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We consider the rank-reduced coupled-cluster theory with single and double excitations

(RR-CCSD) introduced recently [Parrish et al., J. Chem. Phys. 150, 164118 (2019)].

The main feature of this method is the decomposed form of the doubly-excited amplitudes

which are expanded in the basis of largest magnitude eigenvectors of the MP2 or MP3

amplitudes. This approach enables a substantial compression of the amplitudes with only

minor loss of accuracy. However, the formal scaling of the computational costs with the

system size (N) is unaffected in comparison with the conventional CCSD theory (∝ N6)

due to presence of some terms quadratic in the amplitudes which do not naturally factorize

to a simpler form even within the rank-reduced framework. We show how to solve this

problem, exploiting the fact that their effective rank increases only linearly with the sys-

tem size. We provide a systematic way to approximate the problematic terms using the

singular value decomposition and reduce the scaling of the RR-CCSD iterations down to

the level of N5. This is combined with an iterative method of finding dominant eigenpairs

of the MP2 or MP3 amplitudes which eliminates the necessity to perform the complete di-

agonalization and making the cost of this step proportional to the fifth power of the system

size, as well. Next, we consider the evaluation of the perturbative corrections to the CCSD

energies resulting from triply excited configurations. The triply-excited amplitudes present

in the CCSD(T) method are decomposed to the Tucker-3 format using the higher-order or-

thogonal iteration (HOOI) procedure. This enables to compute the energy correction due to

triple excitations non-iteratively with N6 cost. The accuracy of the resulting rank-reduced

CCSD(T) method is studied both for total and relative correlation energies of a diverse set

of molecules. Accuracy levels better than 99.9% can be achieved with a substantial reduc-

tion of the computational costs. Concerning the computational timings, break-even point

between the rank-reduced and conventional CCSD implementations occurs for systems

with about 30−40 active electrons.
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Rank-reduced coupled-cluster theory

I. INTRODUCTION

With the coupled-cluster (CC) theory1,2 firmly established as a powerful electronic structure

method, applying it to large molecules remains a considerable challenge. Such applications are

limited by unfavorable scaling of the computational costs with the size of the system. For example,

the “gold standard” electronic structure method – CC model with single and double excitations

(CCSD) augmented with perturbative triples correction [CCSD(T)] – scales as the seventh power

of the system size3. This makes canonical CCSD(T) calculations for molecules larger than 20−
30 atoms extremely expensive, assuming that a basis set of at least triple-zeta quality is used.

To an extent, this boundary can be pushed by massive parallelization of the code4–22 and/or by

employing graphical processing units (GPU) to speed up the computations23–30. Other techniques

designed to reduce the cost of CC calculations rely on optimization of the virtual space (either

globally31–35 or for individual orbital pairs36–39) or employ local correlation techniques40–51. The

latter family of methods is especially powerful and achieves linear scaling of the computational

costs for sufficiently large systems.

The unfavorable scaling of the canonical CCSD(T) calculations results from contractions be-

tween high-order tensors that represent the wavefunction amplitudes and/or the Hamiltonian pa-

rameters. The main idea of the tensor decomposition techniques52 is to approximate these tensors

as combinations of lower-rank quantities without compromising the accuracy. A widely known

examples of such procedure are the density fitting53–57 and Cholesky decomposition58–61 of the

electron repulsion integrals (ERI) where, in essence, the four-index ERI tensor is rewritten as a

combination of only two-index and three-index objects. As each index represents a quantity with

dimension proportional to the system size, this leads to significant savings. In recent years, more

thorough decomposition schemes for ERI have been proposed such as the pseudospectral/chain-

of-spheres approximation62–73, tensor hypercontraction74–77 (THC) or canonical decomposition

format78,79. In the latter two methods only two-index quantities are required to approximate ERI.

Aside from the reduced storage requirements, the aforementioned techniques allow to decrease the

scaling of methods such as MP2 and MP3 with the system size74,80–83. Unfortunately, even with

the most thorough ERI decomposition it is impossible to reduce the scaling of CC calculations as

long as the high-order cluster amplitudes tensors are explicitly present.

The evidence that even without locality assumptions CC amplitudes can be efficiently com-

pressed by representing them as combinations of low-order tensors is substantial, see, for example,
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the papers of Bell et al.84, Kinoshita et al.85,86, and Scuseria and collaborators87,88. Quite recently,

these findings were exploited to reduce the cost of various conventional CC models80,89–92. In this

work we focus on the rank-reduced CCSD method (RR-CCSD) introduced by Parrish and collab-

orators93, where the doubly-excited CC amplitudes are represented as (details of the notation are

given in the next section)

tab
i j =UX

ia tXY UY
jb. (1)

The practical advantage of this decomposition is that the length of the summation over X , Y has

to scale (asymptotically) only linearly with the system size to maintain a constant level of relative

accuracy in the correlation energy. In effect, the four-index amplitudes tab
i j are rewritten as a

combination of only two- and three-dimensional tensors, with each dimension being proportional

to the system size. Unfortunately, this reduction of storage requirements is not accompanied by a

commensurate decrease of the overall computational complexity of the RR-CCSD method. While

the scaling of all terms linear in the CC amplitudes (in particular, the dreaded particle-particle

ladder diagram) can indeed be reduced by a factor of N by appropriate ordering of elementary

tensor contractions, some terms quadratic in the amplitudes resist such factorization attempts.

Therefore, the scaling of the RR-CCSD method remains formally the same (N6) as the exact

CCSD theory. The second problem encountered in the RR-CCSD theory is related to the choice

of the quantities UX
ia present in Eq. (1). Following Ref. 93 we adopt eigenvectors of the MP2

or MP3 amplitudes for this purpose. While the MP2 amplitudes have a distinctive advantage that

their diagonalization can be performed rapidly, inclusion of a large number of eigenvectors in Eq.

(1) is required to achieve accuracy levels sufficient for general-purpose applications. The MP3

amplitudes perform much better in this respect and are preferred in practice, but their computation

requires ∝ N6 computational effort which constitutes a considerable overhead.

In this paper we modify the RR-CCSD theory of Parrish and collaborators93 in order to re-

move the aforementioned roadblocks that prevent the scaling reduction to ∝ N5. First, we show

that the non-factorizable quadratic terms in the RR-CCSD working equations can be eliminated

by proper definition of certain four-index intermediates and noting that their rank scales linearly

(rather than quadratically) with the system size. This property is demonstrated numerically for re-

alistic systems using the singular value decomposition procedure. Next, we exploit this finding by

expanding the new intermediates in a separate basis (with a dimension proportional to the system

size) which is fixed during the RR-CCSD iterations. This approach eliminates the non-factorizable

3



Rank-reduced coupled-cluster theory

∝ N6 terms from the RR-CCSD equations; the error resulting from truncation of the intermediates

expansion basis is small and controllable.

To solve the problem of efficient determination of the MP3 expansion basis UX
ia , we adopt an

iterative diagonalization method that avoids explicit construction of the amplitudes tensor. Instead,

only products of the amplitudes with some trial vectors are necessary. Since we need to find only

a small subset of the eigenvectors, i.e. proportional to the system size, the cost of the procedure

scales rigorously as N5. Note that in Ref. 93 the authors suggested that such an approach is pos-

sible. By combining the proper handling of the intermediates described in the previous paragraph

with iterative determination of the MP3 eigenvectors, we arrive at the variant of the RR-CCSD the-

ory with quintic scaling of the total computational costs with the system size. The accuracy of the

resulting approach in terms of both total and relative correlation energies is accessed by systematic

comparison with the exact CCSD results for a large and diverse set of polyatomic molecules.

Further in the paper we move to the calculation of perturbative triples correction on top of the

RR-CCSD method. The conventional implementation of the (T) correction3 scales as N7 with the

system size which would constitute a significant bottleneck in comparison with N5 cost of RR-

CCSD. One may pragmatically argue that this is not a major issue in actual applications as the

(T) correction can simply be computed with a smaller basis set (and possibly scaled) at a signifi-

cantly reduced cost. As the energy corrections resulting from triple excitations typically converge

faster94–96 to the basis set limit than the CCSD contribution, this approach is certainly adequate in

many situations. On the other hand, perturbative corrections calculated with a small basis, e.g. of

double-zeta quality, are not always reliable and may require an independent verification.

In this work we propose a reduced-scaling (N6) method of calculating the (T) correction on

top of the RR-CCSD method. The crucial aspect of the method is the representation of the triply-

excited amplitudes in the Tucker-3 format97

tabc
i jk = tABC V A

ia V B
jbVC

kc. (2)

The above decomposition of the tabc
i jk tensor has been previously applied to the full CCSDT

theory92, as well as to some of its approximate variants86,98, with the optimal expansion ba-

sis V A
ia found by the higher-order singular value decomposition procedure (HOSVD)99,100. While

HOSVD is a robust and general method for acquiring the Tucker decomposition, its computational

costs are too high to be workable in the present context. To circumvent this difficulty, we put for-

ward a new scheme of obtaining the optimal expansion (2) for the second-order triply-excited
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amplitudes encountered in the calculation of the (T) correction. It is based on the higher-order

orthogonal iteration (HOOI) procedure101,102 – a straightforward iterative method of finding V A
ia

by minimization of least-squares error of Eq. (2). While the use of HOOI is widespread in fields

of study such as signal processing103, machine learning104 or data mining105, applications of this

procedure in quantum chemistry are, to the best of our knowledge, almost non-existent84. This can

be contrasted with another method of tensor decomposition, namely the alternating least squares

(ALS), which has been thoroughly studied74,88,106,107. In this work we show that the HOOI en-

ables to compute the decomposition in Eq. (2) with N5 complexity and is numerically stable and

rapidly convergent. Once the decomposition of the triply-excited amplitudes given by Eq. (2) is

available, calculation of the (T) correction is a non-iterative step with N6 complexity.

II. PRELIMINARIES

A. Definitions and notation

The notation adopted in this paper is as follows. The canonical Hartree-Fock (HF) determinant,

denoted |φ0〉, is the reference wavefunction. The orbitals occupied in the reference are denoted by

the symbols i, j, k, etc., and the unoccupied (virtual) orbitals by the symbols a, b, c, etc. General

indices p, q, r, etc. are used when the occupation of the orbital is not specified. We additionally

introduce the following conventions: 〈A〉 def
= 〈φ0|Aφ0〉 and 〈A|B〉 def

= 〈Aφ0|Bφ0〉 for general operators

A, B. The Einstein convention for summation over repeated indices is employed unless explicitly

stated otherwise. The electronic Hamiltonian is partitioned into a sum of the Fock operator, F , and

the fluctuation potential, W . The number of occupied and virtual orbitals in the (molecular) basis

set is denoted by O and V , respectively. Formulas given in this work are valid for a spin-restricted

closed-shell reference wavefunction.

All theoretical methods introduced in this work were implemented in a locally modified version

of the GAMESS program package108,109. The exact CCSD(T) results, used as a reference in some

calculations, were generated with the help of NWCHEM program110, version 6.8.

B. Density-fitting approximation

Unless explicitly stated otherwise, in all CC calculations reported in this work the electron

repulsion integrals (ERI), (pq|rs), are decomposed with help of the robust variant of the density
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fitting approximation53–57 (Coulomb metric)

(pq|rs) = BQ
pq BQ

rs. (3)

The capital letters P, Q denote the elements of the auxiliary basis set and

BQ
pq = (pq|P) [V−1/2]PQ, (4)

where (pq|P) and VPQ = (P|Q) are the three-center and two-center ERI as defined in Ref. 111.

For the purposes of subsequent analysis we note that the size of the auxiliary basis set, denoted

Naux further in the paper, scales linearly with the system size. Let us also point out that the

accuracy offered by the density-fitting approximation with the standard pre-optimized auxiliary

basis sets is satisfactory even in accurate CC calculations. As a matter of fact, extensive benchmark

calculations25,112–114 revealed that the errors in the CC correlation energies resulting from the

decomposition (3) are negligible in comparison with the inherent orbital basis set incompleteness

errors, at least as long as molecules are not far away from their equilibrium structures. Moreover,

all equations derived in the present work remain valid also for the Cholesky decomposition58–61

of ERI, where the accuracy can be controlled more rigorously. The only necessary change in the

replacement of the quantities BQ
pq in Eq. (3) by the appropriate Cholesky vectors. Finally, we stress

that the density-fitting approximation is not used at the stage of self-consistent field calculations.

Due to relatively minor computational costs, the Hartree-Fock equations are solved using the exact

four-index ERI.

C. Truncated singular value decomposition

Throughout this work we shall repeatedly encounter the problem of calculating singular value

decomposition (SVD) of some intermediate quantities. The necessary decomposition schemes

assume one of three possible patterns

Mia, jb =U r
ia σr V r

jb,

Mi j,ab =U r
i j σr V r

ab,

Mi j,kl =U r
i j σr V r

kl,

(5)

for matrices of size OV ×OV , O2×V 2, and O2×O2, respectively. In a special case where the

matrix under consideration is square symmetric, the SVD can be replaced by the usual eigende-

composition for simplicity. The quantities U and V then coincide, but the eigenvalues σr can be

of an arbitrary sign, unlike the singular values which are strictly non-negative.
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Since the dimension of each matrix in Eq. (5) is quadratic in the number of orbitals, the com-

putational cost of determining the complete SVD is proportional to the sixth power of the system

size. However, in every situation encountered in this work only a small subset of singular vectors

has to be found that correspond to the largest singular values (or the largest absolute eigenvalues

in the case of the eigendecomposition). Moreover, the number of elements of this subset increases

only linearly with the system size. Under these conditions it is possible to find the required subset

of singular value/vector pairs with the cost proportional to the fifth power of the system size by a

proper choice of the decomposition algorithm.

