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Abstract. Despite their usage of pseudonyms rather than persistent
identifiers, most existing cryptocurrencies do not provide users with any
meaningful levels of privacy. This has prompted the creation of privacy-
enhanced cryptocurrencies such as Monero and Zcash, which are specif-
ically designed to counteract the tracking analysis possible in curren-
cies like Bitcoin. These cryptocurrencies, however, also suffer from some
drawbacks: in both Monero and Zcash, the set of potential unspent coins
is always growing, which means users cannot store a concise representa-
tion of the blockchain. Additionally, Zcash requires a common reference
string and the fact that addresses are reused multiple times in Monero
has led to attacks to its anonymity.
In this paper we propose a new design for anonymous cryptocurrencies,
Quisquis, that achieves provably secure notions of anonymity. Quisquis
stores a relatively small amount of data, does not require trusted setup,
and in Quisquis each address appears on the blockchain at most twice:
once when it is generated as output of a transaction, and once when
it is spent as input to a transaction. Our result is achieved by com-
bining a DDH-based tool (that we call updatable keys) with efficient
zero-knowledge arguments.

1 Introduction

Bitcoin was introduced in 2008 [31], and at a high level it relies on the use of
addresses, associated with a public and private key pair, to keep track of who
owns which coins. Users of the system can efficiently create and operate many
different addresses, which gives rise to a form of pseudo-anonymity. As is now
well known, however, Bitcoin and other cryptocurrencies relying on this level
of pseudo-anonymity can, in practice, have these addresses linked together and
even linked back to their real-world identities with little effort [34,35,3,27,38,29].

Due to this, there has now been an extensive body of work aiming to provide
privacy-enhanced solutions for cryptocurrencies, although even some of these
new solutions have also been subjected to empirical analyses pointing out the
extent to which they can be de-anonymized as well [30,26,28,21,20,19,41]. These
solutions typically fall into two main categories.



First, tumblers (also known as mixers or mixing services) act as opt-in over-
lays to existing cryptocurrencies such as Bitcoin [24,37,17] and Ethereum [25],
and achieve enhanced privacy by allowing senders to mix their coins with those
of other senders. While these are effective and arguably have a high chance of
adoption due to their integration with existing cryptocurrencies, they also have
some limitations. In particular, they are generally either dependent on trusting
a central mixer, which leaves users vulnerable to attacks on availability, or they
require significant coordination amongst the parties wishing to mix, which leads
to higher latency as users must wait for other people to mix with them.

Second, there are cryptocurrencies with privacy features built in at the pro-
tocol level. Of these, the ones that have arguably achieved the most success
are Dash [1], Monero [32], and Zcash [6]. Dash is derived from a tumbler solu-
tion, Coinjoin [24], and thus inherits the properties discussed there. In Monero,
senders specify some number of addresses to “mix in” to their own transaction,
and then use this list of public keys to form a ring signature and hide which
specific address was theirs. Observers of the blockchain thus learn only that
some unknown number of coins have moved from one of these input public keys.
In Zcash, users can put coins into a “shielded pool.” When they wish to spend
these coins, they prove in zero-knowledge that they have the right to spend some
specific coins in the pool, without revealing which ones.

Between Monero and Zcash, there are already several differences. For exam-
ple, because users in Monero specify rings themselves, they achieve a form of
plausible deniability : no one can tell if a user meant to be involved in a given
transaction, or if their address was simply used in a ring without their consent.
In Zcash, in contrast, every other user in a user’s anonymity set has no such
deniability, as they at one point intentionally put coins into the shielded pool.

One limitation central to both cryptocurrencies, however, is the information
that peers in the network are required to keep. In Bitcoin, the list of all addresses
with a positive balance can be thought of as a set of unspent transaction outputs
(UTXOs). When a sender spends coins, their address ceases to be a UTXO,
so is replaced in the set with the address of their recipient. Full nodes can thus
collapse the blockchain into this UTXO set, and check for double spending simply
by checking if a given input address is in the set or not. In other words, it acts
as a concise representation of the entire history of the blockchain. In October
2017, for example, there had been over 23 million Bitcoin transactions and the
total size of the blockchain was over 130 GB, but the size of the UTXO set was
only 3 GB [12].

In Monero and Zcash, however, addresses can (essentially) never be removed
from the UTXO set, as it is never clear if an address has spent its contents or
was simply used as part of the anonymity set in the transaction of a different
sender. The size of the UTXO set is thus monotonically increasing: with every
transaction, it can only grow and never shrink. This has a significant impact
on full nodes, as they must effectively store the entire blockchain without the
option of the concise representation possible in Bitcoin.
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Our Contributions We present Quisquis, a new design for anonymous cryp-
tocurrencies that resolves the limitations outlined above for existing solutions.
In particular, users are able to form transactions on their own, so do not need
to wait for other interested users and incur the associated latency. They can
also involve the keys of other users without their permission, which gives the
same degree of plausible deniability as Monero. Finally, each transaction acts
to replace all the input public keys in the UTXO set with all the output public
keys, thus allowing the UTXO set to behave in the same manner as in Bitcoin.
Furthermore, our transactions are relatively inexpensive to compute and verify,
taking around 471ms to compute and 71ms to verify for an anonymity set of size
16, with proofs of size approximately 13kB.

As a brief technical overview, Quisquis achieves anonymity using a primi-
tive that we formalize in Section 3 called updatable public keys, which allows
users to create updated public keys, indistinguishable from ones that are freshly
generated, without changing the underlying secret key. After formally defining
our threat model in Section 4, we present our full construction of Quisquis in
Section 5. Roughly, senders take the keys of other users, including their intended
recipients, to form a list of public keys that act as the input to a transaction.
A sender can now “re-distribute their wealth” among these input keys, acting to
move some of their own coins to the recipient and keeping the (hidden) balances
of the other members of the anonymity set the same. To ensure anonymity, the
output public keys are all updated, and all balances and amounts are given only
in committed form. Thus, by design, in Quisquis every address can only ever
appear at most twice on the blockchain: once when it is generated in the output
of the transaction, and once when it is spent as input to a different transaction.
This greatly reduces (compared, e.g., to Monero) the ability of an attacker to
perform de-anonymization attacks based on how often a certain address partic-
ipates in transactions.

To ensure integrity, the sender proves in zero-knowledge that they have cor-
rectly updated the keys and have not taken money away from anyone except
themselves. Crucially, because the witness for the zero-knowledge proof is lim-
ited to this single transaction (as opposed to encompassing other parts of the
blockchain), we can use standard discrete-log-based techniques as opposed to
the heavyweight zk-SNARKs required in Zcash. This means that security can
depend entirely on DDH, and no trusted setup is required (as we use the random
oracle model to make the proofs non-interactive and to generate other system
parameters and random values using “nothing up my sleeves” methods). As the
design of Quisquis is modular, other tradeoffs could be achieved as well: for in-
stance, it could be possible to instantiate Quisquis with zk-SNARKs as well,
thus achieving even smaller transactions and faster verification at the cost of
much slower transaction generation and the stronger assumptions underlying
zk-SNARKs.

To demonstrate the efficiency of Quisquis, we implement it and present per-
formance benchmarks in Section 7. We then provide a thorough comparison with
existing solutions in Section 8 before concluding in Section 9.
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2 Cryptographic Primitives

2.1 Notation

Let logg h be the discrete log of h with respect to g. Define (a, b)c := (ac, bc)
and (a, b) · (c, d) := (ac, bd). For vectors a and b, let a ◦ b be the Hadamard
product of a and b; i.e., the vector c such that ci = aibi. We use y ← A(x)
to denote assigning to y the output of a deterministic algorithm A on input
x, and y $← A(x) if A is randomized; i.e., we sample a random r and then
run y ← A(x; r). We use [A(x)] to denote the set of values that have non-zero
probability of being output by A on inputs x. We use r $← R for sampling an
element r uniformly at random from a set R. If y = (y1, . . . , yn)

$← A(x) then
we often denote yi by yi.

2.2 Zero-knowledge arguments of knowledge

Let R be a binary relation for instances x and witnesses w, and let L be its
corresponding language; i.e., L = {x | ∃w : (x,w) ∈ R}. An interactive proof is
a protocol where a prover P tries to convince a verifier V , by an exchange of
messages, that an instance x is in the language L. The set of messages exchanged
is known as a transcript, from which a verifier can either accept or reject the
proof. The proof is public-coin if an honest verifier generates his responses to
P uniformly at random. An interactive proof is a special honest-verifier zero-
knowledge argument of knowledge if it satisfies the following properties:

– Perfect completeness: if x ∈ L, an honest P always convinces an honest V .
– Special honest-verifier zero-knowledge (SHVZK): there exists a simulator S

that, given x ∈ L and an honestly generated verifier’s challenge c, produces
an accepting transcript which has the same (or indistinguishably different)
distribution as a transcript between honest P, V on input x.

– Argument of knowledge: if P convinces V of an instance x, there exists an
extractor with oracle access to P that runs in expected polynomial-time to
extract the witness w.

