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Introduction

Let g be a simple finite dimensional Lie algebra of type ADE, let ĝ be the cor-
responding (untwisted) affine Lie algebra, and let Uq(ĝ) be its quantum enveloping
algebra of Drinfel’d-Jimbo, or the quantum affine algebra for short. In this pa-
per we study finite dimensional representations of Uq(ĝ), using geometry of quiver
varieties which were introduced in [29, 44, 45].

There is a large amount of literature on finite dimensional representations of
Uq(ĝ); see for example [1, 10, 18, 25, 28] and the references therein. A basic
result relevant to us is due to Chari-Pressley [11]: irreducible finite dimensional
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146 HIRAKU NAKAJIMA

representations are classified by an n-tuple of polynomials, where n is the rank
of g. This result was announced for Yangian earlier by Drinfel’d [15]. Hence the
polynomials are called Drinfel’d polynomials. However, not much is known about
the properties of irreducible finite dimensional representations, say their dimensions,
tensor product decomposition, etc.

Quiver varieties are generalizations of moduli spaces of instantons (anti-self-dual
connections) on certain classes of real 4-dimensional hyper-Kähler manifolds, called
ALE spaces [29]. They can be defined for any finite graph, but we are concerned for
the moment with the Dynkin graph of type ADE corresponding to g. Motivated by
results of Ringel [47] and Lusztig [33], the author has been studying their properties
[44, 45]. In particular, it was shown that there is a homomorphism

U(g)→ Htop(Z(w),C),

where U(g) is the universal enveloping algebra of g, Z(w) is a certain lagrangian
subvariety of the product of quiver varieties (the quiver variety depends on a choice
of a dominant weight w), and Htop( ,C) denotes the top degree homology group
with complex coefficients. The multiplication on the right hand side is defined by
the convolution product.

During the study, it became clear that the quiver varieties are analogous to the
cotangent bundle T ∗B of the flag variety B. The lagrangian subvariety Z(w) is
an analogue of the Steinberg variety Z = T ∗B ×N T ∗B, where N is the nilpotent
cone and T ∗B → N is the Springer resolution. The above mentioned result is an
analogue of Ginzburg’s lagrangian construction of the Weyl group W [20]. If we
replace homology group by equivariant K-homology group in the case of T ∗B, we
get the affine Hecke algebra Hq instead of W as was shown by Kazhdan-Lusztig [26]
and Ginzburg [13]. Thus it became natural to conjecture that an equivariant K-
homology group of the quiver variety gave us the quantum affine algebra Uq(ĝ).
After the author wrote [44], many people suggested this conjecture to him, for
example Kashiwara, Ginzburg, Lusztig and Vasserot.

A geometric approach to finite dimensional representations of Uq(ĝ) (when g =
sln) was given by Ginzburg-Vasserot [21, 58]. They used the cotangent bundle of
the n-step partial flag variety, which is an example of a quiver variety of type A.
Thus their result can be considered as a partial solution to the conjecture.

In [23] Grojnowski constructed the lower-half part Uq(ĝ)− of Uq(ĝ) on equivari-
ant K-homology of a certain lagrangian subvariety of the cotangent bundle of a
variety Ed. This Ed was used earlier by Lusztig for the construction of canonical
bases on the lower-half part Uq(g)

−
of the quantized enveloping algebra Uq(g).

Grojnowski’s construction was motivated in part by Tanisaki’s result [52]: a ho-
momorphism from the finite Hecke algebra to the equivariant K-homology of the
Steinberg variety is defined by assigning to perverse sheaves (or more precisely
Hodge modules) on B their characteristic cycles. In the same way, he considered
characteristic cycles of perverse sheaves on Ed. Thus he obtained a homomorphism
from Uq(g)

−
to K-homology of the lagrangian subvariety. This lagrangian subva-

riety contains a lagrangian subvariety of the quiver variety as an open subvariety.
Thus his construction was a solution to ‘half’ of the conjecture.

Later Grojnowski wrote an ‘advertisement’ of his book on the full conjecture [24].
Unfortunately, details were not explained, and his book is not published yet.

The purpose of this paper is to solve the conjecture affirmatively, and to derive
results whose analogues are known for Hq. Recall that Kazhdan-Lusztig [26] gave
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QUIVER VARIETIES AND QUANTUM AFFINE ALGEBRAS 147

a classification of simple modules of Hq, using the above mentioned K-theoretic
construction. Our analogue is the Drinfel’d-Chari-Pressley classification. Also
Ginzburg gave a character formula, called a p-adic analogue of the Kazhdan-Lusztig
multiplicity formula [13]. (See the introduction in [13] for a more detailed account
and historical comments.) We prove a similar formula for Uq(ĝ) in this paper.

Let us describe the contents of this paper in more detail. In §1 we recall a new re-
alization of Uq(ĝ), called Drinfel’d realization [15]. It is more suitable than the orig-
inal one for our purpose, or rather, we can consider it as a definition of Uq(ĝ). We
also introduce the quantum loop algebra Uq(Lg), which is a subquotient of Uq(ĝ),
i.e., the quantum affine algebra without central extension and the degree opera-
tor. Since the central extension acts trivially on finite dimensional representations,
we study Uq(Lg) rather than Uq(ĝ). Introducing a certain Z[q, q−1]-subalgebra
UZ
q (Lg) of Uq(Lg), we define a specialization Uε(Lg) of Uq(Lg) at q = ε. This

UZ
q (Lg) was originally introduced by Chari-Pressley [12] for the study of finite di-

mensional representations of Uε(Lg) when ε is a root of unity. Then we recall
basic results on finite dimensional representations of Uε(Lg). We introduce several
concepts, such as l -weights, l -dominant, l -highest weight modules, l -fundamental
representation, etc. These are analogues of the same concepts without l for Uε(g)-
modules. ‘l ’ stands for the loop. In the literature, some of these concepts were used
without ‘l ’.

In §2 we introduce two types of quiver varieties, M(w), M0(∞,w) (both depend
on a choice of a dominant weight w =

∑
wkΛk). They are analogues of T ∗B and

the nilpotent cone N respectively, and have the following properties:

(1) M(w) is a nonsingular quasi-projective variety, having many components of
various dimensions.

(2) M0(∞,w) is an affine algebraic variety, not necessarily irreducible.
(3) Both M(w) and M0(∞,w) have a Gw×C∗-action, where Gw =

∏
GLwk

(C).
(4) There is a Gw×C∗-equivariant projective morphism π : M(w)→M0(∞,w).

In §3–§8 we prepare some results on quiver varieties and K-theory which we use
in later sections.

In §9–§11 we consider an analogue of the Steinberg variety Z(w) = M(w)
×M0(∞,w)M(w) and its equivariant K-homology KGw×C

∗

(Z(w)). We construct
an algebra homomorphism

Uq(Lg)→ KGw×C
∗

(Z(w))⊗Z[q,q−1] Q(q).

