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Abstract

The present study provides a new solution to the Einstein field equations for anisotrop-
ic matter configuration in static and spherically symmetric space-time. By taking ben-
efit from the conformal Killing vector (CKV ) technique and quintessence field specified
by a parameter ωq as −1 < ωq < −1

3 , we generate an exact solution to the field equa-
tions. For this investigation we have used a specific form of metric potential taken from
the Vaidya Tikekar (J Astrophys Astron 3:325, 1982) geometry. To canvass the phys-
ical plausibility of presented solution, we explored some analytical expressions such as
energy conditions, TOV equation, stability analysis and equation of state parameters.
We present graphical analysis of necessary analytical expressions which revealed that
our presented solution satisfy the necessary physical conditions.

Keywords: Compact stars, Conformal motion, Quintessence field.
PACS: 04.70.Bw; 04.70.Dy.

1 Introduction

During the last century, General theory of relativity becomes a substantial tool for explaining
and understanding the gravitational systems. Particularly, in relativistic astrophysics, it is a
significant issue to achieve a regular solution for the interior of compact astrophysical objects.
Intuitively, high density objects of different types such as quark stars, white dwarfs and
neutron stars are considered as compact objects, which is the last stage of stellar evolutionary
phase. Therefore, in modern astrophysics, to study such compact objects and properties
of dense matter is one of the important issues. In fact, different authors illustrated the
difficulties in connection to construct the theoretical models of astrophysical compact objects
for inclusive description of their interior configuration. Thus with in the dense cores, the
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understanding of particle physics and description of compact stars necessitated for the search
of more realistic solutions to the field equations. The inclusion of charge, an equation of
state, bulk viscosity, pressure anisotropy, multilayered fluids and consideration of different
symmetries lend to the espial of many exact solutions describing the interior of the relativistic
compact stars in the static limit [1, 2, 3, 4, 5]. It is noteworthy to notice here that by
modifying the stipulation of perfect fluid and permitting the pressure anisotropy and charge
with in the interior matter configuration of stellar distribution, provides measurable and
observable properties related to the interior of compact stars. Bowers and Liang [6] initiated
the search for the anisotropic compact objects and then numerous researchers have divulged
the effects of pressure anisotropy on the interior of the relativistic compact objects [7, 8, 9,
10, 11, 12, 13]. The inclusion of charge leads to the modification of the Buchdahl limit [14]
and other interior properties of compact object whereas pressure anisotropy results in the
large surface red-shift [15, 16]. Pant and his collaborators [17]-[22] also studied the effect of
charge and anisotropy on the interior configuration of celestial objects. In theoretical particle
physics, the linear equation of state p = αρ has been generalized from observations. A wide
range of exact solutions to the field equations have been propounded by taking benefit from
so called MIT bag model, in which the equation of state read as p = α(ρ − 4B), where
B is bag constant [23, 24, 25]. These solutions predicted the radii and masses of compact
stars which are consistent with the observational constraints. The recent evidences about
the accelerating expansion of our universe, stimulated the researchers to incorporate the dark
energy, which is a suitable candidate to interpret this accelerated expansion. Thus the subject
of dark energy has gained a considerable attention of researchers during the last few decades.
To incorporate the dark energy, researchers extended the scope of α in p = αρ (called dark
energy equation of state) to include α < 0, where α refers to as dark energy parameter. For
accelerated expansion α should satisfy α < −1

3
whereas for quintessence field it should be

constrained as −1 < α < −1
3
. The value of α < −1 refers to as phantom regime which has a

