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Abstract. This paper investigates the Picard numbers of quintic sur-
faces. We give the first example of a complex quintic surface in P 3 with
maximum Picard number ρ = 45. We also investigate its arithmetic and de-
termine the zeta function. Similar techniques are applied to produce quintic
surfaces with several other Picard numbers that have not been achieved before.

1. Introduction.

This paper concerns the problem of exhibiting complex algebraic surfaces of

general type with given Picard number. In general, there are only a few Picard

numbers known to be attained within a fixed class of algebraic surfaces. In par-

ticular it is unclear whether every Picard number satisfying Lefschetz’ bound

ρ(X) ≤ h1,1(X) (1)

might be attained. In this paper we concentrate on the case of quintic surfaces in

P 3. The non-trivial Hodge numbers of a quintic surface X are

h2,0(X) = 4, h1,1(X) = 45, h0,2(X) = 4.

We will extend the known results greatly by providing specific examples in Section

7. Special emphasis is put on the case of maximum Picard number. A smooth

compact complex surface X is said to have maximum Picard number if its Picard

number ρ(X) attains the Lefschetz bound (1). This property is a birational in-

variant of X, and we often employ the same terminology for irreducible singular

surfaces by considering their desingularisations.

There are a few deformation classes of smooth surfaces in which we know

the existence of surfaces with maximum Picard number. Typical examples are:

surfaces with h2,0(X) = 0 (trivial case); abelian surfaces and K3 surfaces (by the

Torelli theorem); and certain double covers of rational surfaces (Persson [7]). In

2000 Mathematics Subject Classification. Primary 14J29; Secondary 11G40, 14G10, 14J50.

Key Words and Phrases. Picard number, Delsarte surface, automorphism, zeta function.

http://dx.doi.org/10.2969/jmsj/06341187


1188 M. Schütt

general, however, it is a question widely open whether a given deformation class of

surfaces contains a member with maximum Picard number or not. For instance,

it has not been known whether a surface of degree d in P 3 can have maximum

Picard number, except for the cases d ≤ 4 or d = 6 (Beauville). In this note,

we address the problem when X is a quintic surface in P 3, answering a question

raised by Shioda in [14].

Theorem 1. The surface Y ⊂ P 3 defined by the equation

yzw3 + xyz3 + wxy3 + zwx3 = 0

has exactly four A9 singularities at the points where three coordinates vanish si-

multaneously. Its minimal resolution X has maximum Picard number ρ(X) = 45.

We give below three proofs, each being of its own independent interest. The

first proof exploits the fact that X is the Galois quotient of a Fermat surface,

thus closely following an idea of Shioda. For the second proof, we exhibit rational

curves on X which generate the Néron-Severi group NS(X) up to finite index.

The third proof uses the cyclic group of order 15 acting on X to show that the

Q-transcendental cycles form a one-dimensional vector space over the cyclotomic

field Q(ζ15).

If we combine the first and second proofs, we can compute the zeta function of

X. Meanwhile the method of the first proof allows us to produce quintic surfaces

with intermediate Picard numbers (see Section 7):

Theorem 2. If r = 1, 5, 13 or an odd integer between 17 and 45, then there

exists a quintic surface X with ρ(X) = r.

2. Picard numbers of algebraic surfaces.

In this section, we review what seems to be known about Picard numbers

of algebraic surfaces, especially about maximum Picard number. In general, it is

very difficult to determine the Picard number of a given surface X. This problem

admits several approaches that can sometimes also be combined.

Obviously, exhibiting algebraically independent divisor classes in NS(X) will

give a lower bound for ρ(X). This is often achieved by computing intersection

numbers and the rank of the resulting Gram matrix. There is a trivial case where

this lower bound determines ρ(X): in the case of maximum Picard number where

the lower bound coincides with the upper bound given by (1) over C and by b2(X)

in positive characteristic (due to Igusa). This might serve as a first indication

why the property of maximum Picard number is so special. In the presence of
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automorphisms acting non-trivially on the two-forms, these bounds have been

improved by Shioda in [14]. For instance, he proved that a surface X ⊂ P 3 of

prime degree d, given by an equation

wd = f(x, y, z), (2)

has Picard number ρ(X) ≤ h1,1(X) − pg(X).