For this purpose we adopt a scheme based on partial Golub-Kahan bidiagonalization115 that

has been previously used to find singular vectors of the triply-excited amplitudes tensor98. The

details of the procedure are described in Ref. 98 and in earlier works in the numerical analysis

literature116,117. The most important aspect of the algorithm is that the matrix under consideration

is never formed explicitly. Instead, one needs to evaluate only left- and right-hand-side products

of the matrix with some trial vectors. Within this setup, the desired subset of singular vectors can

be found with N5 complexity provided that the left- and right-hand-side products with an arbitrary

trial vector can be computed with N4 scaling. The latter property shall be demonstrated separately

for each matrix under consideration in this work. Note that the truncated SVD algorithm described

here is reminiscent of the Davidson diagonalization118 method which has found widespread use in

the configuration interaction (CI) calculations, among others.

III. RANK-REDUCED FORMALISM

A. Rank-reduced CCSD method

In this section we summarize the key aspects of the rank-reduced CCSD method as introduced

by Parrish et al.93. Next, we describe some technical aspects and practical limitations of this

formulation. Finally, we propose a modification of this theory that enables to reduce its scaling, as

elaborated in subsequent sections.

The coupled-cluster theory1,2 employs the exponential parametrization of the electronic wave-

function

|Ψ〉= eT |φ0〉, (6)

where T is the cluster operator. In this work we consider the CCSD method where the cluster
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operator includes only single and double excitations (T = T1 +T2) with respect to the reference

determinant

T1 = ta
i Eai, T2 =

1
2

tab
i j Eai Eb j, (7)

where ta
i , tab

i j are the cluster amplitudes, and Epq = p†
αqα + p†

β qβ are the spin-adapted singlet

orbital replacement operators119. The cluster amplitudes are the wavefunction parameters and are

found by solving non-linear equations

〈ai |e−T HeT 〉= 0,

〈ab
i j |e−T HeT 〉= 0,

(8)

where 〈ai | and 〈ab
i j | denote projection onto the singly- and doubly-excited configurations. Finally,

the correlation energy is calculated from the formula Ecorr = 〈e−T HeT 〉.
In the rank-reduced CCSD (RR-CCSD) theory introduced by Parrish et al.93 the doubly-excited

amplitudes are represented by Eq. (1), where the quantities UX
ia generate the necessary excitation

subspace and the core matrix tXY plays the role of “compressed“ amplitudes. While it is, in princi-

ple, possible to optimize both UX
ia and tXY during the CC iterations, this choice is rather impractical.

Instead, the basis vectors UX
ia are found upfront by diagonalizing the MP2 or MP3 amplitudes and

collecting the eigenvectors that correspond to the eigenvalues of the largest magnitude. The quan-

tities UX
ia are then fixed in the CC iterative process where the compressed amplitudes tXY are solved

for. Further details of this procedure are thoroughly discussed Ref. 93. In the present work we do

not attempt to compress the singly-excited amplitudes – they are treated in exactly the same way

as in the exact CCSD theory.

Throughout this paper, the dimension of the excitation subspace, i.e. the length of the summa-

tion summation over X , Y in Eq. (1), is denoted by Neig and we have Neig ≤ OV . Moreover, in

the limit Neig = OV the expansion becomes exact independently of the source of the approximate

amplitudes employed generate UX
ia . However, the practical advantage of Eq. (1) is that to maintain

a constant relative accuracy in the correlation energy, the quantity Neig has to grow only linearly

with the system size, rather than quadratically as in the exact CCSD limit (Neig = OV ). Besides the

advantage of reducing the storage requirements, this property also opens up a window for reducing

the scaling of the RR-CCSD calculations.

To simplify the task of solving the RR-CCSD equations to obtain the compressed amplitudes

tXY , it is helpful to enforce some constraints on the basis vectors UX
ia . First, note that as a byprod-

uct of the diagonalization, the quantities UX
ia are automatically orthonormal in the sense of the
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following formula

UX
ia UY

ia = δXY . (9)

By an orthogonal transformation of UX
ia it is possible to simultaneously satisfy the second equality

UX
ia εa

i UY
ia = δXY εX , (10)

where εX are some real-valued constants, and εa
i = εi− εa. Once the basis vectors UX

ia satisfy

the constraints (9) and (10), application of the Lagrangian formalism from Ref. 93 leads to a

straightforward prescription for an update of the compressed amplitudes, namely

− rXY

εX + εY
−→ tXY , (11)

where rXY is the compressed residual defined as

rXY =UX
ia UY

jb 〈ab
i j |e−T HeT 〉. (12)

These formulas are iterated until convergence, i.e. until the norm of the residual rXY falls below a

certain threshold. Due to the striking similarity of this procedure to the standard CC iterations, var-

ious techniques designed to accelerate the CC convergence120–124 can be straightforwardly applied

at this point.

As mentioned in the introduction, there are two major problems that limit the applicability of

the RR-CCSD theory outlined above. The first is related to the choice of approximate doubly-

excited amplitudes as a source of the basis vectors UX
ia . Natural candidates for this task are the

MP2 or MP3 amplitudes since they constitute the first- and second-order approximations to the

exact coupled-cluster amplitudes in the framework of the conventional Møller-Plesset perturba-

tion theory. However, as demonstrated in Ref. 93, the MP2 amplitudes require rather large Neig

to achieve satisfactory accuracy levels. This poor performance is understandable from a purely

mathematical point of view: the MP2 amplitudes are negative-definite while the CCSD ampli-

tudes are indefinite. This means that the MP2 amplitudes lack the entire portion of the spectrum

that corresponds to the positive eigenvalues. Despite the negative portion of the spectrum is dom-

inant, eigenvectors from the positive part are needed to achieve accurate results. This deficiency

is rectified by the MP3 amplitudes which are also indefinite. Unfortunately, the computation of

the MP3 amplitudes is an N6 process which is unacceptable from the present point of view. This

bottleneck can be removed by noticing that we have to find only a certain subset of eigenvectors
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that correspond to the largest singular values and the dimension of this subset is proportional to

the system size. In Sec. III B we discuss how this partial diagonalization can be accomplished

with N5 cost.

The second bottleneck that prevents the scaling reduction of the RR-CCSD method is the com-

putation of the residual rXY defined in Eq. (12). Many terms present in rXY can be computed with

N5 scaling by proper arrangement of elementary tensor contractions (in particular, all terms linear

in the amplitudes). However, there are two terms quadratic in the amplitudes that are resistant to

such treatment and require N6 operations to compute. In Sec. III C we show that the problem of

apparently non-factorizable terms can be solved by defining certain intermediate quantities and

subjecting them to the singular-value decomposition procedure. Similarly as in the case of the

amplitudes, we prove numerically that the singular vectors corresponding to small singular values

can be dropped without significant impact on the accuracy. More importantly, a constant relative

error in the correlation energy can be maintained with a number of singular values scaling only

linearly with the system size. This paves the way for a modified formulation of the RR-CCSD

theory with N5 overall scaling.

B. Efficient determination of the excitation subspace

The practical usefulness of the RR-CCSD theory hinges upon the assumption that the optimal

excitation subspace can be found efficiently. In this section we show that the product of the MP2

and MP3 amplitudes with an arbitrary set of trial vectors with dimension proportional to the system

size can be assembled with the N4 and N5 cost, respectively. We begin by defining

tab
i j (MP2) =

(
εab

i j
)−1〈ab

i j |W 〉=
(
εab

i j
)−1

(ia| jb), (13)

and

tab
i j (MP3) = tab

i j (MP2)+
(
εab

i j
)−1〈ab

i j |
[
W,T MP2

2

]
〉 (14)

with

〈ab
i j |
[
W,T MP2

2

]
〉= Pab

i j

[
− 1

2
(ki|l j) tab

kl (MP2)+(ac|ki) tcb
k j (MP2)

− (ai|kc)
[
2tcb

k j (MP2)− tbc
k j (MP2)

]
+(bc|ki) tac

k j (MP2)− 1
2
(ac|bd) tcd

i j (MP2)
]
,

(15)

where εab
i j = εa

i + εb
j is the two-particle energy denominator, and Pab

i j is a permutation operator

that simultaneously exchanges the indices i↔ j and a↔ b. To enable an efficient handling of the
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amplitudes defined above one has to remove the denominator from both formulas. This is achieved

with help of the Laplace transformation technique

(εab
i j )
−1 =

Ng

∑
g

wg e−tg(εa
i +εb

j ), (16)

where tg and wg are the quadrature nodes and weights, respectively, and Ng is the size of the

quadrature. Further in the text we remove the symbol of the sum ∑Ng
g wherever its presence is

clear from the context. The Laplace transformation technique was first proposed by Almlöf125 to

simplify the MP2 calculations, but since then it has been successfully used in combination with

other electronic structure methods126–131. In this work we employ the min-max quadrature pro-

posed by Takatsuka and collaborators132–134 for the choice of tg and wg. The number of quadrature

points in Eq. (16) is independent of the system size, that is Ng ∝ N0.

Using the Laplace transformation technique and the density-fitting decomposition of the two-

electron integrals, the product of MP2 amplitudes with an arbitrary trial vector ωia can be rewritten

as

tab
i j (MP2)ω jb = wg e−tgεa

i

[
BQ

ia

(
BQ

jb ω̃g
jb

)]
, (17)

where ω̃g
jb = ω jb e−tgεb

j . By carrying the contractions in the order indicated by the parentheses,

the cost of the operations is proportional to OV NauxNg ∝ N3. Therefore, the task of obtaining Neig

dominant eigenpairs can be accomplished with N4 cost, because both Neig and the number of trial

vectors is asymptotically linear in the system size. The fact that this is possible has also been

demonstrated in Ref. 93, albeit using a somewhat different approach.

In order to perform the diagonalization of the MP3 amplitudes efficiently, the product tab
i j (MP3)ω jb

has to evaluated with N4 complexity. To show that this is possible, we first introduce a handful

of intermediates that combine the density-fitted integrals with the expansion vectors UX(MP2)
ia

obtained previously for the MP2 amplitudes, namely

DQX
ia = BQ

kiU
X(MP2)
ka −BQ

acUX(MP2)
ic , (18)

ΓX
ia =

(
BQ

acUX(MP2)
kc dMP2

X

)
BQ

ki

−2BQ
ia

(
BQ

kcUX(MP2)
kc dMP2

X

)
,

(19)

W Q
jb =UX(MP2)

kb

(
BQ

kcUX(MP2)
jc dMP2

X

)
. (20)
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Evaluation of each intermediate has N5 complexity, but they are computed only once before the

diagonalization and stored. With help of Eqs. (18)–(20) the contraction of the MP3 amplitudes

with the trial vector ω jb is rewritten as

tab
i j (MP3)ω jb = wg e−tgεa

i

[
DQY

ia dMP2
Y

(
DQY

jb ω̃g
jb

)

+UY (MP2)
ia

(
ΓY

jb ω̃g
jb

)
+ΓY

ia

(
UY (MP2)

jb ω̃g
jb

)

+BQ
ia

(
W Q

jb ω̃g
jb

)
+W Q

ia

(
BQ

jb ω̃g
jb

)]
.

(21)

None of the elementary steps in the above formula involve more than four indices at the same time

(the grid index g does not count since Ng ∝ N0). The first term in the above formula typically

dominates the workload with the scaling OV NauxNeigNg ∝ N4. This shows that the multiplication

tab
i j (MP3)ω jb can be accomplished with N4 cost and enables efficient (N5) determination of the

basis vectors UY (MP3)
ia for the MP3 excitation subspace using an iterative eigensolver.

The remaining issue that has to be discussed is an adequate choice of the number of quadrature

points in the Laplace transformation formula, Eq. (16). In the case of the MP2 amplitudes, Eq.

(13), we found that ten quadrature points are sufficient to reach relative accuracy of a few parts

per million in the RR-CCSD correlation energy. This deviation is negligible in comparison to

other sources of error. Considering the MP3 amplitudes we note that the second term in Eq.

(14) is typically by an order of magnitude smaller than the first. Therefore, the efficiency of the

diagonalization can be improved without degrading the accuracy if a smaller number of quadrature

points is used for decomposition of the denominator in the second term of Eq. (14). We found that

three points of the min-max quadrature are sufficient for this task. A numerical illustration of the

impact of the Ng parameter on the accuracy of the RR-CCSD correlation energy is included in the

supplementary material.