A public-coin SHVZK argument of knowledge can be turned into a non-
interactive zero knowledge (NIZK) argument of knowledge using the Fiat-Shamir
heuristic. Essentially, non-interactivity is achieved by replacing the verifier’s ran-
dom challenge with the output of a hash function, which in the security proof is
modeled as a random oracle.

2.3 Commitments

We use a commitment scheme Commit relative to a public key pk that, given a
message m ∈M and randomness r ∈ R, computes com← Commitpk(m; r). Our
commitments must satisfy two properties: first, they are computationally hiding,
meaning for any two messages m0,m1, an adversary has negligible advantage in
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distinguishing between Commitpk(m0;UR) and Commitpk(m1;UR), where UR is
the uniform distribution over the randomness space. Second, they are uncondi-
tionally binding, meaning even given the sk relative to pk, a commitment cannot
be opened to two different messages.

Beyond these two basic properties, we require two extra properties from our
commitments. First, they must be homomorphic in the sense that for some op-
eration ⊙ it holds that Commitpk(m)⊙ Commitpk(m

′) = Commitpk(m+m′) (for
appropriate randomness). Second, they must be key-anonymous, meaning that
for any honestly generated keys pk0, pk1 and adversarially chosen m, the tuple
(m, pk0, pk1,Commitpk0(m)) is indistinguishable from (m, pk0, pk1,Commitpk1(m)).

We can construct such commitments in a group (G, g, p) where the DDH
problem is hard, by essentially performing an ElGamal encryption in the expo-
nent relative to public keys of the form pk = (gi, hi) (which are what we use in
our later constructions). In particular, Commitpk(v; r) returns com = (c, d) where
c = gi

r and d = gvhi
r. It is easy to verify that this commitment scheme is un-

conditionally binding, computationally hiding, key-anonymous, and additively
homomorphic.

Finally, we also use extended Pedersen commitments in the constructions of
our zero-knowledge (ZK) arguments; i.e., schemes that commit to a vector of
values using a single group element.

3 Updatable Public Keys

This section introduces the notion of an updatable public key (UPK), in which
public keys can be updated in a public fashion, and such that they are indis-
tinguishable from freshly generated keys. This idea has been considered before
in the context of several cryptographic primitives, such as signatures [15,4] and
public-key encryption [40], but we wish to define it solely for keys, regardless of
the primitive they are used to support.

We begin by defining security for UPKs. Our definitions of indistinguisha-
bility and unforgeability resemble those that have already been used for Bitcoin
stealth keys [25] and in the context of other cryptographic primitives [4,40,23].

Indeed, we could continue to be inspired by stealth keys in our construction
of a UPK scheme, but given their reliance on hash functions this would render us
unable to prove statements about the keys using discrete log-based techniques, as
we would like to do in our construction of Quisquis in Section 5. We thus present
instead a purely algebraic UPK scheme based on DDH, inspired by “incomparable
public keys” [40].

3.1 Security definitions

An updatable public key system (UPK) is described by the following algorithms:

– params $← Setup(1κ) outputs the parameters of the scheme, including the
public and secret key spaces PK,SK. These are given implicitly as input to
all other algorithms.
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– (pk, sk) $← Gen(1κ) takes as input a security parameter κ and outputs a public
key pk ∈ PK and a secret key sk ∈ SK.

– ({pk′i}ni=1)
$← Update({pki}ni=1) takes as input public keys (pk1, . . . , pkn) and

outputs a new set of public keys (pk′1, . . . , pk
′

n).
– 0/1 ← VerifyKP(pk, sk) takes as input pk ∈ PK and sk ∈ SK and checks

whether or not (pk, sk) is a valid key pair.
– 0/1← VerifyUpdate(pk′, pk, r) takes as input public keys pk′, pk, and random-

ness r and checks if pk′ was output by Update(pk; r).

We require a UPK to satisfy the following properties.

Definition 1 (Correctness). A UPK satisfies perfect correctness if the fol-
lowing three properties hold for all (pk, sk) ∈ [Gen(1κ)]: (1) the keys verify,
meaning VerifyKP(pk, sk) = 1; (2) the update process can be verified, meaning
VerifyUpdate(Update(pk; r), pk, r) = 1 for all r ∈ R; and (3) the updated keys
verify, meaning VerifyKP(pk′, sk) = 1 for all pk′ ∈ [Update(pk)].

We next define indistinguishability, which says that an adversary cannot
distinguish between a freshly generated public key and an updated version of a
public key it already knows.

Definition 2 (Indistinguishability). Consider the following experiment:

1. (pk∗, sk∗) $← Gen(1κ);
2. pk0

$← Update(pk∗);
3. (pk1, sk1)

$← Gen(1κ).

A UPK satisfies indistinguishability if for any PPT adversary A:

|Pr[A(pk∗, pk0) = 1]− Pr[A(pk∗, pk1) = 1]| ≤ negl(κ).

Finally, we require that an adversary should not be able to learn the secret key
of an updated public key (unless it already knew the secret key for the original
public key). This is formalized by saying that the adversary cannot produce a
public key for which it knows both the secret key and the randomness needed
to explain this public key as an update of an honestly generated public key.

Definition 3 (Unforgeability). A UPK satisfies unforgeability if for any PPT
adversary A:

Pr[VerifyKP(pk′, sk′) = 1 ∧ VerifyUpdate(pk′, pk, r) = 1

| (pk, sk) $← Gen(1κ); (sk′, pk′, r) $← A(pk)] ≤ negl(κ).

3.2 UPKs from DDH

We present a construction of UPK based over a prime-order group (G, g, p) where
the DDH assumption is believed to hold. Thus, our Setup outputs only publicly
verifiable parameters, and does not need to be run by a trusted party. The rest
of the algorithms are as follows:
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– Gen(1κ): Sample r, sk $← Fp and output pk = (gr, gr·sk).
– Update({pki}ni=1): Parse pki = (gi, hi). Sample r $← Fp and compute pk′i =

pkri = (gri , h
r
i ) for all i.

– VerifyKP(pk, sk): Parse pk = (g′, h′) and output (g′)sk
?
= h′.

– VerifyUpdate(pk′, pk, r): Output Update(pk; r)
?
= pk′.

Lemma 1. The scheme above is a UPK satisfying Definitions 1 - 3 if the DDH
assumption holds in (G, g, p).

Proof. Correctness is straightforward to verify. To prove indistinguishability, our
reduction receives a DDH challenge chl = (g, gx, gy, gz), samples a value r $← Fp,
and defines pk∗ = (gr, gxr) and pk′ = (gyr, gzr). It then invokes the indistin-
guishability adversary A on input (pk∗, pk′). If chl is a DDH tuple then pk′ is
distributed identically to pk0, and if chl is not a DDH tuple then pk′ is distributed
identically to pk1. Therefore, our reduction has the same (non-negligible) advan-
tage in the DDH game as the A has in the indistinguishability game.

To prove unforgeability, our reduction receives a DL challenge chl = (g, h),
picks a random t $← Fp, and sets (g0, h0) = (gt, ht). The reduction now runs
(s, (g1, h1), r)

$← A(g0, h0), and outputs s. The input to the adversary in the
reduction is distributed identically as in the definition of security. The winning
condition of the security definition requires that h1 = gs1 and (g1, h1) = (gr0, h

r
0) =

(grt, hrt) thus implying that gsrt = hrt or equivalently that h = gs, meaning s
is a valid solution to the DL oracle.

4 Threat Model

In this section, we present our model for cryptocurrency transactions, in which
we view a transaction not as just transferring value from a sender to a recipient
but as participants “re-distributing wealth” amongst themselves. Before present-
ing this model in Section 4.2, we first present the notion of an updatable account
in Section 4.1, which is an extension of updatable public keys that associates
them with a (hidden) balance; this is mainly done as a way to simplify notation
in future sections. We then present the relevant notions of security in Section 4.3,
focusing on anonymity (meaning no one can identify the “true” sender and recipi-
ent within the set of participants in a transaction) and theft prevention (meaning
no one can steal the coins of other people or otherwise inflate their own wealth).

4.1 Updatable accounts

To represent an account in a cryptocurrency, we use pairs acct = (pk, com) of
public keys, which act as the pseudonym for a user, and commitments, which
represent the balance associated with that public key.

In more detail, each account carries a balance bl ∈ V, where V ⊂ M; i.e.,
the domain of values is a subset of the messages that can be committed to
using Commit. To create a new account with initial balance bl ∈ V, one can
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run (acct, sk) $← GenAcct(1κ, bl), which internally runs (pk, sk) $← Gen(1κ) and
com $← Commitpk(bl), sets acct = (pk, com), and returns (acct, sk).

