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We investigate a single field model in the context of the constant-roll inflation in which inflaton
moves down to the minimum point of the potential with a constant rate of rolling. We use a
quintessential inflationary model obtained by a Lorentzian function which is dependent on the
number of e-folds. We present the inflationary analysis for the model and find the observational
constraints on the parameters space using the observations of CMB anisotropies i.e. the Planck and
Keck/array datasets. We find the observationally acceptable values of the Width of the Lorentzian
function as 0.3 < Γ ≤ 0.5 at the 68% CL and Γ ≤ 0.3 at the 95% CL when ξ = 120, |β| = 0.02 and
N = 60. Also, we acquire the observationally favoured values of the amplitude of the Lorentzian
function as 400 < ξ ≤ 600 at the 68% CL and ξ ≤ 400 at the 95% CL when Γ = 0.1, |β| = 0.02
and N = 60. Moreover, we study the model from the Weak Gravity Conjecture approach using the
swampland criteria.
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I. INTRODUCTION

The theory of inflation presents the most successful model to explain the phenomena in the early universe by
considering a rapid and large expansion in the scale factor. In addition to removing the shortcomings of the hot big
bang model, inflation provides an acceptable mechanism to generate the primordial density perturbations which are
known as the main candidate for the structure formation of the universe and also the temperature anisotropy of the
cosmic background photons. Moreover, the tensor perturbations which form the primordial gravitational waves have
been produced during the inflationary epoch [1–5]. In the standard picture, a single scalar field is the main responsible
to push the inflationary era. Inflaton slowly rolls down from the peak of the potential to the down under the slow-roll
approximation. Finally, the inflaton decays to the particles and releases enough energy to reheat the supercooled
universe [6, 7]. Using the inflationary observations coming from the Planck and other related satellites, we find a few
single field models in good agreement with the observational datasets [8–10] and the majority of them are ruled out
or restricted [11]. Also, these models do not show non-Gaussianity in their spectrum because of the existence of the
uncorrelated modes. [12]. Therefore, if the future observations show a non-Gaussianity feature in the spectrum, the
single field models will be situated in uncertainty. To escape such problems, it is proposed to go beyond the slow-roll
approximation in order to create some non-Gaussianity in the perturbations spectrum of single field models. Hence,
constant-roll inflation is suggested in which the inflaton rolls down with a constant rate

ϕ̈ = βHϕ̇ , (1)

where β = −(3 + α) and α is a non-zero parameter [13–15]. Going beyond the slow-roll approach is also addressed
in the ultra slow-roll inflation in which we deal with a non-negligible ϕ̈ in the Klein-Gordon equation ϕ̈ = 3Hϕ̇
[16–19]. It is also found in the fast-roll realm where a fast-rolling phase is assumed at the start of inflation and then
is followed by the standard slow-roll after a few e-folds [20–22]. Recently, the constant-roll inflationary approach has
been intensively engaged so that one can find a wide range of the inflationary models in this content, see, e.g., [23–45].

In this paper, we consider a quintessential inflationary model [46] introduced by a Lorentzian function which is
dependent on the number of e-folds in order to obtain the slow-roll parameters. This approach studied in [47–50]
for a single field model. It was shown that the corresponding inflationary model in addition to explain the early
time acceleration can describe the late-time acceleration phase (dark energy), asymptotically. The above discussion
motivates us to arrange the paper as follows. In §II, we present the constant-roll inflationary analysis for the model
using the Lorentzian function. We analyze the obtained results of the model by comparison with the inflationary
observations in §III. In §IV, we investigate the model from viewpoint of the Weak Gravity Conjecture using the
swampland criteria. Conclusions are presented in §V.
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II. CONSTANT-ROLL INFLATION

We start with a Lorentzian function for the first slow-roll parameter [48]

ε1 ≡ ε(N) =
2ξΓ

π(4N2 + Γ2)
, (2)

as a function of e-folds N which is defined by eN = (af/ai). Also, ξ and Γ are the amplitude and the width of the
Lorentzian function. Using the definition of the first slow-roll parameter ε1 = −H ′/H, we find an expression for the
Hubble parameter

H = C exp
(
− ξ

π
arctan (

2N

Γ
)
)
, (3)

where C is an integration constant. We can calculate other slow-roll parameters using the generator formula εn+1 =
d ln |εn|/dN as follow

ε2 = − 8N

Γ2 + 4N2
, ε3 =

1

N
− 8N

Γ2 + 4N2
. (4)

