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Quintessence as a runaway dilaton
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We consider a late-time cosmological model based on a recent proposal that the infinite-bare-coupling limit
of superstring or M theory exists and has good phenomenological properties, including a vanishing cosmo-
logical constant, and a massless, decoupled dilaton. As it runs away to1`, the dilaton can play the role of the
quintessence field recently advocated to drive the late-time accelerated expansion of the Universe. If, as
suggested by some string theory examples, appreciable deviations from general relativity persist even today in
the dark matter sector, the Universe may smoothly evolve from an initial ‘‘focusing’’ stage, lasting until
radiation-matter equality, to a ‘‘dragging’’ regime, which eventually gives rise to an accelerated expansion with
frozenV(dark energy)/V(dark matter).
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I. INTRODUCTION

According to recent astrophysical observations, our U
verse, since a redshift ofO(1), appears to have undergone
phase of accelerated expansion@1,2#. This result can be com
bined with the recent estimates of the average mass de
of the Universe@3#, Vm.0.320.4 ~in critical units!, and
with recent measurements of the cosmic microwave ba
ground ~CMB! anisotropy peaks@4#, pointing at a nearly
critical total energy density,VT.1. One is then led to the
conclusion that the present cosmological evolution, when
scribed in terms of an effective fluid entering Einstein
equations, should be~marginally! dominated by a ‘‘dark en-
ergy’’ componentrx characterized by a~sufficiently! nega-
tive effective pressure,px,2rx/3.

The simplest candidate for such a missing energy i
positive cosmological constantL, of orderH0

2. Such an iden-
tification, however, unavoidably raises a series of diffic
questions. In particular,~a! why is L so small in particle
physics units? Explaining a finite but very small value forL
may turn out to be even harder than finding a reason wh
is exactly zero. This is the so-called fine-tuning problem
L, see for instance@5#. ~b! Why is L;rm0, whererm0 is the
presentvalue ~in Planck units! of the ~dark! matter energy
density? This is the so-called ‘‘cosmic coincidence’’ proble
@6#.

At present, the most promising scenarios for solving~at
least part of! the above problems introduce a single sca
field, dubbed ‘‘quintessence’’@7#, whose potential goes to
zero asymptotically~leaving therefore just the usual puzz
of why the ‘‘true’’ cosmological constant vanishes!. The sca-
lar field slowly rolls down such a potential reaching infini
~and zero energy! only after an infinite~or very long! time.
0556-2821/2001/65~2!/023508~13!/$20.00 65 0235
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While doing so, quintessence produces an effective, tim
dependent, cosmic energy densityrx accompanied by a suf
ficiently negative pressure, i.e. a sort of effective cosmolo
cal constant. By makingLe f f;H2 time dependent, this can
naturally explain the smallness of thepresent effective
vacuum energy density. However, if, as in general relativ
dust energy and an effective cosmological constant have
ferent time dependence, it can hardly explain whyL;rm0.
For a recent review of the relative merits of a cosmologi
constant and quintessence, see Ref.@8#.

As far as identifying quintessence is concerned, the in
ton itself could be a candidate@9#. But also more exotic
possibilities have been considered, in particular some m
vated by the wish to solve the above-mentioned cosmic
incidence problem@10,11#. In any case, as is the case for th
inflaton, the quintessence field does not have, as yet, an
vious place in any fundamental theory of elementary p
ticles. One should also mention, at this point, that, if qu
tessence may help with the problems typical of t
cosmological constant interpretation, it is likely to create
new one of its own: in order to play its role, the quintessen
field must be extremely light and can thus mediate a n
long-range~of order H0

21) force, which is strongly con-
strained observationally. This is an important constraint to
imposed on any specific scalar field model of quintessen
either minimally or non-minimally@12# coupled to gravity.

At first sight, the search for a quintessence candidate
particle physics looks easier than the one for an inflaton.
instance, fundamental or effective scalar fields with pot
tials running to zero at infinity are ubiquitous in supersy
metric field theories and/or in string/M theory. They are us
ally referred to as moduli fields since, in perturbation theo
they parametrize the space of inequivalent vacua and co
©2001 The American Physical Society08-1
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spond to exactly flat directions~equivalently, to exactly
massless fields!. Non-perturbative effects~e.g. gauge-theory
instantons! are expected to lift these flat directions, just pr
serving those that correspond to small or vanishing coupl
Examples are the run-away vacua of supersymmetric ga
theories ~see, for instance,@13# for quintessence model
based on the latter possibility!, or the dilaton modulusf in
the limit f→2`.

However, if we were to take one of these moduli as qu
tessence, we would immediately run into the problem t
the acceleration of the Universe should be accompanied
drift of interactions towards triviality. For Newton’s constan
and even more so for the fine-structure constant, this kin
time variation is very strongly constrained. Furthermo
typical couplings of moduli fields to ordinary matter are
gravitational order, and this creates the already mentio
problem of new, unwanted long-range forces. For all th
reasons the conventional attitude towards moduli fields
been ~see e.g.@14#! to postulate that they develop non
perturbative potentials, providing them with both a mass a
a freezing mechanism~see however@15# for an alternative
that is closer, in spirit, to the one advocated here!.

Another possible problem with the identification of
string modulus with quintessence is that we would like
freeze the moduli at values that provide the correct value
the coupling constant and unification scale of grand unifi
theories~GUTs!. For instance, the dilaton and compactific
tion volumeV6 should be frozen at values such that@16#

aGUT
21 ;~M P /Ms!

2;e2f, M P /MGUT;aGUT
22/3 gs

1/6,
~1.1!

whereM P , Ms and MGUT are the Planck, string and GU
scales,gs5efV6Ms

6 is the string coupling, andef is the
tree-level effective four-dimensional coupling~thus, in more
standard string-theory notation@17#, our dilaton is related to
the real part of theS modulus by Re$S%5e2f).

Unfortunately, it looks unlikely that non-perturbative e
fects will be significant enough in this region to stabilize t
moduli. Also, perturbative unification gives too low a valu
for M P /MGUT @16,18#. In this respect, the situation can b
drastically improved by considering theM-theory limit, gs
→`, while still keeping the four-dimensional effective co
plings perturbative (S@1) @18#. Even then, the modul
would presumably freeze out in a typical~and cosmologi-
cally tiny! particle-physics time, and therefore cannot imp
ment the conventional, slow-roll quintessential scenario
spite of these difficulties, unconventional models of quint
sence based on the stabilization of the dilaton in the per
bative regime are not completely excluded, as recently
cussed by one of us@19#.