To verify that an account has a certain balance, it is necessary to be able
to open a commitment using the secret key corresponding to pk. This also al-
lows the owner of sk to open a commitment or prove statements about the
committed message even without knowing the randomness used. We use the
notation VerifyCom(pk, com, sk,m), and require the commitment to be bind-
ing also with respect to this function; i.e., that no PPT adversary can output
(pk, com, sk,m, sk′,m′) with m 6= m′ but such that VerifyCom(pk, com, sk,m) =
VerifyCom(pk, com, sk′,m′) = 1. With this algorithm in place, one can run 0/1←
VerifyAcct(acct, (sk, bl)), which parses acct = (pk, com) and outputs 1 if VerifyCom(
pk, com, (sk, bl)) = 1 and bl ∈ V and 0 otherwise.

For an account acct = (pk, com), observe that the output of VerifyAcct is
agnostic to updates of the public key; i.e.,

VerifyAcct((pk, com), (sk, bl)) = VerifyAcct((Update(pk), com), (sk, bl)).

Additionally, VerifyAcct is agnostic to re-randomizations of the commitment;
i.e., VerifyAcct((pk, com), (sk, bl)) = VerifyAcct((pk, com⊙Commitpk(0; r)), (sk, bl)).

Thanks to these observations, we are able to “update” accounts using the
following notation:

– {acct′i}ni=1
$← UpdateAcct({accti, vi}ni=1; r1, r2) takes as input a set of ac-

counts accti = (pki, comi) and values vi such that |vi| ∈ V, and outputs a
new set of accounts (acct′1, . . . , acct

′
n) where acct′i

$← (Update(pk; r1), com ⊙
Commitpk(vi; r2)).

– 0/1 ← VerifyUpdateAcct({acct′i, accti, vi}ni=1; r1, r2) outputs 1 if {acct′i}ni=1 =
UpdateAcct({accti, vi}ni=1; r1, r2) and |vi| ∈ V , and 0 otherwise.

4.2 The cryptocurrency setting

Modeling the security of a cryptocurrency is a complex problem, as there are
many different actors operating at different layers of the protocol: a user wishing
to send some coins creates a transaction, which is then broadcast to their peers
in a peer-to-peer network. Those peers in turn perform some cryptographic vali-
dation of the transaction, and if satisfied broadcast it to their peers. Eventually,
it reaches a miner or validator, who engages in some form of consensus protocol
to confirm the transaction into the blockchain.

For the sake of simplicity, we focus solely on the transaction layer of a cryp-
tocurrency, and assume network-level or consensus-level attacks are out of scope;
i.e., we assume that the system is free from eclipse attacks [18] or other de-
anonymization attacks that depend on network-level information (such as IP
addresses) and that an adversary is not sufficiently powerful to prevent honest
transactions from being added to the blockchain or to add malicious transactions
of their own.

Rather than use the traditional model of having a sender, in possession of
some secret key and a coin, send this coin to a recipient, we instead consider
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a set of participants who want to redistribute wealth amongst themselves. This
means we now model a transaction as taking place amongst a set of participants
P who act as both the senders and the recipients in the transaction, and who
each come in with some initial balance bl0,i and end with some balance bl1,i.

This still captures the traditional model of keeping senders and recipients
separate, because for a sender S sending one coin to a recipient R we can use
P = (pkS , pkR), bl0 = (1, 0), and bl1 = (0, 1). The natural question, however,
is who is required to authorize this transaction; for efficiency reasons we do not
want every participant to have to do so, but to ensure that parties cannot simply
steal each others’ money we do need permission on behalf of the “true” senders.
The simple way to provide both these properties is to require authorization only
on behalf of the public keys whose associated balance has gone down; i.e., for
every pki ∈ P such that bl1,i − bl0,i < 0.

Again, this model fully captures the traditional model of senders and recip-
ients, but crucially makes it easier to reason about cryptocurrencies designed
to provide anonymity. More formally, a transaction layer for cryptocurrencies
consists of (Setup,Trans,Verify), as defined below.

The setup algorithm state $← Setup(1κ,bl) generates the initial state of the
system. The vector bl represents the initial balance of the accounts in the system
and it must be such that bli ∈ V and

∑
i bli ∈ V. We assume that Setup runs

(accti, ski)
$← GenAcct(1κ, bli) at some point, and that the state contains a set

UTXO consisting of all accounts accti. All other algorithms take as input the
(current) state even when omitted, and the state is updated in ways other than
through these algorithms (e.g., by miners producing blocks at the network layer).

To create a transaction, a sender in posession of a secret key sk runs tx ←
Trans(sk,P, A,v).5 The vector of values v ∈ V represents the desired change in
balance for each participant, meaning they should end up with bl1,i = bl0,i + vi
(where bl0,i is their initial balance according to state). In creating a transaction,
the sender may want to achieve some degree of anonymity, meaning they want
to hide the link between their accounts and those of the recipient. To this end,
we introduce an anonymity set A, which consists of other accounts used to hide
information about the sender. It is important that these accounts are “eligible”
in some way (where this depends on the concrete system, but can mean for
example that they have not yet spent their contents). If A is not explicitly
specified, it is picked at random from the set of eligible accounts. We denote by
tx[inputs] = P ∪ A the input accounts in a transaction, and by tx[outputs] the
output accounts.

Finally, 0/state ← Verify(state, tx) checks if a transaction is valid given the
current state. If so, it outputs an updated state, and if not it outputs 0.

We say a state is valid if it is output by Setup or if it was the output of
Verify(state′, tx) for a valid state′ and a transaction tx output by Trans. We say a
transaction layer preserves value if for any valid state′ 6= ⊥ derived from a valid

5 For simplicity we consider a single sender but the notation can easily be generalized
to allow for arbitrarily many.
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state, ValueOf(state.UTXO) = ValueOf(state′.UTXO), where ValueOf computes
the number of coins associated with the UTXO set induced by a state.

4.3 Security

Intuitively, an anonymous cryptocurrency should provide anonymity for both the
sender and the recipient, meaning that even they cannot identify which accounts
belong to whom. From an integrity perspective, it is also important to guarantee
theft prevention, meaning an adversary can transfer value only from accounts for
which it knows the secret key (and thereofore the adversary cannot reduce the
balance of the honest parties either).

Regardless of the goal, the basic outline of our security experiment is the
same, in order to capture the different ways an adversary can interact with
honest participants in the system. For example, the adversary can instruct honest
participants to engage in transactions, or form arbitrary (i.e., fully adversarial)
transactions itself, as long as they are valid.

Intuitively, the adversary begins by specifying the initial balances bl of all
participants in the protocol. We continue this full control by allowing the ad-
versary to direct honest parties to make specific transactions (via transact

queries), and to inject fully malicious transactions in the system (via verify

queries). It can also learn the secret key for any account in the system (via
disclose queries), although here we must be careful to prevent “trivial” attacks
resulting from these disclosures in challenge queries (in which the adversary
specifies two different senders, recipients, and values, and tries to guess between
transactions involving them).

These trivial attacks include: (1) the adversary controls the secret key of one
or both of the senders; (2) the adversary controls the secret key of a recipient,
and (3) the adversary specified a sender who does not have enough funds to
complete the specified amount (meaning the output of Trans is ⊥ in this case
but not the other). Formally, our game is defined as follows:

1. b $← {0, 1};
2. bl $← A(1κ);
3. state $← Setup(1κ,bl);
4. b′ $← AO(·)(state).

Part of Setup involves running (accti, ski)
$← Gen(1κ, bli), and we assume that

this results in the values (i, accti, ski, bli) being stored in memory available to
the oracle.

For several of the oracle queries, there is some bookkeeping required to up-
date the keys and balances associated with these records. We define this book-
keeping subroutine with respect to a transaction tx and two sets honest and
corrupt as follows: For every acctj ∈ tx[outputs] identify the corresponding accti ∈
tx[inputs] such that skj = ski. For every such j, create a new record of the form
(j, acctj , ski, bli + v′i), where v′i is either (1) vi if i ∈ P or (2) 0 if i ∈ A. Then,
reset the value for every accti ∈ tx[inputs]; i.e., save the record (i, accti, ski, 0).
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Finally, for every pair (i, j) as above: if i ∈ honest add j to honest, else add j to
corrupt.

Initialize honest to be the set of all indices i in memory, and corrupt to be
the empty set. The oracle O(·) allows the following queries:

– (disclose, i): If (i, accti, ski, bli) was stored, call J the set of all j such that
there is a record (j, acctj , skj , blj) with ski = skj . Remove i and J from honest,
add them to corrupt, and return (ski, bli, J, {blj}j∈J) to the adversary.

– (transact, i,P, A,v): If (i, accti, ski, bli) was not stored return ⊥. Otherwise
run tx $← Trans(ski,P, A,v), and state′ ← Verify(state, tx). If state′ 6= ⊥ up-
date state = state′, run the bookkeeping for tx, and return tx.

– (verify, tx): run state′ ← Verify(state, tx). If state′ 6= ⊥ update state = state′,
run the bookkeeping for tx, and return state′.

