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Abstract

Quitting games are sequential games in which, at any stage, each
player has the choice between continuing and quitting. The game
ends as soon as at least one player chooses to quit; player i then
receives a payoff r's, which depends on the set S of players that did
choose to quit. If the game never ends, the payoff to each player is 0.

We prove the existence of cyclic €-equilibrium under some
assumptions on the payoff function (r,). We prove on an example
that our result is essentially optimal. We also discuss the relation
to Dynkin’s stopping games, and provide a generalization of our
result to these games.
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Introduction

Quitting games are sequential games in which, at any stage, each player has
the choice between continuing and quitting. The game ends as soon as at
least one player chooses to quit; player ¢ then receives a payoff 7%, which
depends on the set S of players that did choose to quit. If the game never
ends, the payoff to each player is 0.

We address here the problem of existence of e-equilibrium in such games.
In the case of two players, stationary e-equilibria do exist. A three-player ex-
ample was devised by Flesch, Thuijsman and Vrieze [4], where e-equilibrium
strategies are more complex - thev have a cyclic structure, and the length
of the cycle is at least 3. This gave the impetus to the study of the three-
player case, solved by Solan [11] (for a more general class of games). We
prove here the existence of cyclic e-equilibria under some assumptions on the
payoff function.

Quitting games form a class of stochastic games. Nore precisely, they are
both recursive games (in the sense of Everett [3]) and repeated games with
absorbing states. They are also deeply related to Dynkin’s stopping games.
The latter are two-plaver, zero-suin games, where the players choose stopping
times 7 and 7, and the payoft is given by X, 1, <, + Y5, 1 5n, + W 1, .
where (X,). (Y,,), (W,) are processes. Dynkin [2] gave sufficient conditions on
these processes for the game to have a value. Subsequently, some classes of
two-player, non zero-sum games were analyzed (Morimoto [9], Ohtsubo[10]).
Thus, we deal here with constant payoff processes, and allow for randomized
stopping times. This enables us to deal with any number of players, and
different sets of assumptions on payoffs. We also provide an extension of our
result to general payoft processes.

Quitting games arc a variant of the popular attrition models, first intro-
duced in evolutionary biology, also used in auction theory and entry deter-
rence models (we refer to Hammerstein and Selten [6] and Wilson [12] for
references), or in the analysis of strategic exit (sce Ghemawat and Nalebuff
(5] or Li [8]). Some minor differences are that attrition models are usually
continuous-time models, in which strategic interaction lasts as long as two
players at least did not quit. The major departure point is that papers on
attrition models have most of the time dealt with incomplete information
situations, and focused on the existence of equilibria for a given discount-
ing function, whereas our cyclic e-equilibria would be €’-equilibria in any
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discounted version of the quitting game. provided the discounting be low
cnough.

The model is set up in section 1. and the results proved in section 2. In
section 3. we study a 4-player game. and show that owur result is in some
sense optimal.

1 The Model and the Main Results

A quitting game is a pair (N. (rs)pcscn). where (i) N = {1..... N} is a finite
set of players, and (ii) for every € S C N, rg € RY.

The game is a sequential game. that is played as follows. The set of stages
is N. At cvery stage each player chooses an action, either continue or qual.
Let S be the subset of the players who chose to quit. If S # 0, then the
game terminates, and cach player i receives the payoff ri. If S = @, the game
continues to the next stage. If the game never terminates, each player gets
0.

We denote the two actions of player i by {¢'.q'}. A strategy for player ¢
is a function x' = (2! );en : N — [0.1]. 2, being the probability that player ¢
continues at stage n. If ! = 1 then at stage n player ¢ plays the pure action
¢'. or continue, while if ! = 0 then at stage n player 7 plays the pure action
g'. or quit. For every stage n € N, S, is the set of players that quit at that
stage, and a,, is the action combination that is played.

A profile is a vector of strategies, one for each player. A profile x =
(z,)nen induces a probability distribution Py over the set of plays. We
denote by Ey the corresponding expectation operator. If the players abide
by x. their expected payoff in the game is therefore given by

7 (X) - Ex("'ﬁ'r 1f<+oc)~

where t = inf{n, S, # 0} is the termination stage.

We say that the profile x is terminating if Py(t < 400) = 1: that is,
if the players follow x then with probability 1 eventually some players quit.
This is cquivalent to

II I] = =0.

neNieN

We say that x is cyclic if there exists ny € N such that ¢, = x4, for
every n € N.



As usual, x7* stands for (x7);,;. We shall abbreviate similarly whenever
convenient. In particular. ¢~ is the action combination where all players but
player i continue.

DEFINITION 1.1 A profile x is an e-equilibrium if for every player @ and
every strateqy y* of player 1.
Fx) > A (xTLy) e

i

It is a subgamec perfect e-equilibrium if. for every n € N, the profile
(Tn. Tusi....) s an e-equilibrium. The corresponding payoff vector v(x) is
an e-equilibrium payoff.

Owr main result is:
THEOREM 1.2 Ewvery quitting game that satisfics:

Al ri-} =1 for every i € N.

7

A2 ri <1 for every S such thati € S.
has a cyclic subgame perfect e-equilibrium.

Assumption A.1 essentially claims that any player prefers his unilateral
termination to indefinite continuation. Assumption A.2 is somewhat restric-
tive and can be partially weakened (sce Lemma 2.5). It claims that if some
player i decides to quit, then he cannot profit if some other player also quits.

2 Existence result

This section is devoted to the proof of Theorem 1.2. It is organized as
follows. For every w € R", we define in section 2.1 an associated one-shot
game G(w), in which player 7 receives w' if termination does not oceur (in
one stage). Thus, w should be interpreted as continuation payoff. We define
an ad hoc refinement of e-cquilibrium. which we call perfect e-equilibrium.

In section 2.2, we show that there exists a profile x such that, for every
n. z, is a perfect e-cquilibrivn in G(y(z,41,...)) and (x,,z,41....) IS ter-
minating, and we conclude the proof, modulo an additional lemma.

The core of the proof is in section 2.3. We prove there that v(x) is an
¢’-equilibrium.



2.1 The One-Shot game

Fix a quitting game G = (N.(rs)ocscn). Let p = 2max{|ry| | 1 € N,0 C
S C N} be twice the maximal payoff in absolute valucs.

