the 
explicit case, non-oscillatory high order schemes must use nonlinear reconstructions. As 
is well known, nonlinear reconstructions in space are needed even in implicit schemes. 
Moreover, high order time integrators are typically based on a polynomial approxima-
tion of the time derivative. Thus, a nonlinear limiting is needed also in the time recon-
struction of the derivative. These problems have been addressed by several authors. We 
mention work on second-order schemes in [20, 21], where limiters are applied in space 
and time simultaneously and TVD estimates are derived. An interesting discussion on 
TVD bounds in space and time can be found in [22], and in the classic paper [27]. See 
also [24]. A fully nonlinear third-order implicit scheme, which is limited in both space 
and time simultaneously can be found in [3].

The next section, Sect. 2, contains a discussion of revisited TVD bounds which are 
at the basis of our approach, and a summary of the choices leading to the final scheme. 
Section 3 is the main part of the work, and it offers a complete discussion of the bricks 
composing the proposed Quinpi algorithm. Next, Sect.  4 documents the properties of 
the scheme with a selection of numerical tests for scalar equations. We end with conclu-
sions and a plan for future work in Sect. 5.

2  Motivation

To study TVD conditions for implicit schemes, we consider the linear advection equa-
tion ut + aux = 0 with a > 0 and the upwind scheme. In this section, un

j
 is the numeri-

cal approximation to the exact solution, at one of the space-time grid points, namely, 
un
j
≃ u(xj, t

n) , with xj ∈ � , is a grid point in the space mesh, and tn = nΔt , Δt being the 
time step. The mesh ratio is � = Δt∕h.

In the explicit case, we have

and the total variation of un+1 is

Then, using the fact that a > 0 , periodic boundary conditions, or compact support of the 
solution, and the CFL condition, one has that TV (un+1) ⩽ TV (un).

For the implicit upwind scheme instead, we start from

Now

un+1
j

= un
j
− �a(un

j
− un

j−1
)

TV (un+1) =
∑

j

|||(1 − �a)(un
j
− un

j−1
) + �a(un

j−1
− un

j−2
)
|||

⩽ |1 − �a|
∑

j

|||u
n
j
− un

j−1

||| + |�a|
∑

j

|||u
n
j−1

− un
j−2

|||.

un
j
= un+1

j
+ �a(un+1

j
− un+1

j−1
).
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Since a > 0 , and applying again periodic boundary conditions, we find 
TV (un+1) ⩽ TV (un), ∀� . Thus, the implicit upwind scheme is not only unconditionally 
stable, but it is also unconditionally total variation non-increasing.

We now consider the explicit Euler scheme with second-order space differencing, 
using a piecewise limited reconstruction. The numerical solution now is

where �(�) is the limiter, and the quantity �j =
uj−uj−1

uj+1−uj
 , so that the limited slope is 

�j = �(�j)(uj+1 − uj).
To prove under what conditions the scheme is TVD, following Harten [26], and 

Sweby [40], one rewrites this scheme as

with

Computing the total variation of the scheme above, one finds that the scheme is TVD 
provided

Since a > 0 , the first condition holds provided

From this, one recovers the familiar restrictions in the choice of the limiter function, 
namely 0 ⩽

�(�)

�
⩽ 2 and 0 ⩽ �(�) ⩽ 2 , see also LeVeque [32]. With these bounds, one has 

0 ⩽ �j ⩽ 2 , and the second condition on Cj is satisfied provided a slightly restricted CFL 
holds, namely, � ⩽ 1∕(2a).

How do these estimates change in the implicit case? Now we have

and introducing the same quantity Cj we saw before, this expression can be rewrited as

The total variation of this scheme is

TV (un) =
∑

j

|||(1 + �a)(un+1
j

− un+1
j−1

) − �a(un+1
j−1

− un+1
j−2

)
|||

⩾ |1 + �a|
∑

j

|||u
n+1
j

− un+1
j−1

||| − |�a|
∑

j

|||u
n+1
j−1

− un+1
j−2

|||.

un+1
j

= un
j
− �a

(
1 −

1

2
�(�j−1)

)(
un
j
− un

j−1

)
−

1

2
�a�(�j)

(
un
j+1

− un
j

)
,

un+1
j

= un
j
− Cj−1

(
un
j
− un

j−1

)

Cj−1 = �a

[
1 −

1

2

(
�(�j−1) −

�(�j)

�j

)]
.

Cj ⩾ 0, and 1 − Cj ⩾ 0.

�j = 1 −
1

2

(
�(�j−1) −

�(�j)

�j

)
⩾ 0.

un
j
= un+1

j
+ �a

(
1 −

1

2
�(�j−1)

)(
un+1
j

− un+1
j−1

)
+

1

2
�a�(�j)

(
un+1
j+1

− un+1
j

)
,

un
j
= un+1

j
+ Cj−1

(
un+1
j

− un+1
j−1

)
.
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where we have used the inverse triangle inequality. Applying periodic boundary condi-
tions, and assuming that

one finds that the scheme is TVD. The important point for the development in this work 
is that the first condition gives exactly the same restrictions on the choice of the limiter 
function we find in the explicit case. The second condition instead is always satisfied. This 
means that the implicit scheme with piecewise linear reconstruction in space is TVD for 
all � , provided the limiter function satisfies the usual bounds holding for explicit schemes.

The limiter is subject also to accuracy constraints. We achieve second-order accuracy 
if the limited slope is a first-order approximation of the exact slope. Namely, if U(x) is a 
smooth function with cell averages uj , second-order accuracy requires that

Substituting the limited slope and expanding around U(xj) = uj , one finds

As in the explicit case, we see that second-order accuracy requires �(1) = 1 , together with 
at least Lipshitz continuity for � . This means that � and � can be computed using aux-
iliary functions that must be at least first order approximations of the unknown function 
u(x, tn+1) . For these reasons, in this work we will get as follows.