We first define images of generators in §9, and check the defining relations in §10
and §11. Unlike the case of the affine Hecke algebra, where Hq is isomorphic to

KG×C
∗

(Z) (Z = the Steinberg variety), this homomorphism is not an isomorphism,
neither injective nor surjective.

In §12 we show that the above homomorphism induces a homomorphism

UZ

q (Lg)→ KGw×C
∗

(Z(w))/torsion .

(It is natural to expect that UZ
q (Lg) is an integral form of Uq(Lg) and that

KGw×C
∗

(Z(w)) is torsion-free, but we do not have the proofs.)
In §13 we introduce a standard module Mx,a. It depends on the choice of a

point x ∈ M0(∞,w) and a semisimple element a = (s, ε) ∈ Gw × C∗ such that
x is fixed by a. The parameter ε corresponds to the specialization q = ε, while
s corresponds to Drinfel’d polynomials. In this paper, we assume ε is not a root
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of unity, although most of our results hold even in that case (see Remark 14.3.9).
Let A be the Zariski closure of aZ. We define Mx,a as the specialized equivariant
K-homologyKA(M(w)x)⊗R(A) Ca, where M(w)x is a fiber of M(w)→M0(∞,w)
at x, and Ca is an R(A)-algebra structure on C determined by a. By the convo-
lution product, Mx,a has a KA(Z(w)) ⊗R(A) Ca-module structure. Thus it has a
Uε(Lg)-module structure by the above homomorphism. By the localization theo-
rem of equivariant K-homology due to Thomason [55], Mx,a is isomorphic to the
complexified (non-equivariant) K-homology K(M(w)Ax )⊗ C of the fixed point set
M(w)Ax . Moreover, it is isomorphic to H∗(M(w)Ax ,C) via the Chern character
homomorphism thanks to a result in §7. We also show that Mx,a is a finite dimen-
sional l -highest weight module. As a usual argument for Verma modules, Mx,a has
the unique (nonzero) simple quotient. The author conjectures that Mx,a is a tensor
product of l -fundamental representations in some order. This is proved when the
parameter is generic in §14.1.

In §14 we show that the standard modules Mx,a and My,a are isomorphic if
and only if x and y are contained in the same stratum. Here the fixed point set
M0(∞,w)A has a stratification M0(∞,w)A =

⊔
ρM

reg
0 (ρ) defined in §4. Further-

more, we show that the index set {ρ} of the stratum coincides with the set P = {P}
of l -dominant l -weights of M0,a, the standard module corresponding to the central
fiber π−1(0). Let us denote by ρP the index corresponding to P . Thus we may
denote Mx,a and its unique simple quotient by M(P ) and L(P ) respectively if x
is contained in the stratum M

reg
0 (ρP ) corresponding to an l -dominant l -weight P .

We prove the multiplicity formula

[M(P ) : L(Q)] = dimH∗(i!xIC(Mreg
0 (ρQ))),

where x is a point in M
reg
0 (ρP ), ix : {x} → M0(∞,w)A is the inclusion, and

IC(Mreg
0 (ρQ)) is the intersection cohomology complex attached to M

reg
0 (ρQ) and

the constant local system CM
reg
0 (ρQ).

Our result is simpler than the case of the affine Hecke algebra: nonconstant local
systems never appear. This phenomenon corresponds to an algebraic result that
all modules are l -highest weight. It compensates for the difference of UZ

q (Lg) and

KGw×C
∗

(Z(w)) during the proof of the multiplicity formula.
If g is of type A, then M0(∞,w)A coincides with a product of varieties Ed

studied by Lusztig [33], where the underlying graph is of type A. In particular, the
Poincaré polynomial of H∗(i!xIC(Mreg

0 (ρQ))) is a Kazhdan-Lusztig polynomial for
a Weyl group of type A. We should have a combinatorial algorithm to compute
Poincaré polynomials of H∗(i!xIC(Mreg

0 (ρQ))) for general g.
Once we know dimH∗(i!xIC(Mreg

0 (ρQ))), information about L(P ) can be de-
duced from information about M(P ), which is easier to study. For example, con-
sider the following problems:

(1) Compute Frenkel-Reshetikhin’s q-characters [18].
(2) Decompose restrictions of finite dimensional Uε(Lg)-modules to Uε(g)-

modules (see [28]).

These problems for M(P ) are easier than those for L(P ), and we have the fol-
lowing answers.

Frenkel-Reshetikhin’s q-characters are generating functions of dimensions of l -
weight spaces (see §13.5). In §13.5 we show that these dimensions are Euler numbers
of connected components of M(w)A for standard modules M0,a. As an application,
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QUIVER VARIETIES AND QUANTUM AFFINE ALGEBRAS 149

we prove a conjecture in [18] for g of type ADE (Proposition 13.5.2). These Euler
numbers should be computable.

Let ResM(P ) be the restriction of M(P ) to a Uε(g)-module. In §15 we show
the multiplicity formula

[ResM(P ) : L(w − v)] = dimH∗(i!xIC(Mreg
0 (v,w))),

where v is a weight such that w − v is dominant, L(w − v) is the corresponding
irreducible finite dimensional module (these are concepts for usual g without ‘l ’),
x is a point in M

reg
0 (ρP ), ix : {x} → M0(∞,w) is the inclusion, M

reg
0 (v,w) is a

stratum of M(∞,w), and IC(Mreg
0 (v,w)) is the intersection cohomology complex

attached to M
reg
0 (v,w) and the constant local system CM

reg
0 (v,w).

If g is of type A, then the stratum M
reg
0 (v,w) coincides with a nilpotent or-

bit cut out by Slodowy’s transversal slice [44, 8.4]. The Poincaré polynomials of
H∗(i!xIC(Mreg

0 (v,w))) were calculated by Lusztig [30] and coincide with Kostka
polynomials. This result is compatible with the conjecture that M(P ) is a tensor
product of l -fundamental representations, for the restriction of an l -fundamental
representation is simple for type A, and Kostka polynomials give tensor product
decompositions. We should have a combinatorial algorithm to compute Poincaré
polynomials of H∗(i!xIC(Mreg

0 (v,w))) for general g.
We give two examples where M

reg
0 (v,w) can be described explicitly.

Consider the case that w is a fundamental weight of type A, or more generally a
fundamental weight such that the label of the corresponding vertex of the Dynkin
diagram is 1. Then it is easy to see that the corresponding quiver variety M0(∞,w)
consists of a single point 0. Thus ResM(P ) remains irreducible in this case.

If w is the highest weight of the adjoint representation, the corresponding
M0(∞,w) is a simple singularity C2/Γ, where Γ is a finite subgroup of SL2(C) of
the type corresponding to g. Then M0(∞,w) has two strata {0} and (C2 \ {0})/Γ.
The intersection cohomology complexes are constant sheaves. Hence we have

ResM(P ) = L(w)⊕ L(0).

