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Abstract—This paper presents a new motion planning primitive
to be used for the iterative steering of vision-based autonomous ve-
hicles. This primitive is a parameterized quintic spline, denoted as

-spline, that allows interpolating an arbitrary sequence of points
with overall second-order geometric ( 2-) continuity. Issues such
as completeness, minimality, regularity, symmetry, and flexibility
of these 2-splines are addressed in the exposition. The develop-
ment of the new primitive is tightly connected to the inversion con-
trol of nonholonomic car-like vehicles. The paper also exposes a
supervisory strategy for iterative steering that integrates feedback
vision data processing with the feedforward inversion control.

Index Terms—Automatic steering, autonomous vehicles, dy-
namic inversion, iterative steering, lateral control, machine vision,
path generation, quintic 2-splines.

I. INTRODUCTION

T HE MOTION planning problem for car-like vehicles or, in
general, nonholonomic systems, has stimulated a signifi-

cant variety of research contributions [1]–[3]. To cite just a few
approaches we have Lie-algebraic techniques, geometric phases
methods, control input parametrizations, and optimal planning
(a survey reviewing motion planning methodologies with ex-
tensive bibliography is reported in [1]). Another planning tech-
nique is the differential flatness approach of [4], [5]. In par-
ticular, Rouchonet al. [6], [7] showed, for a car with multiple
trailers, how to obtain an open-loop control input starting with
an appropriate trajectory planning on the so-called flat output.
A distinguished feature of this approach that requires the flat-
ness property of the relevant system is the obtaining of the input
function through finite order derivation of the desired flat output
without involving any integration. With regard to this input syn-
thesis, the flatness approach implies a dynamic inversion proce-
dure performed on a system with trivial zero dynamics [8].

The necessity to provide continuous-curvature paths for the
navigation of autonomous vehicles was stated by Nelson [9],
[10] who devised two distinct types of paths, Cartesian quintics
for lane changing maneuvers and polar splines for symmetric
turns. These primitives were conceived to smoothly connect
line segments so that they can be used to interpolate points with
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fixed zero curvature. Conversely, pursuing a (flatness) inversion
control for the iterative steering of an autonomous front-wheel
driving vehicle, we focus on Cartesian continuous-curvature
path planning and derive a new motion planning primitive
called -spline. It is a completely parameterized quintic spline
that allows the interpolation of an arbitrary sequence of points
while guaranteeing an overall second-order geometric (-)
continuity. This new primitive permits assigning arbitrary
tangent angle and curvature at each point.

The acquisition of the required data by the path planning
strategy is performed by machine vision. Some errors may
occur using this technique, and, thus, specific recovery strate-
gies have been considered. These image processing techniques
derive from the work on autonomous driving systems de-
veloped in the framework of the ARGO project [11]. The
ARGO prototype vehicle is equipped with a vision system
and autonomous steering capabilities. The control strategy
discussed in this paper will replace the current gain scheduled
proportional controller.

Overall, the proposed iterative steering (cf. Section IV) is
another addition to the rich research field of vision-based lateral
control strategies for autonomous navigation. The work of
Dickmanns and co-researchers [12]–[14] has been especially
relevant in this field. They developed a temporal data-fusion
approachbasedonextendedKalman filtering for thestateestima-
tion of the vehicle with respect to its near environment and road
visualscene; thevehicleautonomousguidancewasthenachieved
through a full-state feedback control. Another successfully
research effort has been the NavLab project [15], [16] and, in par-
ticular, the Rapidly Adapting Lateral Position Handler (RALPH)
[17] was used for the steering guidance based on the on-line and
robustvisualestimationof thevehicle lateraloffset, relative to the
lane center, and of the upcoming road curvature. A survey with
further references and some comparisons of steering strategies
forvision-basedautonomousnavigation is reported in [18].