– (challenge, b, (i0, i1, j0, j1, A, v0, v1)): Let A0 = A1 = A. If (1) i0 ∈ corrupt or
i1 ∈ corrupt, (2) j0 ∈ corrupt or j1 ∈ corrupt (except if j0 = j1 and v0 = v1),
(3) bli0 < v0 or bli1 < v1, then halt and return 0 (i.e., the adversary lost the
game). Otherwise, for x ∈ {0, 1}, if i0 6= i1 add i1−x to Ax, and if j0 6= j1 add
j1−x to Ax. Now compute txx ← Trans(skix , {acctix , acctjx}, Ax, (−vx, vx)). If
Verify(state, txx) = ⊥, then again we say the adversary lost the game. Other-
wise, run the bookkeeping for txb.

After a challenge query, the oracle halts; i.e., it outputs ⊥ as the response
to all future queries.

In terms of the concrete security notions discussed above, we say that the
adversary wins the anonymity game if b′ = b and the adversary did not lose
the game as the result of some invalid query during the game. We define the
advantage of the adversary as the probability that the adversary wins subtracted
by 1/2, and say that:

Definition 4. Anonymity holds if no PPT A has non-negligible advantage in
the anonymity game.

Note that our definition of anonymity does not depend on the size of the
anonymity set. Instead, our definition guarantees that, from the point of view
of the adversary, a transaction is as likely to have been generated by any of
the accounts in the input of the transaction (excluding those that the adversary
owns or has corrupted).

We say that the adversary wins the theft prevention game if, as a result of any
verify query: (1) there exists an account j ∈ honest whose balance decreases
or (2) the total wealth of the adversary increases; i.e., the sum of the balance
of accounts in the set corrupt increases. (For this property, we could modify
the game so that the adversary just outputs ⊥ and does not need to make any
challenge queries). Again, we say that:

Definition 5. Theft prevention holds if no PPT A can win the theft prevention
game with non-negligible probability.
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Note that theft prevention as defined above trivially implies protection from
double spending attacks.

Finally, we address several seeming limitations in our definition, which have
all been introduced for ease of notation and the sake of readability but which are
not necessary for our construction. First, our challenge queries consider only
a single recipient, but could be generalized to handle sets of recipients. Second,
we do not consider adversarially generated keys (allowing the adversary only to
corrupt honest keys), but we could capture this by changing the second step to
allow the adversary to output a list of its own accounts. We would then have to
process these accounts into records (in order to keep track of their balances) and
restrict which keys could be used for which oracle queries; requiring, e.g., that
transact only be used for non-adversarial keys. Finally, our current definition
has the “IND-CCA1”-style requirement that after the first challenge query, the
adversary cannot make any other queries. To generalize the definition to allow
for this, the oracle would have to keep track of two balances bl0 and bl1 for each
account after the challenge query, where blb represents the balance of each
account in the “world” in which transaction txb was performed. This is necessary
to prevent an additional type of trivial attack, in which the adversary made a
transact query requiring the sender to transfer more than min(bl0, bl1): in one
of the two worlds this would force the oracle to return ⊥, which would trivially
leak b. Again, all of these limitations were adopted to simplify presentation,
but (as should be made clear in the next two sections) our construction would
also satisfy the stronger definition relative to a modified game without these
restrictions.

5 Our Quisquis Construction

5.1 Overview and intuition

To get a sense of how Quisquis works, let’s suppose that Alice wants to anony-
mously send 5 coins to Bob, and start with a strawman solution in which values
are visible in the clear and associated with updatable public keys. To form a
transaction, Alice identifies n − 1 unspent keys with exactly 5 coins associated
with them. She then uses these keys, in combination with her own, as the input
to the transaction. To form the output keys, she replaces her key with Bob’s
key, and updates all the other keys. Finally, she forms a ZK proof that she has
created the output keys properly; i.e., that she knew the private key for any
public keys that were replaced, and that she formed the other output keys by
performing a valid update of the input ones. The final transaction consists of
the lists of input and output keys, their associated values, and the ZK proof.

This solution allows Alice to use the other input keys as an anonymity set,
but only in the restrictive setting in which she has the exact value she wants to
send to Bob stored in one of her keys, and she can find multiple other keys with
that same value. To address these issues, we first shift to the “re-distribution of
wealth” model introduced in Section 4. Rather than replace her own key with
Bob’s key, she instead adds Bob’s key to the list of input keys. If she picks two
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others keys pk0 and pk1 and forms P = (pk0, pk1, pkA, pkB), then even if she has
9 coins stored in her key she can still send Bob 5 coins by using v = (0, 0,−5,+5).

The problem with this new solution, of course, is that it has no anonymity:
anyone can look at v and see who the real senders and recipients are. To hide
these values, we switch to using the updatable accounts described in Section 4.1,
which means including only commitments to the account balances. The main
additional complexity is now in proving that the transaction has been formed
correctly, and in particular proving that it does not take money away from
anyone other than the real sender. Intuitively, Alice can do this by proving that
for every output key, either she knows the secret key for the corresponding input
key, or the balance corresponding to that key did not decrease; i.e., the difference
between its balance and the balance of its input key is non-negative.

This also supports the case in which Alice wants to consolidate the coins
associated with multiple account, as she can include these accounts in both the
input and output lists but re-distribute her money so that it all ends up in one
of them. This exposes an issue for efficiency, however, which is that once an
account has a balance of 0 it is wasteful to leave it in the UTXO set. Thus, to
“destroy” an output account, Alice can prove that its committed balance is 0,
which signals to others to remove it from the UTXO set.

Conveniently, the technique of proving that a committed value is 0 can also
be used to create a new account. This has a positive effect on Bob’s anonymity
(and communication overhead), as he can now send Alice a regular key once
rather than providing a new account every time she wants to send him money.
To use this key in the input list, Alice can first update it (to get a new random-
looking key), generate a commitment relative to this public key (i.e., generate a
new account for it), and prove that its committed balance is 0.

5.2 Transactions in Quisquis

Before describing the algorithms needed to form and verify transactions, we first
describe how to instantiate the updatable accounts introduced in Section 4.1.
Combining the commitment scheme from Section 2.3 and the UPK scheme from
Section 3.2, we get accounts of the form (pki, comi) = ((gi, g

sk
i ), (g

r
i , g

vgsk·ri )).
This already gives us most of the properties we need, and guarantees that |V| ≪
|M| as long as we use V = {0, . . . , V }, where V is an upper bound on the
maximum possible number of coins in the system (e.g., the limit of V = 2.1 ×
1015 < 251 satoshis in Bitcoin, compared to M = {0, . . . , p − 1} for a 256-bit
prime p in the commitment scheme). All it thus remains to show is that the owner
of the secret key corresponding to pk = (g, h) can open the commitment. To do
this, we can define the additional algorithm VerifyCom(pk, com, sk, v) as parsing
com = (c, d) and then checking that VerifyKP(pk, sk) = 1 and d = gv · csk. For
every (pk, com) there exists exactly one pair (sk, v) for which VerifyCom outputs
1, so the commitment is unconditionally binding even with respect to this type
of opening.
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Setup On input 1κ, Setup returns as state the output of Setup for the UPK
scheme, and a list of all current accounts (which may be empty).

Trans As discussed in the overview, Quisquis allows a sender to “re-distribute”
their wealth to one or more recipients, by including their accounts in both the
input and output lists that comprise the transaction. In what follows we assume
that transactions have a fixed number n of both inputs and outputs.

Suppose a transaction is meant to transfer v coins from a sender to a recipient.
To hide the identity of the sender and recipient, the Trans algorithm picks an
anonymity set A of size n − 2 uniformly at random from the set of all unspent
transaction outputs, and creates a vector v = (v,−v, 0, . . . , 0). It then updates
all these accounts by running UpdateAcct. Intuitively, the properties of updatable
accounts guarantee that the individual accounts that are generated as output of
UpdateAcct cannot be tied to the input of the function. However, the ordering
still reveals the link between the input and outputs. We thus simply present the
input and output lists in some canonical (e.g., lexicographical) order. Because
the updated keys are distributed uniformly at random, this can be thought of
as applying a random permutation ψ to shuffle the updated accounts.

Finally, to ensure that malicious parties cannot steal funds from honest users,
the transaction must contain a NIZK proof π that the output of the transaction
has been computed following the protocol specification.

To summarize, tx $← Trans((s, sks, bls),P, A,v) performs the following steps:

1. First, check that the input is valid by parsing P = {acct1, . . . , acctt} and
checking that VerifyAcct(accts, sks, bls) = 1. Then check that the vector v

satisfies: (1)
∑
i vi = 0, (2) ∀i 6= s : vi ∈ V (i.e., is positive), (3) −vs ∈ V and

(4) bls + vs ∈ V.

2. Let inputs = P ∪ A in some canonical order and v′ be the permutation of
v under the same order. Let s∗,R∗, A∗ denote the indices of the respective
accounts of the sender, the recipients, and the anonymity set in this list; i.e.,
it now holds that −v′s∗ ∈ V, v′i ∈ V ∀i ∈ R∗ and v′i = 0 ∀i ∈ A∗.

3. Let outputs be the output of UpdateAcct(inputs,v′; r) in some canonical order.

4. Let ψ : [n] → [n] be the implicit permutation mapping inputs into outputs;
i.e., such that accounts inputsi and outputsψ(i) share the same secret key.

