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Abstract

In this research article, authors have presented the modelling of quintessence compact
stars which satisfies the Karmarkar conditions. For this purpose, we have formulated the set
of Einstein field equations with the static metric, anisotropic perfect fluid and quintessence
field. The equation of state p, = ap and Karmarkar condition have been used to solve the
set of field equations. The unknown constant in the metric functions (appearing due to the
Karmarkar conditions) have been found by matching the interior metric with the Schwarzschild
exterior metric. The observed value of mass and radius of some well known class of a star
has been used. The fluid variables density, radial and transverse pressures and anisotropic
parameter have plotted graphically. The first and second derivatives of density and radial
pressure have been evaluated to discuss the regularity of the model. The speed of sound
for the radial and transverse directions determine the stability of the proposed model. More-
over the redshift for the proposed model of the star has been discussed.
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1 Introduction

Hundred years back, the first exact solution of the Einstein field equations was gained by Karl
Schwarzchild [1]. After this a lot of exact solutions have been represented by different mathemati-
cians with small changes. Scwarzchild’s constant density sphere is established to include physi-
cally observed phenomenon like the pressure anisotropy, the electromagnetic field, dissipation, ro-
tation and deviation from spherical symmetry. Lake and Degaty [2] carried out comprehensive
and systematic study of solutions of Einstein field equations. They studied one hundred and twenty
seven exact solutions of Einstein field equations and only nine solutions meet the physical possibil-
ity condition. It shows the difficulty to get exact solution of Einstein field equations describing
realizable astrophysical objects. This encourages the researchers to find out solutions which are
more physically applicable but more importantly, they should also be good approximation to ob-
servational data.

Canuto [3] and Ruderman [4] showed that when the nuclear density is much lower than the mat-
ter density, matter will be anisotropic in nature. Comprehensive studies on impact of anisotropy
on self-gravitational configurations were carried out by Bowers and Liang [5] and Herrera and
Santos [ 6]. The anisotropy may take place due to existence of type 3- A superfluids [7], phase
transformation [8] with in the care or due to electromagnetic field [9]-[11].

Models of pseudo-spheroidal, relativistic stars on spherical and paraboloidal spacetime had
been studied by Tikekar and Thomas [12], Vaidya and Tikekar [13] and Tikekar and Jatonia [14]
respectively. Petal and Kopper [15], Gupta and Kumar [16], Sharma et. al. [17] and Komathiraj
and Maharaj [18] have studied charged stars on spheroidal spacetime. Tikekar and Thomas [19],
Chattopadhay and Paul [20] and Thomas et al. [21] have studied the compact objects on pseudo-
spherical spacetime. The paraboidal spacetime is a specific case of the Finch and Skea [22] s-
pacetime. Sharma and Ratanpal [23] studied the relativistic star model accepting the quadratic
equation of state on paraboidal spacetime. These studies propose that geometrically significan-
t spacetime may be used to explain the physically realistic stars.

The embedding problem is one of the interesting problem on geometrically significant space-
times that was first delivered by Schlai [24]. The 1st isometric embedding theorem was provided
by Nash [25]. The condition for embedding 4-dimensional spacetime metric in 5-dimensional
Euclidean spaces was derived by Karmarker [26]. Karmarker categorized these spacetimes like
class- 1 spacetime. For a spherically symmetric spacetime, Karmarker condition in the form of
curvature components takes the form

R1414R2323 = R1212R3434 + R1224R1334- (1)

Recently, attention amongst a lot of researchers working on modeling compact objects, Exact
solutions of Einstein field equation and stability analyses of self- gravitating objects. The study
of charged compact stars fulfilling compact stars Karmarker’s condition was begun by Maurya
et. al. [27]. This led to fruitful of models of compact objects fulfilling Karmarker’ s condition
[28, 38]. In the current work, we have studied the spherically symmetric spacetime metric
of embedding class-1 and gained the singularity free solution of Einstein field equations for
anisotropic fluid distribution. We have to proved that the model fulfill all the physical
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plausibility conditions and also stable. Zubair et al.[39]-[42]. The work is arranged as follows:
Section-2 presents the Einstein’s field equations, Karmarker condition for spherically symmetric
spacetimes and TOV equation necessary for this analysis. We show the anisotropic solution
of embedding class-1 for compact stars in section-3. We suppose the matching condition of
the interior spacetime to the vacuum Schwarzschild exterior solution in section- 4. The physical

properties of our model are expressed in section-5. We finish with a discussion of result in section
6.