– Build implicit schemes for stiff hyperbolic systems with unconditional stability, based 
on diagonally implicit Runge Kutta ( ���� ) schemes.

– Prevent spurious oscillations in space using exactly the same techniques for space limit-
ing we are familiar with. In fact, as pointed out in [24], Runge Kutta schemes can be 
seen as combinations of Euler steps. This is true also in the implicit case. We will strive 
to ensure that each implicit Euler step composing the whole Runge Kutta step prevents 
spurious oscillations. In other words, we will rewrite the PDE as a system of ODE’s in 
the cell averages, with a non-oscillatory right-hand side.

– The nonlinearities in the space reconstruction will be tackled using first-order predic-
tors, that can be computed without limiting, because, as we have recalled, they are 
unconditionally TVD. They allow to compute each ���� stage by solving a system 
which is nonlinear only because of the nonlinear flux function, and, at the same time, 
they will constitute a low order non-oscillatory approximation of the solution in its own 
right.

– As is known, this is not enough to prevent spurious oscillations, when high order space 
reconstructions are coupled with high order time integrators. A high order Runge Kutta 
scheme can be viewed as a polynomial reconstruction in time through natural continu-
ous extensions [35, 42]. Not surprisingly, limiting is needed also in time, as pointed out 
in [20] and more recently [3]. Unlike these authors, however, we limit the solution in 

TV (un) =
∑

j

|||(1 + Cj−1)(u
n+1
j

− un+1
j−1

) − Cj−2(u
n+1
j−1

− un+1
j−2

)
|||

⩾
∑

j

|1 + Cj−1|
|||u

n+1
j

− un+1
j−1

||| −
∑

j

|Cj−2|
|||u

n+1
j−1

− un+1
j−2

|||,

Cj ⩾ 0, and 1 + Cj ⩾ 0,

U(xj+1∕2) −
(
uj +

1

2
�j

)
= O(h)2.

U(xj+1∕2) − u−
j+1∕2

=
h

2
(1 −�(1)) +O(h)2.



349Communications on Applied Mathematics and Computation (2023) 5:343–369 

1 3

time applying the limiter directly on the computed solution, blending the accurate solu-
tion with the low order predictor, without coupling space and time limiting.

We will name the resulting schemes Quinpi, for central weighted essentially non-oscilla-
tory ( ����� ) implicit. In this paper, we will introduce only third-order Quinpi schemes. 
We plan to extend the construction to include higher-order schemes, BDF extensions and 
applications in future works.

3  Quinpi Finite Volume Scheme

This section is devoted to the description of the implicit numerical solution of a one-
dimensional scalar conservation law of the form (1) with the Quinpi approach. As pointed 
out in Sect. 1, we focus on the finite volume framework employing the method of lines, 
which leads to the system of ODEs (3) for the evolution of the approximate cell averages.

In the following subsections, we will initially describe the space reconstruction for a 
function u(x), with limiters based on a predicted solution p(x), where p should be at least a 
first-order approximation of u. We will concentrate on the third order ����� reconstruc-
tion [34]. For the general ����� algorithm, see [10]. More details, improvements and 
extensions can be found in [9, 11, 12, 19, 31, 37]. Other non-oscillatory reconstructions 
can also be used, such as ���� , see the classic review [39]. and its extensions as [4].

Next, we will consider the integration in time, with a ����� scheme, describing the 
interweaving of predictor and time advancement of the solution. Finally, we will introduce 
the limiting in time, which consists in a nonlinear blending between the predicted and the 
high order solution, and the conservative correction that is needed at the end of the time 
step.

3.1  Space Approximation: the ����� Reconstruction Procedure

The ����� schemes are a class of high-order numerical methods to reconstruct accurate 
and non-oscillatory point values of a function u starting from the knowledge of its cell 
averages. The main characteristic of ����� reconstructions is that they are uniformly 
accurate within the entire cell, [10].

For the purpose of this work, here we briefly recall the definition of the ����� recon-
struction procedure restricting the presentation to the one-dimensional third-order scalar 
case on a uniform mesh. In order to reconstruct a function u at some x ∈ � and at a fixed 
time t, we consider as given data the cell averages uj of u at time t over the cells �j of a 
grid, which is a uniform discretization of �.

A third-order ����� reconstruction is characterized by the use of an optimal poly-
nomial of degree 2 and two linear polynomials. Let P(1)

j,L
 and P(1)

j,R
 be the linear polynomials

and let us write the optimal polynomial of degree 2 as

(5)

{
P
(1)

j,L
= uj +

uj−uj−1

h
(x − xj),

P
(1)

j,R
= uj +

uj+1−uj

h
(x − xj),
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All polynomials P(1)

j,L
 , P(1)

j,R
 and P(2)

j
 interpolate the data in the sense of cell averages. We also 

introduce the second degree polynomial Pj,0 defined as

where C0,CL,CR ∈ (0, 1) with C0 + CL + CR = 1 are the linear or optimal coefficients. 
Note that this polynomial reproduces the underlying data with second order accuracy.

The Jiang-Shu smoothness indicators [28] of the polynomials related to the cell �j are 
defined by

Then, in our case, they reduce to

From these, the nonlinear weights are defined as

Following [11, 12, 31], we will always set �x = h2 and � = 2 . The reconstruction polyno-
mial Pj,rec is

Note that if �j,k = Ck , k = 0, L,R , then the reconstructed polynomial Pj,rec coincides with 
the optimal polynomial P(2)

j
 , and the reconstruction is third order accurate in the whole cell.