C. Non-factorizable terms in the RR-CCSD residual

A complete formula for the RR-CCSD residual, Eq. (12), expressed explicitly through the basic

two-electron integrals and cluster amplitudes is given in the supplementary material for the sake

of brevity. Here we concentrate only on two terms that do not naturally factorize to a form that
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can be evaluated with N5 cost and write the residual shortly as

rXY =
1
2

PXY

[
UZ

ka tZW UW
lb Oi j

kl U
X
ia UY

jb

+UZ
ka tZW UW

jc Zbc
ki UX

ia UY
jb

]

+ factorizable terms,

(22)

where PXY is a permutation operator that exchanges the indices X and Y . The intermediate quan-

tities Oi j
kl and Zbc

ki are defined as

Oi j
kl = (kc|ld) tcd

i j , (23)

and

Zab
i j = (ic|kb) tca

jk . (24)

The terms in Eq. (22) that involve the intermediates Oi j
kl and Zbc

ki require ∝ O4V 2 and ∝ O3V 3

operations, respectively, to evaluate. To eliminate this bottleneck we decompose the intermediates

using the following format

Oi j
kl = αF

ik oF αF
jl , (25)

Zab
i j = β F

i j zF β F
ab. (26)

The first intermediate obeys the symmetry relation Oi j
kl = O ji

lk. Therefore, the decomposition (25)

is obtained by rewriting it as O2×O2 matrix Oik, jl , followed by diagonalization. The second

decomposition is obtained by SVD of the Z intermediate reshaped as a O2×V 2 matrix, Zi j,ab.

Consequently, the quantities zF are non-negative while oF can have an arbitrary sign.

We conjecture that for any fixed threshold ε , the number of singular values (or absolute eigen-

values) larger than ε in Eqs. (25) and (26), i.e. zF > ε or |oF | > ε , grows asymptotically only

linearly with the system size, not quadratically as the dimensions of Oi j
kl and Zab

i j . We did not

manage to prove this statement rigorously and hence we demonstrate it numerically for two repre-

sentative model systems: linear alkanes CnH2n+2 with increasing chain length n, and water clusters
(
H2O

)
n. The former system is an idealized, quasi-1D structure with strong covalent bonds, while

the latter is a fully three-dimensional structure with more diverse bonding character which is more

demanding from the practical point of view. The geometries of the model systems were taken from

Refs. 92 and 93, respectively.

13



Rank-reduced coupled-cluster theory

FIG. 1. Effective rank of the Oi j
kl intermediate for the linear alkanes CnH2n+2 (left panel) and water

clusters
(
H2O

)
n (right panel) extracted from the CCSD/cc-pVTZ calculations. The brown circles, orange

squares and red diamonds indicate the effective rank obtained with the thresholds ε = 10−2, 10−3, and 10−4,

respectively. The black dashed lines were obtained by least-squares fitting to the corresponding data points

(n = 2, . . . ,8).

For both model systems we performed the exact CCSD calculations using the cc-pVTZ orbital

basis set135 and the corresponding cc-pVTZ-RIFIT density-fitting basis136. The 1s core orbitals of

carbon and oxygen atoms were frozen in these calculations. Next, we computed the Oi j
kl and Zab

i j

intermediates with the converged doubly-excited amplitudes and performed the decompositions

(25) and (26). Finally, for each system size n and threshold value ε we recorded the number of

singular values (or absolute eigenvalues) larger than ε . This number is referred to further in the

text as the effective rank. The results are illustrated in Fig. 1 for the Oi j
kl intermediate and in

Fig. 2 for the Zab
i j intermediate. For the former quantity we considered the thresholds ε = 10−2,

10−3, and 10−4. For the latter we replaced ε = 10−2 by ε = 10−5 because the effective ranks

for ε = 10−2 were too small (≤ 6) for a meaningful comparison. The results presented in Fig.

1 and Fig. 2 confirm the conjecture that the effective ranks of both intermediates increase only

linearly with the system size. This statement is true to a good degree of approximation for every

truncation threshold ε considered here. Some deviations from the trend line are observed for

the more challenging test case of water clusters, but only for the smallest value of the threshold

(ε = 10−5). It is also noteworthy that a decrease of ε by an order of magnitude leads to an increase
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FIG. 2. Effective rank of the Zab
i j intermediate for the linear alkanes CnH2n+2 (left panel) and water

clusters
(
H2O

)
n (right panel) extracted from the CCSD/cc-pVTZ calculations. The brown circles, orange

squares and red diamonds indicate the effective rank obtained with the thresholds ε = 10−3, 10−4, and 10−5,

respectively. The black dashed lines were obtained by least-squares fitting to the corresponding data points

(n = 2, . . . ,8).

of the slope of the linear trend line by approximately a factor of two.

To address the question whether the results represented graphically in Figs. 1 and 2 can be

reproduced also in a smaller basis set, we performed analogous calculations with the cc-pVDZ

basis. The plots of effective ranks analogous to Fig. 1 and 2 are given in supplementary material.

In summary, the effective ranks change by no more than 5% when going from the cc-pVDZ to

the cc-pVTZ basis. The only exception occurs for the water clusters with the smallest threshold

(ε = 10−5), where the changes are slightly larger. Nonetheless, the linear growth of the effective

ranks with the system size is confirmed in every case.

D. Quintic-scaling formulation

Having shown that the effective ranks of the Oi j
kl and Zab

i j intermediates increase only linearly

(rather than quadratically) with the system size, we now describe how this observation can be

exploited to decrease the scaling of the RR-CCSD calculations to the level of N5. For simplicity,

we consider the Oi j
kl intermediate first; extension of this approach to Zab

i j is presented further in the
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text.

In the modified RR-CCSD theory the Oi j
kl intermediate is represented as

Oi j
kl = αF

ik oFG αG
jl , (27)

The expansion vectors αF
i j are obtained before the iterations and are fixed thereafter, while the core

matrix oFG changes from iteration to iteration. The length of this expansion, i.e. the summations

over F , G, is denoted NO further in the text and it scales linearly with the system size. A suitable

expansion basis αF
ik is obtained by diagonalization of Eq. (25) reshaped as a symmetric O2×O2

matrix Oik, jl , and taking NO eigenvectors that correspond to the largest absolute eigenvalues (NO

dominant eigenvectors). Because the exact CCSD amplitudes entering Eq. (25) are not known

before the iterations, they are approximated by their MP2 or MP3 counterparts in the rank-reduced

form

tab
i j =UX

ia dX UX
jb, (28)

that are obtained according to the scheme presented in Sec. III B. For brevity, we no longer distin-

guish the MP2 and MP3 amplitudes here [tab
i j (MP2) and tab

i j (MP3)], because the treatment of the

Oi j
kl and Zab

i j intermediates described below is the same in both cases.

Asymptotically, the NO parameter is much smaller than the dimension (O2) of the Oik, jl matrix.

Therefore, the full diagonalization of the matrix Oik, jl can be avoided and only a subset of NO

dominant eigenpairs has to be found. This task can be accomplished efficiently (N5 overall scaling)

provided that the product Oi j
kl q jl , where q jl is an arbitrary trial vector, can be calculated with N4

cost. To prove that we first define an auxiliary quantity

BQX
ki = BQ

kcUX
ic , (29)

which can be calculated before the diagonalization (O2V NauxNeig cost) and stored. Next, we com-

bine the initial formula (25) with Eqs. (28) – (29) and rearrange the order of elementary operations

as follows

Oi j
kl q jl = BQX

ki

(
dX BQX

l j q jl

)
. (30)

The O2NauxNeig ∝ N4 cost of the two contraction steps becomes evident.

Because the expansion basis αF
ik is fixed, in each RR-CCSD iteration one has to find an updated

core matrix oFG, taking into account that the compressed amplitudes tXY from Eq. (1) change.
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To simplify this task we note that as a byproduct of the diagonalization procedure, the expansion

vectors obey the orthonormality relation αF
i j αG

i j = δFG. Therefore, in every iteration the core

matrix is given by an explicit expression

oFG = αF
ik Oi j

kl αG
jl . (31)

By using the definition (23) and inserting the formulas (28) and (29) we arrive at

oFG =
(

BQX
ki αF

ik

)
tXY

(
BQY

l j αG
jl

)
. (32)

Finally, the contribution of the Oi j
kl intermediate to the RR-CCSD residual is calculated by inserting

Eqs. (27) into (22)

1
2

PXY

[(
αF

ik UZ
kaUX

ia
)
oFG tZW

(
αG

jl UW
lb UY

jb
)]
→ rXY . (33)

It is straightforward to show that both Eq. (32) and (33) can be evaluated with N5 computational

cost. Note that the quantity in the round brackets in Eq. (33) does not change during the RR-CCSD

iterations and hence it can be precomputed and stored.

The treatment of the Zab
i j intermediate is based on the following representation

Zab
i j = β F

i j zFG β G
ab. (34)

with the expansion length (denoted NZ) proportional to the system size. The expansion vectors β F
i j

and β G
ab are obtained from SVD of Eq. (26) reshaped as a rectangular O2×V 2 matrix Zi j,ab, taking

NZ left- and right-singular vectors corresponding to the largest singular values. Similarly as for the

Oi j
kl intermediate, MP2 or MP3 amplitudes are used in Eq. (26), so that the expansion vectors do

not have to be updated in every RR-CCSD iteration. To guarantee that the SVD can be calculated

efficiently, we consider the left-hand- and right-hand-side multiplications, Zab
i j yi j and Zab

i j yab, by

an arbitrary pair of trial vectors, yi j and yab. The necessary factorized formulas read

Zab
i j yi j = BQ

kbUX
ka
(
dX BQX

i j yi j
)
, (35)

Zab
i j yab = BQX

i j dX
(
BQ

kbUX
ka yab

)
. (36)

Each elementary contraction in the above formulas can be computed with N4 cost. As a result, the

overall computational cost of the truncated SVD (with the rank NZ) of the Zab
i j intermediate scales

as the fifth power of the system size.
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During each RR-CCSD iteration the core matrix zFG is calculated from the explicit formula

zFG =
(
β F

i j BQX
i j tXY

)(
BQ

kbUY
ka β G

ab
)
, (37)

exploiting the orthonormality relations β F
i j β G

i j = δFG and β F
ab β G

ab = δFG which result from proper-

ties of singular value decomposition. Finally, the contribution to the residual is obtained from

1
2

PXY

[(
β F

ki UZ
kaUX

ia
)

tZW zFG
(
UW

jc β G
bcUY

jb
)]
→ rXY . (38)

The computational costs of evaluating the above expressions scale as OV NauxNeigNZ ∝ N5 and

OV NauxN2
eig ∝ N5 in the rate determining steps. This proves that by exploiting the compressed

formats of the intermediates (27) and (34), and noting their effective rank scales only linearly with

the system size, the overall cost of RR-CCSD iterations can be reduced to the level of N5.

The issue that has not been discussed yet is the practical choice of the expansion lengths in

Eqs. (27) and (34), denoted by the symbols NO and NZ. For convenience, we express both of

them as multiples of the number of occupied orbitals in the system, i.e. NO = mO and NZ = m′O,

where the parameters m and m′ are asymptotically independent of the system size. Clearly, the

parameters m and m′ should be chosen to provide an optimal balance between the truncation error

and the computational overhead of performing the decompositions (27) and (34). To recommend

suitable value of m and m′ we require a larger and a more diverse test set of molecules than the

model systems considered previously in the paper. For this purpose, we employ the Adler-Werner

benchmark set developed in Ref. 137. From this set we removed the hydrogen molecule as it is

too small to be useful for the present purposes. This leaves 70 molecules ranging in size from two

to about twenty light atoms (H, C, N, O, S, Cl). The original geometries from Ref. 137 were used

throughout. The 1s core orbitals were frozen in all correlated calculations; for the second row

atoms the 2s and 2p orbitals were also excluded.

For all molecules in the Adler-Werner benchmark set we performed two groups of RR-CCSD

calculations, both within the cc-pVDZ orbital basis. In the first group adopted no approximations

to the Oi j
kl and Zab

i j intermediates. Therefore, the scaling of these calculations is N6 and their pur-

pose is only to provide the reference results for a given Neig. In the second group of the RR-CCSD

calculations we employ the decomposed form of the Oi j
kl and Zab

i j intermediates and hence the scal-

ing is N5, but the approximations (27) and (34) introduce an error. The magnitude of this error is

quantified by comparing the corresponding results from the first and second group with the same

Neig. This means that the error resulting from approximation of the doubly-excited amplitudes,
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TABLE I. Statistical measures of relative errors (in percent) in the RR-CCSD/cc-pVDZ correlation energy

(for Neig = NMO) resulting from truncation of the expansions (27) and (34) at length NO = NZ = mO, where

O is the number of occupied orbitals in the system and the value of the parameter m is given in the first

column. The statistics comes from RR-CCSD/cc-pVDZ calculations for 70 molecules contained in the

Adler-Werner benchmark set137.

m mean mean abs. standard max. abs.

error error deviation error

1 −0.167 0.168 0.043 0.340

2 −0.069 0.077 0.042 0.165

3 −0.032 0.037 0.022 0.066

4 −0.015 0.016 0.009 0.032

TABLE II. The same data as in Table I, but for Neig = 2 ·NMO.

m mean mean abs. standard max. abs.

error error deviation error

1 −0.169 0.169 0.046 0.321

2 −0.074 0.079 0.035 0.152

3 −0.034 0.042 0.028 0.097

4 −0.016 0.017 0.010 0.033

Eq. (1), is not considered at this point. The only source of the error is the incompleteness of the

representation of the Oi j
kl and Zab

i j intermediates themselves. The expansion lengths in Eqs. (27)

and (34) are controlled by the parameters NO and NZ which, in general, can be varied completely

independently. However, in our preliminary calculations we found that near-optimal results are

obtained for equal values of these parameters, i.e. NO = NZ. Accuracy gains attainable by an

independent adjustment of NO and NZ are not worth the corresponding increase of the complexity.