particular property of infinitely increasing energy density. For α = −1, dark energy equation
of state takes the form p = −ρ describing the equation of state of the shell of a Gravastar
[26, 27]. Bhar [28] formulated the mathematical model of compact stars by using the equation
of state for the quintessence field. Her obtained model is consistent with the observed values.
In the same year (2015), Bhar [29] also studied a new model for compact objects composed
of the mixture of matters by taking benefit from the MIT bag model equation of state.
She also compared their results with the observational values and observed the consistency
which support the more realistic behavior of her presented model. Recently, we (Abbas and
Shahzad) [30] have also constructed a new model of compact stars with the quintessence field
in the Rastall theory of gravity. We have presented a comparative analysis of obtained results
with the observational constraints and General Relativity and revealed that our model is more
consistent with the observational values. Moreover, some interesting studies incorporating
the dark energy equation of state (in particular quintessence field) can be found in [31]-[35].
Kumar et al. [36] studied a charge compact stars model by using the Vaidya-Tikekar [37]
geometry for one of the metric potentials for isotropic fluid. Recently, Thirukkanesh et al.
[38] generalized the Vaidya-Tikekar model for superdense stars by considering the specific
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choices of the metric potential and pressure anisotropy. Bhar [39] has studied the compact
star model using the conformal Killing vector technique in the presence of quintessence field
but actually ignored the contribution of quintessence field. Indeed, in the present study, we
have studied the effects of the quintessence field in the modeling of compact objects.

In the present study, motivated by the above discussion and ever growing interest of
the dark matter, we develop a new mathematical model for compact celestial objects in
the quintessence field by considering the conformal motion in the Vaidya-Tikekar geometry.
Several physical investigations have been done to observe the physical plausibility of the pre-
sented solution. We organize our study as: next section deals with the formulation of CKVs
and the explicit expression for the gravitational potential corresponding to these vectors. In
sec. 3, we formulate the field equations in the quintessence field using the CKVs generated in
the previous section. In sec. 4, we will presented some physical behavior of obtained solution
to analyze the necessary physical conditions and the last section contains the concluding
remarks of our findings.

2 The Conformal Killing Vector (CKV)

To pursuit the natural link between geometry and matter using the field equations, an ef-
ficient approach is to use inheritance symmetry. The symmetry arises from the CKV s is
usually considered as inheritance symmetry. Although, one of the important features of the
CKV technique is that, the partial differential equations, which are highly nonlinear can be
converted to the ordinary differential equations and hence can be dealt easily. The conformal
Killing equation has the form:

Lζgij = ζi;j + ζj;i = Υgij, (1)

In the above equation L represents the Lie derivative of gij, depicting the interior grav-
itational field of the celestial object with respect to the vector field ζ and Υ denoting the
conformal factor. It is worthwhile to discuss here that, even with the static metric, ζ and
Υ need not to be static [40, 41, 42]. However in the present context, we used the static ζ

and Υ [43, 44]. Moreover, the above equation provides killing vector for Υ = 0, and for
Υ = constant, Eq. (1) yields homothetic vector, whereas for Υ = Υ(x, t) in Eq. (1) produces
conformal vectors. It can also be noticed here that for Υ = 0, the considered spacetime be-
comes asymptotically flat, inferring that the Weyl tensor will also vanishes. Thus the CKV s

offer a profound understanding about spacetime geometry.
Now, to generate explicit gravitational potential with the aid of eq. (1), we consider a

static and spherically symmetric space-time as

ds2 = −eµ(r)dt2 + eλ(r)dr2 + r2(dθ2 + sin2 θdφ2), (2)

where µ(r) and λ(r) represents the gravitational potential functions. Manipulation of eq. (1)
along with eq. (2) generates the following relations

ζ1µ′ = Υ, (3)

3
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ζ1 =
Υr

2
, (4)

ζ4 = B1, (5)

ζ1λ′ + 2ζ1,1= Υ, (6)

B1 is a constant.
Where 1 and 4 represent r and t coordinates respectively. The above four equations provide
the following relations

eµ = B2
2r

2. (7)

eλ = (
B3

Υ
)2, (8)

ζ i = B1δ
i
4 + (

Υr

2
)δi1. (9)

Here B2 and B3 are integrating constants.

3 Field Equations and their solution

In this section, we formulate the Einstein field equations in the presence of quintessence like
field defined by the parameter ωq satisfying −1 < ωq < −1

3
. Thus the field equations take

the following form:
Gικ = K(Tικ + τικ). (10)

here τικ is the energy momentum tensor of quintessence field, K = 8πG
c4

is a coupling constant
and Gικ is the Einstein tensor. It has been argued by the Kiselev [45] that the components
of the tensor τικ need to fulfill the condition of linearity and additivity. Thus Corresponding
to the different signatured line element, the components of τικ can be written as

τ tt = τ rr = ρq, (11)

τ θθ = τ
φ
φ =

3ωq + 1

2
ρq, (12)

here ωq is the quintessence parameter with −1 < ωq < −1
3
.