If the nonlinear weights satisfy

then ����� boosts the accuracy of the reconstruction polynomial P
���

 to the highest pos-
sible accuracy, 3 in this case. This occurs when the stencil containing the data is smooth.

Once the reconstruction is known, we can compute the boundary extrapolated data as

(6)

⎧
⎪
⎪
⎨
⎪
⎪
⎩

P
(2)

j
(x) = a + b(x − xj) + c(x − xj)

2,

a =
−uj+1+26uj−uj−1

24
,

b =
uj+1−uj−1

2h
,

c =
uj+1−2uj+uj−1

2h2
.

(7)

⎧
⎪
⎪
⎨
⎪
⎪
⎩

Pj,0(x) =
1

C0

�
P
(2)

j
(x) − CLP

(1)

j,L
− CRP

(1)

j,R

�
= A + B(x − xj) + C(x − x2

j
),

A =
a

C0

−
CL+CR

C0

uj,

B =
(1−2CR)uj+1−(2CL−2CR)uj+(2CL−1)uj−1

2C0h
,

C =
c

C0

,

(8)I[P(r)] ∶=

r∑

i=1

h2i−1
∫
�j

(
d
i

dxi
P(r)(x)

)2

dx.

(9)Ij,L = (uj − uj−1)
2, Ij,R = (uj+1 − uj)

2, Ij,0 = b2h2 +
52

3
c2h4.

(10)�̃�j,k =
Ck

(𝜖x + Ij,k)
𝜏
, 𝜔j,k =

�̃�j,k

�̃�j,0 + �̃�j,L + �̃�j,R

, k = 0, L,R.

(11)Pj,rec(x) = �j,0Pj,0(x) + �j,LP
(1)

j,L
(x) + �j,RP

(1)

j,R
(x).

(12)Ck − �j,k = O(h),

(13)u−
j+1∕2

= Pj,rec(xj+1∕2), u+
j+1∕2

= Pj+1,rec(xj+1∕2).
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In Quinpi methods, we suppose we are given a predictor p(x) alongside the solution u(x), 
where the predictor is at least a first-order approximation of the solution. We compute the 
smoothness indicators (8) using the predictor. Thus, the weights �j,k depend only on the 
predictor. In this fashion, the boundary extrapolated data (13) are linear functions of the 
solution u with coefficients that are not constant across the grid.

3.2  Time Approximation: Diagonally Implicit Runge‑Kutta ( ����)

The space reconstruction algorithm allows to compute boundary extrapolated data of the solu-
tion u of the conservation law (1) at each cell interface. Next we pick a consistent and mono-
tone numerical flux function F  . For example, in this work, we will apply the Lax Friedrichs 
numerical flux

with � = maxu |f �(u)|.
This completely defines the system of ODE’s (3). This system needs to be approximated in 

time by means of a time integration scheme. Here, we focus on ���� methods, with s stages 
and general Butcher tableau

having the property ak,� = 0 , for each k < �.
Discretization of (3) with a ���� method leads to the fully discrete scheme

where we recall that h is the mesh spacing, Δt is the time step, and un
j
≈ uj(t

n) . Finally, 

F
(k)

j+
1

2

= F(u
−,(k)

j+
1

2

, u
+,(k)

j−
1

2

) , where the boundary extrapolated data u−,(k)
j+

1

2

 , u+,(k)
j−

1

2

 , are reconstruc-

tions at the cell boundaries of the stage values

which are approximations at time t(k) = tn + ckΔt . We point out that F(k)

j+
1

2

 depends on the k-

th stage value, and thus the computation of each stage is implicit but independent from the 
following ones.

The ���� scheme used in this work is

(14)F(u−, u+) =
1

2

(
f (u+) + f (u−) − �(u+ − u−)

)

(15)

c1 a11 0 … 0

c2 a21 a22 … 0

⋮ ⋮ ⋮ ⋮

cs as1 as2 … ass

b1 b2 … bs

(16)u
n+1

j
= u

n

j
−

Δt

h

s∑

k=1

bk

[
F

(k)

j+
1

2

− F
(k)

j−
1

2

]
, n ⩾ 0, j = 1,⋯ ,N,

(17)u
(k)

j
= u

n

j
−

Δt

h

k∑

𝓁=1

ak,𝓁

[
F

(𝓁)

j+
1

2

− F
(𝓁)
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with � = 0.435 866 521 5 , see [2].
The fully discrete set of Eqs.  (16), (17) has two sources of nonlinearity when solved 

with high-order schemes: one arises from the physics of the system (1) when the flux func-
tion f is nonlinear, and cannot be avoided; the other one arises from the computation of the 
boundary extrapolated data using a high order ����� or ���� reconstruction, which is 
nonlinear even for linear problems. Therefore, even for a linear PDE, the resolution of (16), 
(17) requires a nonlinear solver. Typically, one uses Newton’s algorithm, which requires the 
computation of the Jacobian of the scheme, which depends on the nonlinear weights (10) 
and on the oscillation indicators (8), (9), resulting in a prohibitive computational cost.

In the next subsection, we propose a way to circumvent the nonlinearity with a high-
order reconstruction procedure relying on a predictor.

3.3  Third‑Order Quinpi Approach

A prototype of an implicit scheme for ���� reconstructions based on a predictor was 
developed by Gottlieb et  al. [23]. The method relies on the idea of a predictor-corrector 
approach to avoid the nonlinearity of the reconstruction. The solution of an explicit scheme 
is used as predictor to compute the nonlinear weights of ���� within the high-order 
implicit scheme, which is used as corrector.