Therefore, we set NO = NZ (or m = m′) from this point onward.

The calculations for the Alder-Werner benchmark set were performed for two representative

examples of Neig = NMO and Neig = 2 ·NMO, where NMO is the total number of active orbitals in

a given system (occupied plus virtual, neglecting the frozen-core orbitals). The expansion vectors
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FIG. 3. Distribution of relative error (in percent) resulting from the truncation of the expansions (27) and

(34) at length NO = NZ = mO, where O is the number of occupied orbitals in the system and the value of the

parameter m is given in the legend. The top and bottom panels correspond to Neig = NMO and Neig = 2 ·NMO,

respectively. The statistics comes from RR-CCSD/cc-pVDZ calculations for 70 molecules contained in the

Adler-Werner benchmark set137.

UX
ia come from diagonalization of the MP2 amplitudes, but nearly the same results are obtained

with the MP3 amplitudes. All data are given for NO = NZ = mO with m = 1, 2, 3, 4. As the size of

Alder-Werner benchmark set is substantial and comparison of individual results is cumbersome,

we provide statistical error measures to access the quality of the results for each value of the

control parameters NO = NZ. In Tables I and II we report such measures for relative errors in

the RR-CCSD correlation energies: the mean relative error, mean absolute relative error, standard

deviation of the relative error and maximum absolute relative error. Since the molecules included

in the Alder-Werner set vary considerably in size, relative errors are preferred due to their size-

intensive character. We found that for each value of the parameters m and Neig the distributions of
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the (signed) relative errors are well approximated by the normal (Gaussian) distribution with the

mean and standard deviation indicated in Tables I and II. In Fig. 3 we represent these distributions

graphically to simplify the analysis of the results.

In general, the approximate treatment of the Oi j
kl and Zab

i j intermediates leads to minor errors in

the RR-CCSD energy. Even with the smallest expansion length considered here (NO = NZ = O)

more than 99.8% of the correlation energy is recovered. Beyond this point the error vanishes with

increasing NO and NZ at a rate close to exponential; with NO =NZ = 4O the relative error decreases

below 0.02%. Moreover, the error distributions for Neig = NMO and Neig = 2 ·NMO are remarkably

similar, indicating that the truncation error of Eqs. (27) and (34) is practically independent of the

dimension of the double excitation subspace. It is also noteworthy that the approximate treatment

of the Oi j
kl and Zab

i j intermediates systematically underestimates the correlation energy. In sum-

mary, the results obtained with NO = NZ = 3O are, on average, sufficiently accurate for routine

applications, with the mean error of only about 0.03%. However, the standard deviation of the

error obtained with NO = NZ = 3O is still substantial compared to its mean, and hence the error

distribution is rather broad. From the practical point of view, this negatively impacts the reliability

of the method since it is not uncommon to encounter ”outliers“ with unexpectedly large errors.

Therefore, we recommend that NO = NZ = 4O is used in actual applications where the reference

results are not available. As is evident from Fig. 3 the error distribution for NO = NZ = 4O is much

narrower than for NO = NZ = 3O which translates into a decreased likelihood of encountering the

outliers. At the same time, the jump from NO = NZ = 3O to NO = NZ = 4O leads to only a minor

increase of the overall computational timings. Therefore, all numerical results reported further in

this work were obtained with NO = NZ = 4O.

It is also important to study how the augmentation of the basis set with diffuse functions influ-

ences the accuracy of the approximations adopted for the Oi j
kl and Zab

i j intermediates. To address

this question, we performed analogous calculations for the Alder-Werner benchmark set as de-

scribed in the previous paragraph, but employing the aug-cc-pVDZ basis set138. As the results are

essentially insensitive to the value of the Neig parameter, in supplementary material we report the

data for the representative case of Neig = NMO. In summary, the augmentation of the basis set has

a tiny influence on the accuracy of the decomposition applied to the Oi j
kl and Zab

i j intermediates.

As an example, for the recommended expansion length (NO = NZ = 4O) the mean relative error in

the correlation energy increases only by about one thousandth of a percent upon the augmentation.

Therefore, the approach proposed in the present work with the recommended expansion length
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(NO = NZ = 4O) can be safely applied in calculations with diffuse basis set functions.

It is worthwhile to point out that there are two equivalent ways of selecting the dimension of the

subspace used for the expansion of the Oi j
kl and Zab

i j intermediates. The first is to specify the values

of parameters NO and NZ by relating it to another quantity that scales linearly with the system

size, as was done in the calculations above (NO = NZ = mO). In this way the values of NO and

NZ are known before the calculations are even started. However, an alternative idea is to form the

subspace by taking all singular vectors with singular values larger than the predefined numerical

threshold ε . In other words, NO and NZ are found dynamically during the SVD procedure based

on the parameter ε provided by the user. The main advantage of knowing NO and NZ in advance,

besides the fact that the computational cost and scaling of the method can be judged more easily,

is purely technical. In fact, implementation of an SVD procedure that dynamically adjusts the

expansion length in each iteration is significantly more complicated than with fixed NO and NZ, and

can be expected to be also less efficient, especially in parallel environment. To address the question

whether is worth the effort to develop an algorithm that dynamically adjusts the expansion length,

we performed calculations for a subset of the Alder-Werner benchmark set. In the supplementary

material we provide a comparison of the fixed and dynamic approach for one molecule we found

representative of the whole set. As an example, the dynamic adjustment based on ε reduces the

expansion length by about 15% if the relative accuracy of 99.95% is desired. While this reduction

is non-negligible, this finding has to be understood in a broader context. In fact, in the next section

we provide a comparison of timings of various steps of the RR-CCSD calculations. We show

that the determination of the subspace used for the expansion of the Oi j
kl and Zab

i j intermediates

constitutes less than 5% of the total RR-CCSD timings. Therefore, while the cost of handling the

Oi j
kl and Zab

i j intermediates alone may be reduced using the dynamic adjustment of the expansion

length, this would lead to only a minuscule decrease of the overall cost of the RR-CCSD method.

Finally, let us discuss how the approximations to the Oi j
kl and Zab

i j intermediates adopted in

the present work affect the size-extensivity of the energy and how the present approach can be

extended to calculation of, e.g. molecular properties. Similarly as discussed in Ref. 93, there are

two necessary conditions that the expansion basis used in Eqs. (27) and (34) must fulfill. First,

the basis vectors must be obtained using approximate doubly-excited amplitudes coming from a

method that is size-extensive itself. In the present work MP2 or MP3 amplitudes are used which

both fulfill this requirement. Second, the expansion length in Eqs. (27) and (34) must be a size-

extensive quantity and hence increase linearly with the system size. We verified numerically using
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the model systems of linear alkanes and water clusters considered above, that the original93 and

the modified RR-CCSD variants retain the size-extensive property.

Moving on to the calculation of the RR-CCSD properties, in the original formulation of the RR-

CCSD method described in Ref. 93, the projectors UX
ia are assumed to be perturbation-independent.

Therefore, the Lagrangian formulation introduced in Ref. 93 enables straightforward calculation

of molecular properties, using a similar approach as in the conventional coupled-cluster theory.

It is reasonable to adopt the same condition for expansion basis in Eqs. (27) and (34) which

leaves only the core matrices oFG and zFG as additional perturbation-dependent quantities whose

response must be taken into account explicitly. In order to extend the RR-CCSD Lagrangian in

this direction one requires to specify the stationary conditions that oFG and zFG fulfill. Taking the

former matrix as an example, let us define the following quantity

τ = ∑
i jkl

[
Oi j

kl−∑
FG

αF
ik oFG αG

jl

]
. (39)

One can show that at convergence of the RR-CCSD iterations this quantity is stationary with

respect to oFG in the sense that ∂τ
∂oFG

= 0 as this condition becomes equivalent to Eq. (32).

Therefore, the modified RR-CCSD Lagrangian is defined by adding a term ζFG
∂τ

∂oFG
, where

ζFG is a new set of Lagrange multipliers. By minimization of this modified Lagrangian with

respect to all perturbation-dependent parameters (tXY , oFG) one obtains equations that have to be

solved to find the multipliers. As a result, the Lagrangian is stationary with respect to all pa-

rameters which enables straightforward determination of molecular properties using the extended

Hellmann-Feynman theorem.

E. Accuracy and efficiency of the method

In this section we study the cumulative error of the RR-CCSD method incurred by the trunca-

tion of the double excitation subspace (as a function of Neig) and the approximate treatment of the

Oi j
kl and Zab

i j intermediates. In contrast to Sec. III D, the exact CCSD correlation energies obtained

within the same basis set are treated as a reference here. The RR-CCSD calculations for the whole

Alder-Werner benchmark set were performed with Neig = x ·NMO, where x is a parameter taking

values x = 0.50, 1.00, 1.50, 2.00, 2.50, and with the recommended NO = NZ = 4O. All calcula-

tions were performed within the cc-pVDZ and cc-pVTZ basis sets. We consider two variants of the

method, where the subspace of double excitations is obtained by diagonalization of either MP2 or
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TABLE III. Statistical measures of relative errors (in percent) in the RR-CCSD correlation energy with

respect to the exact CCSD results. The dimension of the excitation subspace (Neig) is expressed as Neig =

x ·NMO, where NMO is the total number of orbitals in the system. The subspace of double excitations was

obtained by diagonalization of MP2 amplitudes. The statistics comes from calculations for 70 molecules

contained in the Adler-Werner benchmark set137.

x mean mean abs. standard max. abs.

error error deviation error

cc-pVDZ basis set

0.5 0.349 0.365 0.310 1.419

1.0 0.608 0.608 0.268 2.034

1.5 0.285 0.290 0.128 0.538

2.0 0.197 0.203 0.118 0.427

2.5 0.227 0.228 0.195 1.601

cc-pVTZ basis set

0.5 0.342 0.343 0.164 1.275

1.0 0.309 0.312 0.140 1.124

1.5 0.088 0.119 0.113 0.333

2.0 0.106 0.124 0.149 0.300

2.5 0.123 0.131 0.079 0.259

MP3 amplitudes. Statistical measures of relative errors in the RR-CCSD correlation energy with

respect to the exact CCSD results for both variants are given in Tables III and IV. Similarly as in

the previous section, we found that the corresponding error distributions are approximately nor-

mal and are given in Fig. 4 in the case of the cc-pVTZ basis set. For brevity, plots representing

analogous results obtained within the cc-pVDZ basis were moved to the supplementary material.

From Tables III and IV one concludes that the MP2 excitation subspace is not well-suited

for highly accurate calculation of the correlation energy. While for smaller values of Neig (x =

0.5−1.0) the MP2 basis performs only marginally worse than MP3, for larger x the former method

stalls in terms of relative accuracy at the level of 0.2−0.3% in the cc-pVDZ basis and 0.1−0.2%

in the cc-pVTZ basis. If errors of this magnitude are acceptable, the MP2 basis is a reasonable

choice due to the marginal cost of its determination. However, it is uneconomical to aim at the
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TABLE IV. The same data as in Table III, but the subspace of double excitations was obtained by diago-

nalization of MP3 amplitudes.

x mean mean abs. standard max. abs.

error error deviation error

cc-pVDZ basis set

0.5 0.100 0.286 0.371 1.128

1.0 0.468 0.468 0.216 2.053

1.5 0.294 0.294 0.081 0.487

2.0 0.158 0.158 0.052 0.298

2.5 0.068 0.069 0.034 0.223

cc-pVTZ basis set

0.5 −0.203 0.257 0.165 0.917

1.0 0.259 0.258 0.143 1.372

1.5 0.121 0.121 0.044 0.422

2.0 0.037 0.039 0.027 0.114

2.5 0.004 0.018 0.024 0.076

accuracy levels of 0.1% or better with the MP2 basis, as the error decays too slowly as a function

of Neig. As a result, in accurate calculations where relative errors below 0.1% are expected, MP3

amplitudes are necessary. The MP3 basis does not suffer from the diminishing returns as Neig is

increased, and the convergence with respect to Neig is fast even in the high-accuracy regime. For

Neig = 2NMO the MP3 basis achieves relative accuracy of about 0.1% in the cc-pVDZ basis and

about 0.04% in the cc-pVTZ basis. As a side note, this demonstrates that the amplitudes obtained

within the larger basis set are more ”compressible“ and we expect this phenomenon to prevail as

the basis set is increased further. To sum up, we recommend that Neig = 2NMO is used to fix the

expansion length in Eq. (1), both in the case of MP2 and MP3 excitation bases. This value strikes

a balance between the computational cost of the RR-CCSD procedure and the accuracy level it

offers.