2 Anisotropic Source and Field Equations

We start with the static spherically symmetric spacetime metric that is given by

ds? =e’Ddt? — rdr? —r2(d? + sin’ 0 dg?), (2)

With the metric (2) together with the energy- momentum (4) Einstein’s field equations take
the form

Gp,V = I{(TIJJ/ +Tyu) (3>

where G, is the Einstein tensor, k = 8:—4G is the coupling constant and T, 7, are

respectively the energy- momentum tensor of the ordinary matter which is anisotropic perfect

fluid and quintessence like field characterized by a parameter w, withw, —1 < w, < —1/3.

Now Kiselev [43] has proved that the components of this tensor need to fulfill the conditions
of additivity and linearity . In consideration of the different signature used in line elements,
the components can be expressed as follows

=T = = (4)
3w, +1
™ = ij: q2 Pq (5)

and the corresponding energy-momentum tensor can be stated as

T =(p+ p)uluy — pegh + (pr — pe)0" M0, (6)

with w'u; = 1= — n'n; and u'n; = 0. Here spacelike vector which is orthogonal to u’, p,
p; and p, denote matter density, tangential pressure and the radial pressure respectively.

[N 1 1

snp+ o= [T - 5]+ 5 7)
| 1 1

sno - o) = |4 5] - )
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3w, + 1 v No' v =N

8 ———p, )= e = — — 9

Also, anisotropic parameter is
e [1 1 1 200 N v
A _ - pp=— =2 " _)\//__)\/_ N N v
pe= P 16 {21} v 2™ r( V) Oz+1(r+ r)]
1
— 5B+ 1)y (10)

2.1 Karmarkar condition:

In general, the spherically symmetric spacetime metric (2) is of class two. If the metric (2) satis-

fies the Karmarkar condition (1) It will then show a spacetime of embedding class one. The com-
. A_

ponents of the Riemann curvature tensor Ry, for metric (2) are given by Rogos = ‘WG(Z—AIW,

Risia = ¥7 Royoq = e(y;)7

_ __ e " 12 ! _ )
Ri924 = 0, Ryg14 = %[27/ + V= A VL R334 = sin“0 Rogo4.

By inserting the components of Ry, into the Karmarkar condition (1), we obtain the following
differential equation,

V” I// )\/)\
— — = W 3 <~ . 11
7 - 2 2(er—1) (11)

This gives the gravitational potential v, as follows

v =2n [A1+ Bl/\/mdr], (12)

where A; and B; are non-zero arbitrary constants of integration.

2.2 Anisotropic solution of embedding class one for compact star:

It is interesting to note that the solution of Einstein field equations for anisotropic matter distribu-
tion depends on one of the metric functions v or A because the Karmarkar condition gives a direct
relation between the metric functions. For this purpose , we use the ansatz as already used in
Maurya et al.[38] for e,

A (a —b)r?
e 1
c + 14 br? (13)
where, a # 0, b # 0. If a = 0 = b then the spacetime can be written as
ds? = —dr* — r*(d6* + sin?0d¢?) + €™ dt?, (14)
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for which Karmarkar’s condition (1) is satisfied but spacetime metric (14) is not of class 1 as shown
by Pandey and Sharma (1998), hence we take a and b as positive constants. The metric potential
e* chosen here does not give rise to paraboloidal, spheroidal or pseudo-spheroidal spacetimes.
Substituting Eq.(13) into Eq.(12), we get

v = 2In [Ab+ Bya— Vit er] ~ 2Inb (15)

where A and B are constants .

For a physically viable model the metric functions e* and e” must be finite at the center while both
should be monotonically increasing functions of r as shown in Fig.(1). We observe from Egs.(13) and
(15), (e*)r—0 = 1 and (¢"),—9 = [Ab+ By/(a — b)]?, which are finite and free from singularity.

To solve the above system of equations let’s assume that the radial pressure p, is proportion-
al to the matter density p

pr = Qap, 0<a <1,

where « is the equation of state parameter. This equation corresponds to a polytropic equation
of state of the second class. .

