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Abstract: In this paper, we present an analysis of a chiral cosmological scenario from the perspective
of K-essence formalism. In this setup, several scalar fields interact within the kinetic and potential
sectors. However, we only consider a flat Friedmann–Robertson–Lamaître–Walker universe coupled
minimally to two quintom fields: one quintessence and one phantom. We examine a classical
cosmological framework, where analytical solutions are obtained. Indeed, we present an explanation
of the “big-bang” singularity by means of a “big-bounce”. Moreover, having a barotropic fluid
description and for a particular set of parameters, the phantom line is in fact crossed. Additionally, for
the quantum counterpart, the Wheeler–DeWitt equation is analytically solved for various instances,
where the factor-ordering problem has been taken into account (measured by the factor Q). Hence,
this approach allows us to compute the probability density of the previous two classical subcases. It
turns out that its behavior is in effect damped as the scale factor and the scalar fields evolve. It also
tends towards the phantom sector when the factor ordering constant Q� 0.

Keywords: chiral cosmology; quintom fields; K-essence; exact solutions; bounce cosmology

1. Introduction

Over the past decades, various cosmological surveys have suggested that two stages
of accelerated expansion have occurred during the evolution of the universe [1–6]. The first
of these epochs, the so-called inflation [5,6], would have happened in a very early stage
of the expansion of the cosmos, whilst the second one would be taking place at late times.
Additionally, the consensus is that this accelerated expansion is caused by dark energy
(DE) [7–9]. To account for these phenomena, several cosmological frameworks incorporate
scalar fields into their prescriptions and, in fact, they play a preponderant role. Moreover,
one of the most studied scenarios in the literature is the quintessence model, which is a
fluctuating, homogeneous scalar field that rolls down its scalar potential [10–17]. Different
avenues have been explored, broadening the spectrum of scalar field models. For instance,
the relevant proposals are the phantom [18–20], quintom [21–26], and Chiral fields [27–34],
and there are many more [35–41].

However, despite many efforts [7,42–47], the nature of dark energy has not yet been
deciphered, except for its negative pressure. Accordingly, the main characteristic of DE
is given by its equation of state (EoS), defined by the ratio of the pressure-to -energy
density, that is, ωDE ≡ PDE/ρDE. This definition allows us to classify the cosmological
models mentioned above, according to the behavior of the EoS, namely, quintessence
wQ ≥ −1 [11,48]; phantom wP ≤ −1 [49,50]; and quintom [51], where the latter is able
to evolve across the cosmological constant boundary. In [21], the authors have shown
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that a single scalar field model does not reproduce the quintom scenario, thus opening a
window to new paradigms where additional degrees of freedom can be considered (for non
conventional approaches into this matter, we refer the reader to [52,53]).

Our aim is to study a quintom cosmological model. The most basic construction of a
quintom model can be achieved by considering a pair of scalar fields, namely, a canonical
one and a phantom one, endowed with their respective scalar potentials; within this line of
research, different schemes have been considered [21–26]. These multi-scalar components
bring us additional degrees of freedom; thus, various physical phenomena can be addressed
such as primordial, hybrid [54–58], or assisted inflation [59,60], as well as perturbations
analysis [61,62].

In this work, we present an analysis of a chiral cosmological scenario from the perspec-
tive of K-essence formalism (following the scheme presented in [63]). In this prescription,
scalar fields interact within the kinetic and potential sectors. We consider a Friedmann–
Robertson–Lamaître–Walker (FRLW) universe coupled minimally to two quintom fields: a
quintessence and a phantom. We examine a classical cosmological framework, where exact
solutions are obtained. In fact, some of them may indicate that the cosmological singularity
is resolved via a “big-bounce”. Moreover, we show that the phantom line is crossed. Lastly,
for the quantum counterpart, the Wheeler–DeWitt (WDW) equation is obtained, where
the factor-ordering problem takes into account the introduction of the parameter Q, and
analytical solutions are presented employing the same relevant cases that appear in the
classical scheme. We show that the probability density is in fact damped as the scale factor
and the scalar fields evolve.

The paper is laid out as follows. Section 2 is devoted to the analysis of the classical
multi-scalar field cosmological model, and analytical solutions are obtained considering
different cases. In Section 3, the quantum counterpart is addressed; in this formalism,
different cases are analyzed and their corresponding solutions are presented. Section 4 is
devoted to the final remarks.

2. Classical Approach

We start by considering the action of the chiral cosmological model from the K-essence
perspective, which reads

S =
∫ √

−g
[

R−Mab(φc)G(ξab) + C(φc)
]
d4x, (1)

where R is the Ricci scalar; Mab(φc) is a matrix related to the kinetic energy mixed terms;
C(φc) is the scalar potential, which depends on k scalar fields (c = 1, 2, · · · , k); and G[ξab(φc)]
is a functional in terms of the chiral kinetic energy ξab(φc, gµν) = − 1

2 gµν∇µφa∇νφb. Note
that we are working with the reduced Planck units since 8πG = 1, so this eliminates the
8πG term from the expression (1). An action similar to (1) also appears in modified theories
of gravity [64], and more recently in [65]. Making the variation of the action (1) with respect
to the fields (gµν, φc), we obtain

δS =
∫

δ
[√
−gR

]
d4x +

∫
δ
√
−g
[
−Mab(φc)G(ξab) + C(φc)

]
d4x

+
∫ √

−g
[
−δMab(φc)G(ξab)−Mab(φc)δG(ξab) + δC(φc)

]
d4x ,

=
∫ √

−g Gλθδgλθd4x−
∫ √

−g
1
2

[
−Mab(φ)G(ξab) + C(φc)

]
gλθδgλθd4x+

+
∫ √

−g

[
−∂Mab(φc)

∂φc
δφcG(ξab)−Mab(φc)

∂G(ξab)

∂ξab
δξab +

∂C(φc)

∂φ
δφc

]
d4x , (2)
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where Gλθ = Rλθ − Rgλθ/2, Rλθ , and gλθ are the Einstein, Ricci, and metric tensors,
respectively. The variation of the functional G(ξab) is

δξab(φc) = −
1
2
∇µφa∇νφbδgµν − 1

2
gµν∇µδφa∇νφb −

1
2

gµν∇µφa∇νδφb,

= −1
2
∇µφa∇νφbδgµν +

1
2
∇µ[gµν∇νφb]δφa +

1
2
∇ν

[
gµν∇µφa

]
δφb

+∇µ

[
1
2

δφagµν∇νφb

]
+∇ν

[
1
2

δφbgµν∇νφa

]
.