The paper’s organization is described next. Section II de-
scribes the inversion based guidance of a car-like vehicle and
motivates the posed polynomial -interpolation problem. The
quintic -splines are derived in Section III reporting the main
result (Proposition 2), an evidence for minimality (Property 1), a
regularity result (Property 2), line segment generation (Property
3), and the symmetry of the-parameterization (Property 4).
Section IV exposes a supervisory strategy for iterative steering
that integrates feedback vision data processing with feedfor-
ward inversion guidance. A description of the acquisition of
the required data by means of visual techniques is included in
Section V. The paper ends with the final remarks of Section VI.

1524-9050/02$17.00 © 2002 IEEE
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Fig. 1. The car-like vehicle and its variables.

II. I NVERSION BASED GUIDANCE OF A CAR-LIKE

VEHICLE VIA G -PATH PLANNING

Notation: A curve on the -plane can be described by
a parameterization with real parameter

. The associated “path” is the image of
under the vectorial function . We say that the curve
is regular if there exists over and

. Associated with every point of a regular curve is
the orthonormal moving reference system that
is congruent with the axes of the -plane and where
denotes the unit tangent vector of . From Frenet formulae,
the curvature vector is where is the scalar cur-
vature with well defined sign. The Euclidean norm of a vector

is denoted with .
We consider as a motion model of a vehicle the following

simplified nonholonomic system:

(1)

where (see Fig. 1) and are the Cartesian coordinates of the
rear axle midpoint, is the velocity of this midpoint (to be
considered constant), is the vehicle’s heading angle,is the
inter-axle distance, and, the front wheel angle, is the control
variable to steer the vehicle.

A system is defined (differentially) flat if there exists a set
of outputs, equal in number to the number of inputs, and usu-
ally called flat outputs such that all states and inputs can be
expressed in terms of these flat outputs and their finite-order
derivatives [4], [19]. As known, system (1) is a flat system with
respect to inputs and and the flat outputs are simplyand
[6]. For the case at hand, with a slight modification of the stan-
dard flatness approach we consideras a constant parameter
and, on the basis of a suitable Cartesian path planning, we de-
rive the control input by means of a dynamic inversion pro-
cedure that does not still require any integration, cf. Proposition
1 and expression (3). Now introduce the following definitions.

Definition 1 ( - and -Curves [20]): A parametric curve
has first-order geometric continuity and we say is a

-curve if is regular and its unit tangent vector is a contin-
uous function along the curve. The curve has second-order
geometric continuity and we say is a -curve if is a

-curve and its curvature vector is continuous along the curve.

Fig. 2. TheG -interpolation problem on thefx; yg-plane.

Definition 2 ( - and -Paths): A path of a Cartesian
space, i.e., a set of points of this space, is a-path ( )
if there exists a parametric -curve whose image is the given
path.

A basic result on the vehicle’s motion of model (1) is stated
below, originally presented in [21].

Proposition 1: A path on plane is generated by ve-
hicle model (1) via a continuous control input if and only
if the -path is a -path.

From a control viewpoint the main consequence of the above
proposition can be described as follows. Given any-curve

with introduce the arc length function

(2)

and denote by its inverse function
that is evidently a continuous function. Moreover, the scalar cur-
vature is as well continuous over because is
a -curve. At the initial time , consider the state of model
(1) be given by . Then, applying
the continuous input

(3)

the vehicle’s motion from to exactly matches
the path of the given curve.

Consider a sequence of Cartesian points
on the plane. If a piecewise curve interpolating these
points can be generated with the requirement of being an
overall -curve, then, using the flat dynamic inversion control
given by (3), the vehicle can be steered to exactly intersects the
points of the sequence. Hence, it appears naturally to pose the
following problem.

Polynomial -Interpolation Problem: Determine the min-
imal-order polynomial curve that interpolates between given
points and with associated
unit tangent vectors defined by angles and and scalar
curvatures and (see Fig. 2). All the interpolating data

, , and can be arbi-
trarily assigned.

The data , , and represents the vehicle’s current
status at time , i.e., the coordinates and of the rear
axle midpoint, the heading angle, and the curvature given by

(4)

where is the steering angle at the instant. The data
, , and are the desired future status of the vehicle,
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iteratively assigned by the autonomous guidance supervisor (cf.
Section IV).