5. Form a zero-knowledge proof π of the relation R(x,w), where x = (inputs,
outputs), w = (sk, bl,v′, r = (r1, r2), ψ, s

∗,R∗, A∗), and R(x,w) = 1 if for all
i ∈ [n], j = ψ(i), accti ∈ inputs, acctj ∈ outputs:

VerifyUpdateAcct(acctj , accti, r, 0) = 1 ∀i ∈ A∗

∧ (VerifyUpdateAcct(acctj , accti, r, v
′
i) = 1 ∧ v′i ∈ V) ∀i ∈ R∗

∧ VerifyUpdateAcct(acctψ(s∗), accts∗ , r, v
′
s∗) = 1

∧ VerifyAcct(acctψ(s∗), sk, bl+ v′s∗) = 1

∧
∑

i

v′i = 0.
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Then the final transaction is tx = (inputs, outputs, π).
Due to the way transactions are generated, every address appears at most

twice in Quisquis: once when it is created in the output of some transaction,
and once when it appears as the input of some other transaction (regardless
of whether it is the real sender or just an account added for anonymity). In
particular, unlike in Monero the same account cannot be used as part of the
anonymity set for two different transactions, since it will have been updated in
the meantime and thus replaced in the UTXO set.

Verify The Verify algorithm ensures the validity of a transaction by checking
that all the accounts in tx[inputs] are considered unspent in the current state,
and by running the verification algorithm for the NIZK argument.

Additionally, upon receiving a transaction in which one of their accounts was
included in tx[inputs], it is necessary for users to identify which (if any) of the
accounts in outputs belongs to them. (If no such account appears in the inputs
then they do not need to process the transaction further.) To do this, they first
identify the secret key sk corresponding to their account in tx[inputs]. They then
go through every (pk, com) ∈ tx[outputs] and run b← VerifyKP(pk, sk). If b = 1,
they replace their own existing record of that account with acct = (pk, com).

The user should then figure out whether their address was an actual recipient
of the transaction or whether it had only be used as part of the anonymity
set. They can start by running VerifyAcct(acct, sk, bl) = 1, where bl was their
balance before the transaction; if this passes, then their account was used as
part of the anonymity set so their balance is unchanged. Otherwise, they need
to find out the value v by which their balance was increased. For simplicity here
we assume that the values v are small enough, say 32 bits (for comparison, the
total number of satoshis that will ever exist is 251), so that computing v from
gv is computationally easy, and therefore the user can “brute force” their new
account. Again, this is necessary only in the case of transactions that include
their accounts as part of the input (and transactions creating new accounts); no
other transactions can change the balance of a user’s account.

The design can be easily extended for larger values of v: for instance, we can
(1) require that senders communicate the value vi to their recipients off-chain
or (2) append to the transaction an encryption of vi under the public key of the
receiver, together with a proof that the encryption contains the correct value
(using, e.g., a similar approach to Zether [10]).

Creating and removing accounts The described scheme above supports
the basic functionality of making anonymous payments, but as described in the
overview in Section 5.1 it is possible to improve on the efficiency of this basic
protocol. In particular, newly created accounts and fully spent accounts both
have a (provable) balance of 0. Allowing users to create new accounts improves
the overall communication overhead and anonymity of the system, since users
can send one long-term key to potential senders rather than a new account
every time (which would also reveal to the sender the transaction in which this
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account was created). Allowing users to destroy empty accounts reduces the
storage overhead of the system, since other users do not have to keep track of
accounts that have no contents left to spend.

We denote the respective algorithms used to perform creating and removing
accounts by CreateAcct and DestroyAcct.

– acct = (pk′, com), π) $← CreateAcct(pk) is such that pk′ ∈ [Update(pk)], com =
Commitpk′(0; r) for some r, and π is a ZK proof for the relation R(x,w),
where x = (pk′, com), w = r, and R(x,w) = 1 if com = Commitpk′(0; r).
Again, this algorithm can be run by anyone in possession of a public key for a
user, which allows senders to send money to recipients without requiring their
participation.

– π $← DestroyAcct(sk, acct) is such that π is a ZK proof for the relation R(x,w),
where x = acct, w = sk, and R(x,w) = 1 if VerifyAcct(acct, (sk, 0)) = 1.

Proofs of this type can optionally be included in transactions, and have the
effect that upon verification users remove the corresponding acct from the list
of active accounts. The zero-knowledge proofs involved in both CreateAcct and
DestroyAcct are standard proofs of relations between discrete logarithms, so we
do not include descriptions of them here.

Mining fees As currently described, Quisquis does not provide any incentives
for miners to include transactions, due to the lack of fees. More crucially, it
assumes the total balance of the system is fixed during Setup, so does not capture
the ability to mine new coins.

To add transaction fees to the Trans algorithm, we can add the fee f as
an input and change the requirement on the vector v to be f +

∑
i vi = 0.

Assuming the fee is public (as it is in other privacy-enhanced currencies like
Zcash), this does not add any complexity to the zero-knowledge proof. So, let
(tx1, f1, . . . , txm, fm) be a set of transaction that a miner wants to add to the
blockchain. To collect the fees and add a block reward rwd, the miner can simply
generate a new account (acct, sk) ← GenAcct(1κ, rwd +

∑
i fi) and a proof that

the balance of this account is equal to the block reward plus the sum of fees
present in the block. The initial balance is thus public, but as soon as it is used
in any further transaction the usual anonymity guarantee is preserved.

Concurrent transactions Although it is somewhat out of scope of the core
cryptographic design, we briefly discuss here how a cryptocurrency based on
the Quisquis design might deal with concurrent transactions, in which two users
both try to use the same account in their anonymity set at roughly the same
time (and there is thus a non-empty intersection between the two tx[inputs]).
Since each address can appear only once as input in Quisquis, this requires at
least one of the two transactions to be rejected by the system. We propose here
two simple approaches for dealing with this, although the probability of having
such a collision could be quite low (depending on system parameters such as the
frequency of transactions, the network latency, etc.).
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The first heuristic is “reject and wait”: if two conflicting transactions are
received in the same time period, they are both rejected and the users are in-
structed to wait and attempt the transaction again. The second heuristic is “first
come first serve”: the transaction that is first received is approved and the sec-
ond one is rejected. The sender of the second transaction is free to send a new
transaction as soon as they want.

The first proposal might be better for anonymity, since – thanks to the wait-
ing time – many (or even all) addresses in the original anonymity sets might
have left the UTXO set (after being chosen as part of the anonymity set of
other transactions) and been replaced by new random-looking accounts. The
second proposal ensures lower latency, but might reduce the privacy of the sec-
ond transaction: if all accounts in the intersection were part of the anonymity
set, the sender might simply replace those and effectively run a transaction with
a smaller anonymity set. On the other hand, if any actual sender (or receiver) of
the transaction disappeared from the UTXO set, this would require the sender
to use the new version of those accounts that was created in the tx[outputs] of
the approved transaction.

5.3 Proofs of security

Proof of anonymity The full proof of anonymity of Quisquis is given in the
full version of the paper [13], but we sketch the main intuition here. Informally,
we claim that any A that can determine b from tx can be used to break either
the indistinguishability property of UPK, the hiding property of Commit, or the
zero-knowledge property of the NIZK. That is, any A that can determine b can
distinguish between tx0 and tx1. Since tx0[inputs] = tx1[inputs] (by inspection), it
must be the case that the adversary either distinguishes between the transactions
based on the proof π or the set of accounts in outputs. The first option is ruled
out due to the zero-knowledge property of π. To see why the adversary cannot
distinguish based on outputs, note that in both cases outputs is obtained by
updating all the accounts in inputs, and the only differences between outputs0
and outputs1 are (1) the amounts by which the accounts have been increased
or decreased and (2) which accounts are included in P and which are included
in A. Since the amounts are only present in committed form, we conclude that
the adversary cannot distinguish based on (1) due to the hiding property of the
commitment. Since all the accounts are updated (both those in P and in A),
and they are then randomly permuted, the adversary cannot distinguish based
on (2) either.

Proof of theft prevention To win the theft prevention game, the adversary
needs to submit a transaction tx that increases the total balance corresponding
to the corrupted accounts or decreases the balance for the honest accounts. Intu-
itively, this can happen only in two ways: (1) if the adversary manages to transfer
value from an honest account (to a corrupted account or to an “unspendable”
account) and (2), if the adversary manages to transfer a value higher than the

17



balance of a corrupted account. Due to the extractability of the zero-knowledge
proof system, we know that the tx will be accepted only if the adversary has a
valid witness. This means that: in case (1) we can use the adversary to compute
a secret key sk for an honest account (thus breaking the unforgeability property
of UPK); in case (2) we can use the adversary to compute an opening of a com-
mitment with a balance different from the real one, thus breaking the binding
property of the commitment scheme.