To study the computational efficiency of the RR-CCSD method we first analyze which steps

of the RR-CCSD algorithm bring the dominant contribution to the total timings. To this end, we

consider the largest molecule in the Adler-Werner set (ethylbenzene, C8H10) employing the cc-
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FIG. 4. Distribution of relative error (in percent) in the RR-CCSD/cc-pVTZ correlation energy with

respect to the exact CCSD/cc-pVTZ results. The dimension of the excitation subspace (Neig) is expressed

as Neig = x ·NMO, where NMO is the total number of orbitals in the system. The excitations subspace

was obtained by diagonalization of MP2 amplitudes (top panel) or MP3 amplitudes (bottom panel). The

statistics comes from calculations for 70 molecules contained in the Adler-Werner benchmark set137. See

the supplementary material for analogous results obtained within cc-pVDZ basis set.

pVTZ basis set (380 molecular orbitals). We employ the recommended values of the truncation

parameters, namely Neig = 2NMO, NO = NZ = 4O. In Fig. 5 we present a breakdown of the total

RR-CCSD wall clock timings into individual components of the algorithm. For comparison, tim-

ings of the Hartree-Fock calculations obtained with the default GAMESS settings and the density

matrix convergence threshold of 10−8 are also given. From Fig. 5 it is clear that two steps of the

proposed RR-CCSD algorithm, namely diagonalization of the MP2 amplitudes and decomposi-

tion of the Oi j
kl intermediate, are essentially negligible in terms of the computational effort. The
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0

FIG. 5. Breakdown of the RR-CCSD/cc-pVTZ wall clock timings for the ethylbenzene molecule (C8H10,

380 molecular orbitals). The timings of the Hartree-Fock calculations are given for comparison (default

GAMESS settings, density matrix convergence threshold 10−8). The category ”remaining“ includes minor

tasks such as updating the coupled-cluster amplitudes, evaluating the energy, etc. The calculations were

performed using a single core of AMD Opteron™ Processor 6174 (no parallelization).

treatment of Zab
i j intermediate is somewhat more costly, but still comparable with the conventional

Hartree-Fock calculations. Therefore, while the decomposition of the Oi j
kl and Zab

i j intermediates

advocated in this work scales formally as N5 with the system size, the prefactor of this procedure

is small and hence this step does not contribute significantly to the overall workload. On the other

hand, the diagonalization of the MP3 amplitudes introduces a considerable overhead. With the

current implementation the total costs of finding the MP3 excitation subspace and the subsequent

RR-CCSD iterations are comparable.

In general, the pilot implementation of the RR-CCSD method reported in this paper is limited

to 600− 700 basis set functions, but this limitation results from overuse of disk files for storage

of intermediate quantities. We are currently working on an improved implementation that avoids

this problem and hence should vastly exceed the capabilities of the conventional CCSD imple-

mentations. In fact, shortly after the present manuscript was submitted for publication, another ar-

ticle was published? that describes a GPU-accelerated parallel implementation of the RR-CCSD

method applicable up to ca. 2000 basis set functions. Notably, this was achieved without any
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FIG. 6. Timings of the RR-CCSD/cc-pVDZ calculations with Neig = 2NMO, NO = NZ = 4O (orange

squares) and of the exact CCSD/cc-pVDZ calculations (brown circles) for linear alkanes CnH2n+2 as a func-

tion of the chain length, n (logarithmic scale on both axes). The timings are given in relation to the CCSD

calculations for methane (trel). The calculations were performed using a single core of AMD Opteron™

Processor 6174 (no parallelization). The black dashed lines were obtained by least-squares fitting of the

data points with the functional form a ·nb (represented by linear functions on doubly-logarithmic scale).

special treatment of the non-factorizable terms in the RR-CCSD residual, and hence the imple-

mentation reported in Ref. ? scales as N6. Because of that, the non-factorizable terms turned

out to be the bottleneck of this implementation for large systems. Clearly, an efficient implemen-

tation of the RR-CCSD method with the treatment of the non-factorizable terms described in the

present work should be capable of reaching even larger systems. An alternative method of elim-

inating the non-factorizable terms based on the tensor hypercontraction (THC) decomposition of

the doubly-excited amplitudes has also been reported recently? .

Finally, to compare the performance of the RR-CCSD and the exact CCSD methods, we an-

alyze their timings for the linear alkanes CnH2n+2 previously considered in Sec. III C. In Fig. 6

we report the total wall clock times of the CCSD and RR-CCSD calculations (cc-pVDZ basis set)

as a function of the alkanes chain length, n. Similarly as above, we employ the recommended

values of the truncation parameters, namely Neig = 2NMO, NO = NZ = 4O. The timings for the

RR-CCSD method include determination of the double-excitation subspace, treatment of the Oi j
kl
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and Zab
i j intermediates and all other steps discussed in the previous paragraph. To convert the data

into dimensionless units the timings are given in relation to the CCSD calculations for methane.

To confirm numerically that the scaling observed in Fig. 6 matches the theoretical predictions

from Sec. III D we fitted the timings with the functional form a · nb for n = 3− 10. We obtained

the exponents b = 5.04 for the RR-CCSD method and 5.86 for the exact CCSD theory, in a good

agreement with the conclusions of Sec. III D. Another important issue is to estimate for how

large systems the RR-CCSD method becomes advantageous in terms of computational timings.

From Fig. 6 we see that the break-even point for linear alkanes occurs rather early, around n =

4 (butane). Beyond this point the RR-CCSD is less computationally expensive, with the gap

increasing linearly with the molecular size. For the fixed values of the control parameters (Neig =

2NMO, NO, and NZ) we expect this finding to be approximately valid also for other systems, with

the break-even point occurring for about thirty or so active electrons.

IV. PERTURBATIVE TRIPLES CORRECTIONS

A. Problem formulation

It is well-known that the conventional coupled-cluster theory with only single and double ex-

citations included in the cluster operator is insufficient to obtain chemically-accurate predictions.

In fact, only after triple excitations are accounted for, levels of accuracy of 1 kcal/mol or better

become routinely accessible139–144. However, the computational cost of the coupled-cluster the-

ory with full inclusion of triple excitations is prohibitively high for systems comprising more than

a few non-hydrogen atoms. For this reason, numerous approximate schemes were proposed to

account for the effects of triple excitations in a more affordable way without sacrificing too much

accuracy. The most widely-used method of this type is the CCSD(T) theory of Raghavachari et

al.3, frequently referred to as the ”gold standard“ of quantum chemistry.

The CCSD(T) theory is perturbative in nature and adds a non-iterative correction, denoted

shortly E(T) further in the text, on top of the standard CCSD energy. This correction is a sum of

two terms

E(T) = E [4]
T +E [5]

ST (40)
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defined as

E [4]
T = 〈T SD

2 |
[
W,T3

]
〉, (41)

and

E [5]
ST = 〈T SD

1 |
[
W,T3

]
〉, (42)

where T SD
1 and T SD

2 is an abbreviation for cluster operators (7) obtained at the CCSD level of

theory. The triple excitation operator present in Eqs. (40) and (41) is given by the standard

formula

T3 =
1
6

tabc
i jk Eai Eb j Eck, (43)

where the amplitudes tabc
i jk are approximated as

tabc
i jk ≈ (εabc

i jk )
−1 Γabc

i jk , (44)

Γabc
i jk = 〈abc

i jk |
[
W,T SD

2
]
〉, (45)

and εabc
i jk = εa

i +εb
j +εc

k is the three-particle energy denominator. The evaluation of the corrections

E [4]
T and E [5]

ST scales as N7 with the system size, if no further approximations are introduced.

A natural extension of the RR-CCSD method is to evaluate the E(T) correction with the singly-

and doubly-excited amplitudes obtained within the rank-reduced formalism and add it to the RR-

CCSD correlation energy. The resulting method is abbreviated RR-CCSD(T) further in the paper

and we expect it to faithfully reproduce the exact CCSD(T) results. Unfortunately, the steep N7

scaling of the E(T) correction would constitute a severe bottleneck in applications to larger sys-

tems, in comparison to the more subdued N5 cost of the RR-CCSD iterations. To the best of our

knowledge, the N7 scaling cannot be reduced by exploiting solely the rank-reduced form of the

T SD
2 amplitudes given by Eq. (1). Therefore, additional approximations are needed to make the

RR-CCSD(T) method advantageous which is explored in the subsequent section.

B. Compression of the triply excited amplitudes

To decrease the scaling of the E(T) correction removal of the three-particle energy denominator

from Eq. (44) is a priority. To this end, we employ the same min-max quadrature as in Sec. III B

for the MP2 and MP3 amplitudes. The Laplace transformation formula now reads

(εabc
i jk )

−1 = wg e−tg
(

εa
i +εb

j +εc
k

)
, (46)
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where the notation for all quantities in the same as in Sec. III B. As demonstrated in the paper

of Constans et al.145 application of the Laplace transformation of the three-particle energy de-

nominator alone is sufficient to reduce the scaling of the E [4]
T and E [5]

ST terms to the level of N6.

Unfortunately, the subsequent factorization yields numerous terms with a large prefactor (OV 5

scaling) and hence the computational benefits are achieved only for very large systems. To avoid

this problem, in Ref. 145 the E [4]
T and E [5]

ST corrections were rewritten in terms of CCSD natu-

ral orbitals, enabling an efficient screening procedure to eliminate negligible contributions. Here

we propose an alternative approach where the triply-excited amplitudes (44) are approximately

represented in the Tucker-3 format97

tabc
i jk = tABC V A

ia V B
jbVC

kc. (47)

In analogy to Eq. (1) the basis vectors V A
ia span the subspace of triple excitations. The dimen-

sion of this subspace, i.e. the length of the summations over the variables A, B, C in Eq. (47),

is denoted Ntrip further in the paper. Note that the Tucker-3 decomposition has been recently ap-

plied to the full CCSDT method92 with the quantities V A
ia obtained by higher-order singular value

decomposition99,100 (HOSVD) of Eq. (44). More importantly, it has also been shown that Ntrip

has to scale only linearly with the system size in order to maintain a constant relative accuracy

in the correlation energy. As demonstrated further in the text, this allows to calculate the E [4]
T

and E [5]
ST corrections with the cost proportional to N6 and an acceptable prefactor. Unfortunately,

the HOSVD method adopted in Ref. 92 is not feasible in the present context due to a prohibitive

cost. To achieve the decomposition (47) we thus employ a variant of the higher-order orthogonal

iteration (HOOI) procedure101,102 which is a particular method of minimizing the least-squares

error

τ = ∑
i jk

∑
abc

[
tabc
i jk − tABC V A

ia V B
jbVC

kc

]2

, (48)

subject to the orthonormality condition V A
ia V B

ia = δAB. While HOOI is a well-known tool in the

mathematics literature, we are aware of only one paper where it is used in the context of the

electronic structure theory84.

To apply the HOOI procedure to the tabc
i jk amplitudes one requires an initial guess of the basis

vectors V A
ia . In our implementation this guess is generated by taking the basis vectors UX

ia (obtained

previously for the doubly-excited amplitudes) that correspond to the largest absolute eigenvalues.

While a more sophisticated and effective guess can definitely be proposed, we found this simple
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and self-contained approach to be entirely adequate. The HOOI procedure consists of two basic

steps

• evaluate the partially contracted quantity

tia,BC = tabc
i jk V B

jbVC
kc, (49)

with current estimation of the factors V A
ia ;

• compute SVD of tia,BC reshaped as a OV ×N2
trip matrix and take left-singular vectors that

correspond to the largest singular values as the next V A
ia .

These steps are repeated until convergence; the choice of the stopping criteria is discussed further

in the text. The computational costs of both steps scale as the fifth power of the system size. This is

straightforward to prove in the case of the second step by noting that we need to find only a subset

of Ntrip singular vectors with the largest singular values. As Ntrip is proportional to the system size,

application of the decomposition algorithm described in Sec. II C immediately results in N5 cost.

The first step of the HOOI algorithm can also be accomplished with the same scaling. To show

that we recall the explicit formula for the quantity Γabc
i jk defined in Eq. (44):

Γabc
i jk =

(
1+Pbc

jk

)(
1+Pab

i j +Pac
ik

)

×
[
tad
i j (ck|bd)− tab

il (ck|l j)
]
,

(50)

By inserting the density-fitting form of the two-electron integrals together with the decomposed

amplitudes (1) and defining the intermediate

D̄QX
jb =

(
BQ

bd UY
jd−BQ

l j U
Y
lb

)
tXY , (51)

we bring Eq. (50) into a simpler form

Γabc
i jk =

(
1+Pbc

jk

)(
1+Pab

i j +Pac
ik

)
UX

ia D̄QX
jb BQ

kc. (52)

This leads to the working expression for the partially contracted quantity tia,BC required in the

HOOI algorithm

tia,BC =
(
1+PBC

)
wg e−tgεa

i

×
[
UX

ia

(
D̄QX

jb V B
jb e−tgεb

j

)(
BQ

kcVC
kc e−tgεc

k

)

+ D̄QX
ia

(
UX

jbV B
jb e−tgεb

j

)(
BQ

kcVC
kc e−tgεc

k

)

+ BQ
ia

(
UX

jbV B
jb e−tgεb

j

)(
D̄QX

kc VC
kc e−tgεc

k

)]
.

(53)
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It is straightforward to verify that each elementary contraction in the above formula involves at

most five indices at the same time, not including the Laplace grid index. As a result, the cost of

assembling the quantity tia,BC scales as the fifth power of the system size.

Finally, we discuss the issue of the stopping criteria in the HOOI procedure. The obvious

choices are to monitor either the least-squares error of Eq. (47) or the norm of the difference be-

tween V A
ia obtained in two subsequent iterations. Unfortunately, both of these ideas are troublesome

in practice. The calculation of the least-squares error during every HOOI iteration is prohibitively

expensive as it involves quantities such as
(

tabc
i jk

)2
. The use of the differences between the expan-

sion vectors V A
ai is not effective due to non-uniqueness of the singular vectors which may change

from iteration to iteration without affecting the error in Eq. (47).