For every w € RY we define a one-shot game G(w) as follows. Each
player has two possible actions. continue and quit. Let S be the subset of
players that chose to quit. If S = ). the players receive the payoff w, and
otherwise they receive the payoff rg.

A profile in G(w) is a vector @ € [0.1]", 2 being the probability that
player i chooses continue. With every profile z we associate the probability

plz)=1- H '

s

of termination:

and the expected payoff in the one-shot game G(w):

(Gw).z) = ([T aHw+ > (TN —2"))rs.

i€N NCSCN igS ies

DEFINITION 2.1 A profile & in G(w) is a perfect e-equilibrium if it s an
e-equilibrium and, for every player i and every action a' € supp(z')
G (w).x7" a") — (G(w).1)] < e

that 1s. up to 2¢, each player i is indifferent between his actions.

2.2 The Proof

We prove our result, modulo the next lemma, whose proof is postponed to
section 2.3.

LEMMA 2.2 Let x = (x,), be a profile in G. Assume that the following
properties hold for every n > 1:

1. (xp.Tpe1s...) 1s terminating:
2. 1, 18 a perfect e-equilibrium of G(¥(xpa1. Tnya....)).
: 1 _—_— : : 1 o
Then x s an €s -equilibrium, or there is a stationary €s -equilibrium.

We start with a lemma about correspondences.



LiMMA 2.3 Let v« K — K be an upper-semi-continuous correspondence
with non-empty values defined over a compact space K. Then there exists a
sequence ki, ky. ... € K such that k; € (k1) for every i € N.

Proof: Define Ky = K and K; = v(K,;_1) = Ugex,_, 0 (k) for every 1 € N.
Since ¥» has non-empty values, I is non empty. and since v is upper-semi-
continuous and K compact. K is compact. Clearly I; € K. hence K =
Nien K 1s non-empty.

Choose k; € K. In particular. b, € K, for every i, and therefore for

T e pvlata o s b — [ et SIS & NG X!
every i there exists a sequence by = Ay, Ay, ... k] such that b € y(kj+l). By
taking subsequences, we can assume that the limit &7 = lim; £} exists for
s ah e N PR : . ].o¢ NSRS .
every j. Since ¥ is upper-semi-continuous. k% € ¥(k37). as desired. |

Let 1" c RN be a compact set. Define the correspondence ¢ : W —
W by: w(w) is the subset of all vectors (G(w),z) such that x is a perfect
pe-equilibrium profile in G(w) that satisfies (G(w).z) € W and p(z) > e
Clearly. ¢ is upper-semi-continuous.

The next result is an immediate corollary of Lemmas 2.2 and 2.3.

PROPOSITION 2.4 If there exists a compact set W such that v has non-empty
1 - .
values. then the game G has an (pe)s -cquilibrium.

Proof: Denote by (w,) the sequence obtained by use of Lemma 2.3, For
every n € N choose z,, € [0,1]" such that 1z, is a perfect pe-equilibritun
profile in G(w, 1) that satisfies

L <G(lwn+1)e$n> = Wy.
o p(z,) >

Since p(x,,) > € for every n, it follows that for every n € N, (2, Zpy1. . ..) =
wy,. and that (z,,2,,1....) is terminating. The proposition now follows from
Lemma 2.2. [ ]

It is straightforward to check from the proof of Lemma 2.2 that the €’-
equilibrium which is built is in fact a subgame perfect €’-equilibrium.

We now explain why the profile can be taken to be cyclic. There are two
ways to do this:



(i) Denote the subgame perfect e-cquilibrium profile by x = (21, 22....).
and, for each n, set x,, = (z,.2,41....). Since W is compact, there exist
ny < ny € N such that Py(t > nplt > ny) < 1/ and || v(Xn,) —7(X0,) || < €.
Define a cyclic profile y = (2, 2,41+ - - Tpy Ly, -..). It is easy to verify
that y is a subgame perfect 2e-cquilibrium profile, provided € is small enough.
(i) Let {W75,.... Wi} be a partition of W to subsets with diameter smaller

than €2:

| wy — w, || < € Vh=1,....K.Vu,. wy € W,

For every &k = 1,.... K, choose one clement wy, € Uyen,¥(w). Denote by
x a perfect pe-equilibrium profile in G(wy). with (G(wi).2r) € W, and
plzy) > €. Define for every w € Wy, v(w) = (G(wy). zy). and z(w) = 4.
Notice that zy is a perfect 2pe-cquilibrium in G(w), for every w € Wy, and

| w(w) — (Glw).x(w)) | < €

Since the range of v is finite, there exist wy,....w; € W (where L <
K) such that w;, € ¢(wy,) and w; € ¢(w;). Define a cyclic profile x =
(z(wy). z(wa),....z(wp). z(w))....). Tt is not difficult to show that for each

n, r, is a perfect Ce-equilibrium in G(y(2,4,....)). where C' does not depend
on n. Lemma 2.2 may then be applied.

Thercfore, the conclusion of Theorem 1.2 holds, provided there exists a set
W. such that ¥ has non-empty values, whatever be . We now exhibit such a
set 1, under conditions A.1 and A.2. Thus. Theorem 1.2 will be established.

LENMA 2.5 Define
o {w €l-p.p]” | Ji e N with w' < 1}.

If for every w € W and every equilibrium x in G(w) such that x # (1,....1),
there exists a player i € N such that £’ < 1 and (G(w).z)" < 1. then v has
non-empty values.

In other words. the lemma claims that if for any continuation payoff w €
W and every profile in G(w), one of the players who quit with positive
probability receives at most 1, then 17 is the desired set. It is clear that
if the game satisfies A.1 and A.2 then the conditions of Lemma 2.5 hold.
However. there are games that do not satisfy A.2 but satisfy the condition
of Lemma 2.5.



Proof: Let w € W be arbitrary, and x be an equilibrium profile in G(w).
If 2 = (1.1.....1) then let ¢ be a player with w' = 1. Otherwise, let i € N
such that 2* < 1 and (G(w).z)’" < 1. In the latter case, such a player exists
by A.2. Define a profile 2’ in G(w) by: 2’ = (1 — €)x + e(z ", ¢"). Then

p(z’) > € and

| (Glw). ') — {Glu). ) < pe. 1)
By (1) and since (G(w). (7. ¢')) < (G(w).(27".¢")) (with equality if ' > 0)
it follows that z’ is a perfect pe-equilibrium profile in G(w). [

2.3 Proof of the main lemma

This section contains the proof of Lemma 2.2, which we state again for con-
venience.