6 Instantiating the Zero-knowledge Proof

In this section we will instantiate the zero-knowledge proof that inputs and
outputs satisfy the relation described in the Trans algorithm. First consider the
simplified case where Trans does not do any lexicographic ordering or any type
of permutation of the public keys. Then a prover essentially has to prove that
(1) accounts in outputs are proper updates of inputs, (2) the updates satisfy
preservation of value, (3) balances in the recipient accounts do not decrease, and
(4) the sender account in outputs contain a balance in V. Properties (3) and (4)
require a tool called range proofs. We choose to use the most efficient implemen-
tation of range proofs, which is the Bulletproofs of Bootle et al. [11]. The main
requirement to use Bulletproofs is to have a public commitment key (g, h) such
that the DL relation between them is unknown.

We now explain how to check properties (1) and (2). Let inputs have balances
bl, and outputs have balances bl′. Let vi = bl′i − bli be the change in value from
inputs to outputs. Additionally, let the sender be inputs1 and the recipients be
inputs2, . . . , inputst.

To be able to easily verify that the update is done correctly, the prover creates
accounts acctδ that contain values v. Since we need preservation of value, there
needs to be a way to verify that

∑
i vi = 0. To do this, recall that we can

regard an account acct as two parts (pk, com) where pk is a UPK and com is a
commitment to the balance. The idea is then to use the homomorphic property
of the commitment. This is done by first creating acctǫ that also contains values
v but where pkǫ,i = (g, h) for all i. (Hence comδ,i and comǫ,i can be seen as
two commitments of the same value under different public keys pkδ,i and pkǫ,i.)
Then

∑
i vi = 0 iff

∏
i comǫ,i is a commitment of 0 under public key (g, h). The

values acctǫ,2, . . . , acctǫ,t will also be used to prove that the recipient’s increase
in values v2, . . . , vt are in V.

Note however that the simplified case does not hide where the sender and
recipient accounts are in both inputs and outputs. To get full anonymity, the
input accounts are shuffled into a list inputs′ before the updates, then shuffled
again after the updates to get the output accounts in an arbitrary order. The
first shuffle uses a permutation so that the sender is always in position inputs′1
and the recipients are inputs′2, . . . , inputs

′

t, while the second shuffle uses a ran-
dom permutation. This will help making the proof more efficient (otherwise, for
every account in the transaction, we would have to prove the disjunction of the
conditions for the sender and the recipients).
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Function Description

CreateDelta Creates a set of accounts that contains the difference (say vi)
between balances in the input and output accounts, and another
set of accounts that also contains vi but all with the global public
key (g, h).

VerifyDelta Verifies that accounts created using CreateDelta are consistent.
VerifyNonNegative Verifies that an account contains a balances in V.
UpdateDelta Updates the input accounts by vi, but with left half unchanged.
VerifyUD Verifies that UpdateDelta was performed correctly.

Table 1: Additional functions to perform a transaction.

6.1 The auxiliary functions

To realize the ideas above, we require some auxiliary functions defined as follows
(see Table 1 for a summary).

CreateDelta({accti}ni=1, {vi}ni=1): Parse accti = (pki, comi). Sample r1, . . . , rn−1
$←

Fp and set rn = −∑n−1
i=1 ri. Set acctδ,i = (pki,Commitpki(vi; ri)). Set acctǫ,i =

(g, h,Commit(g,h)(vi; ri)). Output ({acctδ,i}ni=1, {acctǫ,i}ni=1), r).
VerifyDelta({acctδ,i}ni=1, {acctǫ,i}ni=1,v, r): Parse acctδ,i = (pki, comi) and acctǫ,i =
(pk′i, com

′
i). If

∏n
i=1 com

′
i = (1, 1) and for all i, comi = Commitpki(vi; ri) ∧

acctǫ,i = (g, h,Commit(g,h)(vi; ri)) output 1. Else output 0.
VerifyNonNegative(acct, v, r): If acct = (g, h, gr, gvhr) ∧ v ∈ V output 1. Else
output 0.
UpdateDelta({accti}ni=1, {acctδ,i}ni=1): Parse accti = (pki, comi) and acctδ,i =
(pk′i, com

′
i). If pki = pk′i for all i output 6 {(pki, comi · com′

i)}ni=1, else output
⊥.
VerifyUD(acct, acct′, acctδ): Parse acct = (pk, com), acct′ = (pk′, com′) and acctδ =
(pkδ, comδ). Check that pk = pk′ = pkδ ∧ com′ = com · comδ.

6.2 The proof system

Let (g, h) be a global public key output by the Setup algorithm, such that the DL
relation between them is unknown. The NIZK system NIZK.Prove(x,w) performs
the following:

1. Parse x = (inputs, outputs), w = (sk, bl,v, (u1,u2), ψ : [n] → [n], s∗,R∗, A∗).
If R(x,w) = 0 abort;

2. Let ψ1 be a permutation such that ψ1(s
∗) = 1, ψ1(R∗) = [2, t] and ψ1(A

∗) =
[t+ 1, n];

3. Sample τ1
$← F

n
p , ρ1

$← Fp;

4. Set inputs′ = UpdateAcct({inputsψ1(i), 0}i; (τ1, ρ1));
6 Note that if acct = (pk, com) and acctδ = (pk,Commitpk(v; r))), then
UpdateDelta(acct, acctδ) = UpdateAcct(acct, v; 1, r).
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5. Set the vector v′ such that v′i = vψ1(i);
6. Set ({acctδ,i}, {acctǫ,i}, r) $← CreateDelta(inputs′,v′);
7. Update outputs′ ← UpdateDelta(inputs′, {acctδ,i});
8. Let ψ2 = ψ−1

1 ◦ψ, τ2,i =
u1,i

τ1,ψ2(i)
and ρ2 =

u2,i−ρ1

τ1,ψ2(i)
−rψ2(i); (So that ψ1◦ψ2 = ψ

and outputs = UpdateAcct({outputs′ψ2(i)
, 0}i; τ2, ρ2)}).

9. Generate a ZK proof π = (inputs′, outputs′, acctδ, acctǫ, π1, π2, π3) for the re-
lation R1 ∧ R2 ∧ R3, where

R1 = {(inputs, inputs′, (ψ1, τ 1, ρ1)) |
VerifyUpdateAcct({inputs′i, inputsψ1(i), 0}i; τ 1, ρ1) = 1},

R2 = {((inputs′, outputs′, acctδ, acctǫ), (sk, bls∗ ,v′, r)) |
VerifyUD(inputs′i, outputs

′
i, acctδ,i) = 1 ∀i

∧ VerifyUpdateAcct(inputs′i, outputs
′
i, 0; 1, ri) = 1 ∀i ∈ [t+ 1, n]

∧ VerifyNonNegative(acctǫ,i, v
′
i, ri) = 1 ∀i ∈ [2, t]

∧ VerifyAcct(outputs′1, (sk, bls∗ + v′1)) = 1

∧ VerifyDelta({acctδ,i}, {acctǫ,i},v′, r) = 1},
R3 = {(outputs′, outputs, (ψ2, τ 2, ρ2)) |

VerifyUpdateAcct({outputsi, outputs′ψ2(i)
, 0}i; τ2, ρ2) = 1}.

Instantiating the shuffle argument The zero-knowledge argument of knowl-
edge for R1 and R3 uses a shuffle argument Σ1 = Σsh(ψ1), which is required to
prove that inputs′ is a correct shuffle of inputs and Σ3 = Σsh(ψ2), which is
required to prove that outputs is a correct shuffle of outputs′.

Let (g, h) be the global public key output by the Setup algorithm, and let
ck = (ḡ, ḡ1, . . . , ḡn) be the commitment key of the extended Pedersen commit-
ment scheme XComck(a; r) = ḡr

∏
i ḡ
ai
i . In the following, we just write this as

XCom(a; r).
Recall that an update of accti = (pki, comi) using randomness (τi, ρi) is

acct′j = (pk′j , com
′
j) = (pkτii , comi · pkρii ). The public key pki is updated by

just exponentiation, so its proof of correct shuffle is a slight modification of the
Bayer-Groth [5] shuffle. For this we define the generalized commitments to a
matrix A = (a1, . . . ,an) ∈ F

m×n
p to be the commitments of its n columns. That

is, XCom(A; r) = (XCom(a1; r1), . . . ,XCom(an; rn)). Additionally, a Hadamard
product of matrices A and B, denoted C = A ◦ B, is simply the matrix such
that cij = aijbij .

The shuffle argument uses the following sub-arguments [5]:

– The multi-exponentiation argument, πMExp: Given a vector C′ and a com-
mitment C′

B
, the prover shows knowledge of a witness w = (b′, r) such that

C′

B
= XCom(b′; r), and for a fixed T ∈ G, it holds that

∏n
i=1 C

′
i
b′i = T . In

the shuffle argument, T =
∏n
i=1 C

xi

i , where x is the second message of the
protocol.
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– The product argument, πprod: Given a commitment CA, the prover shows
knowledge of a witness w = (a, r) such that CA = XCom(a; r), and for a
fixed t ∈ Fp, it holds that

∏n
i=1 ai = t. In the shuffle argument, t =

∏n
i=1(y ·

i+ xi − z), where (y, z) is the fourth message of the protocol.