In [23] the approximation with the explicit predictor is computed in a single time step, 
namely, without performing several steps within the whole time step. On the contrary, in 
the Quinpi approach, the nonlinearity arising from the nonlinear weights of ����� is 
circumvented by computing an approximation of the solution at each intermediate time 
t(k) = tn + ckΔt with an implicit, but linear, low-order scheme, with which the nonlinear 
weights of ����� are predicted at each stage.

Once the weights are known, a correction of order 3 is obtained by employing a ���� 
method of order three coupled with the third-order ����� space reconstruction, with the 
weights computed from the predictor.

In this way, the complete scheme is linear with respect to the space reconstruction. In 
this context, by linear we mean that, for a linear conservation law, the solution can be 
advanced by a time step solving a sequence of s narrow-banded linear systems. However, 
the scheme overall is nonlinear with respect to its initial data because the entries of the 
linear systems’ matrices depend nonlinearly on the predicted solution through (10) and (9). 
When f(u) is not linear, the systems become nonlinear but only through the flux function.

Clearly, an implicit predictor is more expensive to compute than the explicit predictor pro-
posed in [23]. But using an implicit predictor has a double advantage. First, the predictor itself 
is stable, and this allows to have a reliable prediction of the weights, even for high Courant 
numbers. Second, at the end of the time step, the predictor itself is a reliable, stable and non-
oscillatory low order solution, with which we will blend the high order solution to obtain the 
time limiting required by high order time integrators.

(18)
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3.3.1  First‑Order Predictor: Composite Implicit Euler

We solve (14),  (16), (17), within the time step Δt using an s stages composite backward Euler 
scheme in time, where s is the number of stages in the ���� scheme (15). In other words, we 
apply the backward Euler scheme s times in each time step. The k-th substep advances the 
solution from tn + c̃k−1Δt to tn + c̃kΔt , with c̃0 = 0 , where the coefficients c̃k , k = 1,⋯ , s , are 
the ordered abscissae of the ���� (15). Overall, this is equivalent to implementing a ���� 
scheme with Butcher tableau given by

In space, we use piecewise constant reconstructions from the cell averages. At the final 
stage, we thus obtain a first-order stable non-oscillatory approximation of the solution at 
the time step tn+1 , which we will call u��,n+1 . A similar low order composite backward Euler 
scheme is also employed in the third-order scheme of Arbogast et al. [3].

The resulting scheme also provides first-order approximations u��,(k)
j

 of the solution at the 
intermediate time t(k) = tn + c̃kΔt , for k = 1,⋯ , s . At each stage therefore one needs to solve 
the nonlinear system

where 𝜃k ∶= c̃k − c̃k−1 , U
��,(k)

∶= {u
��,(k)

j
}j and u��,(0)

j
∶= u

n

j
 . We use Newton’s method. 

Note that the system is nonlinear only through the flux function.

3.3.2  ����� Third‑Order Correction

Once the low order predictions u��,(k)
j

 are known at all time t(k) = tn + c̃kΔt , we correct the 
accuracy of the solution by solving (14), (16), (17) using the third-order ���� (18) in time 
and the third-order ����� reconstruction in space, with the weights �(k)

j
 at the k-th stage 

computed through the predictor u��,(k)
j

 . Thus the boundary extrapolated data will be given by

where the weights W±
j

 depend only on u��,(k)
j

 and are constant with respect to uk . Finally, 
from (14), (16), (17), at each stage, we solve the system

(19)

c̃1 c̃1 0 … 0

c̃2 c̃1 c̃2 − c̃1 … 0

⋮ ⋮ ⋮ ⋮
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c̃1 c̃2 − c̃1 … c̃s − c̃s−1
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We observe that the nonlinearity of Gj is only due to the flux function, and not to the 
����� reconstruction, which uses the predictor u��,(k)

j
 to compute the nonlinear weights.

In the following, the numerical solution obtained applying the ���� 3 scheme, with 
the third-order ����� reconstruction exploiting the u�� predictor will be called ���� 
scheme.

3.3.3  Nonlinear Blending in Time

The solution u���� obtained with the ���� scheme is third-order accurate, and has con-
trol over spurious oscillations, thanks to the limited space reconstruction described 
above. However, this solution may still exhibit oscillations, because it is not limited in 
time. We discuss in this section the definition of the time-limited solution.

It is easy to associate a continuous extension (CE) to a Runge-Kutta scheme. For 
example, when the abscissae ck , k = 1,⋯ , s , are distinct, following  [35] one can con-
struct a polynomial P(t) such that P(tn) = un and P�(tn + ckΔt) = Kk , where the Kk ’s are 
the RK fluxes of the Runge-Kutta scheme and un is the solution at time tn . The polyno-
mial P(t) is such that P(tn + Δt) = un+1 and it provides a way to interpolate the numeri-
cal solution at any point tn + �Δt for � ∈ (0, 1) . If, for a particular Runge-Kutta scheme, 
a natural continuous extension in the sense of [42] exists, one could use that, but for this 
work we do not require the extensions to be natural, since we use them only as a device 
to assess the smoothness of the solution in the time step.