Thus, finally we have

δS =
∫ √

−g
{

Gµν +
1
2

Mab(φc)

[
∇µφa∇νφb

∂G(ξab)

∂ξab
+ gµνG(ξab)

]
−1

2
gµνC(φc)

}
δgµνd4x ,

and since δS vanishes (δS = 0) for arbitrary variations δgµν, we are led to the field equations

Gµν = −1
2

Mab(φc)

[
∇µφa∇νφb

∂G(ξab)

∂ξab
+ gµνG(ξab)

]
+

1
2

gµνC(φc) . (3)

Then, the energy-momentum tensor in this setup becomes

Tµν(φc) = +
1
2

Mab(φc)

[
∇µφa∇νφb

∂G(ξab)

∂ξab
+ gµνG(ξab)

]
− 1

2
gµνC(φc). (4)

Moreover, we consider the energy-momentum tensor of a barotropic perfect fluid
Tαβ(φc) = (ρ + P)uα(φc)uβ(φc) + P gαβ (where the four-velocity is given by
uαuβ = ∇αφa∇βφb/2ξab). Hence, the pressure P and the energy density ρ of the scalar
fields take the following form:

P(φc) =
1
2

Mab(φc)G −
1
2

C(φc) , ρ(φc) =
1
2

Mab
[

2ξab
∂G

∂ξab
− G

]
+

1
2

C(φc) . (5)

Additionally, the barotropic parameter ωξab becomes

ωξab =
P(φc)

ρ(φc)
=

Mab(φc)G − C(φc)

Mab
[
2ξab

∂G
∂ξab
− G

]
+ C(φc)

. (6)

On the other hand, taking the variation of the action (1) with respect to the scalar field
φc, we obtain

δS =
∫ √

g

{
−∂Mab(φc)

∂φc
G(ξab)−

1
2

Mcb(φc)
∂G(ξab)

∂ξab
∇ν∇νφb

−1
2

Mac(φc)
∂G(ξab)

∂ξab
∇ν∇νφa +

∂C(φc)

∂φc

}
δφcd4x ,

where a Klein-Gordon-like equation can be written as follows:

∂Mab(φc)

∂φc
G(ξab)−Mac(φc)

∂G(ξab)

∂ξab
∇ν∇νφa −

∂C(φc)

∂φc
= 0 . (7)
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Note that Equations (2)–(7) represent the general framework; however, we will partic-
ularize to the case G = ξ, therefore obtaining the standard chiral Einstein field equations

Gµν = −1
2

Mab(φc)

[
∇µφa∇νφb −

1
2

gµνgαβ∇αφa∇βφb

]
+

1
2

gµνC(φc) . (8)

Now, if we consider that Mab is a constant matrix, we obtain

Mac∇ν∇νφa −
∂C(φc)

∂φc
= 0 . (9)

All of the aforementioned results can be employed to consider a two-field cosmological
model: a quintessence and a phantom field, with their corresponding scalar potentials.
Setting Mab(φc) = mab as a constant matrix, in (1), we obtain

L =
√
−g
(

R− 1
2

gµνmab∇µφa∇νφb + V(φ1, φ2)

)
, (10)

where C(φc) = V(φ1, φ2) is the combined scalar field potential; φ1 and φ2 are the quintessence
and phantom fields, respectively; and mab is a 2 × 2 constant matrix of the form

mab =

(
1 m12

m12 −1

)
.

Thus, the Einstein–Klein–Gordon field Equations (8) and (9) are

Gαβ = −1
2

mab
(
∇αφa∇βφb −

1
2

gαβgµν∇µφa∇νφb

)
+

1
2

gαβ V(φ1, φ2) , (11)

mcb∇ν∇νφb −
∂C(φc)

∂φc
= 0 , (12)

where a, b, c = 1, 2. From (11), the energy-momentum tensor of the scalar fields (φ1, φ2) is
given by

8πGTαβ(φ1, φ2) = −
1
2

mab
(
∇αφa∇βφb −

1
2

gαβgµν∇µφa∇νφb

)
+

1
2

gαβ V(φ1, φ2) , (13)

then, using (6), the barotropic index ωφa ,φb is given by

ωφa φb =
− 1

2 mab∇µφa∇µφb − C(φc)

− 1
2 mab∇µφa∇µφb + C(φc)

. (14)

In our analysis, the background spacetime to be considered is a spatially flat FRLW
with line element

ds2 = −N(t)2dt2 + e2Ω(t)
[
dr2 + r2(dθ2 + sin2θdφ2)

]
, (15)

where N represents the lapse function, A(t) = eΩ(t) is the scale factor in the Misner
parametrization, and Ω is a scalar function whose interval is (−∞, ∞). Choosing
C(φc) = V1(φ1) + V2(φ2) = V01e−λ1φ1 + V02e−λ2φ2 , the mixed Einstein field equations are
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3
Ω̇2

N2 −
1
2

[
1
2

φ̇2
1

N2 + V1(φ1)

]
− 1

2

[
−1

2
φ̇2

2
N2 + V2(φ2)

]
− m12

2
φ̇1

N
φ̇2

N
= 0 , (16)

2
Ω̈
N2 + 3

Ω̇2

N2 − 2
Ω̇
N

Ṅ
N2 +

1
2

[
1
2

φ̇2
1

N2 −V1(φ1)

]
+

1
2

[
−1

2
φ̇2

2
N2 −V2(φ2)

]
+

m12

2
φ̇1

N
φ̇2

N
= 0 , (17)