There is, however, another possibility for making the
laton a candidate for quintessence. As we have already m
tioned, the region of large negativef corresponds to the
trivial vacuum. The idea that the Universe may have star
long before the big bang, in this region is actually the ba
of the so-called pre-big-bang scenario in string cosmolo
~for recent reviews see@20#!. Here we are asking instea
whether the dilaton can play the role of quintessence at v
02350
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late times~such as today!, not by evolving towards2` and
triviality, but by going towards1` and strong coupling.
Such a proposal looks absurd at first since, if we do not
a drift towards zero coupling, we do not experience one
wards increasing strength either. In order for this idea
make sense we have to assume that the strong-coupling
of string or M theory exists, is smooth, and resembles
world. Can this make sense at all?

It has been argued by one of us@21# that the answer to the
above question can be affirmative, if we assume a cer
structure of the quantum loop corrections to the string eff
tive action suggested by large-N counting arguments. In the
strong coupling limit~which could either be the self-dua
valueS51 or, if S-duality is broken,f→1`) gravitational
and gauge coupling would be determined entirely by lo
corrections~as in the so-called induced-gravity/gauge id
@22#!, and would ‘‘saturate’’ at ‘‘small’’ values because of th
large number of fields entering the loops~e.g. the large num-
ber N of gauge bosons, or the large value of the quadra
CasimirCA , for gauge groups likeE8!. Typically, Eq.~1.1!
would be replaced~at f@1) by

aGUT
21 ;CA1O~e2f!, ~M P /Ms!

2;N1O~e2f!.
~1.2!

In this picture there is naturally an asymptotic decoupli
mechanism of ordinary matter to the dilaton, whose effect
mass goes to zero at late times. The problem remains
course, of explaining why the cosmological constant va
ishes in superstring/M theory, not only at zero coupli
where supersymmetry protects it, but also at infinite~bare!
coupling. Possibly, some new, stringy symmetry can expl
this. It will simply be assumed to be the case in this pap

As the dilaton is non-universally coupled to differe
types of matter fields, its coupling to ordinary matter can
asymptotically tiny~as to satisfy constraints from gravita
tional experiments@15#!, and much stronger~as first sug-
gested in@23#! to typical dark matter candidates, such as t
axion. In that case, the dilaton to dark-matter coupling le
to an initial evolution, which is similar to the ‘‘tracking’
regime @24# of conventional models of quintessence, b
takes placebefore potential energy becomes appreciab
Later on, the interplay of the dark-matter dilatonic char
and of the dilaton potential leads to an accelerated expan
in which the relative fraction of dark energy and dark mat
remains fixed~and of order 1!, thus offering a possible ex
planation of the cosmic coincidence, as we will illustra
through explicit examples.

The paper is organized as follows. In Sec. II we pres
the effective string cosmology equations, in the sm
curvature—but arbitrary coupling—regime, with gener
matter sources non-minimally coupled to the dilaton. In S
III we discuss analytically a possible late-time attractor ch
acterized by a constant positive acceleration and a fixed r
of dark matter and dark energy. In Sec. IV we provide
semi-quantitative description of the previous phase, dur
which the dilaton potential can be neglected. This phas
characterized by a ‘‘focusing’’ of the energy densities of t
various components of the cosmological fluid~which occurs
8-2
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QUINTESSENCE AS A RUNAWAY DILATON PHYSICAL REVIEW D65 023508
before the epoch of matter-radiation equilibrium!, and by a
subsequent ‘‘dragging’’ regime in which the dilaton ener
density tends to follow that of non-relativistic~dark! matter.
We also discuss here the main phenomenological constr
that have to be imposed on the scenario. In Sec. V we c
sider a typical example of a string cosmology model inclu
ing radiation, baryonic and cold dark matter, and we pres
the results of explicit numerical integrations. Our conc
sions are summarized in Sec. VI.

II. COSMOLOGICAL EQUATIONS IN THE STRING
AND EINSTEIN FRAMES

Our starting point is the string-frame, low-energy, gra
dilaton effective action@17#, to lowest order in thea8 expan-
sion, but including dilaton-dependent loop~and non-
perturbative! corrections, encoded in a few ‘‘form factors
c(f), Z(f), a(f), . . . , and in an effective dilaton poten-
tial V(f) ~see also@15#!. In the formula,

S52
Ms

2

2 E d4xA2g̃ Fe2c(f)R̃1Z~f!~¹̃f!21
2

Ms
2

V~f!G
2

1

16pE d4x
A2g̃

a~f!
Fmn

2 1Gm~f,g̃,matter! ~2.1!

@conventions: metric signature: (1,2,2,2), Rmna
b

5]mGna
b2 . . . , Rmn5Ramn

a#. HereMs
215ls is the fun-

damental string-length parameter,g̃ is the sigma-model met

ric minimally coupled to fundamental strings,R̃, ¹̃ are the
curvature and the covariant derivative referred tog̃, andFmn

is the gauge field of some fundamental~GUT! group@a(f)
is the corresponding gauge coupling#. We imagine having
already compactified 6 dimensions and having frozen
corresponding moduli at the string scale. Following the ba
proposal made in@21#, we shall assume that the form facto
c(f), Z(f), a(f) approach a finite, physically interestin
limit as f→1` while, in the same limit,V→0.

The fields appearing in the matter actionGm are in general
non-minimally and non-universally coupled to the dilat
~also because of the loop corrections@14#!. Their gravita-
tional and dilatonic ‘‘charge densities,’’T̃mn and s̃, are de-
fined as follows:

dG

dg̃mn
5

1

2
A2g̃T̃mn ,

dG

df
52

1

2
A2g̃s̃, ~2.2!

and it is important to stress that, whens̃5” 0, the gravidilaton
effective theory is radically different from a typical, Jorda
Brans-Dicke type model of scalar-tensor gravity@25#. We
shall give a prototype form ofGm in the following section,
after passing to the Einstein frame.

The variation of Eq.~2.1! with respect tog̃mn then gives
the equations
02350
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G̃mn1c8¹̃m¹̃nf1@ecZ2c8 21c9#¹̃mf¹̃nf

1
1

2
g̃mn@~2c8 222c92ecZ!~¹̃f!222c8~¹̃2f!

2ecV~f!#5ls
2ecT̃mn , ~2.3!

whereG̃mn is the Einstein tensor, and a prime denotes diff
entiation with respect tof. The variation with respect tof,
using the trace of Eq.~2.3! to eliminateR̃, leads to the equa
tion

~3c8 222ecZ!~¹̃2f!1@ec~Zc82Z8!1c8~3c923c8 2!#

3~¹̃f!21ec~2c8V1V8!1ls
2ec~c8T̃1s̃ !50. ~2.4!

We shall assume an isotropic, spatially flat metric ba
ground ~appropriate to the present cosmological configu
tion!, and a perfect fluid model of source. In the cosmic-tim
gauge we thus set

g̃mn5diag„1,2ã2~ t̃ !d i j …, T̃m
n 5diag~ r̃,2 p̃d i

j !,

f5f~ t̃ !, s̃5s̃~ t̃ !, ~2.5!

and one can easily check, combining the above equati
that the matter stress tensor is not covariantly conser
~even in this frame!, but satisfies the equation

ṙ̃13H̃~ r̃1 p̃!5
s̃

2
ḟ. ~2.6!