III. QUINTIC -SPLINES

To solve the posed interpolation problem, consider a quintic
polynomial curve , where

(5)

(6)

The interpolating conditions are the following:

(7)

(8)

(9)

where the unit tangent vector is given by .
The quintic polynomial curve satisfying all the above conditions
can be expressed as follows:

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

The real parameters , , appearing in expres-
sions (10)–(21) can be packed together to form the four-dimen-
sional vector so that the resulting parametric
curve be concisely denoted as or, informally, -spline .
Moreover, denote with the set given by the Cartesian product

. It follows the main finding of the section.

Proposition 2: Given any interpolating data , , and
, , , the parametric curve satisfies conditions

(7)–(9) for all . Conversely, given any quintic polynomial
curve with , satisfying (7)–(9) there
exists a parameter vector such that the quintic curve can
be expressed as .

The following lemma whose proof is omitted for brevity is
useful in proving the above proposition.

Lemma 1: Assigned any planar curve ,
its scalar curvature is given by

(22)

Proof of Proposition 2—Sufficiency:It can be proved by
direct computations. Indeed note that and

for all . Moreover, the following relations
hold for all :

(23)

(24)

Taking into account that and are strictly positive we have
and so that we derive for all

[conditions (8)]

(25)

(26)

Finally, using the Cartesian expression (22) for the curvature we
arrive at and for all .

Necessity:From conditions (7) we derive ,
, i.e., relations (10) and (16), and the equations

(27)

(28)

Define

(29)

and from the first of conditions (8) we deduce
and , i.e., relations (11) and (17), respectively.
Analogously, the equations

(30)

(31)

follow from the second of conditions (8).
By virtue of Lemma 1, the condition is equivalent

to

(32)

so that we infer

(33)

Analogously, condition can be written as
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and transformed to

(34)

Now introduce the real parametersand defined as

(35)

(36)

Equation (33) and definition (35) permit finding relations (12)
and (18)

In a similar way, equation (34) and the definition of can be
used to determine

(37)

(38)

From (27), (30), and (37) we obtain the linear equation system

The above system admits an unique solution in the unknowns
, , and . By using the previously found expressions

for and , after some computations we establish relations
(13)–(15). Analogously, considering (28), (31), and (38) we
arrive at the following system:

Again we have an unique solution in the unknowns, ,
and , and using (17) and (18), relations (19)–(21) can be
deduced.

Note that, cf. (29), and are the “velocity” parameters at
the beginning and end of the curve whereasand can be
described as the “twist” parameters.

Property 1: The curve is the minimal-order polyno-
mial curve interpolating any arbitrarily given data

, , and .
Proof: The argument is based on the already proven

Proposition 2. This result points out that the curve
characterizes all the polynomial curves of order at most five,
that interpolate the given endpoint data. Hence, if a lower-order
polynomial curve exists this must coincide with for
some appropriate .

Consider a particular interpolated data set ,
, , and . From

formulae (10)–(21) it is easy to derive

(39)

(40)

Fig. 3. ���-splines interpolating given points.

Evidently, from (40), it is not possible to interpolate the given
data with a fourth- or lower-order polynomial curve for any ar-
bitrary choice of .

Property 2: Denote with the interpolated data set (cf. the
definition of the -interpolation problem). The curve
is generically a regular curve over .

Proof: A sketch of proof is offered. Denote with
the vector of the interpo-

lated data. Hence, we can more precisely redenote the
curve as

With this notation is not a regular curve if and only
if there exists satisfying the following system of
fourth-order polynomial equations:

(41)

Hence, necessarily, the satisfaction of system (41) implies that
the associated resultant is zero

(42)

Relation (42) defines a one-dimensional manifold on .
This manifold has zero Lebesgue measure on , i.e.,

is generically not zero over . On the other hand,
if then the curve is regular so that the
statement of Property 2 follows.