These two results were shown by Chari-Pressley [9] by a totally different method.
As we mentioned, the quantum affine algebra Uq(ĝ) has another realization,

called the Drinfel’d new realization. This Drinfel’d construction can be applied to
any symmetrizable Kac-Moody algebra g, not necessarily a finite dimensional one.
This generalization also fits our result, since quiver varieties can be defined for arbi-
trary finite graphs. If we replace finite dimensional representations by l -integrable
representations, parts of our result can be generalized to a Kac-Moody algebra g, at
least when it is symmetric. For example, we generalize the Drinfel’d-Chari-Pressley
parametrization. A generalization of the multiplicity formula requires further study.

If g is an affine Lie algebra, then Uq(ĝ) is the quantum affinization of the affine
Lie algebra. It is called a double loop algebra, or toroidal algebra, and has been
studied by various people; see for example [22, 48, 49, 56] and the references therein.
A first step to a geometric approach to the toroidal algebra using quiver varieties for

the affine Dynkin graph of type Ã was given by M. Varagnolo and E. Vasserot [57].
In fact, quiver varieties for affine Dynkin graphs are moduli spaces of instantons (or
torsion free sheave) on ALE spaces. Thus these cases are relevant to the original
motivation, i.e., a study of the relation between 4-dimensional gauge theory and
representation theory. In some cases, these quiver varieties coincide with Hilbert
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150 HIRAKU NAKAJIMA

schemes of points on ALE spaces, for which many results have been obtained (see
[46]). We will return to this in the future.

If we replace equivariant K-homology by equivariant homology, we should get
the Yangian Y (g) instead of Uq(ĝ). This conjecture is motivated again by the
analogy of quiver varieties with T ∗B. The equivariant homology of T ∗B gives the
graded Hecke algebra [32], which is an analogue of Y (g) for Hq. As an application,
the affirmative solution of the conjecture implies that the representation theory of
Uq(ĝ) and that of the Yangian are the same. This has been believed by many
people, but there is no written proof.

While the author was preparing this paper, he was informed that Frenkel-Mukhin
[17] proved the conjecture in [18] (Proposition 13.5.2) for general g.

Acknowledgement. Part of this work was done while the author enjoyed the hospi-
tality of the Institute for Advanced Study. The author is grateful to G. Lusztig for
his interest and encouragement.

1. Quantum affine algebra

In this section, we give a quick review for the definitions of the quantized uni-
versal enveloping algebra Uq(g) of the Kac-Moody algebra g associated with a
symmetrizable generalized Cartan matrix, its affinization Uq(ĝ), and the associ-
ated loop algebra Uq(Lg). Although the algebras defined via quiver varieties are
automatically symmetric, we treat the nonsymmetric case also for completeness.

1.1. Quantized universal enveloping algebra. Let q be an indeterminate. For
nonnegative integers n ≥ r, define

[n]q
def.
=

qn − q−n
q − q−1

, [n]q!
def.
=

{
[n]q[n− 1]q · · · [2]q[1]q (n > 0),

1 (n = 0),
[
n
r

]

q

def.
=

[n]q!

[r]q ![n− r]q !
.

(1.1.1)

Suppose that the following data are given:

(1) P : free Z-module (weight lattice),
(2) P ∗ = HomZ(P,Z) with a natural pairing 〈 , 〉 : P ⊗ P ∗ → Z,
(3) an index set I of simple roots
(4) αk ∈ P (k ∈ I) (simple root),
(5) hk ∈ P ∗ (k ∈ I) (simple coroot),
(6) a symmetric bilinear form ( , ) on P .

These are required to satisfy the following:

(a) 〈hk, λ〉 = 2(αk, λ)/(αk, αk) for k ∈ I and λ ∈ P ,

(b) C
def.
= (〈hk, αl〉)k,l is a symmetrizable generalized Cartan matrix, i.e., 〈hk, αk〉

= 2, and 〈hk, αl〉 ∈ Z≤0 and 〈hk, αl〉 = 0⇐⇒ 〈hl, αk〉 = 0 for k 6= l,
(c) (αk, αk) ∈ 2Z>0,
(d) {αk}k∈I are linearly independent,
(e) there exists Λk ∈ P (k ∈ I) such that 〈hl,Λk〉 = δkl (fundamental weight).

The quantized universal enveloping algebra Uq(g) of the Kac-Moody algebra is
the Q(q)-algebra generated by ek, fk (k ∈ I), qh (h ∈ P ∗) with relations

q0 = 1, qhqh
′

= qh+h′

,(1.1.2)
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qhekq
−h = q〈h,αk〉ek, qhfkq

−h = q−〈h,αk〉fk,(1.1.3)

ekfl − flek = δkl
q(αk,αk)hk/2 − q−(αk,αk)hk/2

qk − q−1
k

,(1.1.4)

b∑

p=0

(−1)p
[
b
p

]

qk

epkele
b−p
k =

b∑

p=0

(−1)p
[
b
p

]

qk

fpkflf
b−p
k = 0 for k 6= l,(1.1.5)

where qk = q(αk,αk)/2, b = 1− 〈hk, αl〉.
Let Uq(g)

+
(resp. Uq(g)

−
) be the Q(q)-subalgebra of Uq(g) generated by the

elements ek (resp. fk). Let Uq(g)
0

be the Q(q)-subalgebra generated by elements
qh (h ∈ P ∗). Then we have the triangle decomposition [36, 3.2.5]:

Uq(g) ∼= Uq(g)+ ⊗Uq(g)0 ⊗Uq(g)−.(1.1.6)

Let e
(n)
k

def.
= enk/[n]qk

! and f
(n)
k

def.
= fnk /[n]qk

!. Let UZ
q (g) be the Z[q, q−1]-

subalgebra of Uq(g) generated by elements e
(n)
k , f

(n)
k , qh for k ∈ I, n ∈ Z>0,

h ∈ P ∗. It is known that UZ
q (g) is an integral form of Uq(g), i.e., the natural map

UZ
q (g)⊗Z[q,q−1] Q(q)→ Uq(g) is an isomorphism. (See [10, 9.3.1].) For ε ∈ C∗, let

us define Uε(g) as UZ
q (g)⊗Z[q,q−1] C via the algebra homomorphism Z[q, q−1]→ C

that takes q to ε. It will be called the specialized quantized enveloping algebra. We
say a Uq(g)-module M (defined over Q(q)) is a highest weight module with highest

weight Λ ∈ P if there exists a vector m0 ∈M such that

ek ∗m0 = 0, Uq(g)
− ∗m0 = M,(1.1.7)

qh ∗m0 = q〈h,Λ〉m0 for any h ∈ P ∗.(1.1.8)

Then there exists a direct sum decomposition M =
⊕

λ∈P Mλ (weight space de-

composition) where Mλ
def.
= {m | qh · v = q〈h,λ〉m for any h ∈ P ∗}. By using

the triangular decomposition (1.1.6), one can show that the simple highest weight
Uq(g)-module is determined uniquely by Λ.