For the purpose of this paper, and for an easier comp
son with previous discussions of the quintessential scena
it is however convenient to represent the dynamical evo
tion of the background in the more conventional Einste
frame, characterized by a metricgmn minimally coupled to
the dilaton, and defined by the conformal transformat
g̃mn5c1

2gmnec. Herec1
2 parametrizes the asymptotic beha

ior of c(f),

c1
25 lim

f→1`

exp$2c~f!%, ~2.7!

and thus controls the asymptotic ratio between the string
the Planck scale,M P

2 5c1
2Ms

2 . In the Einstein frame the ac
tion ~2.1! becomes

S52
M P

2

2 E d4xA2g FR2
k~f!2

2
~¹f!21

2

M P
2
V̂~f!G

2
1

16pE d4x
A2g

a~f!
Fmn

2 1Gm~f,c1
2gmnec,matter!,

~2.8!

where we have defined

k2~f!53c8222ecZ, V̂5c1
4e2cV. ~2.9!
8-3
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For later use it is also convenient to define a canonical d
ton field by

df̂5
M P

A2
k~f!df, ~2.10!

although, in solving the equations, it will be easier to wo
directly with the original fieldf.

We now choose, also in the Einstein frame, the cosm
time gauge, according to the rescaling

ã5c1aec/2, d t̃5c1dtec/2, r5c1
2e2cr̃,

p5c1
2e2cp̃, s5c1

2e2cs̃. ~2.11!

From the (0,0) and (i , j ) components of Eq.~2.3! we obtain,
respectively, the Einstein cosmological equations@in units
such thatM P

2 5c1
2Ms

2[(8pG)2152#

6H25r1rf , ~2.12!

4Ḣ16H252p2pf , ~2.13!

while from the dilaton equation~2.4! we get

k2~f!~f̈13Hḟ !1k~f!k8~f!ḟ21V̂8~f!

1
1

2
@c8~f!~r23p!1s#50. ~2.14!

In the above equationsH5ȧ/a, a dot denotes differentiation
with respect to the Einstein cosmic time, and we have u
the definitions

rf5
1

2
k2~f!ḟ21V̂~f!, pf5

1

2
k2~f!ḟ22V̂~f!.

~2.15!

The combination of Eqs.~2.12!–~2.14! leads finally to the
coupled conservation equations for the matter and dila
energy density, respectively:

ṙ13H~r1p!2
1

2
ḟ@c8~f!~r23p!1s#50, ~2.16!

ṙf13H~rf1pf!1
1

2
ḟ@c8~f!~r23p!1s#50. ~2.17!

For further applications, and for a more transparent
merical integration, it is also convenient to parametrize
time evolution of all variables in terms of the logarithm
the scale factor,x5 ln(a/ai), whereai corresponds to the ini
tial scale,1 and to separate the radiation, baryonic and n
baryonic matter components of the cosmological fluid
setting

1The relation betweenx and the redshiftz is x52 ln(11z)
1ln(a0 /ai), wherea0 is the present value of the scale factor.
02350
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r5r r1rb1rd[r r1rm , p5
1

3
r r ,

~2.18!
s5s r1sb1sd[s r1sm .

The dilaton equation and the Einstein equation~2.12! can
then be written, respectively, as

2H2k2
d2f

dx2
1k2S 1

2
rm1

1

3
r r1V̂D df

dx
12H2kk8S df

dx D 2

12V̂81c8rm1s50, ~2.19!

H2F62
k2

2 S df

dx D 2G5rm1r r1V̂. ~2.20!

The matter evolution equation~2.16! can be split into the
various components as

dr r

dx
14r r2

s r

2

df

dx
50, ~2.21!

drb

dx
13rb2

1

2
~c8rb1sb!

df

dx
50, ~2.22!

drd

dx
13rd2

1

2
~c8rd1sd!

df

dx
50. ~2.23!

Finally, Eq.~2.19! is also equivalent to the dilaton conse
vation equation~2.17!, which becomes

drf

dx
16rf26V̂~f!1

1

2
~c8rm1s!

df

dx
50. ~2.24!

III. ACCELERATED LATE-TIME ATTRACTORS
WITH CONSTANT Vf

As a first step towards a ‘‘dilatonic’’ interpretation o
quintessence we will now discuss the possibility that
above equations, together with a string-theory motivated
tential and loop corrections, are asymptotically solved by
accelerated expansion,ä.0, with frozen ratiorm /rf of the
order of unity. This last property, in particular, is expected
solve ~or at least alleviate! the cosmic coincidence problem
@10,11#.

Under the assumption made in@21# that the form factors
appearing in Eq.~2.1! have a finite limit asf→1`, and
assuming the validity of an asymptotic Taylor expansion,
write:

e2c(f)5c1
21b1e2f1O~e22f!,

Z~f!52c2
21b2e2f1O~e22f!,

a~f!215a0
211be2f1O~e22f!, ~3.1!

wherec1
2 ,c2

2 are assumed to be of the same order@typically
of order 102 since, as already noted,c1

25(M P /Ms)
2#, and
8-4
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a0 is to be identified with the unified gauge coupling at t
GUT scale, i.e.a0.1/25. Unlike the model discussed in@26#
our model thus describes, in the strong coupling limitf→
1`, a minimally coupled, canonical scalar fieldf̂
5A2(c2 /c1)f, see Eq.~2.10!. In the opposite limit,f→
2`, the gravi-dilaton string effective action reduces,
usual, to an effective Brans-Dicke model with parameterv
521. We note that it is not hard to chosec(f) andZ(f) in
such a way that the kinetic term of the dilaton keeps
correct sign at all values off ~see the example given in Se
V!.

Similarly, the assumption thatV originates from non-
perturbative effects, and thatV→0 asf→`, allows us to
write, quite generically,

V̂~f!5V0e2f1O~e22f!. ~3.2!

Since the overall normalization of the potentialV0 is non-
perturbative, it should be related to the asymptotic value
the gauge couplinga0 by an expression of the form:

V05Ms
4expS 2

4

ba0
D5M

*
4 , ~3.3!

with some model-dependent~one-loop! b-function coeffi-
cient b. For a comparison with earlier studies of an exp
nential potential@27,28# we also note that, when referred
the canonically normalized dilaton fieldf̂ defined in Eq.
~2.10!, the Einstein frame potential~3.2! asymptotically exi-
bits an exponential behaviorV̂;exp(2lf̂/MP), with l
5c1 /c25A2/k at f→1`.

It is important to discuss the size of the potential need
for the viability of our scenario. Since the acceleration of t
Universe appears to be a relatively recent phenome
~even, possibly, anextremelyrecent one, as recently argue
in @29#!, the potentialV must enter the game very late, i.e.
an energy scale of the order ofr1/4;1023 eV. Unless we
want to play with an unnaturally large present value off,
this also fixes the scale of the potential in Eq.~3.2! as V0
;(1023 eV)4. As far as we know, this feature is common
all quintessence scenarios: the problem of an outstandi
small cosmological constant is traded for the introduction
another unnaturally small mass scaleM* .