An upper bound for the Picard number can also be obtained from specialisa-

tion. For instance, we can start with a surface X over some number field and then

consider its smooth reduction modulo some prime p. Then ρ(X⊗Q̄) ≤ ρ(X⊗ F̄p),

and the latter number is bounded by the number of certain roots of the charac-

teristic polynomial of Frob∗

p on the étale cohomology groups H2(X̄). At least in

principle, the characteristic polynomial can be computed via Lefschetz’ fixed point

formula by counting points over sufficiently many extensions of Fp, thus yielding

an upper bound for both ρ(X ⊗ Q̄) and ρ(X ⊗ F̄p). The Tate conjecture predicts

that this upper bound gives in fact an equality with the latter Picard number [18].

There is one subtlety when comparing upper and lower bound: the parity of

b2(X) prescribes the parity of the upper bound. For instance, smooth quintics over

finite fields ought to have odd geometric Picard number by the Tate conjecture.

Along the same lines, one has even geometric Picard number for K3 surfaces over

finite fields. This complicates the search for surfaces with the opposite parity

substantially. As an illustration, consider the K3 case. Terasoma proved as part

of a more general result for complete intersections that there is a quartic surface

in P 3 defined over Q that has Picard number one [19]. However, it took another

twenty years to actually exhibit such a K3 surface explicitly in [20].

There is one other non-trivial case where the Picard number of a surface can

be computed in an intrinsic manner: for Delsarte surfaces, one can argue with the

covering Fermat surfaces by a method pioneered by Shioda [13]. This technique

will feature prominently in this paper. We will explain it in Section 3. In Section

7, it will be used extensively to exhibit quintic surfaces with a plentitude of Picard

numbers.

We shall now discuss the problem of maximum Picard number in more detail.

The main reference is Persson’s paper [7] which established the existence for certain

double covers. We will also comment on related arithmetic issues.

There is one kind of surfaces where the question of the Picard number has

a trivial answer since every surface has maximum Picard number. Recall that

Lefschetz’ bound (1) is a consequence of the more precise result that

Pic(X) = H2(X, Z) ∩ H1,1(X).
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Hence h2,0(X) = 0 implies ρ(X) = h1,1(X). Thus we are led to consider surfaces

with h2,0(X) 6= 0.

The problem of maximum Picard number was classically solved for complex

abelian surfaces and K3 surfaces by the Torelli theorem: Here the surfaces with

maximum Picard number are often called singular and lie dense in the moduli

space. The terminology does not refer to non-smoothness, but to the surfaces

being exceptional. It is borrowed from the theory of elliptic curves with complex

multiplication (CM), i.e. with extra endomorphisms. In fact, there is a direct

connection that gives rise to many arithmetic applications. For details, see [10],

[16], [17]. In this spirit, we will also investigate the arithmetic of our maximal

quintic X.

The case of K3 surfaces shows the existence of quartic surfaces with maximum

Picard number in P 3. Explicit models have been derived by Inose in [3]. In

general, surfaces in P 3 are known to attain the Lefschetz bound only in degree

d ≤ 4 or d = 6 (see the next section for the latter case). This even holds true

if we allow ADE singularities which is a natural concession since it preserves the

deformation type.

In [7], Persson was able to extend the existence results for surfaces of max-

imum Picard number to certain double covers of rational surfaces. The crucial

point about double covers is the following: if the branch curve has at most simple

singularities, then the double cover has at most ADE singularities. Thus one can

try to impose enough singularities on the branch curve to obtain a surface with

maximum Picard number as the resolution of the double cover.

Persson mainly considered Horikawa surfaces, i.e. surfaces attaining Noether’s

inequality

K2
X ≥ 2 pg(X) − 4.