We say a Uq(g)-module M (defined over Q(q)) is integrable if M has a weight
space decomposition M =

⊕
λ∈P Mλ with dimMλ <∞, and for any m ∈M , there

exists n0 ≥ 1 such that enk ∗m = fnk ∗m = 0 for all k ∈ I and n ≥ n0.
The (unique) simple highest weight Uq(g)-module with highest weight Λ is in-

tegrable if and only if Λ is a dominant integral weight Λ, i.e., 〈Λ, hk〉 ∈ Z≥0 for
any k ∈ I ([36, 3.5.6, 3.5.8]). In this case, the integrable highest weight Uq-module
with highest weight Λ is denoted by L(Λ).

For a Uε(g)-module M (defined over C), we define highest weight modules,
integrable modules, etc. in a similar way.

Suppose Λ is dominant. Let L(Λ)Z def.
= UZ

q (g) ∗ m0, where m0 is the highest

weight vector. It is known that the natural map L(Λ)Z ⊗Z[q,q−1] Q(q) → L(Λ)

is an isomorphism and L(Λ)Z ⊗Z[q,q−1] C is the simple integrable highest weight
module of the corresponding Kac-Moody algebra g with highest weight Λ, where
Z[q, q−1]→ C is the homomorphism that sends q to 1 ([36, Chapter 14 and 33.1.3]).
Unless ε is a root of unity, the simple integrable highest weight Uε(g)-module is
the specialization of L(Λ)Z ([10, 10.1.14, 10.1.15]).

1.2. Quantum affine algebra. The quantum affinization Uq(ĝ) of Uq(g) (or
simply quantum affine algebra) is an associative algebra over Q(q) generated by
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ek,r, fk,r (k ∈ I, r ∈ Z), qh (h ∈ P ∗), q±c/2, q±d, and hk,m (k ∈ I, m ∈ Z \ {0})
with the following defining relations:

q±c/2 is central,(1.2.1)

q0 = 1, qhqh
′

= qh+h′

, [qh, hk,m] = 0, qdq−d = 1, qc/2q−c/2 = 1,(1.2.2)

ψ±
k (z)ψ±

l (w) = ψ±
l (w)ψ±

k (z),(1.2.3)

ψ−
k (z)ψ+

l (w) =
(z − q−(αk,αl)qcw)(z − q(αk,αl)q−cw)

(z − q(αk,αl)qcw)(z − q−(αk,αl)q−cw)
ψ+
l (w)ψ−

k (z),(1.2.4)

[qd, qh] = 0, qdhk,mq
−d = qmhk,m,

qdek,rq
−d = qrek,r, qdfk,rq

−d = qrfk,r,
(1.2.5)

qhek,rq
−h = q〈h,αk〉ek,r, qhfk,rq

−h = q−〈h,αk〉fk,r,(1.2.6)

(q±sc/2z − q±〈hk,αl〉w)ψsl (z)x
±
k (w)

= (q±〈hk,αl〉q±sc/2z − w)x±k (w)ψsl (z),
(1.2.7)

[
x+
k (z), x−l (w)

]
=

δkl

qk − q−1
k

{
δ
(
qc
w

z

)
ψ+
k (qc/2w)− δ

(
qc
z

w

)
ψ−
k (qc/2z)

}
,(1.2.8)

(z − q±2w)x±k (z)x±k (w) = (q±2z − w)x±k (w)x±k (z),(1.2.9)

−〈αk,hl〉∏

p=1

(z − q±(b′−2p)w)x±k (z)x±l (w)

=

−〈αk,hl〉∏

p=1

(q±(b′−2p)z − w)x±l (w)x±k (z), if k 6= l,

(1.2.10)

(1.2.11)
∑

σ∈Sb

b∑

p=0

(−1)p
[
b
p

]

qk

x±k (zσ(1)) · · ·x±k (zσ(p))x
±
l (w)x±k (zσ(p+1))

· · ·x±k (zσ(b)) = 0, if k 6= l,

where qk = q(αk,αk)/2, s = ±, b = 1 − 〈hk, αl〉, b′ = −(αk, αl), and Sb is the sym-
metric group of b letters. Here δ(z), x+

k (z), x−k (z), ψ±
k (z) are generating functions

defined by

δ(z)
def.
=

∞∑

r=−∞

zr, x+
k (z)

def.
=

∞∑

r=−∞

ek,rz
−r, x−k (z)

def.
=

∞∑

r=−∞

fk,rz
−r,

ψ±
k (z)

def.
= q±(αk,αk)hk/2 exp

(
±(qk − q−1

k )
∞∑

m=1

hk,±mz
∓m

)
.

We will also need the following generating function later:

p±k (z)
def.
= exp

(
−

∞∑

m=1

hk,±m
[m]qk

z∓m

)
.

We have ψ±
k (z) = q±(αk,αk)hk/2p±k (qkz)/p

±
k (q−1

k z).
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Remark 1.2.12. When g is finite dimensional, then min(〈αk, hl〉, 〈αl, hk〉) = 0 or 1.
Then the relation (1.2.10) reduces to the one in literature. Our generalization seems
natural since we will check it later, at least for symmetric g.

Let Uq(ĝ)+ (resp. Uq(ĝ)−) be the Q(q)-subalgebra of Uq(ĝ) generated by the
elements ek,r (resp. fk,r). Let Uq(ĝ)0 be the Q(q)-subalgebra generated by the
elements qh, hk,m.

The quantum loop algebra Uq(Lg) is the subalgebra of Uq(ĝ)/(q±c/2 − 1) gen-
erated by ek,r, fk,r (k ∈ I, r ∈ Z), qh (h ∈ P ∗), and hk,m (k ∈ I, m ∈ Z \ {0}),
i.e., generators other than q±c/2, q±d. We will be concerned only with the quantum
loop algebra, and not with the quantum affine algebra in the sequel.

There is a homomorphism Uq(g)→ Uq(Lg) defined by

qh 7→ qh, ek 7→ ek,0, fk 7→ fk,0.