In our context, we easily find that, in order to have
properly normalized potential, we need the constantb ap-
pearing in the exponent of Eq.~3.3! to be somewhat smalle
than the coefficientb3 of the QCD beta function@see also
the discussion after Eq.~3.5!#, sayb;0.6b3. Given our ig-
norance of the origin of the dilaton potential, this looks p
fectly acceptable,a priori. However, this apparent resolutio
of the fine-tuning problem should not hide the fact that
potential has to be adjusted very precisely if one wants
start the acceleration of the Universe not earlier than at
shift z;O(1), and notlater than today. To the best of ou
knowledge there is no obvious explanation, at present, of
aspect of the coincidence problem.

Let us now come to the matter sector of the action~2.8!.
As a typical example ofGm we take
02350
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Gm~f,g,matter!5E d4xA2g N̄@ i ]”1mN~f!#N

1
1

2E d4xA2g @ez(f)~]mD !2

2eh(f)m2D2# ~3.4!

the first term representing baryonic matter, the second~sca-
lar! cold dark matter, while the gauge term appearing exp
itly in Eq. ~2.8! can already represent the radiation comp
nent of the cosmic fluid.

The non-observation of appreciable cosmological va
tions of the coupling constants@30#, as well as the precision
tests of Newtonian gravity@31# in the context of long-range
dilatonic interactions, force us to assume that ordinary ma
and radiation have nearly metric couplings tog̃mn , i.e. that
sb ,s r.0 asf→`. It is not hard to see how such a nea
vanishing of dilatonic charges can be achieved starting fr
the actions~2.8!,~3.4!. Following Ref.@14# we have

sb

rb
;

]

]f
~ ln LQCD!,

s r

r r
;

]

]f
~ ln a!. ~3.5!

Given thatLQCD;Msexp(21/b3a) ~with b3 the coefficient
of the QCDb-function!, and using Eq.~3.1! for a, it is clear
that bothsb and s r are exponentially suppressed at larg
positivef. This decoupling mechanism is similar in spirit t
the one proposed in@15#, although it is supposed to occur a
infinite bare coupling.

In the dark matter sector, on the contrary, we shall assu
more generic quantum corrections. By taking for instance
action in Eq.~3.4!, one has for the dilatonic charge of da
matter:

sd52z8~f!ez(f)~]mD !21h8~f!eh(f)m2D2. ~3.6!

Furthermore, the equations of motion for theD field give a
relation between the time-averaged quantities,ez(f)^Ḋ2&
5m2eh(f)^D2& ~which is consistent with the interpretatio
of D as non-relativistic matter,pd50, as assumed in the
preceding section!, and relatesd and rd by a ~generally
f-dependent! proportionality factor

sd /rd[q~f!5h8~f!2z8~f!. ~3.7!

The late-time behavior we will discuss takes place if w
assume that, in the strong coupling limit~i.e., f@1), q(f)
tends to a positive constant of order unity, and that the d
matter component dominates over baryonic matter and ra
tion. Thus, the regime we are considering is characteri
@according to Eqs.~3.1!,~3.2!# by

k2~f!52c2
2/c1

252/l2, s5sd , r5rd ,

q~f!5q5O~1!, sd5q rd . ~3.8!

It follows that the dilaton coupling to the stress tensor can
asymptotically neglected with respect to the coupling to
dilatonic charge, asc8.e2f/c1

2!1. The dilaton and dark
8-5
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matter conservation equations~2.23!,~2.24! and the Einstein
equations~2.12!,~2.13! can then be written, asymptotically
in the form

ṙd13Hrd2
q

2
rmḟ50, ṙf16Hrk1

q

2
rmḟ50,

~3.9!

15Vd1Vk1VV ,

11
2Ḣ

3H2
5VV2Vk , ~3.10!

where we have defined

rd56H2Vd , rf5rk1rV ,

rk56H2Vk5ḟ2/l2, rV56H2VV5V̂. ~3.11!

We now look for solutions with asymptotically froze
dark-matter over dark-energy ratio, and frozen ‘‘equation
state.’’ From the constraint~3.10! this is equivalent to the
requirement thatrk , rV andrd scale in the same way, i.e.

d logrf

dx
5

d logrd

dx
,

d logrV

dx
5

d logrd

dx
. ~3.12!

The first condition and the conservation equations give

df

dx
5

6

q
~VV2Vk!. ~3.13!

Expressingdf/dx throughVk5(df/dx)2/6l2, and insert-
ing it in the second condition~3.12!, we obtain, respectively

l q5A 6

Vk
~VV2Vk!, q52

VV2Vk

11Vk2VV
, ~3.14!

where in the latter the asymptotic form of the potential~3.2!
has been used. The last two equations can be solved foVk
andVV ,

Vk5
6

l2~21q!2
, VV5Vk1

q

q12
~3.15!

giving easily

Vf5
121q~q12!l2

~q12!2l2
, wf52

q~q12!l2

121q~q12!l2
,

~3.16!

where the last equation forwf5(Vk2VV)/(Vk1VV) pro-
vides the dilaton’s equation of state.

The above asymptotic solution, first obained in@32#, and
recently studied in@33,34#, generalizes the results discuss
in Ref. @27# to the interacting dark matter case, and is ve
similar to the results obtained by including suitable no
minimal couplings in a Brans-Dicke context@28#, or by in-
cluding an effective bulk viscosity in the dark matter stre
02350
f

y
-

s

tensor@10,35#. Our Eq.~3.9! corresponds indeed, formally, t
a dissipative pressureP52qrm(ḟ/6H) ~in the notation of
@35#!. See also@33,34# for a discussion of the parameter va
ues compatible with such an asymptotic solution.

OnceVk andVV are given, one can easily compute all th
relevant kinematic properties of the asymptotic solution a
function of only two parameters,q andl5c1 /c2, which are
in principle calculable for a given string theory model. Th
asymptotic value of the acceleration, in particular, is fixed
Eq. ~3.10! as

ä

aH2
511

Ḣ

H2
5

q21

q12
. ~3.17!

One can also easily obtain, through a simple integration,
asymptotic evolution of the Hubble factor and of the dom
nant energy density,

H;a23/(21q), r;a26/(21q). ~3.18!