He showed that Horikawa surfaces with maximum Picard number exist if the

congruence condition on the Euler characteristic χ 6≡ 0 mod 6 is fulfilled. His

approach extends to double covers of P 2 branched along a curve of arbitrary even

degree with at most simple singularities.

Another construction is due to Bertin and Elencwajg [1]. For a finite subgroup

G ⊂ Aut(P 1), they consider the graphs in P 1 ×P 1 of the operation by the group

elements. The corresponding conics in P 2 appear as branch locus of a double

cover. This construction gives rise to various projective surfaces of maximum

Picard number.

For elliptic surfaces with section, a uniform picture arises thanks to Shioda’s

theory of elliptic modular surfaces [12]. In relation with extremal elliptic surfaces,

this approach was generalised by Nori [6].
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To our knowledge there is only one other setting where surfaces with maximum

Picard number have turned up so far. Namely Roulleau studied Fano surfaces

parametrising the lines of smooth cubic threefolds. He derived several instances

where the Fano surfaces (which have general type and h2,0 > 0) have maximum

Picard number [8], [9].

It should be pointed out that there are indeed classes of surfaces which do

not attain the Lefschetz bound at all. For instance, Livné derived a surface as

quotient of the unit ball with ρ < h1,1, but without deformations [5].

We shall now turn to the quintic surfaces. The previous record Picard num-

ber for quintics with at most ADE singularities was 41 due to Hirzebruch. He

considered 5-fold covers of P 1 branched along five lines. Whenever the intersec-

tion points of the lines are distinct, the ten A4 singularities give ρ ≥ 41 for a

minimal desingularisation. Actually, Shioda proved in [14] as a consequence of

(2) that ρ = 41 for all non-degenerate surfaces in this family. Thus Theorem 1

indeed is a genuinely new result. The next sections elaborate three proofs that

X has maximum Picard number. We shall also investigate the arithmetic of X

and determine the zeta function. In Section 7 we will then consider other Picard

numbers of quintic surfaces.

We would like to point out that for numerical quintics (i.e. smooth mini-

mal surfaces with the same invariants as a smooth quintic in P 3) Le Barre has

constructed an example with maximum Picard number in 1982 [4].

3. Delsarte surfaces.

An irreducible projective surface in P 3 is called a Delsarte surface if it can

be defined by a polynomial which is a sum of four monomials. Shioda showed that

a Delsarte surface is birational to a Galois quotient S/G of a Fermat surface S

by a finite group G [15]. He also described an algorithm to find S. In particu-

lar, the transcendental subspace of H2(X, C) (the vector subspace generated by

transcendental cycles) is identified with the G-invariant part of the transcendental

subspace of H2(S, C). This enabled Shioda to compute the Picard number ρ(X)

in terms of the G-action on S.

In our case, we can work with the Fermat surface of degree 15, but we give a

general account in terms of the degree m:

Sm = {sm + tm + um + vm = 0} ⊂ P 3.

The Fermat surface Sm admits coordinate multiplications by m-th roots of unity,

so projectively µ3
m ⊂ Aut(Sm). The cohomology of Sm can be decomposed into

eigenspaces with character for the induced action of µ3
m. Here it suffices to consider

the following subset of the character group of µ3
m:
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Am :=

{

α = (a0, a1, a2, a3) ∈

(

Z

m Z

)4 ∣

∣

∣

∣

ai 6≡ 0 (mod m),
3

∑

i=0

ai ≡ 0 (mod m)

}

.

For α ∈ Am, let V (α) denote the corresponding eigenspace with character. Here

we let g = (ζ1, ζ2, ζ3) ∈ µ3
m operate on Sm as

[s, t, u, v] 7→ [s, ζ1 t, ζ2 u, ζ3 v]. (3)

Then the subspace V (α) ⊂ H2(Sm) is determined by the condition

g∗|V (α) = α(g) = ζa1

1 ζa2

2 ζa3

3 ∀ g = (ζ1, ζ2, ζ3) ∈ µ3
m.