LENMMA 2.6 Let x = (2,), be a profile in G. Assume that the following
properties hold for every n > 1:

1. (rp.2piq....) is terminating:
2. x, 1s a perfect e-equilibrium of G(4(r,11. Tpya. .. .)).
. 1 - . . . 1 - .
Then x 1s an €6 -equilibrium. or there 1s a stationary €s -equilibrium.

1 ey .
In general, x needs not be an es-equilibrium. Indeed, consider the fol-
lowing game, where only the payofls of player 1 appear:
&8 5 A pay play Pl

3 )

1 — € €
I —e¢ continue 5
€ 1 1

Figure 1

The stationary profile depicted in Figure 1 yields player 1 a payoff l;"%l;g)
v . v v te(l—¢) *

and hence player 1 receives, up to Ge. the payoff 1 by either quitting or



1+5¢(1—¢)

m) However, if player 1 always

continuing in the one-shot game G (
continue, then his payoff is 5.

Observe that in this case, player 1 quits with probability e, and player 2
quits with probability €?. Therefore. if player 2 did continue with probability
1, the expected payoff for the players would not change by much, while the
altered profile would be an equilibrium. This idea is fundamental to the
proof.

We use the following notations. Given a profile y = (y;. 4., ...), we define
for each n the profile y,, = (4. yni1....). For cach player i. ¢’ (resp. ') is
the strategy which plays repeatedly ¢ (resp.  ¢'): g, is the strategy which
plays ¢ up to stage n. and ¢’ afterwards.

In the proof, we use repeatedly the following facts:

Fact 1. if u is a random variable on (£2. A. P). bounded by p. and A € A.

|E(u)] < pP(A") + sup |ul.
A

[t will mostly be applied to the difference of two r.v.

Fact 2. for every profile y. and n € N.

Yy) =Pyt < n)Eylrg,

t<n+Py(t >n)v(yn)

We fix a.b.e €]0. 1] so that: ¢ > a > l) h—e > l) 1—-b—¢> % We will
assume that e is small, so that inequalities of the form (1 — 6“)71" < ¢ hold.
We partition N into a sequence (By)gs; of blocks. Set n; = 0 and

ngvr = nf{n > np. Po{t < np|t > np} > €'}

Set By = {ng.....npy1 — 1}, For any n < m € N, we set pi[n,m] =
P, (t <mlt > n}(=Px,(t <m —n)). and py[n] = pi[n.n](=1 -1, z}).

Few comments are in order.

(a) The (By) are the “smallest” blocks on which the probability of termi-
nation is “non-negligible”.

(b) ny < 4o¢ for every k since x,, is terminating for every n: cach block
consists of finitely many stages.

9



(¢) px[ng. g, 1 ] > 1 — ¢ for every k: if termination has not occurred at
the beginning of block labelled k. it occurs with high probability before the
block labelled & + (ie

(d) there is no estimate available for py[ng.; — 1]. However, for every
np <n < ngyp— 1, pelng.n] < €.

Fix a player i € N. A block By, is of type [ for player i if py— o[ Bi] > €,
and of type II otherwise. Denote by (11,),,>1 the successive blocks of type I
for i. We prove the following:

. . - ; ., . 1 iy .
o if forsomeie N.me N* ' .~ > } then 7y is an es-equilibrium

m—=1 ‘m

. . 1 - . .
payoff, and there is a stationary es-equilibrium. with payoff rg:
. . 1 .
e otherwise, x is an es-equilibrium.

Intuitively, a block is of type II to player 7 if quitting in this block comes
mainly from player i. Therefore, if there are many such blocks, then the
overall payoff is close to ;.
Case 1: let i € N, m € N*. with [, ., —{!, > £ Given the time-stationarity
of the properties, we may assume. by giving up the first blocks, that the first
block I of type I for i is such that I{ > L. We set [ =]
Thus, for each & < [ '
P alBi < ¢ 2)

We prove first that v(x) is close to ry;y. (2) may be rephrased as
P (Fj#ing<n<nge.al =¢) <. (3)
Since py[By] > €*, one deduces from (3)

P.{3j#i.j€ S|te B} <

Therefore Py{S, = {i}|t € By} > 1 — €% By summation over k, P, {S, =
{itlt<m}>1—¢c
On the other hand, Py(t > ny. (|t > ny) < 1 — €. This yields

1
e

Pt >n) <(1l—-¢)7 <e

10



Thus. Py (S, = {i}.t < m) > 1 —¢— "% By Fact 1. one gets

| (x) = rgy 1< ple+ €79,

We now claim that || v(x2) — rgy [|< ple + €% + ¢*). Indeed, we only used
above [ > L. Sincel > 2. (-1 > } Thus, the above proof, applied
from stage na, yields || v(x,,) — riy 1< ple + €7%). Now, either ny = 2, in
which case the claim holds, or ny > 2: in the latter case, px[l] < €%, thus

| v(x) — v(x2) ||< pe* (Fact 2), which proves the claim.

Since 2 is an e-equilibrium in G(4(x3)). and || 2, — (¢ 21) ||< €%, (¢7% z))
is an (e + pNe®)-equilibrium in G(7(x2)). hence an 7-cquilibrium in G(rg;y)
with n = e+ ple+ Ne? + e +eP7). One deduces easily that (c™. (2], 2}....))
is a stationary n-equilibrinum of the quitting game G.

Case 2: forevery i€ NomeN. [, | — 1, <+

We prove that x is an e%-e(plilibrium. Let i € N be fixed. For simplicity.,
we write [,,, instead of [/, .

For cach £ € N, we define an auxiliary game I'y, played during By: it
starts in stage ng, and ends up after stage ny,; — 1. with payoffs given by
rg, if t < ngyy. and by y(x,,, ) if termination did not. occur.

The proof is organized as follows. We first prove that player i cannot
profit too much by deviating from xﬁlk in the game I'y. We then aggregate
these estimates.

Step 1: an upper bound on the benefit from deviating in I'y.

It is obviously enough to deal with the case b = 1: estimates for a block
By would be derived by conditioning on {t > n;} whenever appropriate.
Only minor changes are needed.

We need to consider only pure strategies of player i. These are of two
types: (i) strategy q, for some n € {0..... n, — 1}; (ii) continue in every
stage (strategy c').