Proposition 2 and Property 1 make evident that the devised
-spline is the solution to the posed polynomial -inter-

polation problem. In particular, Proposition 2 indicates that
the -spline is a complete parameterization of all fifth-order
polynomial curves interpolating the given endpoint data. This
fact alongside the closed-form expressions (10)–(21) is very
useful in performing optimal path planning [22]. On the other
hand, Property 2 shows that the-spline per se is generically a

-curve and interpolating a sequence of Cartesian points with
regular -splines results in an overall -curve composed with
quintic -splines. Fig. 3 exemplifies-splines interpolating
five points with assigned tangent angles and curvatures (see
Table I). It is apparent from the curvature plots of Fig. 4 that the
second spline is a good approximation of a clothoid whereas
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TABLE I
AN INSTANCE OFG -INTERPOLATEDDATA

Fig. 4. Plots of curvatures of the���-splines appearing in Fig. 3.

the third and fourth ones approximate circle arcs. This is
somewhat remarkable in spite of having chosen just one set of
-parameters: and for all the

splines. Better clothoid and circle approximations as well as
better lane-change curves can be obtained by choosing for each
spline an optimal set of-parameters [22].

The next result investigates the possibility to generate line
segments by means of the-splines.

Property 3: Define and assume
, , , and

. Then the path generated by is a line
segment for any .

Proof: The property proof is reported in [23].
A symmetry property with reference to the so-called “lane-

change” curve is exposed below (see Fig. 5).
Property 4: Assume and

and define . Moreover, consider
, , and

(43)

where and . Then it follows

(44)

, , .

Fig. 5. Symmetry in shaping a lane-change curve.

Fig. 6. The supervisory control scheme for vision-based autonomous
navigation.

Proof: By direct substitution into (10)–(21) of all the
posed assumptions and after some computation we have

(45)

Using the above expression (45) for we verify that re-
lation (44) holds for all , , and .

Besides symmetry, Property 4 points out the possibility of
shaping the lane-change by varying the “velocity” parameter

and the “twist” parameter
. This can be done in an optimal fashion as explained in

[22].

IV. SUPERVISORYSTRATEGY FORITERATIVE STEERING OF

VISION-BASED AUTONOMOUSVEHICLES

The overall control scheme for the iterative steering of a
vision-based autonomous car-like vehicle is shown in Fig. 6.
The controller kernel is given by the supervisor. It collects data
coming from the vision data system and, by interacting with
all the other functional blocks, imposes the steering strategy.
This is based on iterative steering and on a feedforward inver-
sion guidance exploiting the devised quintic -splines. The
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Fig. 7. Vision-based planning of theG -spline.

general concept of iterative-state steering was first introduced
by Lucibello and Oriolo [24] for general controllable systems.
In our context, the iterative steering is applied to pursue a lane
following or lane inserting task (cf. Section V) but it can be
used for more general navigation aims as well [21].

Fig. 7 aids in explaining the supervisory strategy. At time
the vehicle’s state is described, with respect to a chosen Carte-
sian reference system , by the position of the middle
point of the rear axle, the heading angle, and the curvature

computed using relation (4) (for simplicity, the reference
system could be chosen so that and

). The supervisor assigns a quintic-spline
as the planned path in order that the vehicle approaches the de-
sired path. According to (2) and (3) the corresponding open-loop
steering control is given by

(46)

where is the curvature of the -spline,
is the inverse function of the arc

length , and with
being the planned traversal time interval.

The supervisor can iteratively update the path planning and
the corresponding inversion guidance law (46) before the ve-
hicle has covered the whole-spline, i.e., control (46) can be
applied for with being a fraction of
( ). The first part of the -spline is less affected by the
interpolating data at , so the supervisor can help reducing the
sensitivity of the overall steering to errors in the vision data pro-
cessing. Moreover, a relatively fast replanning (i.e., a relatively
high frequency ) can improve the robustness of the steering
to modeling errors [21].

With regard to the path following convergence analysis, de-
note with the distance of the rear axle midpoint from the
desired path at time. The delineated iterative steering provides

an overall continuous steering control and guarantees conver-
gence to the desired path provided that for
each planning stage.