φ̇1

(
−3

Ω̇
N

φ̇1

N
+

Ṅ
N2

φ1

N
− φ̈1

N2

)
+ m12φ̇1

(
−3

Ω̇
N

φ̇2

N
+

Ṅ
N2

φ2

N
− φ̈2

N2

)
− V̇1(φ1) = 0 , (18)

m12φ̇2

(
−3

Ω̇
N

φ̇1

N
+

Ṅ
N2

φ1

N
− φ̈1

N2

)
+ φ̇2

(
3

Ω̇
N

φ̇2

N
− Ṅ

N2
φ2

N
+

φ̈2

N2

)
− V̇2(φ2) = 0 , (19)

where “ · ” represents a time derivative. By plugging the line element (15) into the energy-
momentum tensor of the scalar fields (13), the energy density, and the pressure, the follow-
ing form is taken:

8πGρφ1φ2 =
1
2

[
1
2

φ̇2
1 + N2V1(φ1)

]
+

1
2

[
−1

2
φ̇2

2 + N2V2(φ2)

]
+

m12

2
φ̇1φ̇2 , (20)

8πGPφ1φ2 =
1
2

[
1
2

φ̇2
1

N2 −V1(φ1)

]
+

1
2

[
−1

2
φ̇2

2
N2 −V2(φ2)

]
+

m12

2
φ̇1

N
φ̇2

N
, (21)

having these two quantities at hand, the barotropic parameter will be written as

ωφ1φ2 =
Pφ1φ2

ρφ1φ2

=

[
1
2

φ̇2
1

N2 −V1(φ1)

]
+

[
− 1

2
φ̇2

2
N2 −V2(φ2)

]
+ m12 φ̇1

N
φ̇2
N[

1
2 φ̇2

1 + N2V1(φ1)
]
+
[
− 1

2 φ̇2
2 + N2V2(φ2)

]
+ m12φ̇1φ̇2

. (22)

Now we are in position to construct the corresponding Lagrangian and Hamiltonian
densities for this cosmological model. Using Hamilton’s approach, classical solutions to
EKG (16)–(19) can be found; additionally, the quantum counterpart can be established and
solved. Taking these ideas into consideration, putting back the metric (15) into (10), the
Lagrangian density reads

L = e3Ω

(
6Ω̇2

N
− φ̇1

2

2N
+

φ̇2
2

2N
− m12φ̇1φ̇2

N
+ NV01e−λ1φ1 + NV02e−λ2φ2

)
. (23)

The resulting momenta are given by

ΠΩ = 12
e3Ω

N
Ω̇ ,

Πφ1 = − e3Ω

N

(
φ̇1 + m12φ̇2

)
,

Πφ2 = − e3Ω

N

(
m12φ̇1 − φ̇2

)
,

Ω̇ =
Ne−3Ω

12
ΠΩ ,

φ̇1 = −Ne−3Ω

4

(
Πφ1 + m12Πφ2

)
,

φ2 =
Ne−3Ω

4

(
m12Πφ1 −Πφ2

)
,

(24)

where 4 = 1 +
(
m12)2. In order to obtain a Hamiltonian density, we write (23) in a

canonical form, i.e., Lcan = Πq q̇− NH; then, we perform the variation with respect to the
lapse function N, δLcan/δN = 0, yielding the Hamiltonian constraintH = 0, that is,

H =
e−3Ω

24

[
Π2

Ω −
12
4Π2

φ1
+

12
4Π2

φ2
− 24

m12

4 Πφ1 Πφ2 − 24V1e−λ1φ1+6Ω − 24V2e−λ2φ2+6Ω
]

. (25)
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The fact that H = 0 guarantees us that its solutions are unique and well defined.
Putting forward the following canonical transformation on the variables (Ω, φ1, φ2) ↔
(ξ1, ξ2, ξ3) and fixing the gauge N = 24e3Ω, we obtain

ξ1 = 6Ω− λ1φ1 ,

ξ2 = 6Ω− λ2φ2 ,

ξ3 = 6Ω + λ1φ1 + λ2φ2 ,

←→

Ω =
ξ1 + ξ2 + ξ3

18
,

φ1 =
−2ξ1 + ξ2 + ξ3

3λ1
,

φ2 =
ξ1 − 2ξ2 + ξ3

3λ2
,

(26)

leading us to obtain a new set of conjugate momenta (P1, P2, P3)

ΠΩ = 6P1 + 6P2 + 6P3 ,

Πφ1 = λ1(−P1 + P3) ,

Πφ2 = λ2(−P2 + P3) , (27)

therefore, the Hamiltonian density can be written as

H = 12(3−Λ1)P2
1 + 12(3 + Λ2)P2

2 + 12(3− 2Λ12 + Λ2 −Λ1)P2
3

+ 24[(3 + Λ1 + Λ12)P1 + (3 + Λ12 −Λ2)P2]P3

+ 24(3−Λ12)P1P2 − 24
(

V1eξ1 + V2eξ2
)

, (28)

where Λ1 = λ2
1/4, Λ2 = λ2

2/4, and Λ12 = m12 λ1λ2/4. In the end, even if the Hamil-
tonian density (28) exhibits an intricate form, this configuration will indeed allow us to
compute various relevant scenarios. Thus, the Hamilton equations become

ξ̇1 = 24(3−Λ1)P1 + 24(3−Λ12)P2 + 24(3 + Λ1 + Λ12)P3 ,

ξ̇2 = 24(3 + Λ2)P2 + 24(3−Λ12)P1 + 24(3−Λ2 + Λ12)P3 ,

ξ̇3 = 24(3 + Λ1 + Λ12)P1 + 24(3−Λ2 + Λ12)P2 + 24(3 + Λ2 −Λ1 − 2Λ12)P3 ,

Ṗ1 = 24V1eξ1 , (29)

Ṗ2 = 24V2eξ2 ,

Ṗ3 = 0 .