Step 1.1: strategy q,

11



The payoffs to player 7 in T'; under x and (x'.q},) may respectively be

written as

g(x) = mut(l-7)7(x,)
gxq) = mu (1

=)
*
S
T
2
=
7
+
-
=
—_
0
=
Q\)
N>
e

with 7 = Py(t < n).7" = Pyt < n). u = EJlrg |t < n]. and u* =
E - o[r§, [t <nl.
By the perfect e-equilibrium property.

<G(A/(Xn+1))f (T: qi)>7. < <G(’7(Xn+l))' '7"71>7 +e€
~'(x,) + €.

By construction of the sequence of blocks. 7. 7% < €. Thercfore,
9'(x"q,) < g'(x) + 2pe’ 4 ¢, (4)

Step 1.2: strategy ¢
The payoffs to player 7 under x and (x7'. ¢') may respectively be written

!Ji(X) Tuy + T z+(1—’71—7T2)/’i(X712_1)
g'(x'.c) = 3 G+ (L= mNG((x,) A2y )
with
I xf<l)-_g—1.7:€5g)

= Pyt<n,—1.1¢5)
uy = Eylrglt <ny—1.0¢ 5]
= Pa(t<n,—1)

= E.olrg |t <ny—1]

= Py

up = Ex[rglt <np—1l.i€ S5
P
[

As above. (G(v(%n,)). (251 _1.¢"))" < 7' (Xny-1) + €. Thus.

g'(x7".c') < g'(x) +miuy — maus + (w2 — 7)Y Xy 1)+ (3 (K1) — u1) +e



Remark: it is a priori more natural to write ¢'(x) and ¢g'(x".c') using
v(X,,) instead of 7 (x,,-1). The reason which motivates our choice is that
7 = Py(t < ny—1.i € S;) < €. while no upper bound is available on
Px(f < ng.il € St>

We wish to deduce from (5) an estimate of the form ¢'(x™'. ¢') < g'(x) +
e + nmy. with n small. It follows from clementary probability theory that
7wy — o is small compared to 73, and that u} — u, is small (sce Lemma 2.7
below). We also know that 7, is small. Therefore. the main issue will be to
establish that v'(X,,-1) — u; is at most of the order 3.

We start with a lemma.

LenyA 2.7 Let N € N, and (Xy. .. ... Xn.Yo... .. Yx) be independent {0.1}-
valued random wvariables. Let Sy = inf{n < N. X, = 1}. S, = inf{n <
N.Y, = 1} be the first successes of the two sequences. Set T = Sy if S} < Sy
and T = +2>¢ otherwise.

Assume that P(T < N) > 0. Then

1. P(S) < N)—-P(T < N)<P(S; < N)P(S, < N):
2. |P(S; =n|S; < N)—P(S, = n|T < N)| <2P(S.

IA

N).

s

Proof: for cach n, {T'=n} C {S; =n}. and {S, = n}\{T =n} = {5 =
n}N{S, <n}. Thus

P(Si=n)—P(T =n)=P(S =n)P(S, <n) <P(S, =n)P(S; < N).

The first claim follows by summation over n.
On the other hand.

. . . P(Si=n) PS5 =n<9)
P(5 = <N)-P < < N)| = —
i ( 1 n|Sl = ) (Sl = ”u = )‘ |P<S] S A,\,') P(T S JV) |

P(S, =n)P(S, < n) 1 1

= +P(S, =n<S8. — .
=BG < N) (i =n 2”13(51 <N) P(T< N)”
Now, % < P(S, < N). and

1 1
P(S,<N) P(T< N)]

P(S; =n < S5)|

13



P(S; =n < 5)) ) '

N P(T<N)-P(S <N

Bs, < MPT <N L =N - PE =)
P(S, =n < 5,

<
T PGS < N)P(T < N)

X P(SZ < ]\')P(Sl < ]\v) < P(Sz < JV),

using the first part of the lemma. ]

We use this lemma with N = ny — 2. P = Py. and X,, and Y, defined as:
X, = 1 iff at least one player j #  quits at stage n, and Y, = 1 iff player ¢
quits at stage n.

Thus. P(S; < N) = {Sa <N} C{t<ny—1},and {T < N} ={t <
ny — 1.1 ¢ S;}. The first assertion of the lemma implies |7y — 75| < e?n3,
while the second implies |uy — u}| < 2pe® (the lemma can only be applied if
75 > 0: but. when 75 = 0, one has 7, = 0, and the inequality (7) below holds
trivially).

Thercfore.

(75 — ma)us + (uh — ug)my + (9 — 75)7 (X, 1) < 3pems. (7)

Claim: onc has
Y (X, 1) — uy <HApNTS 4 e (8)

Proof:
1- for every n, 1 < n < ny. || ;" — ™" ||< 75. Therefore,

Exllrs, — 1] |a; = ¢'.t < ny— 1] < pNws.

Thus, |u; — 1} < pN#3.
2- Let 7 be the last stage before ny — 1, for which «?, < 1. By the perfect
e-cquilibrium property,

(G(r(xan)) (27".¢)) < GO (xmn)). (a7'.q") +e. (9)

Using || z=' — ¢~ ||< 73, onc has

HG(y(Xm41)). (:L%I (Tj)>1 — ' (Xn41)| < pN73,

(VAR 3

and
(G(v(xm11)) (07" @) = iy < pNm.
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Therefore. (9) yields
7 (Xng1) <1+ €+ 2pNT.

3- By definition of 7. px[T+ 1. ns — 2] = py—s [ + 1. ny — 2] < w3 Thus,
using Fact 2 (applied with y = x5, ).

7 (Xma1) = 7 (K, 1)] < prs.
The claim follows from 1 through 3.
Conclusion: from (5). (7) and (8). one deduces
gl x'.c') < g'(x) + Tpe" N7j + 2e. (10)

Step 2: global estimates
We define a sequence (X )pen- of random variables by

)( _ n/I(>(nk) lff Z T
b rg, it < ny

Claim 1: sup, Ex- o [Xi] < X} 4+ 26375 Pyoroi(t > ng) + TpNe®.

Notice that Ey-i o [X}] is the pavoff to player 7 if player ¢ follows ¢ up to

{

stage ny. then x*, while players —i use x~
Proof: The conclusion (10) of step 1 can be rewritten: for every k € N*,
EXA:_@ [nyk+l|t Z nk] S Ex".c’ [_/Yk|l‘ Z 77/\-]—%7/)‘]\"6”1.:))(71‘01(1 < ”k—:»l‘t Z nk)+2€.