By results of Katz and Ogus, each V (α) is one-dimensional (this holds true

for Fermat varieties of arbitrary dimension). One has

H2(Sm) = V0 ⊕
⊕

α∈Am

V (α) (4)

where V0 corresponds to the trivial character and is spanned by the hyperplane

section.

We briefly explain how to decide whether V (α) is algebraic or transcendental.

Consider the subspace H2,0(Sm) ⊂ H2(Sm,C). In the affine chart s = 1, H2,0(Sm)

is generated by the following 2-forms:

ω(b1, b2, b3) = tb1−1ub2−1vb3−1 du ∧ dv

tm−1
, bi ≥ 1, b1 + b2 + b3 ≤ m − 1.

An automorphism g = (ζ1, ζ2, ζ3) ∈ µ3
m acts on these 2-forms by

g∗ω(b1, b2, b3) = ζb1
1 ζb2

2 ζb3
3 ω(b1, b2, b3).

Let b0 = m− (b1 + b2 + b3) and α = (b0, b1, b2, b3) where we abuse notation by not

distinguishing between the integers bi with 0 < bi < m and their equivalence classes

in Z/mZ. The eigenspace decomposition (4) implies that V (α) = Cω(b1, b2, b3).

It follows that

H2,0(Sm) ⊕ H0,2(Sm) =
⊕

α∈Tm

V (α) ⊂ H2(Sm,C)

where
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Tm =

{

α = (b0, b1, b2, b3) ∈ Am; 0 < bi < m,
3

∑

i=0

bi = m or 3m

}

The eigenspace decomposition (4) is defined over Q(ζm). Here the Galois group

G = Gal(Q(ζm)/Q) ∼= (Z/m Z)∗ operates on Am coordinatewise by multipli-

cation. The space of transcendental cycles T (Sm) ⊂ H2(S, Q) is the smallest

Q-vector subspace V such that V ⊗ C contains H2,0(Sm) ⊕ H0,2(Sm). Thus we

find

T (Sm) =
⊕

α∈GTm

V (α).

Example 3 (Fermat Quintic). A classical example is the Fermat quintic S5.

One easily finds that GT5 consists of four (Z/5Z)∗ orbits corresponding to the

element (1, 1, 1, 2) ∈ T5 and the coordinate permutations. Hence dim(T (S5)) = 16

and ρ(S5) = 37. Since h1,1(S5) = 45 as in the introduction, S5 does not have

maximum Picard number.

One can easily show that in higher degree m > 5, the Fermat surface Sm has

maximum Picard number if and only if m = 6. In fact, the (Z/m Z)∗-orbit of

(1, 1, 1,m − 3) ∈ Tm contains a character with eigenspace of Hodge weight (1, 1)

if and only if φ(m) > 2. By definition, this eigenspace is non-algebraic for m > 3.

Alternatively, one can compare the asymptotic growth of ρ(Sm) as 3m2 (cf. [13])

against h1,1 which is asymptotic to 2m3/3. The exceptional property of the Fermat

sextic was noticed by Beauville.

By definition, a Delsarte surface is covered by a suitable Fermat surface.

Shioda gave an algorithm to find the Fermat degree m and the dominant rational

map ϕ [15]. In case of the quintic X from Theorem 1, one finds m = 15 and

ϕ : S15 99K X

[s, t, u, v] 7→
[

t u3 v7, s t3 u7, v s3 t7, u v3 s7
]

.

The Delsarte surface X is birational to the quotient Sm/G where G is the

covering group corresponding to ϕ, i.e. G = {g ∈ µ3
m;ϕ = ϕ ◦ g}. Since the

Lefschetz number

λ(X) = b2(X) − ρ(X)

is a birational invariant, we can compute it (and thus ρ(X)) through the quotient

Sm/G. Let TG
m consist of all those α ∈ Tm such that all elements in G act
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as identity on V (α). This is computed as follows: Write G ∋ g = (ζ1, ζ2, ζ3),

operating on Sm as in (3). Let α = (a0, a1, a2, a3) ∈ Am. Then V (α) is G-invariant

if and only if

3
∏

i=1

ζai

i = 1 ∀ g = (ζ1, ζ2, ζ3) ∈ G.