Let e
(n)
k,r

def.
= enk,r/[n]qk

! and f
(n)
k,r

def.
= fnk,r/[n]qk

!. Let UZ
q (Lg) be the Z[q, q−1]-

subalgebra generated by e
(n)
k,r , f

(n)
k,r , qh and the coefficients of p±k (z) for k ∈ I,

r ∈ Z, n ∈ Z>0, h ∈ P ∗. (It should be true that UZ
q (Lg) is free over Z[q, q−1] and

that the natural map UZ
q (Lg)⊗Z[q,q−1] Q(q)→ Uq(Lg) is an isomorphism. But the

author does not know how to prove this.) This subalgebra was introduced by Chari-
Pressley [12]. Let UZ

q (Lg)+ (resp. UZ
q (Lg)−) be the Z[q, q−1]-subalgebra generated

by e
(n)
k,r (resp. f

(n)
k,r ) for k ∈ I, r ∈ Z, n ∈ Z>0. We have UZ

q (Lg)± ⊂ UZ
q (Lg). Let

UZ
q (Lg)0 be the Z[q, q−1]-subalgebra generated by qh, the coefficients of p±k (z) and

[
qhk ;n
r

]
def.
=

r∏

s=1

q(αk,αk)hk/2qn−s+1
k − q−(αk,αk)hk/2q−n+s−1

k

qsk − q−sk
for all h ∈ P , k ∈ I, n ∈ Z, r ∈ Z>0. One can easily show that UZ

q (Lg)0 ⊂ UZ
q (Lg)

(see, e.g., [36, 3.1.9]).
For ε ∈ C∗, let Uε(Lg) be the specialized quantum loop algebra defined by

UZ
q (Lg) ⊗Z[q,q−1] C via the algebra homomorphism Z[q, q−1] → C that takes q

to ε. We assume ε is not a root of unity in this paper. Let Uε(Lg)± and Uε(Lg)0

be the specializations of UZ
q (Lg)± and UZ

q (Lg)0 respectively. We have a weak form
of the triangular decomposition

Uε(Lg) = Uε(Lg)− ·Uε(Lg)0 ·Uε(Lg)+,(1.2.13)

which follows from the definition (cf. [12, 6.1]).
We say a Uε(Lg)-module M is an l-highest weight module (‘l ’ stands for the

loop) with l-highest weight (Λ, (Ψ±
k (z))k) (where Λ ∈ P , (Ψ±

k (z))k ∈ C[[z∓]]I) if
there exists a vector m0 ∈M such that

ek,r ∗m0 = 0, Uε(Lg)− ∗m0 = M,

(1.2.14)

qh ∗m0 = ε〈h,Λ〉m0 for h ∈ P ∗, ψ±
k (z) ∗m0 = Ψ±

k (z)m0 for k ∈ I.
(1.2.15)

By using (1.2.13) and a standard argument, one can show that there is a simple
l -highest weight module M of Uε(Lg) with l -highest weight vector m0 satisfy-
ing the above for any (Λ, (Ψ±

k (z))k) with Ψ+
k (∞) = (αk, αk)〈Λ, hk〉/2, Ψ−

k (0) =
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−(αk, αk)〈Λ, hk〉/2. Moreover, such M is unique up to isomorphism. For abuse of
notation, we denote the pair (Λ, (Ψ±

k (z))k) simply by the symbol Ψ±(z).
A Uε(Lg)-module M is said to be l-integrable if

(a) M has a weight space decomposition M =
⊕

λ∈P Mλ as a Uε(g)-module
such that dimMλ <∞,

(b) for anym ∈M , there exists n0 ≥ 1 such that ek,r1 · · · ek,rn
∗m = fk,r1 · · · fk,rn

∗m = 0 for all r1, . . . , rn ∈ Z, k ∈ I and n ≥ n0.

For example, if g is finite dimensional, and M is a finite dimensional module, then
M satisfies the above conditions after twisting with a certain automorphism of
Uε(Lg) ([10, 12.2.3]).

Proposition 1.2.16. Assume that g is symmetric. The simple l -highest weight

Uε(Lg)-module M with l-highest weight Ψ±(z) is l -integrable if and only if Λ is

dominant and there exist polynomials Pk(u) ∈ C[u] for k ∈ I with Pk(0) = 1 such

that

Ψ±
k (z) = εdegPk

k

(
Pk(ε

−1
k /z)

Pk(εk/z)

)±

,(1.2.17)

where εk = ε(αk,αk)/2, and ( )± ∈ C[[z∓]] denotes the expansion at z = ∞ and 0
respectively.

This result was announced by Drinfel’d for the Yangian [15]. The proof of the
‘only if’ part when g is finite dimensional was given by Chari-Pressley [10, 12.2.6].
Since the proof is based on a reduction to the case g = sl2, it can be applied
to a general Kac-Moody algebra g (not necessarily symmetric). The ‘if’ part was
proved by them later in [11] when g is finite dimensional, again not necessarily
symmetric. As an application of the main result of this paper, we will prove the
converse for a symmetric Kac-Moody algebra g in §13. Our proof is independent
of Chari-Pressley’s proof.

Remark 1.2.18. The polynomials Pk are called Drinfel’d polynomials.

When the Drinfel’d polynomials are given by

Pk(u) =

{
1− su if k 6= k0,

1 otherwise,

for some k0 ∈ I, s ∈ C∗, the corresponding simple l -highest weight module is
called an l-fundamental representation. When g is finite dimensional, Uε(Lg) is
a Hopf algebra since Drinfel’d [15] announced and Beck [5] proved that Uε(Lg)
can be identified with (a quotient of) the specialized quantized enveloping algebra
associated with Cartan data of affine type. Thus a tensor product of Uε(Lg)-
modules is again a Uε(Lg)-module. We have the following:

Proposition 1.2.19 ([10, 12.2.6,12.2.8]). Suppose g is finite dimensional.

(1) If M and N are simple l -highest weight Uε(Lg)-modules with Drinfel’d poly-

nomials Pk,M , Pk,N such that M ⊗ N is simple, then its Drinfel’d polynomial

Pk,M⊗N is given by

Pk,M⊗N = Pk,MPk,N .

(2) Every simple l -highest weight Uε(Lg)-module is a subquotient of a tensor

product of l -fundamental representations.
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Unfortunately the coproduct is not defined for general g as far as the author
knows. Thus the above results do not make sense for general g.

1.3. An l-weight space decomposition. Let M be an l -integrable Uε(Lg)-
module with the weight space decomposition M =

⊕
λ∈P Mλ. Since the com-

mutative subalgebra Uε(Lg)0 preserves each Mλ, we can further decompose M
into a sum of generalized simultaneous eigenspaces for Uε(Lg)0:

M =
⊕

MΨ± ,(1.3.1)

where Ψ±(z) is a pair (Λ, (Ψ±
k (z))k) as before and

MΨ±

def.
=




m ∈M

∣∣∣∣∣∣∣

qh ∗m = ε〈h,Λ〉m for h ∈ P ∗,

(ψ±
k (z)−Ψ±

k (z) Id)N ∗m = 0

for k ∈ I and sufficiently large N




.

If MΨ± 6= 0, we call MΨ± an l-weight space, and the corresponding Ψ±(z) an l-

weight. This is a refinement of the weight space decomposition. A further study of
the l -weight space decomposition will be given in §13.5.

Motivated by Proposition 1.2.16, we introduce the following notion:

Definition 1.3.2. An l -weight Ψ±(z) = (Λ, (Ψ±
k (z))k) is said to be l -dominant if

Λ is dominant and there exists a polynomial P (u) = (Pk(u))k ∈ C[u]I for with
Pk(0) = 1 such that (1.2.17) holds.

Thus Proposition 1.2.16 means that an l -highest weight module is l -integrable if
and only if the l -highest weight is l -dominant.