Of course. Xppp = Xy if t < ny.
Therefore.

Ex*l‘cl [4Xk+1] S Exfz.c1 [AXVA-:' + 7/)“7\"((1Px77.c1(f 6 BA) + 2€PX_'.C'<t 2 n,k)A
Thus.
k
Ex o[ Xis1] < X1+ TpNe® + 2¢ Z Poio(t = np)

p=1

15



which yields Claim 1. ]

Claim 2: € 3277, Py o (t > ny) < 2/

‘1 m

Proof: by assumption, I/, |, — 1! < (i for every m. Consecutive blocks of
type I are never distant by more than (i blocks. Thus. in the first £ blocks,
there are at least p—1 blocks of type I. For such a block k, Py—i o {t € Bt >
nit > et ie. Py o {t > npift > npt < 1— ¢t Therefore,

Pyiolt = ne) <(1—e)P
from which Claim 2 follows. |
Conclusion: we now prove that 4(x . x!) < ~/(x) + €. for every pure
strategy x! of player /. There are two cases.
e x =c
Since (x . ¢') is terminating. (X ), converges. Py c-a.s.. to % . Hence

FxThe) = liin Ey o[ Xi] € 7'(x) + 4707 4 TpNet,

e x\. = q,. for some n € N*.
Let By be the block containing n. 4'(x7'. q],) can be written

Al/i(xii' q;) = Ex"‘.c’ [‘ka1f<nk] + Ex"_q’ [’{S‘, 1!271;\.}- (11)

n

The expression Ex-i o [, [t > ny] is the analog for block & of what was called
g'(x7'.q,) in step 1.1. Thus (sce (4)).
| DN [r;.'|f > ny] <4 (%p, ) + €+ 2pe”

n

Since ~'(x,,) may be written Ey- o [ X[t > ni]. one gets. using (11) and
claims 1 and 2

Y(xa,) < ExoofXi]+ e+ 2pe
< ANX) e+ 9pNet 4 46t e
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2.4 General payoff processes

We give here a slight extension of Theorem 1.2, within the framework of non
zero-sum Dynkin games. Let r = (r,),>1 be a process over (2. A, P). where
rn = (rn.s)ozscy is a vector of RY-valued variables. The quitting game I'(r)
is played as above: r, s is the payoff vector if termination occurs in stage n.
and the quitting coalition is S.

Set H, = a(r,.p < n). A strategy of player i is a process X' = (2}, )n>1
adapted to (H,,)n>1. with values in [0. 1]. Provided expectations arc well-
defined, the extension of the above definitions of v and e-equilibrium is
straightforward.

THEOREM 2.8 Assume that the sequence (r,,) converges to 1. P-a.s. As-
sume rs satisfies assumptions A.1 and A.2 of Theorem 1.2. P-a.s. As-
sume p = Elsup,, || r ] < +>. Then. for every e > 0. I'(r) has an
e-equrlibrium. -

Proof: The idea is the following. Take N large enough. At stage Ng,
players start using an n-equilibrium of the quitting game with constant pay-
offs I'(rny. 'ng. - - ). Behavior in the first Ny — 1 stages is then defined by
backwards induction.

We address first the measurability issue. Set m = N(2V — 1). Denote
by X the space of strategy profiles in a quitting game with constant payoffs.
Denote by A C R™ the set of vectors 1 = (rg)pzscn which satisfy A.1 and
A2 Forn >0, and r € R". denote by A, the n-ncighborhood of A, and
by E,(r) € X the set of n-equilibrium of the guitting game with constant
payoffs I'(r.r....). By Theorem 1.2, E, (1) # 0. for every r € A, > 0.

It is clear that whenever || r — " ||< . E,(r) C Ey,(1"). Therefore. there
is a measurable step function 7, : R” — X. with a,(r) € Ey, (1), for every
re i,

Choose 0 < 1 < ﬁ and Ny such that
P(3n > Nyl rn—rc ll>n) <n. (12)

We now construct a profile x. Set xy, = (¥ny. Tng+1.---) = T5(Tn, ). By
construction, x, is Hy,-measurable, for n > Ny. We define zpn,_1..... 7,
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inductively: for & < Ny — 1. define x; to be an Hj-measurable equilibrium
in G(E{y (xe 1) [He])-

Such a choice for z; exists. Indeed. fix a game form. 7.e. a finite set N of
players. and a finite set of actions to each player. Let E be the correspondence
which assigns to any payoff function (R™-valued function defined over the
product of action sets) the set of (mixed) Nash equilibria of the corresponding
game. Since E is upper-semi-continuous with non-empty values, it has a
measurable selection ([7]).

By (12). P(xn, € Es,(rxy-rape1---.)) > 1 —n: the probability of xy,
being a 4r-equilibritun is at least the probability that r,, will remain 2n-close
to ry,, which is at least 1 — 7 by the choice of Ny.

This casily yields that x is a (41 + np)-equilibrium of I'(r). [ |

3 An Example

The above result asserts the existence of cyclic e-equilibria in a class of quit-
ting games. For two- or three-player games. “better” results are available.
For two-player games, stationary e-cquilibria exist. For 3-player games. either
a stationary e-equilibrium exists, or there exists an e-equilibritun in which the
probability of termination in any given stage is arbitrarily small (therefore,
there is an equilibrium payoff in co{rgy.7 € N}), or both. The purpose of
this section is to show on an example that this is no longer true for 4-player
games. In that sense. our result is optimal.
We study the game

2 4 2
continue 4.1.0.0 0,0.4.1 1.1.0.1
1.4.0.0 1.1.1.1 1.0.1.1 0,1.0,0
0.0.1.4 0.1.1.1 1.1.1.1 0.0.1.0
1.1.1.0 1.0.0.0 0.0.0.1 |-1,-1.—1.—1

Figure 2
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In this game player 1 chooses cither the top row (continue) or the bottom
row (quit), player 2 chooses the left column (continue) or the right colummn
(quit), player 3 chooses cither the top two matrices (continue) or the bot-
tom two matrices (quit). and player 4 chooses either the left two matrices
(continue) or the right two matrices (quit).