In order to illustrate the range of parameters possi
compatible with present phenomenology, we have plotted
the $l,q% plane various curves atVf5Vk1VV5const, and
wf5(Vk2VV)/(Vk1VV)5const ~Fig. 1!. Note that the
case discussed in Ref.@27# corresponds to staying on thel
axis. In that case, the critical value ofl below which
Vd /Vf→0 is A3. The addition ofq makes parameter spac
two-dimensional, with the pointl5A3 replaced by the left-
most curveVf51. Beyond that curve, i.e. forl2,6/(2

FIG. 1. The asymptotic configurations in the plane$l,q%. The
full bold curves correspond to asymptotic solutions with fixed rat
rf /rd and with the following values ofVf : 1,0.8,0.7,0.6,0.5,0.4
On the right vertical axis we have reported the correspond

q-dependent acceleration parameter,äa/ȧ2. The thin dashed curves
correspond to fixed asymptotic values of the dilatonic equation
statewf5pf /rf , respectively20.4, 20.7, 20.9 and20.95.
8-6
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1q) ~as well as for all values ofl if q,22), the ratio
Vd /Vf goes to zero. However, while in the case of@27#
acceleration and a finite ratioVd /Vf are incompatible, this
is perfectly possible in a large region of the$l,q% plane.

In fact, it is possible to determine the region of our p
rameter space that survives the various observational
straints~type 1a supernovae, CMB anisotropies, large-sc
structure . . .!. The present values ofVf andwf have to lie
in the range@36,37# 0.6&Vf&0.7, and21<wf&20.4, but
the two allowed intervals are not uncorrelated. Assuming t
we are already in the asymptotic regime, the allowed reg
lies roughly between the two curvesVf50.6 andVf50.7
and aboveq52. Other phenomenological~but somewhat
more model-dependent! constraints onq and l can be ob-
tained from the recent measurements of the position of
third anisotropy peak in the CMB distribution@38#, which
constrains the value ofVf today and at last scattering, a
well as the time-averaged equation of state^wf& @39#. In the
final part of this paper we shall present a model of d
matter that seems to be compatible with all the abo
mentioned constraints.

IV. FOCUSING AND DRAGGING WITH VÄ0: AN
ANALYTIC STUDY OF EARLY-TIME EVOLUTION

Having discussed, in the previous section, the late-t
accelerated expansion caused by the interplay of the dil
potential and the dark-matter dilatonic charge, it looks app
priate to illustrate the earlier evolution, i.e.beforethe dilaton
potential starts entering the game. In this section we s
provide a semi-quantitative, analytic analysis of this beh
ior as it follows from the string cosmology equations~2.21!–
~2.24!, by imposing on the non-perturbative normalizati
~3.3! the constraintV0

1/4!Heq, whereHeq is the curvature
scale at the epoch of matter-radiation equality. In such a w
the dilaton potential may eventually become important o
at late times, in the matter-dominated era. We will show t
this early evolution can be roughly divided in three epoc
providing, altogether, an intermediate attractor that nic
connects to the accelerated behavior described in Sec. I

Let us start by considering an initial, post-big bang a
post-inflationary regime of expansion driven by the stand
radiation fluid, with negligible dilatonic charge,s r50. Pos-
sible non-relativistic matter, if present, is highly subdomina
with respect to the other components (rm!rf ,r r) and, con-
sequently, the dilatonic terms in Eq.~2.24! can be neglected
The conservation equations can be easily integrated to g

r r5r ri e
24x, rf5rf ie

26x. ~4.1!

Therefore, the dilaton~kinetic! energy density, even if ini-
tially of the same order asr r , is rapidly diluted likea26.
The dilaton itself, starting from a valuef i;O(1) typical of
the moderately-strong coupling post-big bang epoch, tend
settle down to a constant value~as already noticed in@40#!,
that can be easily estimated as follows

rk5
k2

2
H2S df

dx D 2

5
k2

12S df

dx D 2

~r r1rf!5rf . ~4.2!
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For r ri 5rf i we get

df

dx
5A12

k
~11e2x!21/2, ~4.3!

which, for k5const, leads to a solution with asymptot
value f5f1, related to the initial valuef i5f(0) by the
constant shift

Df5f12f i5A12

k
ln~11A2!.

3

k
.

3

A2

c1

c2
, ~4.4!

independently off i and of the initialx ~the last equality
holds forf1 large enough to justify the asymptotic relatio
k5A2/l).

Such an initial regime is effective until the dilaton kinet
energy becomes of the same order asrm . At that point, some
oscillations are triggered by the interference term of E
~2.24!, but the dilaton energy density keeps decreasing,
the average, until it enters a ‘‘focusing’’ regime, durin
which it is diluted at a much slower rate~like a22!, so as to
converge, at equality, towards the larger values ofrm andr r .
Eventually, when dark non-relativistic matter becomes
dominant source (rd*r r), the dilaton energy density tend
to follow the dark matter evolution, as if it were ‘‘dragged
by it.

Before turning to a quantitative analysis of these two
gimes we note that the time evolution ofrf , in the ‘‘track-
ing’’ quintessence, is determined by the slope of the pot
tial. In the present context, instead, the focusing a
dragging effects are not due to the potential, but they
controlled by the non-minimal coupling induced by (c8
1q) ~thus implementing an attractor mechanism alrea
proposed for a class of non-minimal scalar-tensor model
quintessence@41#!. Thanks to the focusing effect, whic
seems to be typical of the string effective action~even if
similar, in a sense, to the ‘‘self-adjusting’’ solutions of ge
eral relativity with exponential potential@27#!, the dilaton
energy density at the matter-radiation equality turns out to
fixed independently from its initial value, and only slight
dependent on the initial value of the dilaton,f i . For large
enough values ofq, however, even the dependence uponf i
tends to disappear, because the value of the dilaton itself
focused, as will be discussed in the next section.

For a quantitative analytical study of the ‘‘focusing’’ an
‘‘dragging’’ regimes, we start from Eqs.~2.21!–~2.24!.
Lumping together baryonic and dark matter, neglectingV,
and assuming, according to Eq.~3.7!, s5sm5q(f) rm ,
those equations can be easily recast in the form:

r r
21 dr r

dx
1450, ~4.5!

rm
21 drm

dx
1@37A3e~rf /r!1/2#50, ~4.6!

drf

dx
16rf6A3erm~rf /r!1/250, ~4.7!
8-7
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where we have introduced the important parameter

e~f![
c8~f!1q~f!

k~f!
, ~4.8!

and the sign ambiguity comes from solving Eq.~4.2! for
df/dx in terms ofrf . The focusing solution is then cha
acterized by the relation

rf5
n2~f!rm

2

r
, ~4.9!

i.e. Vf5n2(f)Vm
2 , which holds under the assumption th

bothe andn are slowly varying. Indeed, we can establish t
connection between these two quantities by inserting the
satz~4.9! into ~4.7!. This gives:

267A3
e

n
52n21

dn

dx
12rm

21 drm

dx
2r21

dr

dx
,

~4.10!

where on the right-hand side the logarithmic derivative
Eq. ~4.9! has been taken. By using Eq.~4.6! one finally has

r21
dr

dx
7A3e@n2112Vmn#52n21

dn

dx
.0. ~4.11!