In our case, the CE of the ���� 3 scheme we are using defines a polynomial exten-
sion of degree 3 in the sense of [35], which will be called P(3)

t  . Instead, we name P(1)
t  the 

polynomial extension underlying the composite implicit Euler (19).
We define the limited in time solution uB(t) in a ����� fashion as

with �H,n

j
+ �

L,n

j
= 1 . In this and in all subsequent equations, H and L stand for high and 

low order quantities, respectively. The coefficients CL and CH are such that CL,CH ∈ (0, 1) 
with CL + CH = 1 . We observe that, by a property of the CE polynomials, at time tn+1 we 
have

Equation  (23) describes a nonlinear blending between the low order solution u�� and 
the high order solution u���� at time tn+1 . We notice that if �H,n

j
= CH , and consequently 

�
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j
= CL , then uB,n+1

j
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j
 and the blending selects the solution of the high order 

scheme. Instead, if �L,n
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 and the blending selects the solution of the 

low order scheme.
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The weights �L and �H must be thus designed in order to privilege the high order 
solution when it is not oscillatory, and the low order solution otherwise. In the follow-
ing we discuss their definition, which is also carried out as in ����� and relies on 
suitable regularity indicators. In fact, we define

where

is the constant weight associated to the first-order non-oscillatory solution u�� in the time 
interval [tn, tn+1] , and

is the weight associated to the ���� approximation in the j-th cell in the time interval 
[tn, tn+1] . Here, �t = Δt� , and we always take � = 2 if not otherwise stated. The I3

j
 is a 

smoothness indicator   that measures the regularity of the ���� solution. We define I3
j
 as 

the contribution of two terms

where It
j
 and Ix,±

j
 are smoothness indicators designed in order to detect discontinuity in time 

and space, respectively, over the cell j. The definition of It
j
 relies on the CE polynomial P(3)

t  . 
In fact, at each cell, the CE polynomial changes, and we will have different CE’s, and each 
CE will provide local information on the smoothness of the ���� advancement in time. 
We measure the regularity of P(3)

t  by the Jiang-Shu smoothness indicator, namely

Instead, the definition of Ix,±
j

 draws inspiration from [3], and for the ����� method (18) we 
have

with u����,(k)
j

 being the approximation at the k-th stage.
Finally, we point out that the coefficients CL and CH must be carefully chosen. In fact, 

since the time-limited solution (22) blends a first-order accurate solution with a third-order 
accurate one, according to [38] we must choose CL = Δt2 in order to obtain a third-order 
time limited solution.
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3.3.4  Conservative Correction

The two solutions u�� and u���� are obtained with conservative schemes, and thus conserve 
mass. However, the blending  (23) itself is not conservative, because it occurs at the cell 
level, instead of at interfaces.

It is possible therefore that at the j + 1∕2 interface a mass loss (or gain) is observed. 
More precisely, the low order predictor can be written as

while the high order corrector is

The blended solution therefore is

Since the blending is cell-centered, while the fluxes are based on the interfaces, we expect 
that through the j + 1∕2 interface there will be a mass loss (or gain) given by

Thus we redistribute the mass lost through the j + 1∕2 interface among the j-th and (j + 1)- 
th cell, obtaining the limited in time, limited in space Quinpi3 solution, which will be 
called ���� solution. The redistribution is done proportionally to the high order nonlinear 
weight, so that

This is the updated solution at time tn+1 . The resulting scheme is conservative with numeri-
cal flux

Introducing the “reduced mass” of the high order weights

we can rewrite the conservative flux as
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From the formula, it is apparent that the high order flux of the interface contributes signifi-
cantly to the time-limited flux only when the cells on both sides are detected as smooth. 
Moreover, it is also clear that CL must be infinitesimal.

In [5] an analogous conservative correction is employed to ensure the conservation 
property at interfaces between grid patches in an adaptive mesh refinement (AMR) 
algorithm. Other approaches are possible, in particular we refer to [30] which avoids a 
cell-centered blending by means of flux-based Runge-Kutta. Similar techniques are used 
in [3].

4  Numerical Simulations

The purpose of the tests appearing in this section is to study the accuracy of the Quinpi 
scheme proposed in this work, and to verify their smaller dissipation compared to the 
first-order predictor �� and their improved non-oscillatory properties compared to the 
non-limited in time corrector ���� . Thus we will consider the standard tests which are 
commonly used in the literature on high order methods for conservation laws: linear 
advection of non-smooth waves, shock formation and interaction in Burgers’ equation 
and the Buckley-Leverett non-convex equation. Furthermore, on one of the tests with 
singularities, see Fig.  7, we also demonstrate the need of the conservative correction 
discussed in the previous section.

As mentioned in the description of the scheme, when solving nonlinear conservation 
laws the solution of nonlinear systems is required both for the prediction and the cor-
rection steps. To this end, we employ Newton’s method. The initial guess to start the 
iteration leading to u��,(k) is chosen as u��,(k−1) , k = 2, 3 . For the first stage, k = 1 , we use 
the high order solution emerging from the previous time step. The initial guess to com-
pute the stages u(k) of the corrector is the corresponding values u��,(k) of the predictor, for 
each k = 1, 2, 3 . The stopping criteria are based on the relative error between two suc-
cessive approximations and on the norm of the residual. We use a given tolerance Δt3 , 
according to the global error of the scheme.

4.1  Convergence Test

We test the numerical convergence rate of the third-order Quinpi introduced in Sect. 3 on the 
nonlinear Burgers’ equation

with the initial condition
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on � = [0, 2] with the periodic domain, and up to the final time t = 1 , i.e., before the shock 
appears. The numerical errors, in both L1 and L∞ norms, and convergence rates are showed 
in Table 1 for different CFL numbers.

In the nonlinear blending in time between the low-order solution, i.e.,  the composite 
implicit Euler ( �� ), and the high-order solution, i.e., ���� , we use CL = Δt2 and CH = 1 − Δt2 
as linear weights. We observe third-order convergence in both norms. In particular, we point 
out that with large CFL numbers our method reaches smaller errors and faster convergence 
with respect to the results in [3] for the same grid.