Note that there are the following symmetries in the payoff function: for
every 4-tuple of actions (a.b.c.d) we have:

vHaboeod) = v¥b.a.d.c).
vHaboeod) = e d b.a) and

v (a,b.c.d) = v*(c.d.b.a).

where v'(a.b, c.d) is the payoff to ¢ if the action combination is (a.b,c.d)
(and v'(c'. . c*.¢') = 0). This game satisfies conditions A.1 and A.2. We
first exhibit a cyclic equilibrium.  We then show that (i) there is no sta-
tionary equilibrinm, and (ii) there is no equilibrivun payvoff in the convex
hull of {(4.1.0.0).(1.4.0.0).(0.0.1.4).(0.0.4. 1)} (any limit of e-equilibrium
payoffs is an equilibrium payoff). Finally. we argue that no stationary e-
equilibrium cxists.

3.1 A cyclic equilibrium

Define a cyclic profile x as follows: (i) at odd stages. players 2, 4 play ¢?
and ¢, while both players 1 and 3 continie with probability % (ii) at even
stages. players 1 and 3 continue. while both players 2 and 4 continue with
probability %

One checks that y(x) = (v2.1.v/2, 1) and v(x,) = (1. v2.1.v/2). More-
over, z and x, are respectively equilibria in the one-shot games G(v(x2))
and G(v(x)). Since (x7.¢') is terminating for every i. this implies that x is
an cquilibrium in I'.

3.2 No Stationary Equilibria

We check that there is no stationary equilibrium. We discuss according to
the number of players who play both actions with positive probability.
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It is immediate to check that there is no stationary equilibrium in which
at least three players play pure strategies.

We shall now verify that there is no stationary cquilibrium where two
players play pure stationary strategics. Indeed, assume that players 3 and
4 play pure stationary strategies. If such a case arises, players 1 and 2 are
playing a 2 x 2 game. We will see that all the equilibria in these games are
pure, and therefore they cannot generate an cquilibrium in the four-player
game.

Case 1: Players 3 and 4 play (¢”. ¢?)
The unique equilibrinm is (c!. ¢, ¢, ¢?).
Case 2: Players 3 and 4 play (¢, ¢%)
The unique equilibrium is (¢!, (12. g,
Case 3: Players 3 and 4 play (¢*. ")
Case 4: Players 3 and 4 play ((:3. ")
There are two equilibria: (¢'.c?, ¢*. ¢) and (c!. ¢%. 3. ¢).

We shall now see that there is no stationary equilibrium where players 2
and 4 play pure actions.

Case 1: Players 2 and 4 play (¢*. ¢
2

)
The unique equilibrium is (¢'. ¢ .q" ch).

)

;!

symunetric to case 2.

4

Case 2: Players 2 and 4 pla\ ( 1
The unique equilibrium is ( e+ PR+ %qg. ¢*). In this equilibrium
player 2 receives g, but if he plays ¢? he gcts 1.

Case 3: Players 2 and 4 play ( 2, 4)

The unique equilibrium is (g'. ¢, ¢*. ¢%).

Case 4: Players 2 and 4 plax ( qh)

The unique equilibrium is (c'. ¢, ¢*. ¢?).

All the other cases are symmetric to these 8 cases.

Next, we check that there is no stationary equilibrium where one player.
say player 4, plays a pure strategy, and all the other players play a fully mixed
strategy. We denote by (z.y. z) the fully mixed stationary equilibrium in the
three-player game when player 4 plays some pure stationary strategy.

Assume first that player 4 plays ¢*. Then, in order to have player 2
indifferent. we should have

.C
L
24

r(l—z)=z—(1-2)(1 —2)

which implies that z = 1/2. In order to have player 1 indifferent, we should

N
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have
(1-yz+yl—z)=yz— (1 —y)(1-=2)

which solves to yz = 1/2. and therefore y = 1. which is pure.

Assume now that player 4 plays ¢*. First we note that z < 1/2, otherwise
player 3 prefers to play ¢* over ¢*. Next. if player 2 is indifferent between his
actions, then

(1 —x)(1+4 32)

1 —uxzz

=x+(1—x)z

or equivalently,
(1—a2)(1+2z+22%)=(1—2z)z.

Since x < 1/2. it follows that 1 — & > 2. Therefore it follows that
1+2z 4222 <1 -2
or equivalently 2 + xz < —z. which is clearly false.

We prove now by contradiction that there is no fully mixed stationary
equilibrinm.

Let (2. y*. z*. t*) be a fully mixed stationary equilibrium, where 0 < 2* <
1 is the probability player 1 puts on ¢!, Set (a*.b*.c*.d*) = ~v(x*. y*. z*. ).
Notice that 0 < a*.b0*.c".d* < 1.

Let 0 < y,z.t < 1. Assume that a €]0.1] is the payoft of player 1 if
quitting does not occur at the first stage. Then, by playing ¢! at stage 1.
player 1 gets

ala;y.z.t) =yzt(a —2) = 2yz + 3zt —yt +y + z.
whereas by playing ¢' he gets
y.z.t)=t+(1-t)(y+2z-1).

By the equilibrium condition for player 1,



vanishes at (y*, z*.t*). For simplicity, we write
Ai(y.z.t) = (a = 2)yzt — 2yz + 4zt + 1 = 2L,
with the understanding that a stands for 3(y. z.t). Aa(x. z. 1), Ag(z.y. t) and

Ay(x.y. z) are defined in a symmetric way.

Claim: (z*.y*.z".t*) is not on the diagonal of [0. 1]

First, consider the sum of payoffs ¥(z) = 1 ~'(z. 2. 2. 2) (= 4y (2. 2. 2, 7).
There are four cells in which the sum of payoffs is 5. Each of these cells is
3 —r

reached under (z.z.z,z) with probability %g There are 2 cells, cach
with probability Izl(:f>2 where the sum is 4. ete. One gets

1 )
2@)::17 {45 (L =)+ 2 (1 —2)* +4-32°(1 = 2)? + 42(1 — 2)°

-

—4(1 — )Y}
= ! {—8z% — 82" — 1627 + 20z — 4}
11—zt

We argue that S(z) > 4 for = € [2.1[. Indeed, this amounts to {—2z" +
208 — 42 + 52 — 1} — (1 — z*) > 0 on that interval. After simplification
by 1 — . this is equivalent to #* — 22 + 32 — 2 > 0. The left-hand side is
increasing in z. and cquals )i at r = %

Thercfore, v (z.2.z.2) > 1 for v € [% 1[. Since player 1 gets at most 1
by playing ¢'. this implies that (z*.y" t*) is not on the diagonal of [,; 1%