– The Hadamard product argument, πHad: Given extended Pedersen commit-
ments A,B,C, the prover shows knowledge of an opening to vectors a, b, c
such that a ◦ b = c.

A proof of correct shuffle for comi uses the following invariant, provided we set
all ρi to be the same value ρ. Let pki = (gi, hi), (G,H) = (

∏N
i=1 g

Xi

i ,
∏N
i=1, h

Xi

i )

and (G′, H ′) = (Gρ, Hρ). For a random variable X,
∏N
i=1(com

′

ψ(i))
Xψ(i)

=
∏N
i=1 com

Xi

i · (G′, H ′). Hence we can also use a multi-exponentiation argument

(this time with T =
∏n
i=1 com

xi

i · (G′, H ′)), with an additional proof of correct
update Σvu for the tuple (G,H,G′, H ′).

Note that using the same ρi = ρ to update the comi is secure under the
indistinguishability of UPK and computational hiding of Commit. (An adversary
that can distinguish if two accounts are updated using the same ρ, can be used
to break DDH.)

The full shuffle argument Σsh is shown in Figure 1.

The following lemma is similar to the one in [5], and the full proof is deferred
to the full version of the paper [13].

Lemma 2. Let the product argument πprod, the Hadamard product argument
πHad, the verify update argument πvu and the multi-exponentiation argument
πMExp be public-coin SHVZK arguments of knowledge. Then Σsh is a public-
coin SHVZK argument of knowledge of (ψ, τ , ρ) such that (pk′i, com

′
i) = (pkτi

ψ(i),

comψ(i) · pkρψ(i)).

Instantiating the other sub-arguments To prove statements related to the
function VerifyNonNegative we use Bulletproofs, which we denote by the argu-
ment Σrange(acct, v, r). VerifyAcct also uses Bulletproofs but since the sender
may not know the randomness used to open his commitment (for example, if
the account was previously updated by someone else), we need a separate argu-
ment Σrange,sk(acct, v, sk). This argument first creates acctǫ, proves knowledge
of (v, r) such that acctǫ = (g, h,Commit(g,h)(v; r)), then calls Σrange(acctǫ, v, r).

The zero-knowledge argument of knowledge Σ2 for the non-shuffle parts con-
sists of the following sub-protocols:

1. Σvud: trivial check of VerifyUD.

2. ΣCom: prover shows knowledge of v′, r such that VerifyDelta({acctδ,i}), {acctǫ,i},
v′, r) = 1.

3. Σi
zero: prover shows knowledge of ri such that VerifyUpdateAcct(inputs′i, outputs

′
i,

0, (1, ri)) = 1.

4. ΣNN : (
∧t+1
i=2 Σrange(acctδ,i, v

′
i, ri)) ∧ (

∧n
i=t+2Σ

i
zero) .

21



Σsh : a proof of shuffle of accounts acct into acct′

Prover (ψ, τ , ρ) Verifier

Parse accti = (pki, comi) Parse accti = (pki, comi)

r, r′, s, s′ $← F
m
p Parse acct

′

i = (pk′i, com
′

i)

a← {ψ(i)}Ni=1

CA ← XCom(a; r)

Cτ ← XCom(τ ; r′) CA,Cτ

x x $← Fp

b← {xψ(i)}Ni=1

b
′ ← {xψ(i)/τi}

N
i=1

CB ← XCom(b; s)

C
′

B ← XCom(b′; s′)

CB ,C
′

B , πHad V (πHad): b
′ ◦ τ

?
= b

y, z y, z $← Fp

f ← ya+ b CF ← CA
y
CB

t← yr + s C−z ← XCom((−z, . . . ,−z); 0)

z ← (z, . . . , z) CE ← CF ·C−z

e← (f1 − z, . . . , fn − z)

(G,H)←

N∏

i=1

pk
xi

i (G,H)←

N∏

i=1

pk
xi

i

(G′, H ′)←
N∏

i=1

pk
xiρ
i

πprod, πvu,

πMExp1, πMExp2
V (πprod):

N∏

i=1

ei
?
=

N∏

i=1

(y · i+ xi − z)

CE ← XCom(e; t) V (πvu): (G,H,G
′, H ′) is a DDH tuple

V (πMExp1):
N∏

i=1

pk
′

i

b′i ?
=

N∏

i=1

pk
xi

i

V (πMExp2):
N∏

i=1

com′

i
bi ?

=

N∏

i=1

comxi

i · (G
′, H ′)

Fig. 1: The full shuffle argument Σsh. Here V (π) : x means that statement x should be
verified using the argument π.
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Hence Σ2 = Σvud ∧ ΣCom ∧ ΣNN ∧ Σrange,sk(outputs′1, bls∗ + v′1, sk). The
proof of the next lemma follows from the properties of AND-proofs, and is thus
omitted.

Lemma 3. Σ2 is a public-coin SHVZK argument of knowledge of the relation
R2.

The full SHVZK argument of knowledge for Quisquis is then Σ := Σ1 ∧
Σ2 ∧Σ3. The proof of the following theorem is deferred to the full version of the
paper.

Theorem 1. Σ is a public-coin SHVZK argument of knowledge of the relation
R(x,w) defined in Section 5.2.

7 Performance

We now describe a prototype implementation of Quisquis, written in roughly
2000 lines of Go and interfaced with an existing Rust implementation for pro-
ducing Bulletproofs,7 to demonstrate that it is competitive in terms of both
communication and computational costs.

As a reminder, transactions in Quisquis are made up of: (1) input and output
account lists tx[inputs] and tx[outputs], (2) intermediate account lists inputs′,
outputs′, {acctδ,i} and {acctǫ,i}, and (3) a NIZK Σ = Σ1 ∧ Σ2 ∧ Σ3, with Σ1

proving that a permutation has updated each of the accounts in tx[inputs] to the
corresponding intermediate account, and Σ3 similarly proving that tx[outputs] is
an updated permutation of the set of intermediate accounts. Σ2 is a combination
of multiple NIZKs to prove that a number of conditions on the accounts and their
balances are satisfied.

In our UPK construction, an account consists of four elements from G. Using
an elliptic curve at the 128-bit security level and with compressed points (i.e.,
in which points are represented just by the x-coordinate and the sign of the
y-coordinate), each group element requires 33 bytes of communication (32 bytes
for the x-coordinate and 1 bit for the sign), and each field element is 32 bytes.

The lists of accounts dominate the proof size for large anonymity set sizes.
Since (1) and (2) are both lists of accounts of size n, and each account consists of
4 group elements, each transaction contains 24n group elements, or 792n bytes.

For Σ1 and Σ3, the Bayer-Groth shuffle that we use in Section 6 is param-
eterizable, and we have chosen the options that minimize communication. We
thus implement the shuffle with communication complexity that grows propor-
tionally to the square root of the size of the anonymity set. This means that it
consists of 11

√
n + 7 group elements and 5

√
n + 12 field elements. Concretely

then, each of these two proofs requires 352
√
n + 224 bytes for group elements,

and 160
√
n+384 for field elements, for a total of 512

√
n+608 bytes each, giving

1024
√
n+ 1216 bytes in total.

7 https://github.com/dalek-cryptography/bulletproofs
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|A| Gen. (ms) Verif. (ms) Proof size Proof size (bytes)

4 124±4% 25.6±3%122G + 83Fp 6528
16 471±4% 71.6±3%244G + 175Fp 13,408
64 2110±3% 251 ±4%624G + 503Fp 36,064

Table 2: The computation and communication complexity of the NIZKs in Quisquis,
reported with various anonymity set sizes, and averaged over 20 seconds of runs.

Bulletproofs can be produced and verified in batches, leading to the resulting
proofs growing only logarithmically with the size of the batch, rather than lin-
early. These proofs are then most efficient when batched in powers of two, and
so we have chosen the anonymity set size to be both square and a power of two
below. However, anonymity set sizes are not limited to these values. The proof
size when using Bulletproofs for range proofs also grows depending on the size
of the range, and this also must be a power of two. We have chosen K = 64 for
V = [0, 2K − 1].

Besides the 16n group elements used for lists of intermediate accounts, Σ2

requires 6n+38+2 log2(t) group elements, and 6n+15 field elements. The total
proof size is then 6n+22

√
n+52+2 log2(t) group elements and 6n+10

√
n+39

field elements.
Concretely, Table 2 shows the time to generate and verify the NIZK ar-

guments in Quisquis with certain anonymity set sizes. These benchmarks were
collected on a laptop with an Intel Core i7 2.8GHz CPU and 16GB of RAM, and
demonstrate the overall practicality of Quisquis: proofs take 2.1 seconds to gen-
erate and comprise 36 kB in the worst case in which the size of the anonymity set
is 64. We stress, however, that we do not expect users to end up using anonymity
sets of anywhere near this size in a practical deployment of Quisquis, although
we leave it as an interesting open problem to understand the effect different set
sizes would have on the level of anonymity achieved by users.