Right away, we can see that P3 = p3 = constant. Moreover, the end game of this
analysis is to find solutions to the variables (Ω, φ1, φ2) . Hence, we simplify our expression.
First, we drop the mixed momenta P1 and P2 from ξ̇1 and ξ̇2 (Equation (29)) by setting
their coefficients to zero: 3−Λ12 = 0. Therefore, we can obtain one relation among the
parameters (m12, λ1λ2), where the matrix element m12 satisfies the constraint

m12 =
λ1λ2

6

1±

√
1−

(
6

λ1λ2

)2
 . (30)

Additionally, we set the second term inside the square root of (30) to be a real number
and consider λ1 > 0, λ2 > 0, thus yielding the relation λ1λ2 ≥ 6, ensuring that m12 is
always positive.
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2.1. Classical Exact Solutions

In this section, we will calculate the exact solutions of (Ω, φ1, φ2), where different cases
will appear due to the parameters (λ1, λ2). Recall the master Hamiltonian density

H = 12η1P2
1 + 12η2P2

2 + 12(−9 + η1 + η2)p2
3 + 24[(9− η1)P1 + (9− η2)P2]p3

− 24
(

V1eξ1 + V2eξ2
)

, (31)

with η1 = 3−Λ1 and η2 = 3 + Λ2. Then, Hamilton equations for these new coordinates ξi
are

ξ̇1 = 24η1P1 + 24(9− η1)p3 ,

ξ̇2 = 24η2P2 + 24(9− η2)p3 , (32)

ξ̇3 = 24(9− η1)P1 + 24(9− η2)P2 + 24(−9 + η1 + η2)p3 ,

and equations for Ṗ1 and Ṗ2 are still given by (29). In the following sections, we will obtain
analytical solutions for differents values of λ1 and λ2.

2.1.1. Case: λ1 = λ2 =
√

6

For these particular values, we have Λ1 = Λ2 = 3 with η1 = 0 and η2 = 6; then, the
Hamilton equations are reduced to

ξ̇1 = 216p3 ,

ξ̇2 = 144P2 + 72p3 , (33)

ξ̇3 = 216P1 + 72P2 − 72p3 .

From the last set of equations, we can see that the solution for ξ̇1 will be given by

ξ1 = a1 + 216p3t , (34)

where a1 is an integration constant. Then, taking the time derivative of ξ̇2 results in
ξ̈2 = 3456V2 eξ2 , whose solution is

ξ2 = Ln

(
α2

2
1728 V2

)
+ Ln

[
Csch2(α2 t− β2)

]
. (35)

Now we know the functional form of ξ2, we can compute the remaining momenta,
yielding

P1(t) = p1 +
V1

9p3
ea1+216p3 t,

P2(t) = p2 −
α2

72
Coth(α2 t− β2) . (36)

Plugging back P1 and P2, given by (36), into the Hamiltonian constraint H = 0,
we found that p2 = −p3/2 and 3888p2

3 − 15,552p1 p3 − α2
2 = 0; solving for p3 gives

p3 = 2p1 ±
√

3
108

√
α2

2 + 15,552 p2
1.

With these results, the variable ξ3 becomes

ξ3 = a3 + (216p1 − 108p3)t +
V1

9p2
3

ea1+216p3t + Ln[Csch(α2 t− β2)] . (37)
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where a3 is an integration constant. Having found ξ1, ξ2, and ξ3 and then applying the
inverse transformation (26), we can present the solutions in the original variables

Ω(t) =
a1 + a3

18
+ Ln

[
α2

24
√

3 V2

] 1
9

+ Ln
[
Csch

1
6 (α2 t− β2)

]
+ (12p1 + 6p3)t +

V1

162p2
3

ea1+216p3t , (38)

φ1(t) =
−2a1 + a3

3λ1
+ Ln

(
α2

2
1728 V2

) 1
3λ1

+
1

λ1

[
(72p1 − 180p3)t +

V1

27p2
3

ea1+216p3t + Ln[Csch(α2 t− β2)]

]
, (39)

φ2(t) =
a1 + a3

3λ2
+ Ln

(
α2

2
1728 V2

)− 2
3λ2

+
1

λ2

[
(72p1 + 36p3)t +

V1

27p2
3

ea1+216p3t + Ln[Sinh(α2 t− β2)]

]
, (40)

Recalling that the scale factor is given by A(t) = eΩ(t), we have

A(t) = e
a1+a3

18

[
α2

24
√

3V2

] 1
9

Csch
1
6 (α2 t− β2) Exp

[
V1

162p2
3

ea1+216p3t

]
e(12p1+6p3)t . (41)

In Figure 1, we present the behaviour of the scale factor A = A(t), the Hubble
parameter H = H(t), and the barotropic parameter ωφ1φ2 = ωφ1φ2(t). From the upper left
graph, we can see that A grows very rapidly as time goes by; it can also be seen that this
solution avoids the singularity by means of a bounce, where H does cross the horizontal
axis. In the panel at the bottom, the barotropic parameter ωφ1φ2 is presented, and it can be
seen that the EoS parameter crosses the “−1” boundary, which is in fact a characteristic of
the quintom models.
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Figure 1. This figure shows the time (0.3 ≤ t ≤ 1.0) evolution of the scale factor A(t), the Hub-
ble parameter H(t), and the barotropic parameter ωφ1φ2 (t). We use arbitrary units, namely,
V1 = 6.0 , V2 = 0.1, α2 = 3.0, a1 = −6.548 , a3 = −2.0, and p1 = 0.001. Recall that λ1 = λ2 =

√
6;

the remaining constants can be obtained from the aforementioned values. Note that time is measured
in reduced Planck units since 8πG = 1.
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2.1.2. Case: λ1λ2 = 6

Now, we have m12 = 1, and for λ2 =
√

6 we obtain the previous case; therefore, we
devote this section to carrying out an analysis of values λ2 6=

√
6 and explore whether

the phantom or quintessence scheme prevails under the domain of the scalar potential.
On the one hand, when λ2 � λ1 the phantom sector dominates. On the other hand, when
λ2 � λ1, the quintessence counterpart becomes the relevant scenario. Then, we consider
the Hamilton Equations (32) and take the time derivative of ξ̇1, which reads

ξ̈1 = 576η1 V1eξ1 , (42)

where we also resort to the equation for Ṗ1. Solutions of (42) strongly depend on λ1, which
has the form

eξ1 =
r2

1
288|η1|V1

{
Sech2(r1t− q1) λ1 >

√
6 corresponding at η1 < 0

Csch2(r1t− q1) λ1 <
√

6 corresponding at η1 > 0
(43)

From (32), we can see that both ξ̇2 and ξ̇1 have the same functional structure when
η1 > 0, and since η2 > 0 for all values of λ2, the solution of ξ2 is

eξ2 =
r2

2
288η2 V2

Csch2(r2t− q2) , (44)

where in (43) and (44), ri and qi (with i = 1, 2) are integration constants. In the next
segments, we will examine the two cases: λ1 >

√
6 and λ1 <

√
6.