We now prove that P(z) = Al(.r.¢.¢) docs not vanish on [0.2]. We
use Sturm’s method to count the number of roots of P (sce for instance [1],

section 1.1). Set
Pi(z) = Plr)=-2:"+4a" - 32° + 227 — 27 + 1
Py (x) P'(r) = —102" + 162" — 92° + 42 — 2.

and. for ; = 1,2.3.4. P, as minus the remainder of the division of P by
Py . One gets

1

1 )
Py(z) = {)7( 223 — 122° 4+ 322 — 21)
29
Py(z) = 625(252% — 53z + 32)
1
Ps(r) = —82r + 133
) T5o25 020+ 133)
Pﬁ(l’) <0



One checks that P(0) and 7%(3) have the same sign. Therefore, P has no
root in [0.3]. This ends the proof of the claim. [

Without loss of generality. we assume y* = min(z*. y*. z*.1*). We shall prove
that A; and A, do not vanish simultaneously. We now point out several
facts that will be used extensively:
a ¢ a Ju
L Gyzt)=2—y—z>0:(y.z.t) = J{y.z.t) =1L =t > O

9. ()A (U z. f) (1_2)3f—{-g/zf<l—f>—ﬂz<()l

3. %(y. z.t) = (a—2)yt +yzt(1—t)—2y+4t is decreasing in y: therefore,

8 ¢
on the region y < t. 24 (y.2.1) > 20 (1 2. 1) = (a— 2)t* +122(1 — ) +
2t > 0.

Thus. on the region y <t < z,
Aj(y.z.t) > Ay (t.t.t) > 0.

Therefore, (z*.y*. z*.t*) belongs to the region D = {y < z < t}. The
proof is divided in two steps. First. we prove that A; does not vanish on
DN {z > 3}. Then. we prove that Ay does not vanish on DN {z < 3}.

LENMMA 3.1 z* > 5 is impossible.

1
2

[

Proof: We argue by contradiction. and assume throughout this proof z* >
Notice that

1 11 1t t
< - <z <t > — P _ -
ysg5 s <t= A(y.z.1) A(QQ t) 5 2+(L4>O
Thus. y* > %
Claim: * > 2.
We s‘rud} Al on the domain D; = {é <y<z<t<L ::} Notice first that
a 1s maximized at (% % %) where it equals % < g
> A, ):f(:f) (a—2)z%t — 222+ 4zt + 1 - 2t.

On Dy, A (y,z.t) (z.z
One has .—i( ) =2zt(a—2)+22%(1 —t) — 4z + 4¢. It is easily checked that

Oz
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99y (2. t) = 2z(a —2) + 2242 — y — 2) + 223(1 — 1) — 22%t + 4 is positive on

B\ D=
D. Thclofme.
of af , 2 4 4, 8
.t (z. =)= —z(a — 2 —z7 —dz+ -
o GRS G ) =gela=2)+ 3

The latter quantity is maximized at z = % It is then equal to %(a —-1)+ %
Since a < é this is negative.
Thus. %_f < 0 on D;. Thercfore.

Az z.t) > Aq(t.t. 1) > 0.
The claim 1s established.

Claim: 2" > =; is impossible.
We shall prove that A} > 0 on Dy = {1 < y.% < z < t}. Notice first
that a > 5 on D,.
Set, fust D3 = Dyn{y <
2)at + ¢ + 3t. Now, Vi > 3.

Set now Dy = Dy N {y

Y,
Lolry

0A,
ot

=(a=2yz+yzt(2—y—z2)+4z 2> (a—2)yz+4z - 2.

The function (a — 2)yz + 4z — 2 is increasing in z. Therefore. it is minimized
on the diagonal {y = =}, where it is at least —%gﬂ + 4y — 2: this minorant is
minimized at y = :; it is then equal to % Therefore. A is increasing in ¢,
and

Ay(y.z.t) > Ay(z.z.2) > 0.

Wt

To conclude the proof of Lemma 3.1. we prove that A} > 0 on D5 = ([% ] x

F3lx [N {y < 2}
On Ds, a> % thus
1, )
Ay z.t) > Ay(z.z.8) > —gFl T2 Ayl = hiz,t).
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First.

yLl N B
Gef) = Ty Al E g g

2 16 8 8 2 1 1
R t) = —oot— 4ot + 1= 2= = >,
3-1) 57 Tg Tt 57t t g7 7

. _ 5
Now. each z € [3, ?] satisfies |~ — 4| < 5. or[z— 3| < 5. Therefore, we need
only prove that [2%(z.t)| < 7 on Ds. The function

Oh 8

—(z )= ——zt —dz+ 4t

0z 3
is increasing in # and decreasing in 2. Thus. it is minimal at (3. é) where it
equals —%. and maximal at (1.1), where it equals z. |

LEMMA 3.2 2* < .1 18 impossible.

Proof: We would otherwise have y* < z* < 1. We prove that this would

contradict Ay(z*.y*. 2*) = 0. Recall that d* > 0. Therefore
0=Ag(z" y".2") > 20"y z" = 22"z" + 4"y  + 1 — 29"

Hence. the polynomial P(r.y.z) = zyz + vz — 22y + y — é is positive at
(. y*. ).

We prove now that I is negative on Dy = ([0. 1] x [0.

W

1% [0. 1) {y < =}

l.on DgN{z < iy, 22 y. z) = 2z — 22+ 1 > 0: thus, P is maximized

()z/
at y = 5' it is thon equal to 5 +rz — 0 = ;1:(%: 1) <0:
2. on Dgn{x > >} ‘”’ Ly z) = xy + x> 0; thus, P is maximized at
7= % and equals
3 r 1
Qlr.y) =y —gay+ 35— 5
(a) on{y < i} ?)(12 (z.y) = 35— 3y < 0: thus. Q is maximized at z = 1,
and thcn equals y — ry <0
(h) on {y > 1}. 00(1( ) 12 : thus, Q is maximized at z = 1. and
then equals Q(5.y) = ;(y — 1) < 0.
|

[\)
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3.3 No perturbed ¢-equilibrium

In this section we prove that there is no perturbed e-equilibrium in the game.
That is. there is no e-equilibrium profile x such that for every n € N. ||
x, —y ||< € for some fixed mixed-action combination y. We first prove that
it cannot be the case that y = (1.1..... 1).