On the same smooth problem, we also test the convergence rate of the low-order predictor 
�� and the high-order corrector ���� , separately. The convergence tests are shown in Fig. 1. 
Clearly, with �� we observe first-order accuracy. Instead, ���� achieves the optimal third-
order accuracy, as expected.

4.2  Linear Transport

We consider the linear scalar conservation law

on the periodic domain in space � = [−1, 1] , and evolve the initial profile u0(x) for one 
period, i.e., up to the final time t = 2 . As the initial condition we consider the non-smooth 
profiles 

(35)ut + ux = 0

(36a)u0(x) = sin(πx) +

{
3, − 0.4 ⩽ x ⩽ 0.4,

0, otherwise,

(36b)u0(x) =

{
1, − 0.25 ⩽ x ⩽ 0.25,

0, otherwise.

Table 1  Orders of convergence 
of the Quinpi scheme ����

N L1 error Rate L∞ error Rate

(a) Δt = h

 640 2.24 × 10−5 2.79 3.57 × 10−4 2.62
 1 280 2.91 × 10−6 2.95 4.73 × 10−5 2.91
 2 560 3.66 × 10−7 2.99 5.99 × 10−6 2.98

(b) Δt = 10h

 320 3.59 × 10−4 2.36 4.57 × 10−3 1.76
 640 5.77 × 10−5 2.64 9.65 × 10−4 2.24
 1 280 7.99 × 10−6 2.85 1.56 × 10−4 2.62
 2 560 1.03 × 10−6 2.96 2.12 × 10−5 2.88
 5 120 1.29 × 10−7 2.99 2.70 × 10−6 2.98

(c) Δt = 50h

 1 280 5.67 × 10−4 2.04 6.60 × 10−3 1.49
 2 560 9.73 × 10−5 2.54 1.54 × 10−3 2.10
 5 120 1.41 × 10−5 2.79 2.68 × 10−4 2.52
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This problem is used to investigate the properties of a scheme to transport non-smooth data 
with minimal dissipation, dispersion and oscillation effects.

Figure 2 shows the numerical solutions of the linear transport problem with the ini-
tial profile (36a) computed with the predictor �� and with the corrector methods with no 
time limiting, i.e., ����  and with blending in time, i.e., ���� . We consider two different 
CFL numbers. All the solutions are computed on a grid of 400 cells. We observe that 
the low-order predictor is very diffusive, whereas the corrector ���� is oscillating across 
the discontinuities, in particular with CFL number 5. The corrector ����  obtained after 
nonlinear blending of the �� and ���� solutions, is much less diffusive than �� and does 
not produce spurious oscillations, even with large CFL number.

In Fig. 3 we provide the numerical solutions of the linear transport problem with the 
initial double-step profile (36b) with a zoom on the top part of the non-smooth region of 
the solution. The simulations are performed with Δt = 5h . In the left panel, we compare 
the three methods on a grid of 400 cells. We observe that the novel method ���� intro-
duced in this work presents less oscillations than ���� close to discontinuities, and it is 
less dissipative than �� . The right panel shows the approximation provided by ���� on 
different grids. As we expect, on finer grids the frequency of the oscillations increases, 
whereas the amplitude slightly decreases.
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Fig. 1  Convergence test of the predictor scheme �� , left panel, and of the corrector scheme ���� , right 
panel, for different CFL numbers
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Fig. 2  Linear transport equation (35) with the initial condition (36a) on 400 cells at time t = 2 . The markers 
are used to distinguish the schemes, and are drawn one out of 10 cells
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4.3  Burgers’ Equation

We investigate the behavior of the schemes on the nonlinear Burgers’ equation (33) for 
different initial conditions.

4.3.1  Smooth Profile: Shock Formation

As in  [3], we consider the smooth initial condition  (34) on the periodic domain 
� = [0, 2] , and up to the final time t = 2 , i.e., after shock formation.

The results in Fig. 4 are obtained with 256 cells with two values of the CFL num-
ber. In both cases the ���� scheme is slightly more diffusive than its non-blended ver-
sion ���� , and exhibits a much lower dissipation than the first-order predictor �� . For 
Δt = 3h , all schemes do not produce large oscillations near the discontinuity, and the 
solutions of ���� and ���� are very close. We appreciate the difference when Δt = 5h . 
In fact, the ���� scheme reduces the oscillations created by ���� , while maintaining a 
very high resolution.

On this test, we show also the numerical approximation provided by the space-time 
non-limited scheme, cf. Fig. 5. The setup of the simulation is as in Fig. 4, i.e., we con-
sider 256 cells with CFL numbers 3 and 5. Compared to Fig. 4, we observe the impor-
tance of the limiting technique to avoid the very large spurious oscillations appearing 
also at moderate CFL numbers.

4.3.2  Non‑smooth Profile

We test the Burgers’ equation on the discontinuous initial condition (36b), on the peri-
odic domain � = [−1, 1] , and up to the final time t = 0.5.

The numerical solutions are shown in Fig.  6 with 400 cells, with Δt = 3h and 
Δt = 5h . The nonlinear Burgers’ equation develops a rarefaction and a moving shock. 
Again, we observe the ability of the new implicit scheme ���� of increasing the accu-
racy on smooth zones compared to �� , and, at the same time, reducing the spurious 
oscillations across the shock.