For the Lefschetz number, we obtain

λ(X) = λ(Sm/G) = #GTG
m.

In our case, one easily finds that GTG
15 is the (Z/15 Z)∗ orbit of a single element,

say α = (1, 2, 4, 8). Hence λ(X) = 8 and ρ(X) = 45 as claimed in Thm. 1. ¤

4. Generators of the Néron-Severi group.

In this section, we work out an explicit Q-basis of the Néron-Severi group of

our quintic surface X. This gives an alternative proof of Theorem 1 and enables

us to compute the zeta function of X in the next section.

We first have to consider the resolution of singularities on Y . It is easily

checked that the only singularities occur at [0, 0, 0, 1] and permutations, and that

they have type A9. Hence we already have ρ(X) ≥ 37.

We consider three further groups of rational curves on X:

1. The strict transforms of the six lines in P 3 passing through any two nodes of

Y :

ℓxy = {x = y = 0} ⊂ P 3, ℓxz = · · · .

2. The five lines

ℓα = {x = α z, y = α7 w} ⊂ X, α5 = −1.

3. The images of the non-contracted lines on S15

C̺ =
{

[̺i µ3,−λµ2, ̺i λ3,−µλ2]; [λ, µ] ∈ P 1
}

,

D̺ =
{

[−λµ2, ̺i λ3,−µλ2, ̺i µ3]; [λ, µ] ∈ P 1
}

, ̺3 = 1.

The intersection behaviour with the exceptional locus is sketched in the fol-

lowing figure for the node [0, 0, 0, 1]. Here we number the components of the
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exceptional divisor from 1 to 9 while D̺ stands for all three rational curves with

̺3 = 1.

1 2 3 4 5 6 7 8 9

• − • − • − • − • − • − • − • − • − • − •

ℓxz | | ℓxy

• ℓyz • D̺

The verification is straight forward by computing the resolution of the A9

singularity. The intersection behaviour at the other nodes is obtained by cyclic

permutation of coordinates

[x, y, z, w] 7→ [w, x, y, z].

All other non-zero intersection numbers are given as follows:

C̺.D̺2 = 5, C̺.ℓα = D̺.ℓα = 1, C̺.ℓxz = C̺.ℓyw = D̺.ℓxz = D̺.ℓyw = 1.

Finally for the self-intersection numbers, we let H denote the hyperplane

section. Then ℓ∗.H = 1, C̺.H = D̺.H = 3. Hence the adjunction formula with

KX = H gives

ℓ2
∗

= −3, C2
̺ = D2

̺ = −5.

We will now exhibit a Q-basis of NS(X). Consider the following 45 rational

curves on X:

B =
{

4 × A9, ℓxy, ℓyz, ℓxz, C̺ (̺ 6= 1), ℓα (α 6= −1)
}

.

Their intersection matrix has determinant 202500 = 22 34 54. Since ρ(X) ≤ 45 by

Lefschetz’ bound (1), we deduce ρ(X) = 45. The above curves give a Q-basis of

NS(X), i.e. they generate NS(X) up to finite index. ¤

Remark 4. A joint paper with Shioda and van Luijk introduced a super-

singular reduction technique to prove that NS(Sm) is integrally generated by lines

for all m ≤ 100 that are relatively prime to 6 [11]. The same method is applicable

here for X. One could try to work with the supersingular reduction at p = 29.
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5. Zeta function.

We are now in the position to determine the zeta function of X. We will deal

with the algebraic part NS(X) and the transcendental part T (X) separately.

For the algebraic part, we consider NS(X) as a subspace of H2(X) in some

étale cohomology. Hence the eigenvalues of Frobenius are p times roots of unity.