In order to study the model in the context of the constant-roll approach, we set

ε2 = − ϕ̈

Hϕ̇
≡= −β, (5)

that leads to

β =
8N

Γ2 + 4N2
. (6)

Now, let’s apply the formalism for a single field inflationary model. We consider the action

S =

∫
d4x
√
−g
(
R− 1

2
gµν∂µϕ∂νϕ− V (ϕ)

)
(7)

where g is the determinant of the metric gµν , R = gµνRµν is the Ricci scalar. Also, here we suppose κ2 ≡ 8πG = 1.
Using the energy-momentum tensor of a perfect fluid and Friedman-Robertson-Walker (FRW) metric ds2 = −dt2 +
a(t)2(dx2 + dy2 + dz2) for a homogeneous, isotropic and spatially flat universe, the dynamical equations are given by

3H2 =
ϕ̇2

2
+ V, 2Ḣ = −ϕ̇2, (8)

where H ≡ ȧ/a is the Hubble parameter, and the dot represents the derivative with respect to ϕ. Moreover, by
varying the action (7) with respect to ϕ, we find the Klein-Gordon equation

ϕ̈+ 3Hϕ̇+
dV

dϕ
= 0. (9)

From the Friedmann equation (8) and using the obtained expression of the Hubble parameter (3) and the relation
(6), we find

V (N) = Ce−
2ξ
π arctanh

(
2N
Γ

)(
1− Γξβ

12πN

)
, (10)

that using the number of e-folds

N =
Γ

2
sinh

(√ π

ξΓ
ϕ
)
, (11)

the potential (10) takes the following form

V (ϕ) = Ce
− 2ξ
π arctanh

(
sinh
(√

π
ξΓϕ
))(

1− ξβ

6π
csch

(√ π

ξΓ
ϕ
))
, (12)
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Figure 1: The first slow-roll parameter ε (2) and the Hubble parameter H (3) plotted versus the number of e-folds N (a and b). The
potential (12) plotted versus the scalar field ϕ (c). The plots are drawn for different values of the width Γ when |β| = 0.02 and the
amplitude ξ is ∼ 120. Also, C = 10−29 for the panel (b) and C = 10−52 for the panel (c).

where C is the integration constant. The panels (a) and (b) of Figure 1 show the behaviour of the first slow-roll
parameter ε (2) and the Hubble parameter H (3) versus the number of e-folds N . The panel (c) presents the
behaviour of the potential (12) versus the scalar field ϕ. The panels are drawn for different values of the width Γ
when |β| = 0.02 and the amplitude ξ ∼ 120. Also, C = 10−29 for the panel (b) and C = 10−52 for the panel (c). In
the presence of the constant-roll parameter β, the potential still shows a quintessential inflationary manner since it
supplies the late-time acceleration condition, asymptotically. The slow-roll parameters of the model

ε ≡ 1

2

(
V ′

V

)2

, η ≡ V ′′

V
, ζ2 ≡ V ′V ′′′

V 2
, (13)

are calculated as shown in (A1 - A3). Note that inflation ends when the condition ε = 1 or η = 1 is fulfilled. The
number of e-folds of the model takes the following form

N ≡
∫ ϕi

ϕf

1√
2ε
dφ ' 3Γ

(β − 12)
e
√

π
ξΓϕ, (14)

and then the spectral index and tensor-to-scalar ratio

ns = 1− 6ε+ 2η, r = 16ε, (15)

are obtained as shown in (A4) and (A5).

III. CONSTRAINTS FROM CMB ANISOTROPIES

In Figure 2, we present the ns − r constraints coming from the marginalized joint 68% and 95% CL regions of the
Planck 2018 in combination with BK14+BAO data on the Lorentzian quintessential inflationary model (12) introduced
in the context of the constant-roll approach. The dashed and solid lines represent N = 50 and N = 60, respectively.