From the Eqs.(7)-(10) together with Eqs.(13) and (15), we get p, p., pr, pg and A,

dnp = Vva— b[ Abva—b +aB(1+ br*)2 L (16)

(I+a) (1+ar?)?2(Ab+ Bva — by/1 + br?)
ava —b AbVa =1 +aB(1+ br?)2

impr = (1+a) [(1 + ar?)?2(Ab+ Bva — bv1+ brz)]7 17)
8mp, = Va—b| = BBVI+0(1+ @)+ (AVa—b + Bla— bVI+br?)
9 1
<(Ba+ +ar(a+ 1)) x (a+ D)(1+ ar?)2(Ab+ Bva — bW/ 1 o)
(18)
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Figure 1: First and second graphs represent the behavior of the metric function for star Vela X-1

8Py

+

X

(1 —|—a7‘2)(Ab+b\/a—b\/1+br2)[(Ab+b\/a— bv1 —i—br )

bB (Ab+B\/a—b\/1+br2(1—br ))_ bBr?(a — b

1+ br? Ab + byva — by/1 + br? (1 + ar?)yV/1 + br?
va—b(A va—Dbv1 2 1

1 4 ar? 2(a+1)(1 + ar?)

(AbvVa — b+ B(a — b)V1+br2)(3a+ 1+ ar’(a + 1)) — 26BV1 + br2(1 + ar?)]

Va—b V2 B2/ — b )
)

(19)

Vva —b vV’ B*r’va— b
T (1 +ar)(Ab+ bmm)[mm b\/a—b\/1+br2))
bB  Ab+ Bva —bV1+br2(1 — br?) bBr?(a — b)
1+ oz Ab + bv/a — b1 + br? C(L+ar)VItb?
. WBVIERE _ Va—bAb+ BVa—-bV1+br%) 3w, +1
1+ ar? 2(a+ 1)(1 + ar?)

x (AbWa—b + Bla— bV1+br2)(3a+ 1+ar’(a+ 1))

2 3
— 2bBV1+br2(1+ar?) — ot 1)(?+ py x AbVa —b +aB(1+ br?)2
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Figure 2: First and second graphs represent the density variation of Strange star candidate Vela
X-1 and 4U1608-52 respectively.
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Figure 3: First and second graphs represent the radial pressure of Strange star candidate Vela
X-1 and 4U1608-52 respectively.

dp va—b
dr dr(a+ 1) (1 + ar?)3(Ab + va — bv/1 + br?)?

X |3abBr(1+ br? + ar® + abr*)(Ab+ Va — bV/1 +0r?) — (Abva — b+ aB(1 + br?)?)
(bBr + abBr® + darv/1 + br2(Ab + Va — bv/1 + br2))] (21)

dpy Va—b
dr dr(a+ 1)(1 + ar?)3(Ab + mm)2>
x[3abBr(1 4 br? +ar® + abr*)(Ab+ Va — V1 + br?)
— (AbVa —b+ aB(1+ brg)%)(bBr + abBr® + 4arv1 + br2(Ab+ Va — V1 + br2)]
(22)
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Figure 4: First and second graphs represent the tangential pressure of Strange star candidate
Vela X-1 and 4U1608-52 respectively.
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Figure 5: First and second graphs represent energy density of the quintessence field p, of strange
star candidates Vela X-1 and 4U1608-52 respectively.
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Figure 6: First and second graphs represent the EOS parameter w; star candidate Vela X-1 and
4U1608-52 respectively.
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Figure 7: All these graphs has been plotted only for the data of Vela X-1.
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Figure 8: First and second graphs represent the variation of anisotropy A of strange s-
tar candidates Vela X-1 and 4U1608-52 respectively.
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Figure 9: Evolution of energy constraints at the stellar interior of strange star Vela X-1.
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Figure 10: All these graphs has been plotted only for the data of Vela X-1.
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d*p va—b
- = 1 2)3 23
dr? 47 [+ ar’) (23)
3bBrva —0b
x(Ab + B 1+ br2)(—/———"(abBr + ab’Br®+ a’bBr®+ a’*b’Br®
X Va =TI (= e ))

+(3abB + 9ab’Br? + 9a*bBr® + 15a*b*Br*)(Ab+ Bva — bv'1 + br?
—(3abBrv1 + br2)(bBr + abBr® + 4abArv1+br2 +4arBvVa — b+ 4ar*bBva — b))
—((3abBr + 3ab*Br® 4+ 3a*bBr® + 3a°b* Br®)
—(AbVa—b+ aB(1+ br? )5)(bBr +abBr® 4+ 4darv1+br2(Ab+ BvVa — bV1 + br?)))
(

x (6ar(1 + ar®)*(Ab+ Bva —bV1+br2)? + (M)(Ab + BvVa—bv1+br?))]