To avoid these problems, we monitor the norm of the core tensor tABC as a proxy for the con-

vergence of the procedure, namely

||t||2 = ∑
ABC

t2
ABC = ∑

ABC

(
∑
ia

tia,BC V A
ia

)(
∑
jb

t jb,BC V A
jb

)
, (54)

where summation symbols were added for clarity. The second equality is a consequence of the

orthonormality of the V A
ai vectors obtained from the SVD procedure. The HOOI procedure is

terminated when the difference in ||t|| between two consecutive iterations falls below a predefined

threshold. The threshold value 10−5 is sufficient in most applications and has been adopted in

the present work. The cost of computing ||t|| during every iteration is negligible in comparison

with other parts of the algorithm as tia,BC is explicitly available anyway. The reason why this

simplified procedure is adequate follows from the fact that the HOOI algorithm can be equivalently

formulated as a maximization of the norm of the core tensor rather than the minimization of the

least-squares error as in Eq. (48), see Refs. 52 and reference therein.

With the triply-excited amplitudes represented in the rank-reduced format (47), the remaining

task is to evaluate the E [4]
T and E [5]

ST corrections. Derivation of explicit formulas for these cor-

rections given in terms of basic two-electron integrals and cluster amplitudes is straightforward,

but the resulting expressions are rather lengthy. Therefore, they are given in the full form in the

supplementary material. However, it is worth pointing out that the E [5]
ST correction is expressed as

a sum of four distinct terms with the computational complexity of N5 or lower. Assuming that

Naux > Ntrip, the most expensive of them scales as O2NauxN2
trip or O2V NauxNtrip depending on the

ratio of V to Ntrip. Explicit formula for E [4]
T comprises six terms, the most expensive two scaling as

O2V NeigNauxNtrip ∝ N6. Therefore, evaluation of the E(T) correction in the rank-reduced formalism
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TABLE V. Statistical measures of relative errors (in percent) in the E(T) correction in the rank-reduced

formulation with respect to the exact results. The dimension of the triple excitation subspace (Ntrip) is

expressed as Ntrip = y ·NMO, where NMO is the total number of orbitals in the system. The statistics comes

from calculations for 70 molecules contained in the Adler-Werner benchmark set137.

y mean mean abs. standard max. abs.

error error deviation error

cc-pVDZ basis set

0.50 −16.63 16.65 5.81 25.00

0.75 −7.33 7.71 4.34 14.42

1.00 −2.89 3.76 3.17 7.37

1.25 −1.58 2.57 2.59 5.65

1.50 −0.71 1.88 2.19 5.19

cc-pVTZ basis set

0.50 −6.86 7.38 4.17 12.67

0.75 −1.89 2.79 2.75 6.93

1.00 −0.53 1.67 2.04 5.26

1.25 −0.31 1.21 1.49 4.64

1.50 −0.34 0.94 1.17 4.90

possesses N6 computational complexity, lower than the O3V 4 ∝ N7 scaling of the conventional al-

gorithms. A rough estimate of the crossover point between two algorithms is obtained by recalling

that Neig ≈ 2NMO ≈ 2V is sufficient in practice in the RR-CCSD method, and that Naux ≈ 2−4V

with the standard auxiliary basis sets. Therefore, even in the most computationally demanding

scenario where Ntrip ≈ Neig is needed to achieve sufficient levels of accuracy, the crossover point

occurs for relatively small systems with O≈ 10 or so.

C. Accuracy of the RR-CCSD(T) method: total energies

In order to study the accuracy levels that can realistically be reached with the RR-CCSD(T)

method and find the value of the parameter Ntrip that offers a compromise between accuracy and

computational costs under typical conditions, we performed RR-CCSD(T) calculations for the
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TABLE VI. The same data as in Table V, except relative errors (in percent) in the total RR-CCSD(T)

correlation energies are given.

y mean mean abs. standard max. abs.

error error deviation error

cc-pVDZ basis set

0.50 −0.397 0.411 0.240 0.900

0.75 −0.094 0.159 0.180 0.506

1.00 0.053 0.099 0.133 0.534

1.25 0.096 0.114 0.119 0.580

1.50 0.125 0.130 0.107 0.591

cc-pVTZ basis set

0.50 −0.257 0.320 0.273 1.200

0.75 −0.041 0.136 0.210 1.269

1.00 0.022 0.101 0.187 1.001

1.25 0.034 0.083 0.171 0.871

1.50 0.033 0.070 0.166 0.784

Alder-Werner benchmark set. The other numerical parameters present in the RR-CCSD(T) method

were fixed at their recommended values (Neig = 2NMO and NO = NZ = 4O), so that the focus is

solely on the remaining Ntrip parameter. Additionally, in this section we consider only the RR-

CCSD(T) method with the double excitation subspace obtained by diagonalization of the MP3

amplitudes. We found that the E(T) correction, in contrast to the RR-CCSD energy, is rather

insensitive to whether MP2 or MP3 amplitudes are used, with relative errors of the E(T) correction

differing by just a small fraction of a percent.

For each member of the Alder-Werner set we performed RR-CCSD(T) calculations with Ntrip =

y ·NMO, where y = 0.50, 0.75, 1.00, 1.25, and 1.50. Note that the y parameter is asymptotically

independent of the system size and hence we expect it to possess some universal value that delivers

a decent accuracy in the E(T) correction for a broad range of systems.

We aim at relative accuracy level of a few percent in the E(T) correction. This is a reason-

able target from the practical point of view, because E(T) rarely contributes from the 5% of the

total correlation energy in well-behaved systems. In Table V we report error statistics for the cal-
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FIG. 7. Distribution of relative error (in percent) in the E(T) correction with respect to the exact results

(cc-pVTZ basis). The dimension of the triples excitation subspace (Ntrip) is expressed as Ntrip = y ·NMO,

where NMO is the total number of orbitals in the system. The statistics comes from calculations for 70

molecules contained in the Adler-Werner benchmark set137. See the supplementary material for analogous

results obtained within the cc-pVDZ basis set.

FIG. 8. Distribution of relative error (in percent) in the total RR-CCSD(T)/cc-pVTZ correlation energy with

respect to the exact CCSD(T)/cc-pVTZ method. The dimension of the triples excitation subspace (Ntrip) is

expressed as Ntrip = y ·NMO, where NMO is the total number of orbitals in the system. The statistics comes

from calculations for 70 molecules contained in the Adler-Werner benchmark set137. See the supplementary

material for analogous results obtained within the cc-pVDZ basis set.

culations of the E(T) correction in the rank-reduced formulation. Analogous data are given also

in Table VI, but there we consider errors in the total RR-CCSD(T) correlation energies, i.e. the

sum of the RR-CCSD and E(T) contributions, taking the exact CCSD(T) results as a reference.
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For ease of comparison, the distributions of errors for the E(T) correction alone and for the total

RR-CCSD(T) correlation energy (both within the cc-pVTZ basis set) are represented graphically

in terms of normal distributions in Figs. 7 and 8, respectively. Analogous plots obtained with

RR-CCSD(T)/cc-pVDZ method are given in the supplementary material.

The results reported in Fig. 7 reveal the overall trend in the accuracy of the E(T) correction

as a function of the y parameter. Even with the smallest triple excitation subspace dimension

considered here (y = 0.50) a reasonable relative accuracy of several percent is obtained. This

improves to about 0.5% when the parameter y is increased to unity. Beyond the point y = 1 the

improvement rate slows down considerably. We verified that this phenomenon is a consequence

of finite accuracy of the doubly-excited amplitudes (with the recommended Neig = 2NMO) which

limit the accuracy of the E(T) correction for y > 1.

Based on the results reported in Table V, we recommend that for Neig = 2NMO the dimension of

the triple-excitation subspace is set to Ntrip =NMO, corresponding to y= 1. For this value of the pa-

rameter the accuracy of the E(T) correction meets the criteria discussed in the previous paragraphs.

Moreover, this choice is supported by the observation that a further increase of the parameter y

leads to minor improvements in the accuracy of the total RR-CCSD(T) energies, see Table VI.

This is a result of an accidental, yet systematic cancellation of errors that occurs for Neig = 2NMO

and Ntrip = NMO where the RR-CCSD component of the energy is slightly underestimated, while

the E(T) correction is overestimated by a comparable amount. However, we verified that even in

the absence of this fruitful error cancellation, i.e. assuming that both errors are of the same sign,

the combination of the parameters Neig = 2NMO and Ntrip = NMO would still provide accuracy lev-

els better than 0.1% in the total RR-CCSD(T) energies. Therefore, the choice Neig = 2NMO and

Ntrip = NMO is both safe and pragmatic, and is adopted further in the paper.

D. Accuracy of the RR-CCSD(T) method: relative energies

Finally, we study the accuracy of the RR-CCSD(T) method in reproduction of relative energies

and compare the results with the reference CCSD(T) data. As the first test we employ the bench-

mark set of 34 isomerization energies of organic molecules introduced by Grimme et al.146 (usu-

ally abbreviated as ISO34 in the literature). The range of isomerization energies included in the

ISO34 set spans from a few kJ/mol to a few hundreds kJ/mol. The RR-CCSD(T) calculations were

performed with the recommended settings (Neig = 2NMO, NO = NZ = 4O, and Ntrip = NMO) and
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are compared with the exact CCSD(T) results obtained with NWCHEM package. Note that in the

latter calculations we do not apply the density-fitting approximation of the two-electron integrals

and hence the error budget of the RR-CCSD(T) results formally includes also the density-fitting

error. In all calculations we employ the cc-pVTZ basis set and the 1s core orbitals of the first-

row atoms were frozen. Within this setup the largest system included in the ISO34 set contains

about 500 orbitals and 50 active electrons which is near the edge of applicability of the canonical

CCSD(T) theory without further approximations or a parallelization.

Raw isomerization energies computed using the RR-CCSD(T) and the exact CCSD(T) methods

are listed in the supplementary material. To simplify the analysis we consider statistical error

measures with respect to the reference CCSD(T) method evaluated for the whole ISO34 set. The

RR-CCSD(T)/cc-pVTZ method exhibits the mean error of −0.03 kJ/mol and mean absolute error

of 0.32 kJ/mol. The standard deviation of the error equals to 0.38 kJ/mol. This level of accuracy

is sufficient for many applications involving polyatomic molecules. Moreover, it is worth pointing

out that the RR-CCSD(T) method is systematically improvable without a drastic increase of the

computational costs. Therefore, if accuracy levels of, e.g., 0.1 kJ/mol are needed in a particular

application, this requirement can be met by increasing the control parameters Neig and Ntrip above

the values recommended currently.

The maximum absolute deviation among the isomerization energies from the ISO34 set was

found for reaction 13 (styrene→ cyclooctatetraene) and amounts to 0.77 kJ/mol. However, it has

to be pointed out that the total isomerization energy for this reaction is particularly large (152.89

kJ/mol), so the relative error obtained in this case (about 0.5%) is still acceptable. At the same time,

the RR-CCSD(T) method accurately reproduces also small energy differences, indicating a sys-

tematic error cancellation. For example, consider the smallest two isomerization energies from the

ISO34 benchmark set equal to 4.66 kJ/mol and 4.73 kJ/mol for reaction 4 (trans-2-butene→ cis-

2-butene) and reaction 5 (isobutylene→ trans-2-butene). The errors of the RR-CCSD(T) method

for these reactions amount to −0.03 kJ/mol and −0.06 kJ/mol, respectively. This shows that the

proposed method is capable of providing uniformly reliable results in a chemically-relevant energy

range.

The second group of model systems we employ to study the accuracy of the RR-CCSD(T)

method in reproduction of relative energies are ortho-, meta- and para-fluorophenols. These sys-

tems have been intensively studied in the literature due to their rich microwave spectrum proto-

typical for hydrogen bond interactions with fluorine147–152. Here we consider the torsional energy
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FIG. 9. Absolute errors (left panel) and percent relative errors (right panel) in the RR-CCSD(T)/cc-pVTZ

torsional energy curves for the ortho-, meta- and para-fluorophenols. The exact CCSD(T)/cc-pVTZ results

are used as a reference.

differences related to the internal rotation of the hydroxyl moiety in relation to the plane of the

aromatic ring. The torsional angle, denoted τ further in the text, is defined by the following se-

quence of four atoms: the hydrogen of the hydroxyl group, the oxygen, the carbon atom closest to

the oxygen, and the next carbon atom in the ring closest to the fluorine atom (in the case of para-

fluorophenol the last choice is arbitrary). By convention, in the case of ortho and meta isomers the

torsional angle τ = 0 corresponds to the trans structure with the maximum distance between the

hydrogen of the hydroxyl group and the fluorine atom.

TABLE VII. Parameters of the torsional energy curve (see the text for definitions of all quantities) for

three isomers of fluorophenol computed using the RR-CCSD(T)/cc-pVTZ method (“RR”) and the exact

CCSD(T)/cc-pVTZ method (“exact”). For each isomer relative energies with respect to its τ = 0 conforma-

tion are given. The angles are given in degrees and the energies in kJ/mol.

ortho meta para

quantity RR exact RR exact RR exact

∆Ebarrier 21.62 21.84 14.63 14.75 11.55 11.76

τbarrier 101.34 101.24 91.18 91.26 90.00 90.00

∆Ecis/trans 11.36 11.40 −0.53 −0.53 0.00 0.00

We performed an energy scan varying the torsional angle τ from 0◦ to 180◦ in steps of 15◦. The
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rest of the molecular geometry was fully optimized for each τ at the MP2/cc-pVTZ level of theory.