2.1.3. Phantom Domination: λ1 >
√

6 and λ2 <
√

6

Considering this setup, we start by reinserting the solutions for λ1 >
√

6 (η1 < 0) and
for λ2 <

√
6 into the Hamilton equations for the momenta, obtaining

P1 = p1 +
r1

12|η1|
Tanh(r1t− q1) , (45)

P2 = p2 −
r2

12η2
Coth(r2t− q2) , (46)

where p1 and p2 are integration constants. Now, with the aid of Equations (45) and (46),
the Hamiltonian is identically zero when

p1 =
|η1|+ 9
|η1|

p3 , p2 =
η2 − 9

η2
p3 , p3 = +

1
36

√
η2r2

1 − |η1|r2
2

3[|η1|η2 − 3|η1|+ 3η2]
. (47)

Consequently, the solutions of ξi become

ξ1 = Ln

(
r2

1
288|η1|V1

)
+ Ln

[
Sech2(r1 t− q1)

]
, (48)

ξ2 = Ln

(
r2

2
288η2 V2

)
+ Ln

[
Csch2(r2 t− q2)

]
, (49)

ξ3 = a3 + 648
|η1| η2 − 3|η1|+ 3η2

|η1| η2
p3t +

9 + |η1|
|η1|

Ln
[
Cosh2(r1 t− q1)

]
+

η2 − 9
η2

Ln
[
Sinh2(r2 t− q2)

]
, (50)
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where a3 is an integration constant. To arrive at the solutions in terms of the original variables
(Ω, φ1, φ2), we apply the inverse canonical transformation (26), obtaining the following:

Ω = Ω0 + Ln
[
Coshβ1(r1 t− q1)Cschβ2(r2 t− q2)

]
+36
|η1| η2 − 3|η1|+ 3η2

|η1| η2
p3t , (51)

φ1 = φ10 + Ln

[
Cosh

2(|η1 |+3)
λ1 |η1 | (r1 t− q1)Csch

6
λ1η2 (r2 t− q2)

]

+216
|η1| η2 − 3|η1|+ 3η2

λ1 |η1| η2
p3t , (52)

φ2 = φ20 + Ln

[
Cosh

6
λ2 |η1 | (r1 t− q1)Sinh

2(η2−3)
λ2η2 (r2 t− q2)

]

+216
|η1| η2 − 3|η1|+ 3η2

λ2 |η1| η2
p3t , (53)

where β1 = 1/|η1|, β2 = 1/η2, and the constants Ω0, φ10 and φ20 are given by

Ω0 = Ln

[
r1 r2

288
√
|η1|η2V1 V2

] 1
9

+
a3

18
,

φ10 = Ln

[
12
√

2r2 |η1|V1

r2
1
√

η2V2

] 2
3λ1

+
a3

3λ1
, (54)

φ20 = Ln

[
12
√

2r1η2V2

r2
2

√
|η1|V1

] 2
3λ2

+
a3

3λ2
.

For this case, the scale factor becomes

A(t) =

[
r1r2

288
√
|η1|η2V1V2

] 1
9

e
a3
18 Coshβ1(r1 t− q1)Cschβ2(r2 t− q2)

× Exp
[

36
|η1| η2 − 3|η1|+ 3η2

|η1| η2
p3t
]

. (55)

In Figure 2, we can appreciate the evolution of the scale factor, the Hubble parameter,
and the barotropic parameter, with respect to time. First, we can once again observe a
bouncing A, which consolidates our previous outcome. In fact, this behavior was claimed
recently in [66], using a dynamical system approach. Additionally, in the upper right
plot, H crosses the horizontal axis (at the bounce of A). Then, in the panel at the bottom,
once again ωφ1φ2 traverses the phantom divide line “−1”, an upshot consistent with the
quintom description .
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Figure 2. Phantom domination. This figure shows the time (0.1 ≤ t ≤ 2.5) evolution of the scale
factor A(t), the Hubble parameter H(t), and the barotropic parameter ωφ1φ2 (t). We use arbitrary
units, namely, V1 = V2 = 1.0, r1 = 1.5, r2 = 0.9, q1 = q2 = 0.1, a3 = −6.0, λ2 =

√
2, and λ1 = 6/λ2.

The remaining constants can be obtained from the aforementioned values. Note that time is measured
in reduced Planck units since 8πG = 1.