The energy momentum tensor for the normal matter can be obtained as:

Tικ = (ρ+ pr)uιuκ + ptgικ + (pr + pt)ζιζκ (13)

4
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Here uι vector is the fluid 4-velocity and ηι is the space like vector which is perpendicular to
uι which satisfying the constraints uιuκ = −ζ ιζκ = 1 and uιηκ = 0. pt, pr and ρ are respec-
tively transverse pressure , radial pressure and energy density. Thus by using the relativistic
units G = c = 1 and from eq. (10) the Einstein field equation can be written as:

e−λ

(

λ′r − 1

r2

)

+
1

r2
= 8π(ρ+ ρq), (14)

e−λ

(

µ′r + 1− eλ

r2

)

= 8π(pr − ρq), (15)

e−λ

2

(

µ′

2
(µ′ − λ) +

1

r
(µ′ − λ) + µ′′

)

= 8π[
ρq

2
(3ωq + 1) + pt], (16)

The manipulation of eqs. (7)-(9) with eqs. (14)-(16) provide the following set of equations.

−
2ΥΥ′

rB2
3

+
1

r2
−

Υ2

r2B2
3

= 8π(ρ+ ρq), (17)

3Υ2

r2B2
3

−
1

r2
= 8π(pr − ρq), (18)

2rΥΥ′ +Υ2

B2
3r

2
= 8π

(

ρq

2
(3ωq + 1) + pt

)

. (19)

The above system of equations contains three independent equations having five unknowns
viz. Υ, ρq, pt, pr and ρ which we have to solve simultaneously to attain the required result.
As it is difficult task to achieve an exact solution to the Einstein field equations due to their
high nonlinearity. Therefore, we reduce the number of unknown functions by considering the
well studied form of metric potential [37]

eλ =
1− k r2

R2

1− r2

R2

, (20)

where k and R be the parameters characterizing the geometry of the star. This ansatz
of Vaidya-Tikekar is well motivated physically and has been used by different authors to
study the relativistic compact objects, Tikekar [46] and Maharaj and Leach [47] have studied
the same ansatz for uncharged superdense star whereas Kumar et al. [48] have used this
ansatz for charged superdense star. Thus by using this ansatz model has been facilitated
in an interesting geometric mode by deviating from sphericity of 3-space geometry. It may
be notice here that the metric potential confine the geometry of 3-dimensional hypersurface
(t = const.) to be spheroidal and this hypersurface turn into spherical for k = 0 and provides
a Schwarzschild interior solution, whereas the hypersurface (t = const.) becomes flat for
k = 1. Thus, here k < 1 and the metric potential is non-singular at the center and is
well-behaved for r < R.

Using eqs.(8) and (20), we obtain the value of Υ as

5

Page 5 of 16

https://mc06.manuscriptcentral.com/cjp-pubs

Canadian Journal of Physics



For Review
 O

nly

Υ2 =
B2

3(r
2 −R2)

kr2 −R2
. (21)

Using eq. (21) in (17)-(19) we get the following system of equations

(k − 1)(kr2 − 3R2)

(R2 − kR2)2
= 8π(ρ+ ρq), (22)

2R2 + r2(k − 3)

r2(R2 − kr2)
= 8π(pr − ρq), (23)

1

r2

(

r2 −R2

kr2 −R2

)

+
2R2(k − 1)

(R2 − kr2)2
= 8π

(

pt + (
3ωq + 1

2
)ρq

)

. (24)

Again note that from (22) -(24), we have three independent equations containing four un-
knowns namely, matter density, radial pressure, transverse pressure and quintessence density,
i.e., ρ, pr, pt and ρq respectively .
Now to solve the above system of equations, we consider a usual linear equation of state, i.e.,
radial pressure (pr) is proportional to the matter density (ρ):

pr = βρ, (25)

here β is the equation of the state parameter satisfying the constraint 0 < β < 1.
Using the above equation of state along with the eqs.(22)-(24), one can get the explicit rela-
tions for the matter variables as follows:

ρ =
1

8π(β + 1)

(

r2(k − 3)− 2R2

r2 (kr2 −R2)
+

(k − 1) (kr2 − 3R2)