The actual assignment of the-spline also requires
the choosing of the interpolated end-path data, , , and
of the shaping vector parameter(see Sections II and III). With
some detail, the supervisor can act as follows. First, the interpo-
lation distance, , (see Fig. 7) is evaluated by the supervisor
on the basis of the vehicle velocity

if
if
if .

(47)

where and indicate the minimum
and the maximum interpolation distance, respectively, and
is the interpolation time constant. Parameters, , and
are determined according to the look-ahead range of the vision
system.

The vision data processor receivesfrom the supervisor and
provides the following data (see Fig. 7 and Section V) where:

estimated vehicle distance from the desired path. It is
positive or negative depending on the relative position
of to the desired path;
estimated tangent angle to the desired path at;
is the minimum distance point on the desired path from
the vehicle rear axle midpoint;
point on the desired path at the interpolating distance

from the vehicle rear axle midpoint;
estimated tangent angle to the desired path at;
estimated curvature of the desired path at.

The interpolated end-path data , , and are then deter-
mined through the following procedure. The parameter

sets the rate of convergence to the desired path. It
can be interpreted as the “position error constant” of the hybrid
closed-loop system determined by the iterative steering strategy.

1) Compute as

2) Compute according to

3) Compute as

where

and
if

if

if .
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4) Compute as

if

if

if .

The choice of the threshold positive parametersand de-
pends on the vehicle type, the camera vision system, the road
conditions, etc. For the ARGO vehicle [11] on an highway, typ-
ical values are m and m. The position error
constant, , should be affected by the vehicle velocity,. In-
deed, when is low, higher values of are allowed, whereas
smaller values of should be assigned whenis high (in any
case in order to ensure convergence to the desired
path). Moreover, when is small, for example,
(the vehicle is close to the desired path), it is appropriate to set

that implies , , , ,
i.e., the interpolation end-path data is given by the desired path
at the point . When the vehicle is far from the desired path, for
example, when it is engaged in a lane inserting task, the intent
of the above procedure is to obtain a planned path that directly
points toward the desired path. This is attained at steps 3) and
4) by the artful modification of the values of and with
respect to and .

The final task of the supervisor before passing the path data to
the -spline generator and to the dynamic inversion block that
implements the guidance law (46) is to set the shaping vector
parameter . Choosing has a strong impact on the shape of
the planned path. A suitable criterion is described in [22] where

is selected in order to minimize the maximal variation of the
curvature along the path. A suboptimal choice that is effective
in most cases is to determineaccording to the straightforward
relations: and .

The inversion guidance law (46) could be easily generalized
to deal with a time-varying velocity , and the presented
supervisory steering strategy should be basically retained with
only small changes. As an alternative when the vehicle velocity
is slowly varying, can be considered approximately constant
within the time interval and is updated with the
iterative replanning of the-spline.

V. DATA ACQUISITION BY MEANS OFVISION

This section presents the acquisition of the required data by
the path planning strategy discussed throughout this paper. In
order to generate the correct trajectory the position of lane mark-
ings has to be perceived. As in many other projects [25]–[28],
the sensing is robustly performed using artificial vision.

The visual-based detection of lane markings (lane detection
functionality) is based on the removal of the perspective effect
through inverse perspective mapping [11]. Such a transform
exploits a knowledge about the acquisition parameters (camera
orientation, position, optics, …) and the assumption of a
flat road. Theremapped imagerepresents a bird’s eye view
of the road region in front of the vehicle. Fig. 8(a) and (b)
show an image acquired by the ARGO vision system and the
corresponding remapped image, respectively.

Fig. 8. Steps of lane detection. (a) Acquired image. (b) Remapped image
with a 5 : 1 aspect ratio. (c) Result of the low level portion of lane detection.
(d) Final result superimposed onto (b), each point represents a polyline vertex.
(e) Final result represented by a concatenation of polylines, superimposed onto
a remapped image of the road with a 1 : 1 aspect-ratio and a larger field of view.
Area within the rectangle is the region actually processed as represented in (d).