Note that the rational basis B is Galois invariant. Hence the contribution of

NS(X) to the zeta function is as follows:

Lemma 5. Let K resp. L denote the third resp. fifth cyclotomic field over

Q. Then

L(NS(X), s) = ζQ(s − 1)39 ζK(s − 1) ζL(s − 1).

For the transcendental part, Weil translated the motivic decomposition of

H2(Sm) into Jacobi sums [21]. We follow his description of the local Euler factors

for a suitable prime power q = pr such that

q ≡ 1 mod m.

On the field Fq of q elements, we fix a character

χ : F ∗

q → C∗

of order exactly m. For any α ∈ Am, we then define the Jacobi sum

j(α) =
∑

v1,v2,v3∈F∗
q

v1+v2+v3=−1

χ(v1)
a1χ(v2)

a2χ(v3)
a3 . (5)

Theorem 6 (Weil). In the above notation, consider the Fermat surface Sm

over Fq with Frobenius morphism Frobq. Then Frob∗q has the following character-

istic polynomial on H2(Sm):

P (T ) = (T − q)
∏

α∈Am

(T − j(α)).

We will now use Theorem 6 to determine the local Euler factors of the tran-

scendental subspace T (X). We are concerned with the covering Fermat surface

S15. By section 3, T (X) is identified with a single (Z/15Z)∗-orbit
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T (X) =
⊕

α∈GTG
15

V (α) =
⊕

k∈(Z/15Z)∗

V (k · (1, 2, 4, 8)).

Since the dominant rational map Sm → X is defined over Q, we obtain

Lemma 7. Let q ≡ 1 mod 15. Then the local Euler factor of T (X) at q is

Lq(T (X), s) =
∏

α∈GTG
15

(1 − j(α) q−s).

Together, Lemma 5 and 7 determine the zeta function of X:

Proposition 8. Let L(T (X), s) denote the L-series of T (X) as given by

the local Euler factors in Lemma 7. Then

ζ(X, s) = ζQ(s) ζQ(s − 1)39 ζK(s − 1) ζL(s − 1) L(T (X), s) ζQ(s − 2).

6. Automorphisms.

The third proof of Theorem 1 could be considered most ad hoc, as it requires

the least information about the surface X. The basic idea is to combine the

existence of an automorphism of order 15 on X (which comes of course from the

covering Fermat surface S15) with just a little knowledge about NS(X). Here the

operation of the automorphism on the holomorphic 2-forms on X will enable us

to see ρ(X) = 45 easily.

The quintic surface X admits an automorphism g of order 15. Let ζ denote

a primitive 15th root of unity. Then g can be given by

g(x, y, z, w) = [ζ x, ζ3 y, ζ7 z, w]

We determine the operation of g on H2,0(X). We express a basis of H2,0(X) in

the affine chart w = 1 in terms of

ω =
dy ∧ dz

∂xF
=

dy ∧ dz

y z3 + y3 + 3 z x2
.

By Griffiths’ residue theorem, a basis of H2,0(X) and the operation of g∗ is as

follows:

basis ω xω y ω z ω

g∗ ζ ζ2 ζ4 ζ8
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For our purposes, it is crucial that these eigenvalues amount for exactly half of all

complex embeddings Q(ζ) →֒ C. Since there are no conjugate duplicates involved,

the eigenvalues in fact form a CM-type of Q(ζ). It follows that g∗ endows T (X)

with the structure of a Q[ζ]-vector space. In particular

8 = φ(15) | dim(T (X)). (6)

Here the four A9 singularities on Y give ρ(X) ≥ 37, so T (X) has dimension 8 or

16. In fact, taking the strict transforms of any two distinct lines through two nodes

of Y , we see ρ(X) ≥ 38 and dim(T (X)) ≤ 15. By (6), this implies dim(T (X)) = 8

and thus ρ(X) = 45. This completes the third proof of Theorem 1. ¤

Remark 9. The ideas from this section can be employed to search for

surfaces in P 3 with maximum Picard number in a systematic manner. However,

for degree d > 4, we did not find any surfaces with only ADE-singularities other

than X up to isomorphism.