2.1.4. Quintessence Domination: λ1 <
√

6 and λ2 >
√

6

We reinsert the solutions of λ1 <
√

6 (η1 > 0) and λ2 >
√

6 into the Hamilton
equations for the momenta, leading to

P1 = p1 −
r1

12η1
Coth(r1t− q1) , (56)

P2 = p2 −
r2

12η2
Coth(r2t− q2) , (57)

where p1 and p2 are integration constants. We use (56) and (57) to obtain a null Hamilto-
nian when

p1 =
η1 − 9

η1
p3, p2 =

η2 − 9
η2

p3, p3 = ± 1
36

√
η2r2

1 + η1r2
2

3[3η1 + 3η2 − η1η2]
. (58)

As a consequence, the solutions of ξi take the following form:

ξ1 = Ln

(
r2

1
288η1 V1

)
+ Ln

[
Csch2(r1 t− q1)

]
, (59)

ξ2 = Ln

(
r2

2
288η2 V2

)
+ Ln

[
Csch2(r2 t− q2)

]
, (60)

ξ3 = a3 − 648
−η1 η2 + 3η1 + 3η2

η1 η2
p3t +

η1 − 9
η1

Ln
[
Sinh2(r1 t− q1)

]
+

η2 − 9
η2

Ln
[
Sinh2(r2 t− q2)

]
, (61)
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with an integration constant a3. Then, we apply the inverse transformation (26) to arrive at
the solutions in terms of the original variables, which read

Ω = Ln

[
r1r2

288
√

η1η2V1V2

] 1
9

+
a3

18
+ Ln

[
Cschβ1(r1 t− q1)Cschβ2(r2 t− q2)

]
− 36

3η1 + 3η2 − η1 η2

η1 η2
p3t ,

φ1 = φ10 + Ln

[
Cosh

2(|η1 |+3)
λ1 |η1 | (r1 t− q1)Csch

6
λ1η2 (r2 t− q2)

]
+ 216

|η1| η2 − 3|η1|+ 3η2

λ1 |η1| η2
p3t ,

φ2 = φ20 + Ln

[
Cosh

6
λ2 |η1 | (r1 t− q1)Sinh

2(η2−3)
λ2η2 (r2 t− q2)

]

+ 216
|η1| η2 − 3|η1|+ 3η2

λ2 |η1| η2
p3t ,

where β1 = 1/η1, β2 = 1/η2, and the constants Ω0, φ10, and φ20 are those in (54). With these
solutions, we can write the scale factor in the following form:

A(t) =

[
r1r2

288
√

η1η2V1V2

] 1
9

e
a3
18 Cschβ1(r1 t− q1)Cschβ2(r2 t− q2)

× Exp
[
−36

3η1 + 3η2 − η1 η2

η1 η2
p3t
]

. (62)

Immediately, one can observe that to obtain an increasing scale factor with respect to
time, the constant p3 must be negative. However, none of the parameters considered in
this scenario lead to p3 < 0; therefore, this solution is not physically relevant.

3. Quantum Formalism

To present the quantum mechanical version of the classical model, in (25) we promote
the classical momenta to operators making the replacement Πqµ = −ih̄∂qµ , obtaining the
following Hamiltonian density:

H = Π2
Ω + Qih̄ΠΩ − 12Λ2Π2

φ1
+ 12Λ1Π2

φ2
− 24Λ0Πφ1 Πφ2 − 24V1e−λ1φ1+6Ω − 24V2e−λ2φ2+6Ω. (63)

To obtain Equation (63), we have substituted e−3ΩΠ2
Ω → e−3Ω[Π2

Ω + Qih̄ΠΩ
]

since one has
to take into account the factor-ordering problem between the e−3Ω and its momentum ΠΩ;
hence, Q is a number that measures such ambiguity. In order to have a more manageable
functional form of (63), we take the constraint of the matrix element m12 (Equation (30));
then, we apply the canonical transformation on variables (Ω, φ1, φ2)↔ (ξ1, ξ2, ξ3) (Equa-
tions (26) and (27)), as well as the gauge N = 24e3Ω. Therefore, we obtain

H = 12η1P2
1 + 12η2P2

2 + 12(−9 + η1 + η2)P2
3

+ 24P3[(9− η1)P1 + (9− η2)P2] + 6Qih̄(P1 + P2 + P3) − 24
(

V1eξ1 + V2eξ2
)

, (64)

with η1 = 3− Λ1 and η2 = 3 + Λ2. Recall that the Hamiltonian density is identically
zero H = 0; hence, the quantum counterpart of (64) is obtained by applying the same
prescription used to obtain (63). Having this at hand, we can write down the Wheeler–
DeWitt (WDW) equation, which reads
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ĤΨ(ξi) = −12h̄2η1
∂2Ψ
∂ξ2

1
− 12h̄2η2

∂2Ψ
∂ξ2

2
− 12h̄2(−9 + η1 + η2)

∂2Ψ
∂ξ2

3

+ 6Qh̄2
(

∂Ψ
∂ξ1

+
∂Ψ
∂ξ2

+
∂Ψ
∂ξ3

)
− h̄224

[
(9− η1)

∂2Ψ
∂ξ1∂ξ3

+ (9− η2)
∂2Ψ

∂ξ2∂ξ3

]
− 24

(
V1eξ1 + V2eξ2

)
Ψ = 0 . (65)

In order to solve the WDW equation, we propose the following solution for the wave
function Ψ(ξ1, ξ2, ξ3) = ep3ξ3G(ξ1, ξ2) with p3 = constant. Additionally, we take as an
ansatz G(ξ1, ξ2) = G1(ξ1)G2(ξ2); upon substitution in (65), we obtain the following.

− 12η1G2
∂2G1

∂ξ2
1

+ 6(Q− 4p3(9− η1))G2
∂G1

∂ξ1

+ 3
[

p3(Q− 2p3(9− η1 + η2))− 8
V1

h̄2 eξ1

]
G1G2+

− 12η2G1
∂2G2

∂ξ2
2

+ 6(Q− 4p3(9− η2))G1
∂G2

∂ξ2

+ 3
[

p3(Q− 2p3(9− η1 + η2))− 8
V2

h̄2 eξ2

]
G1G2 = 0 , (66)

finally, we factorize G1G2. Thus, two ordinary differential equations for the functions G1
and G2 emerge

− 12
η1

G1

∂2G1

∂ξ2
1

+ 6(Q− 4p3(9− η1))
1

G1

∂G1

∂ξ1

+ 3
[

p3(Q− 2p3(9− η1 + η2))− 8
V1

h̄2 eξ1

]
− ν2 = 0, (67)