Cartesian coordinates of the optimized structures are included in the supplementary material. Fi-

nally, the RR-CCSD(T)/cc-pVTZ and the exact CCSD(T)/cc-pVTZ calculations are performed on

every optimized geometry with the same settings as for the ISO34 benchmark set. For each isomer,

the τ = 0 conformation is treated as the zero-energy point and all other energies are given relative

to it. In Fig. 9 we provide errors of the RR-CCSD(T)/cc-pVTZ torsional energies with respect to

the exact CCSD(T)/cc-pVTZ for each isomer of the fluorophenol. Raw energies used to compile

this plot are given in the supplementary material. From Fig. 9 it is clear that the errors in the tor-

sional energies vary smoothly with τ , without major jumps and discontinuities. The mean absolute

errors (averaged over τ = 15◦, . . . ,180◦) are 0.091/0.038/0.076 kJ/mol for the ortho/meta/para

isomers, while the corresponding standard deviations are 0.079/0.044/0.077 kJ/mol. To further

study the performance of the RR-CCSD(T) method we calculated three parameters that character-

ize the potential energy curves for each isomer:

• the height of the potential energy barrier separating the trans (τ = 0) and cis (τ = 180◦)

conformations, ∆Ebarrier;

• the value of the torsional angle corresponding to the maximum of the barrier, τbarrier;

• the energy difference between the trans and cis conformations, ∆Etrans/cis.

The first two parameters were found with the help of B-splines interpolation of the calculated data

points, followed by application of the Brent algorithm153 to find the minimum of the interpolated

curve. The numerical errors caused by this procedure are essentially negligible. The parame-

ters ∆Ebarrier, τbarrier, and ∆Etrans/cis determined for three conformers are reported in Table VII

and compared with the reference CCSD(T) values. The error of determining the barrier height is

around 0.2 kJ/mol for each conformer, while the error of determining its location is below 0.1 de-

grees. In many applications to polyatomic molecules errors of this magnitude would be negligible

in comparison with other uncertainties, such as the basis set incompleteness.

V. CONCLUSIONS

In this work we have modified and extended the rank-reduced CCSD theory introduced by

Parrish and collaborators with three major contributions. First, we have shown how a subset of
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eigenvectors of the MP2 and MP3 amplitudes, serving as the the expansion basis for the doubly-

excited amplitudes in the RR-CCSD method, can be obtained efficiently with N5 scaling. Second,

we have eliminated the issue of non-factorizable terms from the RR-CCSD residual. We have

provided a systematic way to approximate these terms using the singular value decomposition and

reduced the overall scaling of the RR-CCSD iterations down to the level of N5. Finally, we have

considered the evaluation of the perturbative corrections to the CCSD energies resulting from triply

excited configurations. The triply-excited amplitudes present in the CCSD(T) method have been

decomposed to the Tucker-3 format using the higher-order orthogonal iteration (HOOI) procedure.

This has enabled to compute the energy correction due to triple excitations non-iteratively with N6

cost.

The accuracy of the proposed RR-CCSD(T) method in reproduction of total correlation ener-

gies has been studied using a diverse set of 70 polyatomic molecules comprising first- and second-

row atoms. It has been shown that with the recommended values of the control parameters, relative

accuracy levels better than 99.9% have been achieved, both in the double- and triple-zeta basis

sets. Next, we have considered the accuracy of relative energies calculated with the RR-CCSD(T)

method. Numerical results for isomerization energies of 34 organic molecules and conformational

energies of substituted phenols have shown that average absolute errors are of the order of 0.1−0.3

kJ/mol. Moreover, the calculated energy surfaces show no discontinuities and are suitable for fit-

ting with a properly chosen functional form, which is usually a necessary step in nuclear dynamics

simulations, for example. We have also compared efficiency of the reduced scaling RR-CCSD im-

plementation with the standard CCSD algorithm. While we have shown that the break-even point

beyond which the RR formulation becomes advantageous occurs for only 30−40 active electrons,

an efficient parallelized code is required to compete with carefully-optimized implementations

reported recently that scale favorably to thousands of cores.

Finally, we point out possible extensions of the present work which are of particular inter-

est. First, the rank-reduction concepts can be applied to the symmetry-adapted perturbation the-

ory (SAPT)154–157. Higher-level variants of SAPT158, such as SAPT2+ and SAPT2+(3), share

a structure similar to the CCD theory with the exception that the excitation subspace for the su-

permolecule is formed as a union of excitations localized on the monomers. Another promising

idea is to extend the rank-reduced formalism to the time-dependent coupled-cluster theory159–161,

where the high cost of the calculations is one of the main stumbling blocks that prevent routine

applications to polyatomic molecules. Indeed, the computational effort of a single time step is usu-
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ally comparable to several standard CC iterations162,163 and tens of thousands of time steps may

be needed in simulations in strong laser fields. The applicability of the rank-reduced formalism to

the time-dependent problems shall be the subject of a future study.

SUPPLEMENTARY MATERIAL

See supplementary material for additional numerical results obtained using the RR-CCSD and

RR-CCSD(T) methods, tests of accuracy of the Laplace quadrature, and explicit analytical formu-

las for the factorizable terms in the RR-CCSD residual and for the E [4]
T and E [5]

ST corrections within

the rank-reduced framework.
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Q. Wu, C. Yang, Q. Yu, M. Zacharias, Z. Zhang, Y. Zhao, and R. J. Harrison, J. Chem. Phys.

152, 184102 (2020).
111M. Katouda and S. Nagase, Int. J. Quantum Chem. 109, 2121 (2009).
112E. Epifanovsky, D. Zuev, X. Feng, K. Khistyaev, Y. Shao, and A. I. Krylov, J. Chem. Phys.

139, 134105 (2013).
113A. E. DePrince and C. D. Sherrill, J. Chem. Theory Comp. 9, 2687 (2013).
114M. Lesiuk, J. Chem. Phys. 152, 044104 (2020).
115G. Golub and W. Kahan, SIAM J. Numer. Anal. 2, 205 (1965).
116H. Simon and H. Zha, SIAM J. Sci. Comput. 21, 2257 (2000).
117J. Baglama and L. Reichel, SIAM J. Sci. Comput. 27, 19 (2005).
118E. R. Davidson, J. Comp. Phys. 17, 87 (1975).
119J. Paldus and B. Jeziorski, Theor. Chem. Acc. 73, 81 (1988).
120P. Pulay, Chem. Phys. Lett. 73, 393 (1980).
121G. E. Scuseria, T. J. Lee, and H. F. Schaefer, Chem. Phys. Lett. 130, 236 (1986).
122G. D. Purvis and R. J. Bartlett, J. Chem. Phys. 75, 1284 (1981).
123M. Ziółkowski, V. Weijo, P. Jørgensen, and J. Olsen, J. Chem. Phys. 128, 204105 (2008).
124P. Ettenhuber and P. Jørgensen, J. Chem. Theory Comput. 11, 1518 (2015).
125J. Almlöf, Chem. Phys. Lett. 181, 319 (1991).
126M. Häser and J. Almlöf, J. Chem. Phys. 96, 489 (1992).
127P. Y. Ayala and G. E. Scuseria, J. Chem. Phys. 110, 3660 (1999).
128D. S. Lambrecht, B. Doser, and C. Ochsenfeld, J. Chem. Phys. 123, 184102 (2005).
129T. Nakajima and K. Hirao, Chem. Phys. Lett. 427, 225 (2006).
130Y. Jung, R. C. Lochan, A. D. Dutoi, and M. Head-Gordon, J. Chem. Phys. 121, 9793 (2004).
131D. Kats, D. Usvyat, and M. Schütz, Phys. Chem. Chem. Phys. 10, 3430 (2008).
132A. Takatsuka, S. Ten-no, and W. Hackbusch, J. Chem. Phys. 129, 044112 (2008).
133D. Braess and W. Hackbusch, IMA J. Numer. Anal. 25, 685 (2005).
134B. Helmich-Paris and L. Visscher, J. Comp. Phys. 321, 927 (2016).
135T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).
136F. Weigend, A. Köhn, and C. Hättig, J. Chem. Phys. 116, 3175 (2002).
137T. B. Adler and H.-J. Werner, J. Chem. Phys. 135, 144117 (2011).

49



Rank-reduced coupled-cluster theory

138R. A. Kendall, T. H. Dunning, and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992),

https://doi.org/10.1063/1.462569.
139R. J. Bartlett, J. Watts, S. Kucharski, and J. Noga, Chem. Phys. Lett. 165, 513 (1990).
140B. W. Hopkins and G. S. Tschumper, J. Phys. Chem. A 108, 2941 (2004).
141K. L. Bak, P. Jørgensen, J. Olsen, T. Helgaker, and W. Klopper, J. Chem. Phys. 112, 9229

(2000).
142A. Tajti, P. G. Szalay, A. G. Császár, M. Kállay, J. Gauss, E. F. Valeev, B. A. Flowers,

J. Vázquez, and J. F. Stanton, J. Chem. Phys. 121, 11599 (2004).
143A. Karton, E. Rabinovich, J. M. L. Martin, and B. Ruscic, J. Chem. Phys. 125, 144108 (2006).
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I. ACCURACY OF THE LAPLACE QUADRATURE

TABLE I. RR-CCSD correlation energies (in mH) obtained with the MP2 excitation basis (Neig = 2NMO,

NO = 4O). The number of Laplace quadrature points (Ng) used in the diagonalization of the MP2 amplitudes

is given in the first column. The result obtained with Ng = 20 are exact to all digits given.

Ng cc-pVDZ cc-pVTZ

HFa CHb
4 HFa CHb

4

2 −209.732 −187.501 −287.217 −235.346

3 −209.929 −187.683 −287.920 −235.660

4 −209.907 −187.676 −288.002 −235.686

6 −209.891 −187.672 −288.003 −235.667

10 −209.889 −187.670 −288.000 −235.665

20 −209.890 −187.671 −288.000 −235.665

a HF bond length: 1.732 a.u.
b tetrahedral geometry, C–H bond length: 2.048 a.u.

TABLE II. RR-CCSD correlation energies (in mH) obtained with the MP3 excitation basis (Neig = 2NMO,

NO = 4O). Ten quadrature points are used in the first part of Eq. (15) from the main text, while Ng points

are used in the second part. The result obtained with Ng = 10 are exact to all digits given.

Ng cc-pVDZ cc-pVTZ

HFa CHb
4 HFa CHb

4

2 −209.125 −187.417 −287.334 −235.453

3 −209.113 −187.453 −287.282 −235.484

4 −209.109 −187.459 −287.288 −235.479

6 −209.111 −187.457 −287.291 −235.479

10 −209.111 −187.457 −287.291 −235.479
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II. FACTORIZABLE TERMS IN THE RR-CCSD RESIDUAL

All formulas provided here correspond to the t1-dressed two-electron integrals, i.e. (pq̃|rs) =

B̃Q
pq B̃Q

rs. The necessary intermediates read

T X
ia =UX

ia tXY , SX
ia =

(
T Z

ib UX
jb

)
UZ

ja, T̄ X
ia = 2T X

ia −SX
ia, (1)

and

BQX
ia = B̃Q

jiU
X
ja, BQX

ai = B̃Q
abUX

ib , BQX
i j = B̃Q

iaUX
ja, AQ

X = BQ
iaUX

ia , ĀQ
X = BQ

aiU
X
ia , (2)

and

Xab =−F̃ab +2
(

AQ
Y BQ

jb

)
TY

ja−
(

BQX
i j BQ

jb

)
T X

ia , (3)

X ji =+F̃i j +2
(

AQ
X BQ

ia

)
T X

ja−
(

BQX
ik BQ

kb

)
T X

jb, (4)

and

WY
kc = BQ

kc ĀQ
Y +

1
2

BQ
kc

(
BQ

ld T̄Y
ld

)
, (5)

YY
ia = BQ

i j

(
BQ

baUY
jb

)
−
(

BQ
ic SY

kc

)
BQ

ka +
(

BQ
ic TY

kc

)
BQ

ka. (6)

The RR-CCSD residual reads

rXY = PXY

[
1
2

ĀQ
X ĀQ

Y +
1
2

[
UX

ia

(
BQZ

ia −BQZ
ai

)]
tZW

[(
BQW

jb −BQW
b j

)
UY

jb

]

+UX
ia

(
Xac TY

ic +Xil TY
la

)
− T̄ X

kc WY
kc +T X

kc YY
kc

]
+ non-factorizable terms.

(7)
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III. EFFECTIVE RANK OF Oi j
kl AND Zab

i j INTERMEDIATES IN THE DOUBLE-ZETA

BASIS SET

FIG. 1. Effective rank of the Oi j
kl intermediate for the linear alkanes CnH2n+2 (left panel) and water

clusters
(
H2O

)
n (right panel) extracted from the CCSD/cc-pVDZ calculations. The brown circles, orange

squares and red diamonds indicate the effective rank obtained with the thresholds ε = 10−2, 10−3, and 10−4,

respectively. The black dashed lines were obtained by least-squares fitting to the corresponding data points.