Fig. 3  Linear transport equation (35) with the initial condition (36b) with Δt = 5h at time t = 2 . The solu-
tions in the left panel are computed on 400 cells. The right panel shows the solutions obtained with the 
���� method on different grids. The markers are used to distinguish the schemes, and are drawn one out of 
10 cells on the left and 15 cells on the right
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On this particular test, we provide a numerical evidence of the need and of the effec-
tiveness of the conservative correction introduced after the nonlinear blending in time 
between the predictor scheme �� and the third-order corrector ���� . In the right panel 
of Fig. 7 we show the solutions provided by the Quinpi scheme ���� with and without 
the conservative correction, using 400 cells and Δt = 5h . Instead, in the left panel of 
Fig. 7 we show the behavior in time of the deviation of the mass of the numerical solu-
tion from the mass of the initial condition. We observe that, without correction, the 
���� scheme does not capture the correct shock location because of the mass lost. The 
conservative correction allows to predict the shock at the correct location and the mass 
is conserved at all time.

Finally, in Fig.  8 we show the numerical approximations obtained limiting the third-
order scheme with an explicit first-order predictor as in  [23], on a grid of 400 cells with 
Δt = 5h . The solutions are shown at two different time, and we observe that the use of an 
explicit predictor is not enough to prevent spurious oscillations in the high order scheme, 
at relatively high CFL numbers. At this CFL, the explicit predictor is already unstable, and 
thus the information it would provide on where to limit the solution is not reliable.

Fig. 4  Burgers’ equation (33) with the initial condition (34) on N = 256 cells at time t = 2 . The markers are 
used to distinguish the schemes, and are drawn each 5 cells

Fig. 5  Numerical solution of the Burgers’ equation (33) with initial condition (34) on N = 256 cells at time 
t = 2 obtained with the space-time non-limited scheme
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4.3.3  Shock Interaction

We consider Burgers’ equation with smooth initial condition

on the periodic domain � = [−1, 1] , and with Δt = 5h . This test allows to compare the 
behavior of the schemes on both shock formation and shock interaction. In fact, the exact 
solution is characterized by the formation of two shocks which collide at a larger time, 
developing a single discontinuity.

In Fig. 9 we show the numerical solutions at three snapshots: at t = 1

2π
 , when the two 

shocks occur, at t = 0.6 , which is slightly before the interaction of the two shocks, and 
finally at t = 1 , shortly after the shock interaction. It is clear that ���� does not produce 
spurious oscillations, and its profile has a higher resolution with respect to ��.

(37)u0(x) = 0.2 − sin(πx) + sin(2πx)

Fig. 6  Burgers’ equation (33) with the initial condition (36b) on 400 cells at time t = 0.5 . The markers are 
used to distinguish the schemes, and are drawn every 8 cells

×

Time

Fig. 7  Right plot: numerical solutions of ���� , with and without conservative correction, on the Burgers’ 
equation (33) with the initial condition (36b) using 400 cells at time t = 5 and with Δt = 5h . The markers 
are used to distinguish the schemes, and are drawn every 8 cells. Left plot: deviation in time of the total 
mass of the numerical solution from the exact total mass
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4.4  Buckley‑Leverett Equation

We also show results on a non-convex problem, such as the Buckley-Leverett equation

which is characterized by a non-convex flux function. We consider the same setup as in [3]. 
Therefore, the initial profile is the step function

on the periodic domain � = [0, 1] , and up to the final time t = 0.085.
In Fig.  10 we show the results on a grid of 100 cells with Δt = 1.1h and Δt = 4.4h . 

For this particular example, we set �t = Δt3 in the nonlinear blending in time. The results 
produced by the three schemes are very similar when the CFL is small. With large CFL, 
instead, we observe that ���� improves ���� avoiding the spurious overshoots. However, 

(38)ut +

(
u2

u2 +
1

3
(1 − u)2

)

x

= 0,

(39)u0(x) =

{
0.5, − 0.25 ⩽ x ⩽ 0.25,

0, otherwise

Fig. 8  Numerical solution of Burgers’ equation  (33) with the initial condition  (36b) on 400 cells with 
Δt = 5h . The solution is limited according to the weights computed with an explicit first-order predictor, 
unlike the Quinpi approach which is characterized by implicit predictors

Fig. 9  Burgers’ equation  (33) with the initial condition  (37) on 256 cells with Δt = 5h at three different 
time. The markers are used to distinguish the schemes, and are drawn each 10 cells
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we note that on this particular test the ���� and �� solutions almost coincide, in fact, the 
�� profile is hidden by ���� . Here the time limiting is dominating, probably because of the 
structure of the initial data.

4.5  Computational Complexity

The implicit method proposed in this paper is clearly more expensive compared to a cor-
responding explicit scheme, for a fixed number of time steps. But the benefit of an implicit 
scheme is to permit to use a larger CFL number, and thus a smaller number of time steps. 
This may result in more efficient computations for stiff problems.

When integrating a system of hyperbolic equations with a numerical scheme, one 
chooses the time step as

where Δtacc is fixed by accuracy constraints, and Δtstab is due to the CFL stability condition 
with

where ||f �(u)||S is the spectral norm of the Jacobian of the flux. When ||f �(u)||S ≫ 1 , the 
stability constraint is more demanding than accuracy, and implicit schemes may become 
convenient.

On scalar conservation laws, Δtacc and Δtstab have the same size, because there is 
only one propagation speed. Implicit integrators become of interest when there are fast 
waves one is not interested in, which however determine Δtstab , while the phenomena 
one would like to resolve accurately are linked to slow waves, which then determine 
Δtacc . In this case one is willing to tolerate a deterioration of the error on the fast waves, 
preserving accuracy on the slow waves. This is the case for instance for many solvers for 
low Mach or low Froude flows.