We can now discuss a few cases of interest. During
radiation-dominated phase, and after the kinetic energy
the dilaton is quickly red-shifted away, we can neglect
term with Vm in Eq. ~4.11!, we setdr/dx524r, and ob-
tain:

n.
A3e

4
,

df

dx
.2

3rme

2kr
, rf.

3rm
2 e2

16r
. ~4.12!

We refer to this behavior as ‘‘focusing’’ since it implies th
rm lies, modulo a factor (16/3)e22, at the geometric mean
betweenr;r r and rf . Hence, as we approach radiatio
matter equality,rf is effectively focused towards the sam
common value of the other two components@see Eq.~4.15!
below#. Note that, for a positivee, this happens thanks to
negative df/dx.

In the matter-dominated regime it is no longer safe
neglect the term inVm in Eq. ~4.11!, unlesse!1. In that
case, the solution is

n.A3eS 2r21
dr

dx D 21

, Vf.3e2Vm
2 S 2r21

dr

dx D 22

.

~4.13!

During matter domination, usingdr/dx523r, one gets

n.
e

A3
,

df

dx
.2

2e

k
, rf.

rme2

3
. ~4.14!

In other words, the focusing regime has been turned in
dragging one: the dilaton energy is dragged along by
~dark! matter energy and keeps a~small! constant ratio to it.
02350
n-
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e
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Incidentally, at the epoch of exact matter-radiation equal
usingdr/dx523.5r, we easily get~still at smalle):

rf

req
.

3e2

49
, ~4.15!

which is always smaller than 6% fore,1.
In order to understand what happens at larger valuese

it is useful to find the reason why, for smalle, rf /rm stays
constant. This comes about because the corrections to
a23 anda26 laws for rm andrf , due to the non-vanishing
e, push the two towards each other. It is easy to check t
precisely if rf /(rm1rf)5e2/3, both energies scale like
a2(31e2). We note, incidentally, that the above ratio of ene
gies nicely fits with the value given in Eq.~4.14! when e
!1. If e,1, the decrease ofrf is still slower than thea24

of r r , which justifies neglecting the latter. However, ife
.1, this is no longer the case and we have a third kind
behavior, which can be called ‘‘total dragging.’’ In that cas
as shown by a simple analysis, all three components or
scale like radiation, with the following sharing of the ‘‘en
ergy budget’’~remember that we are always atV51):

Vf5
Vm

2
5

1

3e2 , V r5
e221

e2 . ~4.16!

In the next section we will see how numerical integrati
confirms in full detail the analytic behavior we have di
cussed. We end this section by discussing some constr
on our parameters.

As already mentioned, we assume the ordinary com
nents of matter~radiation and baryons! to have a nearly met-
ric coupling tog̃mn @see the discussion after Eq.~3.4!#. To be
more specific, let us define the ratios between dilato
charges and energy densities in a way similar to that used
cold dark matter in Eq.~3.7!, i.e.

qr~f![s r /r r , qb~f![sb /rb . ~4.17!

Since it is precisely the ratio (c81qr ,b)/k, which controls
both the effective coupling of the dilaton to ordinary macr
scopic matter, as well as a possible time-dependence o
fundamental constants@42,43#, we shall assume that bothqb
and qr are at most of orderc8, in agreement with the dis
cussion after Eq.~3.5!. We then find that there are neithe
appreciable violations of the equivalence principle in t
context of macroscopic gravitational interactions, nor sign
cant contributions to the time-variation of the fundamen
constants, both effects being controlled byc8/k for qr ,b
→0. In the strong coupling regime we havec8/k
;e2f/(c1c2). For a non-negativef i , and c1

2 ,c2
2 of order

102, there is no appreciable deviation from the standard c
mological scenario down to the epoch of matter-radiat
equality, so that one easily satisfies the early-Universe c
straints on dark energy, as reported for instance in@44#.

The dilaton charge of dark matter is not restricted by
experimental tests of long-range gravitational interactio
this is the reason why we can play with it in order to produ
an acceleration. Still, from the above discussion on the e
8-8
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phases of the Universe, it is clear that high values of
dark-matter parametere may result in dangerously high va
ues forVf , and thus in radical deviations from the standa
cosmological scenario. Until radiation-matter equality t
situation is relatively harmless: we can easily estimate
dilaton energy density at the equality and at the nucleos
thesis scale,HN;1010Heq, using the fact that the dilaton
during the focusing regime, is not significantly shifted aw
from the valuef i1Df, fixed by Eq.~4.4!. Because of the
focusing behavior we findVf(nucl);10210 Vf(eq), and
therefore the most stringent bound comes at equality, wh
thanks to Eq.~4.15!, it is comfortably satisfied fore,1.

During the dragging phase, however, we must certa
impose e,1; otherwise, the phenomenon of ‘‘total dra
ging’’ takes place. This would represent a dramatic deviat
from the standard cosmological scenario, since all the c
ponentsrf ,r r ,rd ~except baryonic matter! would redshift in
the same way (a24) from equality until the potential starts t
be felt. Even ife,1, but not sufficiently small, the unusua
scalingrm}a232e2

tends to change the global temporal p
ture between now and the epoch of matter-radiation equa
and, from Eqs.~4.14!, values ofVf;e2/3 ~while in agree-
ment with possible constraints at last scattering@44#! can be
dangerously high. In our context, a boundVf(drag),0.1,
i.e. e(drag),0.3, appears to be necessary in order to ag
with the observed CMB spectrum and with the standard s
nario of structure formation.

On the other hand, due to the smallness ofc8;e2f/c1
2 in

the dragging regime, an upper bound one effectively turns
into a bound on the value ofq/k, i.e. on the dilatonic charge
of the dark matter component. The above constraints t
translate into a bound for the combinationlq:

lq~fdrag!,0.8, ~4.18!

where we used the already mentioned asymptotic relatiol
5A2/k. It is clear that a constantq cannot satisfy the abov
bound and, at the same time, provide the present acceler
of the Universe by means of the mechanism described
Sec. III ~see also Fig. 1!, that requiresql*4.

A time- ~or, better,f-! dependentq, however, is allowed.
For this reason we have to consider cold dark matter mo
like the one of Eq.~3.4!, whose dilatonic charge~3.7!
switches on at large enough values of the dilaton. The tr
sition to large values off is rapidly activated as the potentia
comes into play,rV;rf . At that point, the dilaton energy
density stops decreasing and freezes at a constant value
essarily crossing, at some later moment, the matter en
density,rf;rd . From then on, the dilaton starts rolling to
wards 1`, triggering the effect of the dilatonic charg
which rapidly freezes the ratiorf /rm and ~for suitable val-
ues of q) leads to the accelerated asymptotic regime
scribed by Eqs.~3.16!, ~3.17!. Explicit numerical examples
of such a behavior will be discussed in Sec. V.