2. Quiver variety

2.1. Notation. Suppose that a finite graph is given and assume that there are no
edge loops, i.e., no edges joining a vertex with itself. Let I be the set of vertices
and E the set of edges. Let A be the adjacency matrix of the graph, namely

A = (Akl)k,l∈I , where Akl is the number of edges joining k and l.

We associate with the graph (I, E) a symmetric generalized Cartan matrix C =
2I − A, where I is the identity matrix. This gives a bijection between the finite
graphs without edge loops and symmetric Cartan matrices. We have the corre-
sponding symmetric Kac-Moody algebra g, the quantized enveloping algebra Uq(g),
the quantum affine algebra Uq(ĝ) and the quantum loop algebra Uq(Lg). Let H
be the set of pairs consisting of an edge together with its orientation. For h ∈ H ,
we denote by in(h) (resp. out(h)) the incoming (resp. outgoing) vertex of h. For

h ∈ H we denote by h the same edge as h with the reverse orientation. Choose
and fix an orientation Ω of the graph, i.e., a subset Ω ⊂ H such that Ω ∪ Ω = H ,
Ω∩Ω = ∅. The pair (I,Ω) is called a quiver. Let us define matrices AΩ and AΩ by

(AΩ)kl
def.
= #{h ∈ Ω | in(h) = k, out(h) = l},

(AΩ)kl
def.
= #{h ∈ Ω | in(h) = k, out(h) = l}.

(2.1.1)

So we have A = AΩ + AΩ, tAΩ = AΩ.
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Let V = (Vk)k∈I be a collection of finite-dimensional vector spaces over C for
each vertex k ∈ I. The dimension of V is a vector

dimV = (dimVk)k∈I ∈ ZI≥0.

If V 1 and V 2 are such collections, we define vector spaces by

L(V 1, V 2)
def.
=
⊕

k∈I

Hom(V 1
k , V

2
k ),

E(V 1, V 2)
def.
=
⊕

h∈H

Hom(V 1
out(h), V

2
in(h)).

(2.1.2)

For B = (Bh) ∈ E(V 1, V 2) and C = (Ch) ∈ E(V 2, V 3), let us define a multipli-
cation of B and C by

CB
def.
= (

∑

in(h)=k

ChBh)k ∈ L(V 1, V 3).

Multiplications ba, Ba of a ∈ L(V 1, V 2), b ∈ L(V 2, V 3), B ∈ E(V 2, V 3) are defined
in an obvious manner. If a ∈ L(V 1, V 1), its trace tr(a) is understood as

∑
k tr(ak).

For two collections V , W of vector spaces with v = dimV , w = dimW , we
consider the vector space given by

M ≡M(v,w)
def.
= E(V, V )⊕ L(W,V )⊕ L(V,W ),(2.1.3)

where we use the notation M unless we want to specify dimensions of V , W . The
above three components for an element of M will be denoted by B, i, j respectively.
An element of M will be called an ADHM datum.

Usually a point in
⊕

h∈Ω Hom(V 1
out(h), V

2
in(h)) is called a representation of the

quiver (I,Ω) in the literature. Thus E(V, V ) is the product of the space of repre-
sentations of (I,Ω) and that of (I,Ω). On the other hand, the factor L(W,V ) or
L(V,W ) has never appeared in the literature.

Convention 2.1.4. When we relate the quiver varieties to the quantum affine al-
gebra, the dimension vectors will be mapped into the weight lattice in the following
way:

v 7→
∑

k

vkαk, w 7→
∑

k

wkΛk,

where vk (resp. wk) is the kth component of v (resp. w). Since {αk} and {Λk}
are both linearly independent, these maps are injective. We consider v and w as
elements of the weight lattice P in this way hereafter.

For a collection S = (Sk)k∈I of subspaces of Vk and B ∈ E(V, V ), we say S is
B-invariant if Bh(Sout(h)) ⊂ Sin(h).

Fix a function ε : H → C∗ such that ε(h) + ε(h) = 0 for all h ∈ H . In [44, 45],
it was assumed that ε takes its value ±1, but this assumption is not necessary as
remarked by Lusztig [38]. For B ∈ E(V 1, V 2), let us denote by εB ∈ E(V 1, V 2)
data given by (εB)h = ε(h)Bh for h ∈ H .

Let us define a symplectic form ω on M by

ω((B, i, j), (B′, i′, j′))
def.
= tr(εB B′) + tr(ij′ − i′j).(2.1.5)
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Let G be the algebraic group defined by

G ≡ Gv

def.
=
∏

k

GL(Vk),

where we use the notation Gv when we want to emphasize the dimension. It acts
on M by

(B, i, j) 7→ g · (B, i, j) def.
= (gBg−1, gi, jg−1),(2.1.6)

preserving the symplectic form ω. The moment map µ : M→ L(V, V ) vanishing at
the origin is given by

µ(B, i, j) = εBB + ij,(2.1.7)

where the dual of the Lie algebra of G is identified with the Lie algebra via the
trace. Let µ−1(0) be an affine algebraic variety (not necessarily irreducible) defined
as the zero set of µ.

For (B, i, j) ∈ µ−1(0), we consider the complex

L(V, V )
ι−→ E(V, V )⊕ L(W,V )⊕ L(V,W )

dµ−→ L(V, V ),(2.1.8)

where dµ is the differential of µ at (B, i, j), and ι is given by

ι(ξ) = (Bξ − ξB)⊕ (−ξi)⊕ jξ.
If we identify E(V, V ) ⊕ L(W,V ) ⊕ L(V,W ) with its dual via the symplectic form
ω, ι is the transpose of dµ.

2.2. Two quotients M0 and M. We consider two types of quotients of µ−1(0) by
the group G. The first one is the affine algebro-geometric quotient given as follows.
Let A(µ−1(0)) be the coordinate ring of the affine algebraic variety µ−1(0). Then
M0 is defined as a variety whose coordinate ring is the invariant part of A(µ−1(0)):

M0 ≡M0(v,w)
def.
= µ−1(0)//G = SpecA(µ−1(0))G.(2.2.1)

As before, we use the notation M0 unless we need to specify the dimension vectors
v, w. By the geometric invariant theory [43], this is an affine algebraic variety. It
is also known that the geometric points of M0 are closed G-orbits.

For the second quotient we follow A. King’s approach [27]. Let us define a
character χ : G→ C∗ by χ(g) =

∏
k det g−1

k for g = (gk). Set

A(µ−1(0))G,χ
n def.

= { f ∈ A(µ−1(0)) | f(g(B, i, j)) = χ(g)nf(B, i, j) }.
The direct sum with respect to n ∈ Z≥0 is a graded algebra, hence we can define

M ≡M(v,w)
def.
= Proj

⊕

n≥0

A(µ−1(0))G,χ
n

.(2.2.2)

These are what we call quiver varieties.