The following subsections briefly describe the low-level and
high-level processing steps used to extrapolate the data required
by the supervisor to activate the proper control action.

A. Low Level Processing for Lane Detection

In the remapped image, road markings appear as quasiver-
tical lines of constant width brighter than the road background.
Therefore, the first phase of the detection is based on the ex-
traction of pixels featuring a higher brightness value than their
horizontal neighbors.
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A new image, whose values encode the presence of a road
marking, is computed and subsequently enhanced exploiting its
vertical correlation. Finally, the image is binarized by means of
an adaptive threshold [11].

The binary image is scanned in order to build chains of con-
nected pixels. Each chain is then approximated with apolyline
composed by one or more segments, by means of an iterative
process. The result is shown in Fig. 8(c).

B. High Level Processing for Lane Detection

The resulting data structure (a list of polylines) is processed in
order to semantically group homologous features and to produce
a high level description of the scene. This process in divided
into: filtering of noisy features and selection of the features that
most likely belong to lane markings; joining of different seg-
ments in order to fill gaps caused by occlusions, dashed lines,
or even worn lines; selection of the best representative and re-
construction of the information that may have been lost, on the
basis of continuity constraints.

Each polyline is matched against the result of the previous
frame, since continuity constraints provide a strong and robust
selection procedure. The distance between the previous result
and the considered polyline is computed: if it lays within a stripe
centered onto the previous result then the polyline is marked as
useful for the following process.

Once the polylines have been selected, all the possibilities are
checked for their joining. In order to be joined, two polylines
must have similar direction and must be not too far away. Their
projection on the vertical axis must not overlap and, in case the
gap is large, the direction of the connecting segment is checked
for uniform behavior.

All the new polylines formed by concatenations of the orig-
inal ones are then evaluated. Starting from a maximum score,
each of the following rules provides a penalty. First each poly-
line is segmented. In case the polyline does not cover the whole
image, a penalty is given: the polyline length is computed and
a proportional penalty is given to short ones, as well as to poly-
lines with extremely varying angular coefficients. Finally, the
polyline with the highest score is selected as the best represen-
tative of the line marking.

The polyline that has been selected at the previous step may
not be long enough to cover the whole image; therefore, a further
step is necessary to extend the polyline. In order to take into
account road curves, a parabolic model has been selected to be
used in the prolongation of the polyline in the area far from the
vehicle. In the nearby area, a linear approximation suffices.

This process is repeated for both left and right lane markings.
The two reconstructed polylines (one representing the left and

one the right lane markings) are now matched against a model
that encodes the knowledge about the absolute and relative po-
sitions of both lane markings on a standard road. A stronger
model—a pair of parallel lines at a given distance (the lane
width) and in a specific position—is initialized at the beginning
of the whole process; a specific learning phase allows to adapt
the model to errors in camera calibration (lines do not have to
be perfectly parallel) and to the current lane width. Furthermore,
this model can be slowly changed during the processing to adapt

to new road conditions (lane width and lane position), thanks to
a learning process running in the background.

The model is kept for reference. The two resulting polylines
are fitted to this model, and the final result is obtained as fol-
lows. First, the two polylines are checked for nonparallel be-
havior. A small deviation is allowed, since it may derive from
vehicle movements or deviations from the flat road assumption,
that cause the calibration to be temporarily incorrect (diverging
or converging lane markings). Then the quality of the two poly-
lines, as computed in the previous steps, is matched. The final
result will be attracted with a higher strength toward the poly-
line with the highest quality. In this way, polylines with equal or
similar quality will equally contribute to the final result. On the
other hand, in the case where one polyline has been heavily re-
constructed, or is far from the original model, or is even missing,
the other polyline will have a stronger influence in the genera-
tion of the final result.

To take into account possible small errors due to incorrect
localization and/or drifts in the camera calibration, a low-pass
filter is applied. The final result is computed as an average be-
tween the actual result and the result of the previous frame.