We argue by contradiction. Let € > 0 be sufficiently small. and let x be
an e-equilibrium with 27, > 1 — €, for cach i € N.n € N. We refer to such a
profile as a perturbed e-cquilibrium.

Since x is an e-equilibrium, it follows that

P, (t < +42¢) > 1—2¢ and Py(t < +2¢.|S)| > 1) < 5e : (13)

the probability of termination is high (otherwise, any player ¢ would bene-
fit by playing according to x' for many stages. before switching to ¢') and
the probability of the terminating coalition being a singleton is high (since
| 2, — ¢ ||< ¢, for cach n).

In the computations which follow, the estimates are not meant to be tight.
Much better estimates could be obtained. but this is pointless here.

Define pi, = Py(t < n.i € S;). Clearly for every fixed i, (p)) is an
mereasing sequence, hence pl_ = lim,, p!, exists.

By (13). onc has 1 — 2 < 3, pi. < 1+ He. and

5—10e <> ~'(x) < 5. (14)

. Q - o 1

Lenmsa 3.3 For each i, pl. > 1.

Proof: We will prove the lemma for i = 1. Since "%1} =1 and 7‘%2} =4, one
deduces from (13) that

7 (%)

!

< plo44pi + be
On the other hand, || z; — ¢ ||< €; thus, by playing ¢' in the first stage, player
i gets at least 1 — 3e. Since x is an e-cquilibrium, v!(x) > 1 — 4e.

Similar inequalities hold for v*(x): thus,



1 —4e < A%(x) < dpl + p + be (15)
1—de < AY(x) < pl+dp: + 5e (16)
This vields p!_ + p2. > %’) — 1?)86 and. by symmetry. p?_+ pl > E)) - 11_586‘
Therefore,
. 3 18
Ph+ P < =+ —€+5e (17)
5 5
In particular, p?. < :5) + 9¢. The result follows. using (15). ]

By (14). 4'(x) > 6/5 for at least one i. We now proceed as follows. We
first argue (steps 1 and 2 below) that it cannot be the case that v!(x) and
74(x) be significantly above 1. Assuming ~'(x) > % we then show (step
3) that, for some n, x,, is a perturbed €-equilibrium such that ~3(x,,) and
v4(x,) are both significantly above 1, which is ruled out by the first part.

Step 1: Let a > 0, and assume that 41(x) > 1 + a. We show that before
player 1 quit with non-negligable probability. player 2 must have already quit
with non-negligable probability.

Let n; be any stage such that v1(x,,) > 1+ /e, for all n < n;. We argue
that p, < y/e. Denote by y' the strategy which coincides with ¢! up to
stage ny. and with x' from then on. 4!(x) may be written

A(x) =Pyt <ny.le Sf,){Ex[rérH <np.les) - ﬁ,’l(x,,l)} (18)
+P,(t <n;.1¢ S,)Ex[z’;tlf <n. 1¢S]+(1=Py(t<n.1¢S)Hv(xy,).

Consider the first term. Since r§ < 1 whenever 1 € S. one has Ex[rg |t <
ni.1 € 5] < 1. On the other hand, 7'(x,,) > 1 + /e by assumption.
Therefore. the first term is at most —/ep), .

The sum of the last two terms is 1 (x 7L y!). Since 41{x) > v (x 7 y!) -
€. (18) yields —e < —y/ep), . therefore p) < \/e.

Since pt. > L. the stage Ny = min{n.y'(x,) < 1 4+ /e} is well-defined and

11
i
[)A\'l S \v/;
One has

1+a < ' (x) < py, +4p%, +5e+(1=ph, —Pr, — P, — P, T50)7 (xn,). (19)
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Since v!(xy,) < 1+ /e, the inequality (19) yields
l4+a< p}\,l + 4]);2\,1 + (1 — 1)}\,1 — p'j)\,l) + Ve + 5e.

thus
a < 3]):‘)\v1 +24/e. (20)

Step 2: We prove that., provided e is small enough, it cannot be the casc that
71(x).73(x) > 1+a. We argue by contradiction. Assume that v!(x). v%(x) >
14 a.

As in step 1, the stage N, = inf{n.~+%(x,) < 1 + /¢} is well-defined and
Pa, < Ve

Due to the symmetry between players 1 and 2. we may assume w.l.0.g.
that N, < N,.

Since (p?), is n(?n—(le('reasing, one deduces from (20) that p3, > § — Ve
which contradicts pi, < /€.

Step 3: Assume w.lo.g. that v'(x) > % As above. the stage N; =
min{n. 7' (x,) < 14/e} is finite. py, < /e and (see (20)) py, > s x:—\/e >
%6. Therefore, there exists a stage ny < N} with 4%(x,,,) < 1+/e. We denote
by N, — 1 the last such stage.

S?n(-e p}\:Q < ph, < Veand plo > Loone has Py(t < Ny) < 12+ e < 4.
Since x 1s an e-cquilibrium, xy, is a 12e-equilibrium.

Since 'yQ(xn) > 1+ /e for every Ny < n < Ny, one gets, as in step 1,
that Py (¢ <2Nl,21€ Silt > Noy) < V/12¢ hence. a fortiori, p'f\v] — p;f)\,Q < 4y/e.
Thercfore, p3, > 75 — 4V/€.

We prove now that xy, is a 12e-equilibrium with v3(xn, ). v (xn,) > 1+ &,
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which is ruled out by step 2.
As in step 1.
1 —2e <A7%(x) < dpy, +Pa, + 0+ (1 pr\vz + 56)77 (X, ). (21)

By definition of Ny. v*(xn,) < 1+ /6. Since ph, < ph, < Ve one deduces
from (21)

PR, + P, < OVe

28



On the other hand.

1 — 2 < % (x) < 4py, + p'?\v,z +5e+ (1 — pr\,z + 56)7* (xn,). (22)
Since p%, > L. (22) yields v*(xn,) > 14 ;. Similarly, v*(xn,) > 1+ =.
By step 2. this contradicts the fact that xy, is a 12e-equilibrium. ]

It is now ecasy to conclude that there is no stationary e-equilibrium for e
sufficiently small. Indeed. assume that for every e there exists a stationary
e-equilibrium x.. Let x, be an accumulation point of {x.} as ¢ — 0. If
x, is terminating then it is a stationary equilibrium, which is ruled out by
section 3.2. Otherwise, x, = c¢. and then, for € sufficiently small. there is an
e-perturbed equilibrium, which is rled out by section 3.3.
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