2.3. Stability condition. In this subsection, we shall give a description of the
quiver variety M which is easier to deal with. We again follow King’s work [27].

Definition 2.3.1. A point (B, i, j) ∈ µ−1(0) is said to be stable if the following
condition holds:

if a collection S = (Sk)k∈I of subspaces of V = (Vk)k∈I is B-invariant and
contained in Ker j, then S = 0.

Let us denote by µ−1(0)s the set of stable points.
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Clearly, the stability condition is invariant under the action of G. Hence we may
say an orbit is stable or not.

Let us lift the G-action on µ−1(0) to the trivial line bundle µ−1(0) × C by
g · (B, i, j, z) = (g · (B, i, j), χ−1(g)z).

We have the following:

Proposition 2.3.2. (1) A point (B, i, j) is stable if and only if the closure of G ·
(B, i, j, z) does not intersect with the zero section of µ−1(0)× C for z 6= 0.

(2) If (B, i, j) is stable, then the differential dµ : M → L(V, V ) is surjective. In

particular, µ−1(0)s is a nonsingular variety.

(3) If (B, i, j) is stable, then ι in (2.1.8) is injective.

(4) The quotient µ−1(0)s/G has a structure of nonsingular quasi-projective vari-

ety of dimension (v, 2w−v), and µ−1(0)s is a principal G-bundle over µ−1(0)s/G.

(5) The tangent space of µ−1(0)s/G at the orbit G · (B, i, j) is isomorphic to the

middle cohomology group of (2.1.8).
(6) The variety M is isomorphic to µ−1(0)s/G.

(7) µ−1(0)s/G has a holomorphic symplectic structure as a symplectic quotient.

Proof. See [45, 3.ii] and [44, 2.8].

Notation 2.3.3. For a stable point (B, i, j) ∈ µ−1(0), its G-orbit considered as a
geometric point in the quiver variety M is denoted by [B, i, j]. If (B, i, j) ∈ µ−1(0)
has a closed G-orbit, then the corresponding geometric point in M0 will be denoted
also by [B, i, j].

From the definition, we have a natural projective morphism (see [45, 3.18])

π : M→M0.(2.3.4)

If π([B, i, j]) = [B0, i0, j0], then G · (B0, i0, j0) is the unique closed orbit contained
in the closure of G · (B, i, j). For x ∈M0, let

Mx
def.
= π−1(x).(2.3.5)

If we want to specify the dimension, we denote the above by M(v,w)x. Un-
fortunately, this notation conflicts with the previous notation M0 when x = 0.
And the central fiber π−1(0) plays an important role later. We shall always write
L ≡ L(v,w) for π−1(0) and not use the notation (2.3.5) with x = 0.

In order to explain a more precise relation between [B, i, j] and [B0, i0, j0], we
need the following notion.

Definition 2.3.6. Suppose that (B, i, j) ∈M and a B-invariant increasing filtra-
tion

0 = V (−1) ⊂ V (0) ⊂ · · · ⊂ V (N) = V

with Im i ⊂ V (0) are given. Then set grm V = V (m)/V (m−1) and grV =
⊕

grm V .
Let grmB denote the endomorphism which B induces on grm V . For m = 0, let
gr0 i ∈ L(W,V (0)) be such that its composition with the inclusion V (0) ⊂ V is i,
and let gr0 j be the restriction of j to V (0). For m 6= 0, set grm i = 0 and grm j = 0.
Let gr(B, i, j) be the direct sum of (grmB, grm i, grm j) considered as data on grV .

Proposition 2.3.7. Suppose π(x) = y. Then there exist a representative (B, i, j)
of x and a B-invariant increasing filtration V (∗) as in Definition 2.3.6 such that

gr(B, i, j) is a representative of y on grV .
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Proof. See [45, 3.20]

Proposition 2.3.8. L is a Lagrangian subvariety which is homotopic to M.

Proof. See [44, 5.5, 5.8].

2.4. Hyper-Kähler structure. We briefly recall hyper-Kähler structures on M,
M0. This viewpoint was used for the study of M, M0 in [44]. (Caution: The
following notation is different from the original one. Kv and Gv were denoted by
Gv and GC

v
respectively in [44]. µ in (2.1.7) was denoted by µC and the pair (µR, µ)

was denoted by µ in [44].)
Put and fix hermitian inner products on V and W . They together with an

orientation Ω induce a hermitian inner product and a quaternion structure on M
([44, p.370]). Let Kv be a compact Lie group defined by Kv =

∏
k U(Vk). This is

a maximal compact subgroup of Gv, and acts on M preserving the hermitian and
quaternion structures. The corresponding hyper-Kähler moment map vanishing at
the origin decomposes into the complex part µ : M→⊕

k gl(Vk) = L(V, V ) (defined
in (2.1.7)) and the real part µR : M→⊕

k u(Vk), where

µR(B, i, j) =
i

2


 ∑

h∈H:k=in(h)

BhB
†
h −B†

h
Bh + iki

†
k − j†kjk



k

.

Proposition 2.4.1. (1) A Gv-orbit [B, i, j] in µ−1(0) intersects with µ−1
R

(0) if and

only if it is closed. The map
(
µ−1

R
(0) ∩ µ−1(0)

)
/Kv → µ−1(0)//Gv = M0(v,w)

is a homeomorphism.

(2) Choose a parameter ζR = (ζ
(k)
R

)k ∈ RI so that ζ
(k)
R
∈
√
−1R>0. Then a

Gv-orbit [B, i, j] in µ−1(0) intersects with µ−1
R

(−ζR) if and only if it is stable. The

map
(
µ−1

R
(−ζR) ∩ µ−1(0)

)
/Kv → µ−1(0)s/G = M(v,w)

is a homeomorphism.

Proof. See [44, 3.1,3.2,3.5].

2.5. Suppose V = (Vk)k∈I is a collection of subspaces of V ′ = (V ′
k)k∈I and

(B, i, j) ∈ µ−1(0) ⊂ M(v,w) is given. We can extend (B, i, j) to M(v′,w) by
letting it equal 0 on a complementary subspace of V in V ′. This operation induces
a natural morphism

µ−1(0) in M(v,w)→ µ−1(0) in M(v′,w),(2.5.1)

where v′ = dim V ′. This induces a morphism

M0(v,w)→M0(v
′,w).(2.5.2)

Moreover, we also have a map

µ−1(0) ∩ µ−1
R

(0) in M(v,w)→ µ−1(0) ∩ µ−1
R

(0) in M(v′,w).

Thus closed Gv-orbits in µ−1(0) ⊂ M(v,w) are mapped to closed Gv′-orbits in
µ−1(0) ⊂M(v′,w) by Proposition 2.4.1(1).

The following lemma was stated in [45, p.529] without proof.

Lemma 2.5.3. The morphism (2.5.2) is injective.
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Proof. Suppose x1, x2 ∈M0(v,w) have the same image under (2.5.2). We choose
representatives (B1, i1, j1), (B2, i2, j2) which have closed Gv-orbits.