Fig. 8(d) and (e) show the result of the high level part of lane
detection.

C. Control Data Estimation

The last step of visual data processing is the computation of
parameters needed for path planning.

The reference system is located at the starting point of the
vehicle trajectory ( ) and it is oriented such that
the vehicle heading is initially directed along theaxis (i.e.,

). In order to steer the vehicle along the desired
path, the following parameters must be computed (see Fig. 9
and Section IV):

• coordinates of the point of the desired path closest to
the reference system origin (i.e., );

• coordinates of the point of the desired path at distance
from ;

• tangent angles in and (i.e., and );
• path curvature in (i.e., ).

The left and right polylines corresponding to the left and right
lane markings are used to compute the desired path. When the
lane following task is pursued the desired path gets shaped as a
new polyline placed onto the center of the lane. Other choices
are possible as well, depending on the road shape and on partic-
ular driving needs (e.g., lane inserting, lane change, overtaking
maneuvers, obstacle avoidance, etc.). Since the vehicle control
module relies on values that cannot always be recovered directly
from visual data, some extrapolations can be required. When
the visible portion of the path does not contain all required in-
formation, its prolongations must be computed. For example,

is generally close to the rear wheels and, therefore, it is not
visible. In this case a linear approximation is used: the first seg-
ment of the polyline is simply prolongated assuming the path
being a straight line. Conversely, the position ofdepends on

which is a function of the vehicle speed. In caselies out-
side the computed polyline, a parabolic approximation is used
to recover the missing portion of the desired path far ahead the
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Fig. 9. Relationship between the geometrical data of the desired path and
visual data. The road texture has been cut for displaying purposes.

vehicle. In such a case the last two segments of the polyline are
used to determine a fitting parabola. Such a parabola is used to
evaluate point , tangent angle , and curvature . When

is located inside the computed polyline, is approximated
by the segment containing ; the curvature is determined
through a local circle-based best fitting.

VI. CONCLUSIONS

In this paper a new motion planning primitive, the quintic
-spline, has been introduced. Using the associated shaping

parameter vector , it is easy to obtain, or approximate, line
segments, circular arcs, clothoids, and lane-change curves in a
unified fashion. It has been shown how this primitive can be
exploited for the iterative steering of vision-based autonomous
vehicles using a straightforward inversion guidance law.

A robust data acquisition is critical for this system. In fact,
errors in the localization of distant lane markings may affect the
planned path. Such errors may be generated by the following
two causes.

• Partial visibility of lane markings: This happens in corre-
spondence to occlusions or when the look ahead distance
is far beyond the field of view, thus, an extrapolation is
required.

• Errors in the processing: This happens when the calibra-
tion is incorrect or when the localization yields incorrect
results.

To cope with these problems an averaging filter is applied to
smooth possible sudden changes in the localization of lane
markings in subsequent frames. Even if this filter cannot com-
pletely recover from errors, iterative replanning is performed
before the vehicle reaches the end of the planned trajectory.

Another critical issue of the proposed iterative steering is
the possibility of modeling mismatch (1) with the actual lateral
dynamics of the vehicle that may depend on various uncertain
parameters (road–tire interactions, vehicle handling characteris-
tics, etc.). The supervisor can effectively face this problem en-
suring the required convergence to the desired path by an appro-
priately fast replanning of the quintic -spline. This has been
evidenced in [21] for the case of (i.e., the vehicle
starting point is not too far from the desired path and the planned
end-point is always chosen on it) with a robustness analysis
of the iterative steering based on simulations against the Wong
vehicle model [29].

This new steering methodology is being implemented on the
experimental ARGO vehicle and will substitute the current gain
scheduled proportional controller. Moreover this technique,
that can be extended to a time-varying velocity (cf. end of
Section IV), can also be used for a variety of autonomous
navigation tasks of car-like vehicles and mobile robots. Just
to give a partial list of possible tasks that can be dealt with
we can cite lane following, lane inserting, obstacle avoidance,
platooning, and parking maneuvers.
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