FIG. 2. Effective rank of the Zab
i j intermediate for the linear alkanes CnH2n+2 (top panel) and water

clusters
(
H2O

)
n (bottom panel) extracted from the CCSD/cc-pVDZ calculations. The brown circles, orange

squares and red diamonds indicate the effective rank obtained with the thresholds ε = 10−3, 10−4, and 10−5,

respectively. The black dashed lines were obtained by least-squares fitting to the corresponding data points.
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IV. EFFECTIVE RANK OF Oi j
kl AND Zab

i j INTERMEDIATES – LINEAR ALKENES

FIG. 3. Effective rank of the Oab
i j intermediate (left panel) and Zab

i j intermediate (right panel) for the linear

alkenes CnH2n extracted from the CCSD/cc-pVDZ calculations. The brown circles, orange squares and red

diamonds indicate the effective rank obtained with the thresholds ε = 10−2, 10−3, and 10−4, respectively.

The black dashed lines were obtained by least-squares fitting to the corresponding data points.
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V. DYNAMIC AND FIXED APPROACH TO THE DETERMINATION OF THE

EFFECTIVE RANK OF THE Oi j
kl INTERMEDIATE

FIG. 4. Relative error in the RR-CCSD correlation energy (in percent) resulting from truncation of the

expansion of the Oi j
kl intermediate as a function of the expansion parameter m = NO/O (aniline molecule,

cc-pVDZ basis set). The black dashed lines were obtained by interpolation of the corresponding data points.

FIG. 5. Left panel: relative error in the RR-CCSD correlation energy (in percent) resulting from truncation

of the expansion of the Oi j
kl intermediate as a function of the threshold ε used for dropping eigenpairs. Right

panel: the parameter m = NO/O as a function of the threshold ε . All results are given for aniline molecule

in the cc-pVDZ basis set.
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VI. APPROXIMATE TREATMENT OF THE Oi j
kl AND Zab

i j INTERMEDIATES IN

AUGMENTED BASIS SETS

TABLE III. Statistical measures of relative errors (in percent) in the RR-CCSD/aug-cc-pVDZ correlation

energy (for Neig = NMO) resulting from truncation of the expansions of the Oi j
kl and Zab

i j intermediates, see

Eqs. (27) and (34) from the main text, at length NO = NZ = mO, where O is the number of occupied

orbitals in the system. The value of the parameter m is given in the first column. The statistics comes from

RR-CCSD/aug-cc-pVDZ calculations for 70 molecules contained in the Adler-Werner benchmark set.

m mean mean abs. standard max. abs.

error error deviation error

1 −0.173 0.173 0.045 0.344

2 −0.072 0.080 0.042 0.153

3 −0.032 0.041 0.030 0.133

4 −0.014 0.018 0.014 0.062

FIG. 6. Distribution of relative error (in percent) resulting from the truncation of the Oi j
kl and Zab

i j inter-

mediates, see Eqs. (27) and (34) from the main text, at length NO = NZ = mO, where O is the number of

occupied orbitals in the system and the value of the parameter m is given in the legend. The results were

obtained with Neig = NMO. The statistics comes from RR-CCSD/cc-pVDZ calculations for 70 molecules

contained in the Adler-Werner benchmark set.
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VII. RR-CCSD/CC-PVDZ ERROR DISTRIBUTIONS

FIG. 7. Distribution of relative error (in percent) in the RR-CCSD/cc-pVDZ correlation energy with

respect to the exact CCSD/cc-pVDZ results. The dimension of the excitation subspace (Neig) is expressed

as Neig = x ·NMO, where NMO is the total number of orbitals in the system. The excitations subspace

was obtained by diagonalization of MP2 amplitudes (top panel) or MP3 amplitudes (bottom panel). The

statistics comes from calculations for 70 molecules contained in the Adler-Werner benchmark set.
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VIII. EXPLICIT FORMULA FOR THE E [5]
ST CORRECTION

The notation for all quantities is the same as in the main text. Intermediates:

IC
ik = tc

i VC
kc, JA = ta

i V A
ia , KQA = BQ

kcV A
kc, ZQA

ji = BQ
jaV A

ia . (8)

The last intermediates requires ∝ O2V NauxNtrip operations to compute, remaining ones N4 or less.

Explicit expression for the E [5]
ST correction (computational cost of the rate-determining contrac-

tion step is given below each individual term):

E [5]
ST =

[(
BQ

ja ZQB
k j

)
IC
ik

]
V A

ia tABC
︸ ︷︷ ︸

O2V NauxNtrip

+
[(

BQ
ja KQC

)
V A

ia

]
IB
i j tABC

︸ ︷︷ ︸
O2V N2

trip

+
(
ZQC

jk ZQB
k j

)(
JA tABC

)
︸ ︷︷ ︸

O2NauxN2
trip

+
(
KQB KQC

)(
JA tABC

)
︸ ︷︷ ︸

NauxN2
trip

.
(9)

IX. EXPLICIT FORMULA FOR THE E [4]
T CORRECTION

Intermediates:

IXA =UX
ia V A

ia , JQA = BQ
iaV A

ia , KQ
XA = D̄QX

ia V A
ia , tia, jb,C =

(
tABC V A

ia

)
V B

jb. (10)

The last two intermediates require ∝ OV NauxNtripNeig and ∝ O2V 2N2
trip operations to compute,

respectively, remaining ones N4 or less.

Explicit expression for the E [4]
T correction (computational cost of the rate-determining step is

given below each individual term):

E [4]
T =

(
tia, jb,C UX

ja

)(
BC

kc D̄QX
ic

)
BQ

kb︸ ︷︷ ︸
O2V NeigNauxNtrip

+
(

tia, jb,C UX
ja

)
KQ

XC BQ
ib︸ ︷︷ ︸

O2V 2NtripNeig

+ tABC

(
D̄QX

ic IXC

)(
BQ

kaV A
ia

)
V B

kc︸ ︷︷ ︸
O2V NauxN2

trip

+
(

tia, jb,C UX
ja

)(
D̄QX

ib JQC

)

︸ ︷︷ ︸
O2V 2NtripNeig

+ tABC KQ
XA IXB JQC︸ ︷︷ ︸

NauxNeigN2
trip

+
(

tia, jb,C UX
ja

)(
VC

kc BQ
ic

)
D̄QX

kb︸ ︷︷ ︸
O2V NeigNauxNtrip

.

(11)
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X. ERROR OF THE RANK-REDUCED PERTURBATIVE TRIPLES CORRECTIONS:

CC-PVDZ BASIS SET

FIG. 8. Distribution of relative error (in percent) in the E(T) correction (top panel) and total RR-

CCSD(T)/cc-pVDZ correlation energy (bottom panel) with respect to the exact CCSD(T)/cc-pVDZ method.

The dimension of the triples excitation subspace (Ntrip) is expressed as Ntrip = y ·NMO, where NMO is the

total number of orbitals in the system. The statistics comes from calculations for 70 molecules contained in

the Adler-Werner benchmark set.
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XI. RAW ISOMERIZATION ENERGIES FOR THE ISO34 BECHMARK SET

TABLE IV: ISO34 benchmark set isomerization energies calculated with the RR-CCSD(T)/cc-pVTZ

and the exact CCSD(T)/cc-pVTZ methods. The recommended values of the parameters (Neig = 2NMO,

NO = NZ = 4O, and Ntrip = NMO) were employed in the RR-CCSD(T) computations. All results are

given in kJ/mol.

reaction RR-CCSD(T) exact CCSD(T) difference

1 5.24 5.10 0.14

2 98.77 98.27 0.50

3 31.40 31.64 −0.24

4 4.72 4.66 0.06

5 4.70 4.73 −0.03

6 9.79 9.94 −0.15

7 47.75 47.95 −0.20

8 94.54 94.97 −0.43

9 26.37 26.90 −0.53

10 15.26 15.69 −0.43

11 8.35 8.24 0.11

12 187.98 188.55 −0.57

13 152.12 152.89 −0.77

14 101.32 101.32 0.00

15 33.78 33.60 0.18

16 45.21 45.61 −0.40

17 116.45 116.03 0.42

18 48.78 49.17 −0.39

19 19.98 19.50 0.48

20 75.57 75.26 0.31

21 4.35 4.39 −0.04

Continued on next page
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TABLE IV – continued from previous page

reaction RR-CCSD(T) exact CCSD(T) difference

22 7.60 7.54 0.06

23 21.86 21.55 0.31

24 49.03 48.79 0.24

25 111.93 111.79 0.14

26 69.33 69.07 0.46

27 267.43 266.99 0.44

28 130.53 130.24 0.29

29 53.28 53.43 −0.15

30 38.92 38.35 0.57

31 62.62 62.97 −0.35

32 25.76 26.50 −0.74

33 33.61 33.34 0.27

34 27.79 28.33 −0.54

TABLE V: Individual contributions to the ISO34 benchmark set isomerization energies: Hartree-Fock

(HF), MP2 (including the HF contribution), ∆(CCSD) =ECCSD−EMP2, and ∆(T) =ECCSD(T)−ECCSD

(see the previous Table for details of the calculations). All results are given in kJ/mol.

reaction HF MP2 ∆(CCSD) ∆(T)

exact RR exact RR

1 6.83 19.24 −12.98 −12.95 −1.16 −1.06

2 112.75 99.70 −0.11 −0.07 −1.33 −0.87

3 40.28 20.84 9.65 9.48 1.15 1.09

4 6.69 4.64 0.26 0.26 −0.24 −0.19

5 1.93 5.63 −1.44 −1.42 0.55 0.48

Continued on next page
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TABLE V – continued from previous page

reaction HF MP2 ∆(CCSD) ∆(T)

exact RR exact RR

6 9.92 10.79 −0.94 −1.04 0.09 0.04

7 64.16 38.88 7.96 7.72 1.11 1.16

8 90.44 93.43 1.55 1.58 0.00 −0.50

9 25.30 29.35 −4.11 −4.32 1.66 1.35

10 0.98 19.74 −6.53 −6.61 2.47 2.13

11 −45.88 17.60 −18.29 −17.59 ??? ???

12 233.49 198.88 −10.50 −10.87 0.17 −0.03

13 158.40 177.18 −28.02 −28.21 3.73 3.16

14 82.94 112.50 −12.68 −12.60 1.39 1.42

15 30.26 34.61 −1.17 −1.12 0.16 0.28

16 55.99 35.93 8.60 8.46 1.08 0.82

17 112.23 121.29 −4.78 −4.72 −0.48 −0.14

18 54.71 48.74 1.19 1.18 −0.75 −1.14

19 28.30 15.42 4.89 4.90 −0.82 −0.34

20 86.51 76.81 1.09 1.20 −2.64 −2.43

21 5.03 4.63 −0.24 −0.26 0.00 −0.03

22 5.34 11.92 −3.14 −3.05 −1.25 −1.28

23 19.37 23.30 −1.34 −1.25 −0.41 −0.20

24 41.90 51.79 −3.00 −2.92 0.00 0.16

25 128.97 107.59 4.70 4.68 −0.50 −0.34

26 67.98 72.46 −2.39 −2.18 −1.00 −0.95

27 291.89 282.25 −7.64 −8.23 −7.62 −7.59

28 144.04 131.81 −2.78 −2.83 1.21 1.55

29 47.93 59.75 −3.54 −3.30 −2.78 −3.17

30 46.35 37.92 2.36 2.52 −1.93 −1.53

Continued on next page
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TABLE V – continued from previous page

reaction HF MP2 ∆(CCSD) ∆(T)

exact RR exact RR

31 51.19 70.76 −6.61 −6.41 −1.18 −1.43

32 15.20 30.48 −3.11 −3.65 −0.87 −1.07

33 44.13 33.58 3.65 3.87 −3.89 −3.84

34 19.32 30.52 −4.19 −4.24 2.00 1.52
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XII. ISOMERS OF FLUOROPHENOL: MOLECULAR STRUCTURES IN

CARTESIAN COORDINATES

Attached to this document as fluorophenol.tar. The xyz files included in the tarball are

named subst-fph-ang.xyz, where subst stands for ortho/meta/para substitution pattern and

ang denotes the value of the torsional angle τ in degrees (τ = 0,15◦, . . . ,180◦). All coordinates

are given in Ångströms.

XIII. RAW TORSIONAL ENERGIES FOR THREE ISOMERS OF FLUOROPHENOL

TABLE VI. Torsional energies for the ortho/meta/para isomers of fluorophenol computed using the RR-

CCSD(T)/cc-pVTZ method (“RR”) and the exact CCSD(T)/cc-pVTZ method (“exact”). For each isomer

relative energies with respect to its τ = 0 conformation are given. The torsional angle τ is given in degrees

and the energies in kJ/mol.

ortho meta para

τ RR exact RR exact RR exact

15 1.27 1.28 0.89 0.88 0.71 0.72

30 4.73 4.73 3.36 3.35 2.69 2.72

45 9.42 9.46 6.85 6.84 5.47 5.52

60 14.29 14.39 10.51 10.54 8.33 8.45

75 18.42 18.59 13.39 13.48 10.57 10.76

90 21.02 21.23 14.62 14.74 11.55 11.76

105 21.56 21.77 13.71 13.83 10.57 10.76

120 20.17 20.34 10.97 11.03 8.33 8.45

135 17.53 17.64 7.16 7.18 5.47 5.52

150 14.55 14.62 3.31 3.32 2.69 2.72

165 12.24 12.27 0.49 0.50 0.71 0.72

180 11.36 11.40 −0.53 −0.53 0.00 0.00

16