(kr2 −R2)2

)

(26)

pr =
β

8π(β + 1)

(

r2(k − 3)− 2R2

r2 (kr2 −R2)
+

(k − 1) (kr2 − 3R2)

(kr2 −R2)2

)

(27)

ρq =
(k − 1) (kr2 − 3R2)

8π (kr2 −R2)2
−

1

8π(β + 1)

(

r2(k − 3)− 2R2

r2 (kr2 −R2)
+

(k − 1) (kr2 − 3R2)

(kr2 −R2)2

)

(28)

pt =
R2(k − 1)

4π (kr2 −R2)2
+

r2 −R2

8πr2 (kr2 −R2)
−

(k − 1) (3ωq + 1) (kr2 − 3R2)

16π (kr2 −R2)2

+
(k − 1) (3ωq + 1) (kr2 − 3R2)

16π(β + 1) (kr2 −R2)2
+

(3ωq + 1)(2R2 + r2(k − 3))

16πr2(β + 1)(kr2 −R2)
. (29)
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Figure 1: Variation of density, Pressure, and anisotropy. In the present study we take the
values of parameters as: R = 19, k = −0.049, β = 0.5, such that the obtained solution
remain physically acceptable.
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4 Some physical features

In this section, we will describe some physical aspects of the presented solution to check
the physical plausibility. In this connection we will compute some analytical expressions to
examine the physical features analytically as well as graphically.

4.1 Evolution of Energy density and pressure

For a physically acceptable solution, energy density and pressure (pr and pt in the present
case) should be positive throughout the configuration of the stellar object and monotonically
decrease towards the surface. To observe the graphical behavior of density and pressure, We
have plotted these function in Fig. 1 which revealed that pressure and density remains posi-
tive throughout the configuration and gradually diminish towards the surface. Moreover, we
have shown the graphical nature of quintessence energy density in Fig. 3 which is increasing
from center to surface with negative value.

4.2 Energy Equation

For any physically plausible configuration of the compact object some conditions depending
on the connections between the pressure (anisotropic in the present case) and energy density
must be satisfied within the entire region of the sphere. These relationship between density
and pressure normally termed as energy conditions including null energy conditions (NEC),
weak energy conditions (WEC) and strong energy conditions (SEC). These energy conditions
actually asserted that the total energy should be positive, as the negative energy would not
support the stable configuration. Indeed, these energy conditions are satisfied if the following
inequalities hold simultaneously:

ρ ≥ 0. (30)

ρ+ pr ≥ 0. (31)

ρ+ pt ≥ 0. (32)

ρ+ pr + 2pt ≥ 0. (33)

To check the behavior of the above energy condition for the present system we have plotted
the above inequalities in Fig. 2. Manifestly it can be seen (from Fig. 2) that all the relations
between energy density and pressure defined above are positive throughout the configuration
and hence the energy conditions are satisfied for our system which is a necessary condition
for physically reasonable solution.

4.3 TOV Equation

In this subsection, we will check the hydrostatic equilibrium of forces acting on the system,
i.e., gravitational force Fg, hydrostatic force Fh and anisotropic force Fa. In the case of
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Figure 2: Variation of energy conditions (Left plot) and behavior of different forces (involved
in the TOV equation) (Right plot).

uncharged and isotropic matter content this equilibrium condition has been studied by using
the so called Tolman-Oppenheimer-Volkov (TOV ) equation in [49, 50]. According to this
study, the system will be in the equilibrium if all the forces acting on the system will cancel
the effect of each other and the net force remains zero. In the present case, for an anisotropic
matter content the TOV equation can be modified by using the conservation of the energy
momentum tensor as:

−
MG(ρ+ pr)

r2
e

λ−µ

2 −
dpr

dr
+

2

r
(pt − pr) = 0, (34)

here MG(r) is the gravitational mass inside the fluid sphere of radius r can be obtained as:

M r
G =

1

2
r2e

µ−λ

2 µ′. (35)

The above expression can be generate from the Tolman-Whittaker mass formula as:

MG(r) =

∫ r

0

4πr2(T 0
0 − T 1

1 − T 2
2 − T 3

3 )e
(λ+µ)

2 dr (36)

plugging the eq. (35) in (34), we get the modified form of TOV equation.