14 br?
(24)
Ep. ava—b
d:; =2 jﬂ (1+ ar?)*(Ab+ Bva—bV/1+br?) (25)
3bBrva —b
x (22O 2 (abBr + ab?Brd + a*bBr® + a2b23r5)>
V14 br?

+(3abB + 9ab®Br? + 9a*bBr? + 15a*0*Br*)(Ab+ Bva — bV/1 + br?
— (3abBrv/1+br2)(bBr + abBr® + + 4abArv/1+br? + 4arBvVa — b+ 4ar*bBva — b))
—((3abBr + 3ab’Br® + 3a*bBr® + 3a*b* Br®)

—(AbWa—b+ aB(1+b?)2)(bBr +abBr® + 4arv1+ br2(Ab+ Bva— bvV/1+ br?)))

4bBrva — b
(6ar(1 + ar®)*(Ab+ Bva —bV1 4+ br2)* + (ﬁ

)(Ab + BVa — V1 + br2))]
(26)

The pressure anisotropy A is zero at at the boundary. However it can be made zero everywhere
inside the star only when a = b ( which implies B = 0). In this scene the metric roll out to be
flat and all the physical parameters like the radial pressure, tangential pressure and density
disappear. The physical behavior of all parameters is presented in figs.(2)-( 5). The equa-
tion of state parameter is 0 < w; < 1, which implies that the matter is ordinary matter as
shown in figure (6). Figure (7) gives the regularity of density and pressure and Fig.( 8) indi-
cates that the anisotropy parameter is positive at each interior point of the matter configuration,
ie., p; > p,. This indicates that the force due to local anisotropy is repulsive and may lead
to more massive, stable configurations.

3 Boundary conditions for the solution:

The obtained interior solution must match continuously with the Schwarzschild exterior solution

11
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2M oM\
ds* = <1 — —> dt* — (1 — ) dr® — r*(df* + sin®0dg¢?), (27)

r r
at the boundary of stellar configuration » = R, where M is total mass of anisotropic stel-
lar configuration hold within a sphere of radius R. By matching the first fundamental form (con-
tinuity of e and e*) and second fundamental forms (continuity of % ie. (pr)r = 0 )of the
interior solution with exterior Schwarzschild solution at the boundary of the star.

2M A Bva—by1 2
1o 2M e b+ Bva—bv +bR]2 (28)
R b
2M 1+ BR?
11— —— =M= 2
R ¢ 1+ AR? (29)
(pr)r = 0. (30)
By solving the above boundary conditions we get the constants as:
a,1+bR? s
_ ¢ 5 1
b T are)” (31)
—b
p=_Y'"°_ (32)
(1+aR?):2
R 1+ bR?
M=S =) (33)

3.1 Stability criterion via cracking

For a physically acceptable model of anisotropic fluids here one must have the radial and
transverse velocity of sound should be less than 1. Where the radial velocity (v2)and trans-
verse velocity (v2) of sound can be attained as

d
U?T = dppr =« (34)
12
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0 o= va— b ) (35)
o dp 8nva + br2(1 + ar?)?(Ab+ Bva — bv/1 + br?)

X [(1 + ar®)(Ab+ bVa —bV1 + br?)

(Ab+ bva — bVI+ br2) (202 B2 rva — V1 + br?) — b3B2r3(a — b)
(Ab + Bva — b1 + br?)?
br(Ab+ 2Bva — b1+ br?)

(1+br2)(Ab+ Bva — by/1 + br2)
+ V1+0r2(Ab+ BvVa—bvV1+ br?)(b?B>rva — b(1 — br?) — 26°B*rva — b(1 + br?)
—V?B%rvVa — b1+ br2(1 — br?)(Ab + 2BVa — bv/1 + br?))

bBr(a —b)(2 — r—2ar® — br® — 3abr®
a (14 br2)(1 + ar)3

X

+ b*Br — bBr(a— b)(1+ ar?)