− 12
η2

G2

∂2G2

∂ξ2
2

+ 6[Q− 4p3(9− η2)]
1

G2

∂G2

∂ξ2

+ 3
[

p3(Q− 2p3(9− η1 + η2))− 8
V2

h̄2 eξ2

]
+ ν2 = 0, (68)

where ν2 is an arbitrary constant. These last two equations can be written as y′′ + ay′ +
(beκx + c)y = 0, and their solutions are of the form [67]

Y(x) = Exp
(
− ax

2

)
Zρ

(
2
√

b
κ

e
κx
2

)
, (69)

here, Zρ are the generic Bessel functions with the order ρ =
√

a2 − 4c/κ. If
√

b is real, Zρ

becomes the ordinary Bessel function; otherwise, the solutions will be given in terms of the
modified Bessel functions. In the next sections, we will show quantum solutions separated
into two classes, according to η1 and λ1λ2 = 6.
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3.1. Quantum Solution for η1 > 0 and λ1 <
√

6

First, we identify the following expressions for Equation (67):

κ = 1 , a = −Q− 4p3(9− η1)

2η1
,

b =
2V2

η1h̄2 , c = − p3[Q− 2p3(9− η1 + η2)]

4η1
+

ν2

12η1
, (70)

and for (68)

κ = 1 , a = −Q− 4p3(9− η2)

2η2
,

b =
2V1

η2h̄2 , c = − p3[Q− 2p3(9− η1 + η2)]

4η2
− ν2

12η2
. (71)

Note that in both cases,
√

b is real; then, the solutions are written in terms of the
ordinary Bessel functions Zρi = Jρi . Thus, the wave function becomes the following:

Bρ1ρ2 = B0 Jρ1

[
2
h̄

√
2V1

η1
e

ξ1
2

]
Jρ2

[
2
h̄

√
2V2

η2
e

ξ2
2

]
eθ ,

where

θ =
Q− 4p3(9− η1)

4η1
ξ1 +

Q− 4p3(9− η2)

4η2
ξ2 ,

and B0 is an integration constant. Additionally, the order of the two Bessel functions are

ρ1 =

√(
−Q− 4p3(9− η1)

2η1

)2

+
p3(Q− 2p3(9− η1 + η2))

η1
− ν2

3η1
, (72)

ρ2 =

√(
−Q− 4p3(9− η2)

2η2

)2

+
p3(Q− 2p3(9− η1 + η2))

η2
+

ν2

3η2
. (73)

Hence, the wave function Ψ in the original variables becomes

Ψρ1ρ2 = Ψ0 A6αExp[α1 λ1φ1 + α2 λ2φ2]Jρ1

[
2
h̄

√
2V1
η1

A3 e
−λ1φ1

2

]
Jρ2

[
2
h̄

√
2V2
η2

A3e−
λ2φ2

2

]
, (74)

where Ψ0 is a normalization constant, and

α =
Q(η2 + η1)

4η1η2
− p3(9− η1)

η1
− p3(9− η2)

η2
+ p3 ,

α1 = −Q− 4p3(9− η1)

4η1
+ p3 , α2 = −Q− 4p3(9− η2)

4η2
+ p3 . (75)

By analyzing solution (74), we could not find any set of parameter values for which
the probability density function (defined by the wave function (74)) is bounded. This
unwanted behavior prevents us from directly implementing the standard interpretation
of quantum mechanics in order to draw meaningful physical conclusions. This setback is
tempered by the fact that the corresponding classical solution (given essentially by (62)) is
not of physical relevance, and so no further analysis will be performed regarding this case.



Universe 2022, 8, 548 15 of 20

3.2. Quantum Solution When η1 < 0 and λ1 >
√

6

We set up the corresponding parameters for Equation (67)

κ = 1 a =
Q− 4p3(9 + |η1|)

2|η1|
,

b = − 2V2

|η1|h̄2 c =
p3[Q− 2p3(9 + |η1|+ η2)]

4|η1|
− ν2

12|η1|
, (76)

and for (68)

κ = 1 a = −Q− 4p3(9− η2)

2η2
,

b =
2V1

η2h̄2 , c = − p3[Q− 2p3(9 + |η1|+ η2)]

4η2
− ν2

12η2
, (77)

note that we have inverted the sign of the previous formulas. Hereby, we introduce |η1|.
Then, the first case (76) yields an imaginary

√
b; therefore, its solution must be in terms

of the modified Bessel function Zρ1 = Kρ1 (contrary to the second case, where the proper
function is Zρ2 = Jρ2 ). Hence, we have

Bρ1ρ2 = B0 Kρ1

[
2
h̄

√
2V1

|η1|
e

ξ1
2

]
Jρ2

[
2
h̄

√
2V2

η2
e

ξ2
2

]
eθ2 , (78)

here

θ2 = −Q− 4p3(9 + |η1|)
4|η1|

ξ1 +
Q− 4p3(9− η2)

4η2
ξ2 , (79)

and the order of both Bessel functions are

ρ1 =

√(
Q− 4p3(9 + |η1|

2|η1|

)2

− p3(Q− 2p3(9 + |η1|+ η2))

|η1|
+

ν2

3|η1|
, (80)

ρ2 =

√(
−Q− 4p3(9− η2

2η2

)2

+
p3(Q− 2p3(9 + |η1|+ η2))

η2
+

ν2

3η2
. (81)

Finally, the wave function in the original variables is given by

Ψρ1ρ2 = Ψ0 A6βExp[α1 λ1φ1 + α2 λ2φ2]Kρ1

[
2
h̄

√
2V1
|η1|

A3 e
−λ1φ1

2

]
Jρ2

[
2
h̄

√
2V2
η2

A3e−
λ2φ2

2

]
, (82)

where

β = −Q(η2 − |η1|)
4|η1|η2

+
p3(9 + |η1|)
|η1|

− p3(9− η2)

η2
+ p3 , (83)

α1 =
Q− 4p3(9 + |η1|)

4|η1|
+ p3 , α2 = −Q− 4p3(9− η2)