8 Related Work and Comparisons

We provide a broad overview of related work, in terms of tumblers designed to
provide anonymity, as well as a detailed comparison with the two solutions, Zcash
and Monero, that are most related to our own. The results of our comparison are
summarized in Table 3. The benchmarks in Table 3 were collected using a server
with an Intel Core i7 3.5GHz CPU and 32GB of RAM, due to the Zcash client
performing best when used with Linux, and due to the high RAM requirements
of its prover. Both the prover and verifier in Quisquis and Monero are CPU rather
than RAM bound, and so the additional RAM did not considerably change the
proving and verification time, although optimizations may be possible.

There are several approaches that do not fit into the categories below, which
we discuss now. First, Mimblewimble [33,16] is a cryptocurrency design that
compresses the state of the blockchain via “cut-through” transactions; it thus
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Security Efficiency

Anon. Deniability Theft UTXO growth
tx size tx cost (ms)

prev. big-O kB prover verifier

Tumblers yes* no yes* non-monotonic low - high slow
Zcash yes no* yes monotonic 1 0.29 21,747 8.57
Monero no yes yes monotonic n+ log(v) 2.71 982 46.3
Quisquis yes yes yes non-monotonic n+ log(v) 13.4 471 71.6

Table 3: The security properties and efficiency considerations for each privacy solution.
For tumblers, the stated properties are for the best solutions, but they vary significantly
among solutions. No tumblers satisfy plausible deniability, and all have relatively high
transaction cost due to the required latency. Numbers are given for Monero with 2 newly
created TXOs and a ring size 10, and Quisquis numbers are given for one sender, 3
receivers and 12 randomly selected accounts (giving a total size of 16). n is the number
of participants in the transaction, and v is the bit-length of the largest value allowed
in the system.

achieves a goal similar to ours in providing a compact UTXO set. It also achieves
a notion of privacy known as transaction indistinguishability [16], but it does not
provide anonymity in the face of network-level attackers (who can still identify
the senders and recipients in individual transactions). In this sense, Mimblewim-
ble achieves anonymity only against “late-comer” attackers who see the data after
it is published in the blockchain, so do not see individual transactions as they
move around the network. In Quisquis the attacker is assumed to be able to see
all individual transactions, so we can achieve anonymity even against attack-
ers seeing all transactions at the network level. We view this as quite realistic
given the high number of full nodes in existing cryptocurrencies. Further, the
techniques used in Mimblewimble are in some sense complementary to Quisquis:
if individual QuisQuis transactions were able to be combined using the same
techniques as Mimblewimble (meaning one block would contain a single “super-
transaction” combining the inputs and outputs of all the individual transactions),
then against the same late-comer adversary you could argue that the anonymity
set would be bigger.

Second, after posting our paper online, we were made aware of Appecoin [22],
a proposal for an anonymous e-cash system. While there are some similarities
in the design of this system compared to ours, including the use of shuffles and
updatable public keys, the presentation of Appecoin is very informal, which in
turn makes it difficult to identify the extent to which it satisfies our desired
security properties.

8.1 Tumblers

Solutions for tumblers are often split into two categories: centralized [8,39,17]
and decentralized [24,37,7,25,36]. In terms of the former, the one that achieves
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the best security is arguably TumbleBit [17], which achieves anonymity and theft
prevention assuming RSA and ECDSA are secure. The most naïve centralized
solutions do not even achieve theft prevention (as a centralized mix can simply
steal your coins rather than permute them), and none achieve plausible deni-
ability. The mixing process is typically quite slow, either because participants
must wait for others to join, or because multiple rounds of interaction with the
tumbler are required.

In terms of decentralized solutions, the most common is Coinjoin [24], which
has also given rise to the Dash cryptocurrency [1] and the coin mixing protocol
ValueShuffle [36]. All of these solutions satisfy theft prevention, but none satisfy
plausible deniability. The arguments for anonymity are not typically based on
any cryptographic assumptions, and in some cases the protocols are not fully
anonymous; e.g., ValueShuffle hides payment values but reveals which trans-
action outputs are unspent. One exception is Möbius [25], in which security is
proven under the DDH assumption (in the random oracle model). Again, latency
is often quite high due to the need to wait for others to join the mixing process,
and for all participants to exchange messages.

8.2 Zcash

Zcash [6] is based on succinct zero-knowledge proofs (zk-SNARKs), which allow
users to prove that a transaction is spending unspent shielded coins (i.e., coins
that have already been deposited into a so-called shielded pool), without reveal-
ing which shielded coins they are. In terms of security, the anonymity set in
Zcash is defined as all other coins that have been deposited into the pool. It also
achieves theft prevention due to the soundness of the zero-knowledge proofs, but
does not achieve plausible deniability, as all users opt in to the anonymity set
by depositing their coins, and their transactions are performed independently of
one another.

In terms of efficiency, since it is not known which shielded coins are being
spent, no shielded coins can ever be removed from the UTXO set. The protocol
mitigates this growth by storing information about shielded coins in a Merkle
tree, meaning proofs grow in a logarithmic rather than a linear fashion with
respect to the size of the UTXO set, but the growth of the set is still monotonic.
It is relatively slow to generate Zcash transactions (https://speed.z.cash/),
and they also require a large amount of RAM, although these numbers are
expected to improve significantly in future releases [2].

Finally, in terms of cryptographic assumptions, despite recent advances [9],
Zcash still requires a “trusted setup” to generate the common reference string
used for the zk-SNARKs; otherwise, anyone with knowledge of its trapdoor can
violate soundness and spend shielded coins that they do not rightfully own. Such
structured reference strings are qualitatively different from a common random
string (such as the one used in Quisquis), which can be generated using a ran-
dom oracle, and instead require performing relatively cumbersome MPC-based
“ceremonies”. Additionally, all zk-SNARKs rely on strong (i.e., non-falsifiable
and relatively untested) “knowledge-of-exponent”-type assumptions.
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8.3 Monero

In Monero [32], senders form transactions by picking other unspent transaction
outputs (“mix-ins”) and forming a ring signature over them. Pairs of senders
and recipients also strengthen the anonymity of this approach by using freshly
generated stealth addresses every time they transact, meaning every address is
used to receive coins only once. In terms of security, Monero satisfies both theft
prevention (due to the unforgeability of the ring signature) and plausible deni-
ability. For anonymity, however, it is known that selecting mix-ins uniformly at
random can be used to distinguish the real input from the fake ones [28]. This not
only means that a more complex algorithm is needed to generate the anonymity
set inside the protocol but also that it is incompatible with our definition of
anonymity, in which oracle queries may result in the selection of uniformly ran-
dom UTXOs. Thus, while we do not rule out the option that Monero could be
proved anonymous in a different model, the same anonymity set size does pro-
vide more anonymity in Quisquis (in which all keys appear only once) than in
Monero (in which keys may be used and re-used in ways that leak information).

To illustrate the main conceptual difference between Monero and Quisquis,
consider the following toy example of an intersection-style attack [28,21]. Using
a system in which accounts cannot be removed from the UTXO set, such as
Monero, acct1 transfers all its funds to acct4 and uses acct2 as its anonymity set.
Then acct2 transfers its funds to acct5 using acct1 as its anonymity set, and acct3
transfers its funds to acct6 using acct2 as its anonymity set. As double-spending
is not possible, anyone observing the blockchain can see that both acct1 and acct2
have already spent their contents at the time the last transaction was performed,
so acct3 must be the actual sender. Using Quisquis instead, all the accounts used
as inputs would have been removed from the UTXO set and replaced by new
random-looking accounts, meaning it would not be possible to use the same
account twice in two different anonymity sets. Thus, such an attack could not
be mounted. Furthermore, altruistic users in Quisquis could periodically send
themselves money using large anonymity sets in order to “refresh” the UTXO set,
in an attempt to ensure that the UTXO set has a relatively uniform distribution
in terms of the age of the accounts (i.e., the time at which they were created)
and thus evade attacks on Monero that are based on the differences in this
distribution [28]. Again, such solutions do not work in Monero, as accounts
always stay in the UTXO set.

With respect to efficiency, the UTXO set also grows monotonically, as it
does in Zcash. Finally, in terms of assumptions, Monero makes the same ones as
Quisquis: it requires DDH to be secure in the random oracle model.

9 Conclusions and Open Problems

In this paper we have identified and solved an open problem in anonymous
cryptocurrencies; namely, that of a monotonically increasing UTXO set. We
have introduced Quisquis, complete with an updatable public key system and
accompanying NIZKs with low communication and computational complexity.
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Quisquis allows users to achieve strong notions of anonymity and theft preven-
tion, which we have presented with accompanying reductions to the DDH and
DL assumptions. As the anonymity properties are achieved by each individual
user’s actions, transactions can be made anonymously without increased latency,
and without strictly increasing the size of the UTXO set. While our NIZKs are
already relatively efficient, we nevertheless leave as an interesting open problem
the design of a special-purpose NIZK for improved communication efficiency.
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