2arv/a — b1+ br2(Ab + Bva — by/1 + br?) Bw, + 1 V1+br2
a (1+ ar?)? -3 >((a—|— (1 + ar?)?
x((14 ar®)(—=2b%r — 4abBr(1+ br?) —2qb*Br® + bBr(3a +1)(a — b)
+2aAbrva — bV1 + br2(a+ 1)+ Bla — b)(1 + br?)) + 2arv/1 + br2(26BV1 + br?)
—(AbWa —b+ BV1I+br2(a— b)Ba+ 1+ ar’(a+1))))

—(bBrva —b(1 + ar?) + 2arv1 + br2(Ab + Bva — b1+ br2))>

)

bB (Ab+ Bva —bv/1+br2(1 — br2))_ bBr2(a — b)
1+ br? Ab+ bva — bv1+ br? (1+ar)V1+ br?
— _ 2
bRV e~ Ve idb + Bva byl i)
1+ ar?

B 3wy + 1 — B 5 ,

Nat 1)1+ ard) Ve b Bla=hvItbridat 14ari(a+1)
—20BV'1 + br2(1 + ar2)]. (36)

Herrera [44] introduced a proposal to check the stability of anisotropic gravitating source. Cur-
rently, this technique is termed as cracking concept which states that if radial speed of sound is
greater than the transverse speed of sound then such a region is a potentially stable region, otherwise
unstable region. From fig.(10) it is clear that our model satisfies the condition v% — v2. < 0. So
we conclude that our model is potentially stable.

3.2 Energy conditions:

The stellar configuration must satisfy the null energy condition (NEC), weak energy condition
(WEC) and strong energy condition (SEC). These conditions respectively are

13
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Table 1: Numerical values of the constants for different compact stars
Compact star  a(km=2) b(km™2) A B(km™) Z,
Vela X-1 0.00033 0.19 -44.3761 44.2876 2.213532
4U1608-52 0.000325 0.1845 -45.3428  45.2910  3.34025

NEC : p(r) >0, (37)
WEC :p(r) —pe(r) 20 and p(r) — p(r) > 0, (38)
SEC: p— p(r)— 2p(r) = 0. (39)

Figure (9) clearly shows that all the energy conditions are satisfied for each of our stellar mod-

els. We should point out that the cracking scenario derived by Abreu et al.[45] in terms of

the relative sound speeds within the fluid configuration requires that the strong and dominant

energy conditions must be satisfied. The surface redshift (Z,) in this case is given by as
2, _1

1+aR ) 2 ( 4 O)

a+ bR?

For the VelaX — 1, and 4U1608 — 52 the surface redshift is given in table 1.

14 Z, = (

4 Conclusions

In this research article, we have explored the possibility of formation of compact star in the pres-
ence of quintessence field. The compact stars are assumed to satisfy the Karmarkar conditions.
We have evaluated the matter density, radial and transverse pressures, quintessence energy densi-
ty and anisotropic parameter of the model. Using the observational data of Vela X- 1 ( radius=7.07
km), 4U1608- 52 (radius=10 km), we have plotted the energy density, pressure and quintessence density
at center r = 0 to the boundary of the corresponding star. All this results have been shown
in figure 1-5. The first and second derivatives of density and pressures shown in figures 7, indi-
cate that these quantities have maximum values at the center and minimum values at boundary.
The graphical behavior of quintessence density p, does not change in this case when star satisty
the Karmarkar condition, but there occur a deviation in numerical values 4. The constraint
on the EoS parameter is given by 0 < w, < 1 (as shown in figure 6) which isin agreement
with normal matter distribution. We have investigated that for our model A > 0 ( as shown
in figure 8) and a repulsive force due to anisotropy results to the formation of more massive s-
tars. The proposed model satisfy the energy conditions, as an example we have shown in figure
9 that these conditions are satisfied. We have shown that v? < v?. (see figure 10), hence
our model is potentially stable. The range of surface redshift Z; for the compact star candidate
Vela X-1 is given in table 1.

14
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