The left panel of Figure 2 is plotted for different values of the width Γ when |β| = 0.02 and the amplitude ξ is ∼ 120.
For N = 50, the majority of the points show a reasonable value of tensor-to-scalar ratio r despite disfavored values of
the spectral index ns. Considering the 68% CL, we find that the obtained values of r and ns for the width Γ ≤ 0.1

are in good agreement with the observations. Note that at the 95%, the panel does not show any compatibility with
the observational datasets. For N = 60, the situation is quite better than N = 50. The panel reveals that the width
Γ > 0.5 is ruled out by the Planck data while the widths 0.3 < Γ ≤ 0.5 and Γ ≤ 0.3 show observationally acceptable
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Figure 2: The marginalized joint 68% and 95% CL regions for ns and r at k = 0.002 Mpc−1 from Planck in combination with
BK14+BAO data [51] and the ns − r constraints on the model (12). The dashed and solid lines represent N = 50 and N = 60,
respectively. The left panel is plotted for different values of the width Γ when |β| = 0.02 and the amplitude ξ is ∼ 120. The right panel is
plotted for different values of the amplitude ξ when |β| = 0.02 and the width Γ is 0.1.

Figure 3: The behaviour of the swampland parameter c versus the amplitude ξ for different widths Γ (a). The behaviour of the
swampland parameter c versus the width Γ for different amplitudes ξ (b). The behaviour of the swampland parameter c′ versus the
amplitude ξ for different widths Γ (c). The behaviour of the swampland parameter c′ versus the width Γ for different amplitudes ξ (d).
The plots are drawn for |β| = 0.02 and N = 60.
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values of ns and r at the 68% and 95% CL, respectively. The right panel of Figure 2 is plotted for different values of
the amplitude ξ when |β| = 0.02 and the width Γ is 0.1. In the case of N = 50, the obtained values of r and ns are out
of the observational region in exception the amplitude ξ ≤ 100 that is compatible with the observations at the 68%
CL. For N = 60, the panel shows that the results are fully consistent with the CMB observations for 400 < ξ ≤ 600
and ξ ≤ 400 at the 68% and 95% CL, respectively.

IV. SWAMPLAND CRITERIA

String theory as a developed theory in particle physics which can describe many cosmological phenomena in the early
universe without taking into account a quantum gravity theory. String landscape and swampland regions included
with the low-energy effective field theories are compatible and non-compatible with string theory, respectively. Hence,
in order to embed the effective field theories into stringy quantum gravity, we require to distinguish two regions
from each other. Weak Gravity Conjecture (WGC) is the most well-defined tool to achieve the demanded separation
[52–57]. Let’s study the model from the viewpoint of WGC using the conditions of the swampland de sitter conjecture

√
2ε ≥ c, |η| ≤ −c′, (16)

where c and c′ are constant parameters. In Figure 3, we present the behaviour of two swampland parameters c and
c′ versus the width Γ and the amplitude ξ of the Lorentzian function when |β| = 0.02 and N = 60. From the panels
(a) and (c), we find the swampland conditions c ≤ 0.07 and c′ ≤ −0.012 when the observationally favoured values
Γ = 0.1 and ξ ≤ 600 are considered. Also, the panels (b) and (d) almost present the same conditions when we focus
on the values ξ = 100 and Γ ≤ 0.5 which are compatible with the observations.

V. CONCLUSION

In the present manuscript, we have investigated a quintessential inflationary model which is driven by a Lorentzian
function in the presence of the constant-roll condition. We have calculated the slow-roll parameters and then the
spectral inflationary parameters in order to present a complete study of the model. Comparing the obtained results
with the Planck in combination with the BK14+BAO, we have found that the observationally allowed region of the
width of the Lorentzian function is 0.3 < Γ ≤ 0.5 at the 68% CL and Γ ≤ 0.3 at the 95% CL when |β| = 0.02 and the
amplitude ξ is ∼ 120. This result is obtained for N = 60 while the model is almost ruled out by the observations for
N = 50. As a secondary analysis, we have acquired the acceptable range of the amplitude ξ of the Lorentzian function
when the width is fixed Γ = 0.1, |β| = 0.02 and N = 60. We have figured out that the amplitudes 400 < ξ ≤ 600
and ξ ≤ 400 are in good agreement with the CMB observations at the 68% and 95% CL, respectively. Finally, we
have found the swampland conditions c ≤ 0.07 and c′ ≤ −0.012 using the observational constraints on the width
and the amplitude of the Lorentzian. The issue would be investigated in our future research, in particular, how
works the reheating process in the model. Moreover, studying the non-Gaussianity properties of the model could be
very interesting since the future observations of CMB will take into account the non-Gaussianity factor in the power
spectrum.
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Appendix A: The slow-roll and spectral parameters of the model

The slow-roll parameters of the model:

ε =
π2(β − 12)2 cosh2 x+

(
4πβξ(β − 12) sinhx+ (24β − 288)π2 + 4β2ξ2

)
cosh2 x+ 48πβξ sinhx− 4β2ξ2 + 144π2

2πΓ cosh2 x sinh2 x
(

36π2 cosh2 x− 12πβξ sinhx+ β2ξ2 − 36π2
) ,

(A1)

η =
π2(12− β) cosh4 x−

(
6πξ(β − 4) sinhx+ (β + 24)π2 + 4βξ2

)
cosh2 x+ 2πξ(β − 12) sinhx+ 4βξ2 + 12π2

cosh2 x
(

6π2Γ sinh3 x− Γπξβ sinh2 x
) ,

(A2)

ζ2 =
1

π2Γ2 cosh4 x sinh4 x
(

36π2 cosh2 x− 12πβξ sinhx+ β2ξ2 − 36π2
){π2(β − 12)2 cosh8 x+ π2 cosh6 x

(
16(β − 9

2
)×

×(β − 12)πξ sinhx+ 5π2(β − 144) + 4ξ2(13β2 − 120β + 144)
)

+ cosh4 x
(

4πξ sinhx
(
(β2 + 120β − 648)π2 + 2βξ2 ×

×(7β − 24)
)

+ 1296π4 − 4(19β2 − 312β + 432)ξ2π2 + 16β2ξ4
)

+ cosh2 x
(

4πξ sinhx
(
(β2 − 78β + 648

)
π2 − 4β(5β −

−24)ξ2) + (24β − 1008)π4 + 32ξ2(β2 − 32β + 54)π2 − 32β2ξ4
)

+ 24ξπ sinhx
(

4(β − 9)π2 + ξ2β(β − 8)
)

+ 288π4 −

−8ξ2(β2 − 36β + 72)π2 + 16β2ξ4

}
, (A3)

where x ≡
√

π
ξΓϕ.

The spectral index of the mode:
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ns =
1

π
(
(β − 12)2N2 + 9Γ2

)2(
(β − 12)N + 3Γ

)2(
(β − 12)N − 3Γ

)2(
π(β − 12)2N2 − ξβΓN(β − 12)− 9πΓ2

)2

×

{
π3(β − 12)12N12 − 2(β − 12)11

(
(Γξ + π

)
β − 12π)π2N11 −

(
ξ(−Γξ + π)β2 + 24πξβ + 18π(πΓ + 8ξ)

)
(β − 12)10

×ΓπN10 − 18(β − 12)9Γ2
(

(−πξΓ + 7π2 − 16ξ2)β + 60π2
)
πN9 − 9

(
(−4π2ξ + 16ξ3)β2 − 192π2ξβ + 9π2(πΓ− 64ξ)

)
×(β − 12)8Γ3N8 − 108(β − 12)7Γ4

(
8β2ξ2 + (−3πξΓ + 9π2 + 72ξ2)β − 180π2

)
πN7 + 162(β − 12)6Γ5

(
(−πξ2Γ + 5π2ξ

+16ξ3)β2 − 168π2ξβ + 18π2(πΓ− 24ξ)
)
N6 + 972(β − 12)5Γ6

(
8β2ξ2 + (−3πξΓ + 9π2 + 72ξ2)β − 180π2

)
πN5 − 729

×
(

(−4π2ξ + 16ξ3)β2 − 192π2ξβ + 9π2(πΓ− 64ξ)
)

(β − 12)4Γ7N4 + 13122(β − 12)3Γ8
(

(−πξΓ + 7π2 − 16ξ2)β + 60π2
)

×πN3 − 6561
(
ξ(−Γξ + π)β2 + 24πξβ + 18π(πΓ + 8ξ)

)
(β − 12)2Γ9πN2 + 118098(β − 12)Γ10

(
(Γξ + π)β − 12π

)
π2N

+531441π3Γ12

}
(A4)

The tensor-to-scalar ratio of the model:

r =
8N2(β − 12)4Γξ

(
π(β − 12)4N4 + 12ξβΓ(β − 12)2N3 +

(
18πβ2Γ2 − 2592πΓ2

)
N2 − 108NβΓ3ξ + 81πΓ4

)2

π
(
(β − 12)2N2 + 9Γ2

)2(
(β − 12)N + 3Γ

)2(
(β − 12)N − 3Γ

)2(
π(β − 12)2N2 − ξβΓN(β − 12)− 9πΓ2

)2

(A5)
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