7. Smaller Picard numbers.

We will now consider quintic surfaces with smaller Picard numbers. Some

examples were given by Shioda in [14]. Note that all those Picard numbers are

congruent to 1 modulo 4. Here we shall exhibit quintic surfaces with several further

Picard numbers.

We employ a systematic approach through Delsarte surfaces. Namely we

isolate all quintic Delsarte surfaces with only ADE-singularities. Then we compute

their Picard numbers using the technique from Section 3. Notably we will also

find odd Picard numbers congruent to 3 modulo 4 (as indicated in Theorem 2).

To exclude the Delsarte surfaces with singularities worse than rational double

points we proceed as follows. We have already pointed out that a smooth quintic

X or the minimal desingularisation of a quintic with only rational double points

has h2,0(X) = 4. If there are worse singularities, then this necessarily causes h2,0

to drop. We exclude those quintic Delsarte surfaces by considering the G-invariant

eigenspaces V (α) on the covering Fermat surface Sm. As explained in Section 3,

the Hodge type of the eigenspace V (α) is determined by the reduced representative

α = (b0, . . . , b3) with 0 < bi < m in terms of

|α| =
b0 + · · · + b3

m
− 1.

Namely V (α) has Hodge type (2−|α|, |α|). For a quintic Delsarte surface, we thus

find the invariant eigenspaces V (α) of Hodge type (2, 0) on the covering Fermat
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surface, and we can check whether there are exactly four of them.

The next table collects all Picard numbers that arise from quintic Delsarte

surfaces with rational double points. For each, we give a defining polynomial for

a quintic surface with this Picard number. In the known cases, the last column

refers to [14], although in two cases (ρ = 17, 41) we decided to include explicit

new examples as opposed to the generic examples in [14]. In the new cases, the

last column of the table specifies the ADE-types of the singularities.

Picard number polynomial comment

ρ = 1 xy4 + yz4 + zx4 + w5 [14, Thm. 4.1]

ρ = 5 x5 + xy4 + yz4 + w5 [14]

ρ = 13 x5 + y5 + xzw3 + wz4 A4

ρ = 17 wx4 + wy4 + yz4 + zw4 4A3

ρ = 19 ywx3 + xy4 + yz4 + zw4 A16

ρ = 21 xy4 + yz4 + zw4 + wx4 [14]

ρ = 23 ywx3 + y5 + wz4 + zw4 A19

ρ = 25 x5 + xy4 + z5 + w5 [14]

ρ = 27 yzx3 + wy4 + z5 + w5 A4

ρ = 29 x5 + xy4 + z5 + zw4 [14]

ρ = 31 zw4 + yz4 + xzy3 + ywx3 A12 + A16

ρ = 33 ywx3 + zwy3 + yz4 + w5 A11 + A19

ρ = 35 yzx3 + wy4 + wz4 + zw4 4A2 + A16

ρ = 37 x5 + y5 + z5 + w5 Ex. 3

ρ = 39 yzx3 + wy4 + wz4 + w5 4A2 + A4

ρ = 41 xy4 + xz4 + zx4 + zw4 8A3

ρ = 43 zw4 + wz4 + wzy3 + yx4 7A3

ρ = 45 yzw3 + xyz3 + wxy3 + zwx3 Thm. 1

Table 1. Quintic surfaces and their Picard numbers (after desingularisation).

One can check that a quintic Delsarte surface with Picard number ρ = 45 is

unique up to trivial coordinate change, provided its singularities are only rational

double points. Such a uniqueness result does not hold for quintic Delsarte surfaces

with smaller Picard number (see e.g. [14]).

There are five small odd Picard numbers missing in the table (as specified in

Theorem 2) as well as all even Picard numbers. To overcome this lack of explicit

examples, we have recently started a project with R. van Luijk where we aim at

engineering quintic surfaces with prescribed Picard number explicitly.
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