2η2
+ p3 , (84)

and a normalization constant Ψ0. The behaviour of the probability density can be seen in
Figure 3. Observe that in all panels, the probability density dies away as the scale factor
and scalar field evolve, an expected outcome already reported in [68–70]. On the other
hand, we vary the factor ordering constant Q, in order to show how |Ψ|2 behaves. We can
see that whilst Q � 0, the probability density tends to the phantom sector. In [68], the
authors showed that the parameter Q acts a retarder of the wave function and compresses
the length on the axis where the field evolves; however, they analysed the case of two
quintessence fields.
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Figure 3. Phantom scenario. These figures show the probability density of the wave function (82) for
the values of Q = 2 and Q = 0 (top panels from left to right, respectivley), and Q = −2 and Q = −4
(bottom panels from left to right, respectively). We use arbitrary units, namely, ν = 10, λ1 = 10.5,
λ2 = 6/λ1, V1 = 0.1 , V2 = 10−5, r1 = 49, r2 = 1.5 , a3 = −2.3, and p3 = 0.326878, and the bounce in
the quintessence field φ1 = 1.455. The remaining constants can be obtained from the aforementioned
values. Additionally, for Q = 2, 0 we take Ψ0 = 10−3 , 10−2 respectively; then, for Q = −2 ,−4 we
chose Ψ0 = 10−1, 1/

√
10 respectively. Note that the probability density tends toward the phantom

sector when the factor ordering constant Q� 0.

3.3. Quantum Solution When λ1 = λ2 =
√

6, Therefore η1 = 0 and η2 = 6

In this final case, we take λ1 = λ2 =
√

6; therefore, η1 = 0 and η2 = 6. Hence, the
Equations (67) and (68) can be reduced to

6(Q− 36p3)
1

G1

∂G1

∂ξ1
+ 3
[

p3(Q− 30p3)− 8
V1

h̄2 eξ1

]
− ν2 = 0 , (85)

− 72
G2

∂2G2

∂ξ2
2

+ 6[Q− 12p3]
1

G2

∂G2

∂ξ2
+ 3
[

p3(Q− 30p3)− 8
V2

h̄2 eξ2

]
+ ν2 = 0 . (86)

The solution of (85) is given by

G1 = G0Exp

[
ν2

3 − p3(Q− 30p3)

2(Q− 36p3)
ξ1 +

4V1

h̄2(Q− 36p3)
eξ1

]
, (87)

where G0 in an integration constant. Then, for G2 we have the following ordinary Bessel
function:

G2 = Exp
[

Q− 12p3

24
ξ2

]
Jρ2

[√
V2

h̄
e

ξ2
2

]
, (88)

here, the order is

ρ2 =

√(
Q− 12p3

12

)2
+

1
6

[
ν2

3
+ p3(Q− 30p3)

]
. (89)
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Remarkably for this case, we can obtain a parameter space of Q , ν, and p3 where the order
can be real or imaginary. Hence, we have

B = B0 Jρ2

[√
V2

h̄
e

ξ2
2

]
eθ3 , (90)

with

θ3 =
ν2

3 − p3(Q− 30p3)

2(Q− 36p3)
ξ1 +

Q− 12p3

24
ξ2 +

4V1

h̄2(Q− 36p3)
eξ1 ,

Finally, in the original variables the wave function is

Ψ = ψ0 A6η Jρ2

[√
V2

h̄
A3e

−λ2φ2
2

]
eθ1 , (91)

where
θ1 =

4V1

h̄2(Q− 36p3)
A6e−λ1φ1 + α1 λ1φ1 + α2 λ2φ2 , (92)

and

η =
ν2

3 − p3(Q− 30p3)

2(Q− 36p3)
+

Q− 12p3

24
+ p3

α1 = −
ν2

3 − p3(Q− 30p3)

2(Q− 36p3)
+ p3 , α2 = −Q− 12p3

24
+ p3 , (93)

and a normalization constant ψ0. For completeness of the above classical solutions, we
include this case; however, once more the probability density function is not bounded since
|Ψ|2 does not fade as the scale factor and scalar field evolve. We recall that the standard
interpretation of quantum mechanics becomes troublesome to realize due to this nuisance
behavior. Therefore, the wave function (91) is not physically relevant.

4. Final Remarks

In this work, we have studied a chiral cosmological model from the point of view of
a K-essence formalism. The background geometry was a flat FLRW universe minimally
coupled to quintom fields: one quintessence and one phantom. In this approach, the scalar
fields interact within the kinetic and potential sectors.

In the classical framework, we established the Hamiltonian density (31), which in
turn allows one to find exact solutions for different sets of values of the free parameters.
We highlight two cases: the first when λ1 = λ2 =

√
6, and the second where phantom

domination is the relevant factor, namely, λ1 >
√

6 and λ2 <
√

6. In the two scenarios,
the scale factor grows very rapidly and the big-bang singularity is avoided via a bounce.
We call it the “big bounce”. In fact, this claim is also supported by the behavior of both
the scale factor and the Hubble parameter. Finally, we show that the barotropic parameter
is capable of transiting from a quintessence phase to a phantom one, i.e., it crosses the
phantom divide line. In Figures 1 and 2, we show the behavior of these quantities as a
function of time.

On the other hand, using the canonical quantization procedure, we were able to
establish the quantum counterpart of the classical model and compute the Wheeler–DeWitt
equation. Once again, we solve it for various scenarios given by different sets of values
of the free parameters. In particular, we found exact solutions for three distinct cases:
η1 > 0 and λ1 <

√
6, η1 < 0 and λ1 >

√
6, and λ1 = λ2 =

√
6; therefore, η1 = 0 and

η2 = 6. Figure 3 shows the behavior of the probability density as a function of the scale
factor and scalar field, for the phantom case, i.e., η1 < 0 and λ1 >

√
6. The probability

density exhibits a damped behavior as the scale factor and scalar fields evolve. An expected
result has already been reported in [68–70]. Lastly, we note that by varying Q, specifically
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when Q� 0, the probability density evolves towards the phantom sector. This outcome
contrasts with that reported in [68], where the authors showed that the parameter Q delays
the evolution of the wave function and compresses the length on the axis where the field
evolves; however, they analyzed the case of two quintessence fields.
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