For a realistic picture, in which the positive accelerati
regime starts around the present epoch~and not much earlier!
and the standard scenario of structure formation is imp
mented successfully, we have to require that the contribu
of the dilatonic charge~as well as the effect of the dilato
02350
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potential! come into play only at a late enough epoch. T
importance of this constraint was already discussed in
context of other scalar-tensor models of quintessence@28#
where, for instance, the non-minimal coupling of the sca
field to the trace of the dark matter stress tensor was assu
to bef-dependent, to interpolate between a small and a la
mixing regime.

V. NUMERICAL EXAMPLES

Finally, after the analytic discussion of the previous se
tion, it seems appropriate to illustrate the ‘‘runaway’’ dilato
scenario with some numerical example, both in order to c
firm the validity of some approximations made in derivin
the analytic results, and in order to see how the various
gimes we discussed can be put together. To this aim, we s
numerically integrate Eqs.~2.19!–~2.23!, using Eq.~2.20! as
a constraint on the set of initial data, and assuming an
plicit model for the dilatonic charges and the dilaton pote
tial. Also, following the ‘‘induced-gravity’’ ideas@21#, we
shall specialize the loop form-factors according to Eq.~3.1!,
using the ‘‘minimal’’ choice

e2c(f)5e2f1c1
2 , Z~f!5e2f2c2

2 . ~5.1!

First of all, for a clear illustration of the ‘‘focusing’’ and
‘‘dragging’’ regimes, let us putV50, s r505sb , and sd

5qrd , with q5const. By choosing, in particular,c1
25100,

c2
2530, we have integrated Eqs.~2.19!–~2.23! for three dif-

ferent values of the charge,q50, q50.01, andq50.1, start-
ing from the initial scaleHi51040Heq,

S ai

aeq
D5S Heq

Hi
D 1/2

5S rmi

r ri
D510220, ~5.2!

and usingrf i5r ri , f i522 as initial conditions. It should
be noted that such initial conditions are generic, in the se
that different initial values ofrf andf may change the fixed
value reached byf during the focusing phase, but do n
affect in a significant way the subsequent evolution, as w
be discussed at the end of this section.

The results of this first numerical integration are illu
trated in Fig. 2. The left panel clearly displays the initi
regime of fast dilaton dilution (rf;a26), the subsequen
focusing regime@rf;a22, see Eq.~4.12!# triggered~after
some oscillations! soon afterrf falls belowrm , and the final
dragging regime@rf;rm , see Eq.~4.14!# in the epoch of
matter domination~the epoch of matter-radiation equalit
corresponds tox.46!. Note that the constant values ofq
have been chosen small enough to avoid the phenomeno
‘‘total dragging,’’ see Sec. IV. Note also that, in this examp
rm always coincides withrd . In the right panel the evolution
of Vf , obtained through the numerical integration, is co
pared with the analytic estimates~4.12!, ~4.13!, ~4.14!, for
the three different values ofq. In all cases,Vf grows likea2

during the focusing regime~in the radiation era!, while the
final stabilization Vf5const, after the epoch of matte
8-9
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FIG. 2. Time evolution ofrf for q50 ~dash-dotted curve!, q50.01 ~dashed curve! and q50.1 ~dotted curve!. The initial scale isai

510220aeq, and the epoch of matter-radiation equality corresponds tox.46. Left panel: the dilaton energy density is compared with
radiation~thin solid curve! and matter~bold solid curve! energy density. Right panel: the dilaton energy density~in critical units! is compared
with the analytical estimates~4.12!, ~4.13!, ~4.14! for the focusing and dragging phases.
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radiation equality (x*46), clearly illustrates the effect of th
dragging phase during whichrf andrm evolve in time with
the same behavior.

For a realistic model of quintessence, however, a cons
dilatonic charge cannot drive the Universe towards
asymptotic accelerated regime and, simultaneously, sa
all the required phenomenological constraints during the
lier epochs~as discussed in the previous sections!. By keep-
ing sb , s r.0 at large coupling@see Eq.~3.5! and the dis-
cussion thereafter#, we shall thus consider the explicit mod
of scalar dark matter~3.4!, with the following simple loop
form-factors

e2z(f)511eq0f/c2, eh(f)5const ~5.3!

~note that, by a field redefinition, one of the two loop facto
can always be taken to be trivial: what really matters is
ratio ez/eh). Using Eq.~3.7! we immediately get

q~f!5
sd

rd
5q0

eq0f

c21eq0f
, ~5.4!

which is exponentially suppressed in the perturbative regi
and approachesq5q0 at large coupling~for q0.1 it is thus
compatible with an asymptotically accelerated cosmolog
configuration, see Fig. 1!. For our numerical example w
shall chooseq052.5 andc25150, but the behavior of the
solution is rather stable, at late times, against large variat
of the latter parameter~see the discussion at the end of th
section!.

In addition, we have to specify the form of the dilato
potential. In agreement with its non-perturbative origin, a
with the assumtion of exponential suppression at strong c
pling ~see Sec. IV!, the simplest choice is a difference o
terms of the typee2b/a(f). We shall thus consider the bel
like potential~in units M P

2 52)
02350
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V~f!5mV
2@exp~2e2f/b1!2exp~2e2f/b2!#,

0,b2,b1 , ~5.5!

which leads, asymptotically, to the large-f behavior of Eq.
~3.2!. The mass scalemV , related to the massM* of Eq.
~3.3!, will be fixed at mV51023Heq, together with b1
510,b255, for a realistic scenario that starts accelerating
a phenomenologically acceptable epoch.

With all the parameters fixed, we have numerically in
grated the evolution equations~2.19!–~2.23!, for our model
of charge~5.4! and potential~5.5!, using the same initial
conditions as in the previous example, but separating
dark and baryonic components insiderm . In particular, we
have set, initially,rdi510220r ri , rbi57310221r ri .

The resulting late-time evolution of the various ener
densities is shown in the left panel of Fig. 3. Dark matter a
baryonic energy densities evolve in the same way, until
potential comes into play, starting at a scale aroundx.49.
The potential first tends to stabilizerf to a constant but then
~thanks to the contribution ofq) the system eventually
evolves towards a final regime in whichrf and rd are
closely tied up, and their asymptotic evolution departs fro
the trajectory of the standard, decelerated scenario@in par-
ticular, they both scale, asymptotically asa26/(21q0), see Eq.
~3.18!#. It is amusing to conjecture that the different tim
dependence ofrb andr d could be responsible for the prese
small ratiorb /rd .