Fg + Fh + Fa = 0, (37)

where the explicit form of the above forces can be defined as

Fg = −
µ′

2
(pr + ρ). (38)

Fh = −
dpr

dr
. (39)
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Fa = −
2

r
(pr − pt). (40)

The evolution of the above forces has been sown in Fig. 2 (right graph). We observed that
the gravitational force Fg counterbalanced the combined effect of anisotropic and hydrostatic
forces, i.e., Fa and Fh respectively. Thus under the combined effect of three forces our system
attains hydrostatic equilibrium (see Fig. 2).

4.4 Stability Analysis

4.4.1 Stability via Sound speed

To check the stability of the presented solution, we firstly used the causality condition and
secondly the cracking concept due to Herrera [51] and Abreu et al. [52]. Causality concept
demands that the squared sound speeds (transverse and radial in the present context) should
be positive and remain less than the speed of light (In the present context, we have used
the relativistic units in which the speed of light is unity i.e., c = 1) throughout the stellar
body. It means that, ν2

st and ν2
sr should be consistent with the constraints, 0 < ν2

st =
dpt
dρ

≤ 1

and 0 < ν2
sr = dpr

dρ
≤ 1 respectively. To check the range of the squared sound speeds for

causality, we have plotted their explicit relations in Fig. 3 (upper row) which eminently
show that squared sound speeds remain in the causality limit for the present solution which
is an important criteria to check the stability. Moreover, according to Abreu et al. [52]
investigations regarding the stability, the sound speed ν2

st and ν2
sr should satisfy the constraint

|ν2
st− ν2

sr| < 1, for a physically reasonable model. For the present study, Fig. 3 (lower graph)
shows that the mentioned inequality hold good within the entire configuration indicating that
there is no cracking and our system remains stable through the radius. Thus the present
solution is consistent with two important restrictions for stability.

For the present anisotropic configuration, squared radial velocity (ν2
sr) and squared trans-

verse velocity (ν2
st) of sound can be formulated as:

ν2
sr =

dpr

dρ
= β = 0.5 < 1. (41)

ν2
st =

f1(r)

4 (k2r6 + (1− 4k)kr4R2 + 3kr2R4 −R6)
,

where

f1(r) = 3ωq

(

k2r6(k(−β) + k + β − 3) + kr4R2(k(5β + 3)− 5β + 3)− 6kr2R4 + 2R6
)

−2R4
(

3kr2 + β + 1
)

+ kr2R2
(

r2(13(k − 1)β + 11k − 5) + 6(β + 1)
)

+kr4(kr2(k(−β) + k + β − 3)− 4(β + 1)) + 2R6 (42)
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Figure 3: Sound velocities and quintessence density.
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Figure 4: Evolution of adiabatic indices (Left Plot) and equation of state parameters (Right
Plot)
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4.4.2 Stability via Adiabatic Index

An other condition to check the dynamical stability of the system corresponding to the radial
adiabatic perturbation is suggested by Chandrasekhar in [53]. According to that criteria the
adiabatic index Γ should be greater than 4

3
. In the presence of anisotropy, Γ can be split

into Γr and Γt, radial adiabatic index and tangential adiabatic index respectively. For a
dynamically stable anisotropic and relativistic system Chan et al. [54] and Heinzmann [55]
suggested that these adiabatic indices should be > 4

3
. Indeed, the adiabatic index denotes

the ratio of two specific heats defined as:

Γr = ν2
sr

(

ρ+ pr

pr

)

(43)

Γt = ν2
st

(

ρ+ pt

pt

)

(44)

To check the validity of this condition for stability, we graphically evaluate the explicit
expressions of Γr and Γt in Fig. 4 (Left Plot). It can be observed that both expressions meet
the condition of dynamical stability, i.e., Γr >

4
3
and Γt >

4
3
. Thus our solution fulfill another

important condition for stability.