In a scalar problem, this improvement is not apparent. However, we can estimate the 
computational cost for a single time step of the explicit third-order SSP Runge-Kutta 

Δt = min
(
Δtacc,Δtstab

)
,

Δtstab ⩽ c
h

||f �(u)||S
,

Fig. 10  Buckley-Leverett equation (38) with the initial condition (39) on 100 cells at time t = 0.085
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scheme and of the ���� scheme. The ratio between these two costs will tell as at what 
CFL the implicit scheme becomes competitive.

In Table  2 we report the results obtained on the linear equation on [−1, 1] and on 
Burgers’ equation on [0, 2] with the initial condition (37). The results are obtained on a 
quadcore Intel Core i7-6600U with clock speed 2.60 GHz.

As expected, a step of the implicit scheme is more expensive than a step of the 
explicit one. But several things can be noted. First of all, we expect that the implicit 
scheme should be faster on linear problems. In this case, in fact, no Newton iteration is 
needed, thanks to the linearity of the predictor. This is confirmed by our data. Moreover, 
both the explicit and the implicit schemes should have a computational cost scaling as 
N, and this is true for ���� . Apparently the computational cost scales more favorably 
for the explicit scheme, but this can be due to more efficient memory operations whose 
analysis goes beyond the purpose of this work.

The complexity of the implicit scheme increases on a nonlinear problem. In fact, the 
���� scheme requires approximately six Newton’s iterations each time step. However, 
the number of iterations remains bounded, and, most important, it does not depend on 
N. The computational cost increases slightly for the non-smooth problem: in this case, 
in fact, the initial guess of the first Newton’s method is given by the solution obtained at 
the previous time step, which may not be accurate in the presence of shocks.

In any case, it is clear that the ���� scheme becomes faster for CFL numbers larger 
than 5 or 6 in the nonlinear case, and even before in the linear case. Since stiff prob-
lems, such as low Mach, can have CFLs of order hundreads and even more, it is to be 
expected that the implicit scheme can be convenient in many applications.

In Fig. 11 we show the total number of iterations required for Newton’s method in 
each time step as a function of time in solving Burgers’ equation with the smooth (37) 
and non-smooth (36b) initial profiles up to t = 0.5 and with three different Courant num-
bers. We recall that a nonlinear system must be solved at each predictor step, and at 
each Runge Kutta stage. Thus a total of 6 nonlinear systems of algebraic equations must 
be solved at each time step of a third-order scheme.

Table 2  CPU time for each step 
of the SSP-RK3 explicit scheme 
and of the ���� implicit scheme 
on linear and nonlinear problems

Cells N SSP-RK3 Q3P1 Ratio rN

(a) Linear problem
 200 0.002 1 0.006 2 2.95
 400 0.003 3 0.009 3 2.82
 800 0.006 1 0.015 5 2.54
 1 600 0.009 5 0.029 3 3.08

(b) Nonlinear problem before shock formation
 200 0.002 3 0.010 3 4.48
 400 0.003 2 0.014 8 4.62
 800 0.006 6 0.022 9 3.47
 1 600 0.009 1 0.036 1 3.97

(c) Nonlinear problem after shock formation
 200 0.002 3 0.010 7 4.65
 400 0.003 3 0.015 8 4.79
 800 0.006 8 0.025 5 3.75
 1 600 0.009 5 0.056 6 5.96
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The top panels of Fig. 11 are obtained with 400 cells, whereas the bottom panels are 
with 800 cells.

For the smooth initial condition, we observe that the number of iterations is not larger 
than 2 for each Newton’s application as long as the solution remains smooth. Instead, 
the number of iterations slightly increases when the solution becomes discontinuous. In 
fact, each Newton’s method is converging with maximum 3 iterations. For the double-
step initial condition, the number of iterations is larger, but no more than 3 iterations are 
needed on average for each Newton’s solution.

But the most important point is that the number of iterations of Newton’s method is 
independent of the number of cells and of the CFL. Thus the implicit method becomes 
more and more convenient as the stiffness of the method increases.

5  Conclusions

In this work, we have proposed a new approach to the integration of hyperbolic con-
servation laws with high order implicit schemes. The main characteristic of this frame-
work is to use low order implicit predictors with a double purpose. First, the predictor is 
used to determine the nonlinear weights in a ����� or ���� high order space recon-
struction. In this fashion, one greatly simplifies the differentiation of the ���� weights 
when computing the Jacobian of the numerical fluxes. Second, the predictor is used as 

(b)

(a)

-

- -

-

- -

Fig. 11  Total number of iterations in each time step required for the convergence of Newton’s method when 
solving Burgers’ equation up to t = 0.5 , with the initial condition  (37) (blue lines) and  (36b) (red lines). 
Three different values of the Courant number are considered
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low order approximation of the solution and is blended with the high order solution to 
achieve limiting also in time.

The resulting scheme is linear with respect to the solution at the new time level on 
linear equations, unlike most, if not all, high order implicit schemes available. The non-
linearity of the scheme is linked only to the nonlinearity of the flux. This does not mean 
that the coefficients appearing in the scheme are constant. It means that the nonlinearities 
in the limiting in space and time of the scheme involve only the predictor, which is 
already known when the high order solution is evolved in time.

We expect the new scheme to have applications in many stiff problems, as low Mach 
gas dynamics or kinetic problems. In these cases, one is not interested in the accuracy of 
the fast waves which determine the stiffness of the system, but would like to use a time 
step tailored to preserve the accuracy of the slow material waves.

Future work will involve the application of the Quinpi approach to stiff gas dynam-
ics, the exploration of this new framework with BDF time integration, and extensions to 
a higher order.
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