In the right panel we have plotted the time evolution
the dilatonic chargeq, of the energy densityVf , of the
equation of statewf , and of the acceleration paramet
ä/aH2. When the potential energy becomes important,
the above quantities rapidly approach their asymptotic val
given in Eqs.~3.16!,~3.17!. Note that, with our choice of
parameters, we haveq052.5 andl5c1 /c25A10/3, corre-
sponding to an asymptotic valueVf.0.733, slightly exceed-
ing the best fit value suggested by present observat
8-10
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FIG. 3. Left panel: Late-time evolution of the dark matter~solid curve!, barionic matter~dashed curve!, radiation~dotted curve! and the
dilaton~dash-dotted curve! energy densities, for the string cosmology model specified by Eqs.~5.4!,~5.5!. The upper horizontal axis gives th
log10 of the redshift parameter. Right panel: for the same model, the late-time evolution ofq ~fine-dashed curve!, wf ~dash-dotted curve!, Vf

~solid curve! and of the acceleration parameteräa/ȧ2 ~dashed curve!.
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@36,37#. It is important to stress, however, that the asympto
attractor may be preceded by a~short! oscillating regime,
which, as illustrated in the right panel of Fig. 3, can eas
allow for values of the cosmological parameters differe
from the asymptotic ones to be compatible with present
servations. Note also that, when switching from the focus
to the dragging phases, the dilaton starts to move back
wards decreasing values ofq, as will be illustrated also by a
subsequent numerical integration. This may slow down
evolution of rf with respect torm during the dragging, as

FIG. 4. Time evolution of the dilaton field, for different initia
conditionsf i524,22,0,2. All the other parameters are the sam
as in the example of Fig. 3. After the plateau associated with
focusing regime, and for a strong enough dilatonic charge, the
lutions tend to converge to a common value off. The subsequen
running to1`, driven by the potential, is thus completely indepe
dent of the initial value.
02350
c

t
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e

shown for instance in the left panel of Fig. 3. Because of t
effect, however, the dilaton can easily satisfy, during t
dragging phase, the phenomenological bounds discusse
the previous sections. This does not require fine tuning,
validity of the bounds being guaranteed for a large basin
initial conditions by a convergent behavior of the solutio
during dragging.

During the focusing phase, in fact, the dilaton is prac
cally frozen, as can be argued from Eq.~4.12!, and its effec-
tive constant value, as determined by Eq.~4.4!, depends on
f i . However, if such a value is high enough, the presence
the dilatonic charge may become important, and may c
tribute to the focalization towards the epoch of matt
radiation equality, as already anticipated. This is illustrated
Fig. 4, which shows the time evolution of the dilaton o
tained by numerically integrating the same model as in F
3, for different initial valuesf i524,22,0,2. Although we
start with different dilaton values at theplateauassociated
with the focusing regime, all the solutions tend to conve
as we enter the dragging regime, so as to make the su
quent~potential-dominated! evolution insensitiveto the ini-
tial value of the dilaton.2

This new focusing effect, which is very different from th
one of the energy densities during the radiation-domina
phase, can also be understood analytically by writing
solution of Eq.~4.14! as

x2xeq52E
feq

f k~f̄ !

2e~f̄ !
df̄. ~5.6!

2The precedingevolution, of course, is not sensitive either, sin
during focusing the order of magnitude ofVf is given byVm

2 as in
Eq. ~4.12!.
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Since k is almost constant, a variationdfeq on the initial
value of f changes the solutionf(x) by an amount
df(x)5@e(f)/e(feq)#dfeq, which rapidly decreases@with
q(f)# during the dragging phase. This is why the soluti
has become independent of the initial value off by the time
the potential becomes an important component.

For the same reason, the model is only weakly affected
variations of the parameterc in Eq. ~5.4!, which roughly
gives the transition scale between small and large dilato
charges: fs5(2/q0)logc. Indeed, because of the abov
mechanism the dilaton is pushed back during the dragg
phase, with a velocity as high as needed to reach, in
case, the safe zoneq!1. This effect is illustrated in Fig. 5
where we have plotted the time evolution ofq(f), for the
same model as Fig. 3, and for three different values ofc.

It should be noted, in conclusion, that the above class
models depends in a crucial way on three important par
eters:mV , q0 and the ratiol5c1 /c2. The first one controls
the transition time between the epoch of standard cosmol
cal evolution and the final accelerated regime~as can be
easily checked, for instance, by repeating the numerical
tegration of Fig. 3 with different values ofmV). The other
two parameters control the asymptotic properties of
model~acceleration, equation of state,. . . ), asdiscussed in
Sec. III. Future precision data, both from supernovae ob
vations and from measurements of the CMB anisotro
could give us a good determination of these parameters,
providing important indirect information on the paramete
of the string effective action in the strong coupling regim

VI. CONCLUSION

Let us conclude by summarizing the main points of o
work. We have argued that a runaway dilaton can provide
interesting model of quintessence under a well-defined se
assumptions that we list hereafter:

The limit of superstring theory, as its bare fou

FIG. 5. Time evolution ofq(f), from Eq. ~5.4!, for three dif-
ferent values of the parameterc. All the other parameters are th
same as in the example of Fig. 3. During the dragging phase
value ofq converges to the regimeq!1.
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dimensional effective coupling goes to infinity~so called in-
duced gravity/gauge or compositeness limit!, should exist
and make sense phenomenologically, i.e. should yield
sonable values for the unified gauge coupling at the G
scale and for the ratioM P /MGUT , thanks to the large num
ber of degrees of freedom atMGUT .

In the visible-matter sector, the couplings to the dilato
either direct or through the trace of the energy-moment
tensor~i.e. via a conformally rescaled metric!, should vanish
in the f→1` limit.

In the dark matter sector, there should be a surviving c
pling to the dilaton~and thus violations of the strong and/o
weak equivalence principles! even in thef→1` limit.

The dilaton potential should be non-perturbative, go
zero asymptotically, and have an absolute scale not too
from the present energy density.

Under these circumstances, it is natural for the dila
energy in critical units,Vf , to be ~i! subdominant during
radiation domination;~ii ! a ~small! fraction of the total en-
ergy at matter-radiation equality;~iii ! a ~small! fraction of
Vm during the earlier epoch of matter domination;~iv! a
fraction of dark-matter energy since a redshiftO(1). This
very last phase is characterized by an accelerated expan

In other words, this framework seems to be naturally co
sistent with present astrophysical observations and w
known cosmological constraints. From a theoretical point
view the model appears to combine nicely previous id
@15# on dilaton stabilization and decoupling with those r
cently advocated~e.g. in @28#! so as to have acceleratio
while keeping the ratioV(dark energy)/V(dark matter) con-
stant.

It must be stressed, of course, that the analysis prese
in this paper is still preliminary, and that various problem
are still open. In particular, a precise computation of t
CMB anisotropy spectrum, and of the spacing of acous
peaks expected in this context, as well as a comparison
currently available measurements@4#, could provide signifi-
cant bounds on the parameters of the string cosmology m
els we have discussed. Such an investigation is postpone
future work. Nevertheless, we believe that the results of
paper are encouraging, as they suggest that the dila
which can hardly play the role of the inflaton in the standa
inflationary scenario@45#, could play instead a successf
role as the quintessential field in post-inflationary, late-tim
cosmology.
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