4.5 Equation of State (EoS)

The barotropic equation of state in its simplest form can be expressed as pi = βiρ, where
βi is EoS parameter corresponds to tangential and radial directions. Thus in the present
study for anisotropic matter configuration, both tangential and radial EoS parameters can
be defined as:

βt =
pt

ρ
, βr =

pr

ρ
(45)

For any physically acceptable solution, the values of these parameters remain in the range
(0, 1). We have shown the evolution of these parameter in Fig. 4 (Right Plot) and observed
that the values of βr and βt are consistent with the interval (0, 1) and also the matter content
in our consideration is non-exotic in nature [56].

4.6 Measure of Anisotropy

One of the important features for the physical solution is the nature of anisotropy which can
be measure as ∆ = pt − pr and obtained as follows:

∆ =
f2(r)

16π(β + 1)r2 (R2 − kr2)2
, (46)
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f2(r) = 3ωq

(

kr4(k(−β) + k + β − 3) + r2R2(3(k − 1)β + k + 3)− 2R4
)

+kr4(−(k + 3)β + k − 3) + r2
(

R2(15kβ + 5k − 7β − 1)− 2(β + 1)
)

+2R2
(

−(2β + 1)R2 + β + 1
)

For positive ∆, i.e., pr < pt, the force produced due to anisotropy will be repulsive and
directed outward, whereas for negative ∆, i.e., pr > pt, the anisotropic force will be attrac-
tive in nature and inward directed. We present the profile of anisotropy for our system in
Fig.1 (Lower right plot), which illustrates the positive behavior of ∆ and produces repulsive
anisotropic force, which support the configuration of more massive object [57].

5 Conclusion

Motivated from the recent evidences about the accelerated expansion of our cosmos, many
researchers have devoted their attention to develop the dark energy models during the last
few decades, which is a suitable candidate to explain this phenomenon. In this sequence, in
the present study, we develop a new exact solution of Einstein field equations in the Vaidya-
Tikekar geometry in the presence of quintessence field characterized by the parameter ωq

constrained as −1 < ωq < −1
3
. For this investigation, we have taken benefit from the

conformal Killing vector technique and have used a specific form of the metric potential.
We have explored some matter variables to inspect their behavior analytically as well as
graphically. Some salient features of the present analysis are given below:

• Density and pressure: From Fig.1, we observe that as radius approaches to 0, pres-
sure and density blow up which infer that the core of the star is highly compact and the
presented solution is valid outside the core of the star. We could not find the surface
density as there is no cut on the r-axis (radius of the star) in the plot of the radial
pressure whereas density and pressure (both transverse and radial) remains positive
within the entire region of the star.

• Energy conditions: In Fig.2 (Left plot), we have shown that the relationship between
pressure (radial and transverse in the present case) and density defined in eqs. (30)-(33)
are satisfied for our present system which is also an important condition for physically
plausible solution.

• TOV equation: Our system also attained the hydrostatic equilibrium which we have
studied by using Tolman-Oppenheimer-Volkoff equation. It can be seen that there are
three forces involved in the system namely, gravitational (Fg), hydrostatic (Fh) and
anisotropic (Fa). We observed that the combined effect of repulsive forces including
hydrostatic Fh and anisotropic Fa has been counterbalanced by a single attractive force
Fg. Thus the net effect of applied forces on the system vanishes and hence the presented
solution maintains the equilibrium (see Fig.2 (Right plot)).
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• Stability: For the present solution, we have analyzed the stability via. causality
condition, cracking concept and adiabatic index. From Fig.3 (upper row) it can be
seen that the quantities ν2

sr and ν2
st remain in the limit [0, 1] which confirm the causality

condition and the inequality |ν2
st − ν2

sr| ≤ 1 hold good which confirm that there is no
cracking (lower left plot). Moreover, we have examined from Fig.4 (Left plot) that the
adiabatic indices Γr and Γt remain greater than 4

3
which also indicate the stability of

the presented solution.

• Anisotropy: We have analyzed the nature of the anisotropy factor ∆ in Fig.1 (2nd
row right plot). One can see that ∆ > 0 throughout the configuration, which show
that the anisotropic force produced due to the anisotropy is repulsive and support the
formation of more ultra-compact object.

• Equation of State: We inspected the demeanor of equation of state parameters
corresponding to the transverse and radial directions βt and βr respectively (Fig.4
(Right plot)). We studied that βt and βr remain within the limit (0,1), indicating
that the matter content is non-exotic in nature, which is another indication for good
behavior of presented solution.
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