Let us define Sa = (Sak )k∈I (a = 1, 2) by

Sak
def.
= Im


 ∑

in(h)=k

ε(h)Bah + iak


 .

Choose complementary subspaces T ak of Sak in Vk. We choose a 1-parameter sub-
group λa : C∗ → Gv as follows: λa(t) = 1 on Sak and λa(t) = t−1 on T ak . Then the
limit λa(t) · (Ba, ia, ja) exists and its restriction to T ak is 0. Since (Ba, ia, ja) has
a closed orbit, we may assume that the restriction of (Ba, ia, ja) to T ak is 0. Note
that Sa is a subspace of V by the construction.

Suppose that there exists g′ ∈ Gv′ such that g′ · (B1, i1, j1) = (B2, i2, j2). We
want to construct g ∈ Gv such that g · (B1, i1, j1) = (B2, i2, j2). Since we have
g′(S1) = S2, the restriction of g′ to S1 is invertible. Let g be an extension of the
restriction g′|S1 to V so that T 1 is mapped to T 2. Then g ∈ Gv maps (B1, i1, j1)
to (B2, i2, j2).

Hereafter, we consider M0(v,w) as a subset of M0(v
′,w). It is clearly a closed

subvariety. Let

M0(∞,w)
def.
=
⋃

v

M0(v,w).(2.5.4)

If the graph is of finite type, M0(v,w) stabilizes at some v (see Proposition 2.6.3
and Lemma 2.9.4(2) below). This is not true in general. However, it presents no
harm in this paper. We use M0(∞,w) to simplify the notation, and do not need any
structures on it. We can always work on individual M0(v,w), not on M0(∞,w).

Later, we shall also study M(v,w) for various v simultaneously. We introduce
the following notation:

M(w)
def.
=
⊔

v

M(v,w), L(w)
def.
=
⊔

v

L(v,w).

Note that there are no obvious morphisms between M(v,w) and M(v′,w) since
the stability condition is not preserved under (2.5.1).

2.6. Definition of M
reg
0 . Let us introduce an open subset of M0 (possibly empty):

M
reg
0 ≡M

reg
0 (v,w)

def.
= { [B, i, j] ∈M0 | (B, i, j) has the trivial stabilizer in G }.

(2.6.1)

Proposition 2.6.2. If [B, i, j] ∈ M
reg
0 , then it is stable. Moreover, π induces an

isomorphism π−1(Mreg
0 ) ≃M

reg
0 .

Proof. See [45, 3.24] or [44, 4.1(2)].

As in §2.5, we consider M
reg
0 (v,w) as a subset of M0(v

′,w) when v′ − v ∈∑
k Z≥0αk. Then we have

Proposition 2.6.3. If the graph is of type ADE, then

M0(v
′,w) =

⋃

v

M
reg
0 (v,w),

where the summation runs over the set of v such that v′ − v ∈∑k Z≥0αk.
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Proof. See [44, 6.7], [45, 3.28].

Definition 2.6.4. We say a point x ∈ M0(∞,w) is regular if it is contained in
M

reg
0 (v,w) for some v. The above proposition says that all points are regular if

the graph is of type ADE. But this is not true in general (see [45, 10.10]).

2.7. Gw×C∗-action. Let us define a Gw×C∗-action on M and M0, where Gw =∏
k∈I GL(Wk). (Caution: We use the same notation Gv and Gw, but their roles

are totally different.)
The Gw-action is simply defined by its natural action on M = E(V, V ) ⊕

L(W,V ) ⊕ L(V,W ). It preserves the equation εBB + ij = 0 and commutes with
the G-action given by (2.1.6). Hence it induces an action on M and M0.

The C∗-action is slightly different from the one given in [45, 3.iv], and we need
extra data. For each pair k, l ∈ I such that b′ = −(αk, αl) ≥ 1, we introduce
and fix a numbering 1, 2, . . . , b′ on edges joining k and l. It induces a numbering
h1, . . . , hb′ ∈ Ω, h1, . . . , hb′ ∈ Ω on oriented edges between k and l. Let us define
m : H → Z by

m(hp) = b′ + 1− 2p, m(hp) = −b′ − 1 + 2p.(2.7.1)

Then we define a C∗-action on M by

Bh 7→ tm(h)+1Bh, i 7→ ti, j 7→ tj for t ∈ C∗.(2.7.2)

The equation εBB + ij = 0 is preserved since the left hand side is multiplied by
t2. It commutes with the G-action and preserves the stability condition. Hence
it induces a C∗-action on M and M0. This Gw × C∗-action makes the projective
morphism π : M→M0 equivariant.

In order to distinguish this Gw×C∗-action from the Gv-action (2.1.6), we denote
it as

(B, i, j) 7→ h ⋆ (B, i, j) (h ∈ Gw × C∗).

2.8. Notation for C∗-action. For an integer m, we define a C∗-module structure
on C by

t · v def.
= tmv, t ∈ C∗, v ∈ C,(2.8.1)

and denote it by L(m). For a C∗-module V , we use the following notational con-
vention:

qmV
def.
= L(m)⊗ V.(2.8.2)

We use the same notation later when V is an element of C∗-equivariant K-theory.

2.9. Tautological bundles. By the construction of M, we have a natural vector
bundle

µ−1(0)s ×G Vk →M

associated with the principal G-bundle µ−1(0)s → M. For abuse of notation, we
denote it also by Vk. It naturally has the structure of a C∗-equivariant vector
bundle. Letting Gw act trivially, we make it a Gw ×C∗-equivariant vector bundle.

The vector space Wk is also considered as a Gw ×C∗-equivariant vector bundle,
where Gw acts naturally and C∗ acts trivially.

We call Vk and Wk tautological bundles.
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We consider E(V, V ), L(W,V ), L(V,W ) as vector bundles defined by the same
formula as in (2.1.2). By the definition of tautological bundles, B, i, j can be
considered as sections of those bundles. Those bundles naturally have structures of
Gw × C∗-equivariant vector bundles. But we modify the C∗-action on E(V, V ) by
letting t ∈ C∗ act by tm(h)+1 on the component Hom(Vout(h), Vin(h)). This makes
B an equivariant section of E(V, V ).

We consider the following Gw × C∗-equivariant complex C•
k ≡ C•

k(v,w) over
M ≡M(v,w) (cf. [45, 4.2]):

C•
k ≡ C•

k (v,w) : q−2Vk
σk−−−−→ q−1


⊕

l:k 6=l

[−〈hk, αl〉]qVl ⊕Wk


 τk−−−−→ Vk,

(2.9.1)

where

σk =
⊕

in(h)=k

Bh ⊕ jk, τk =
∑

in(h)=k

ε(h)Bh + ik.

Let us explain the factor [−〈hk, αl〉]qVl. Set b′ = −〈hk, αl〉. Since the C∗-action in
(2.7.2) is defined so that

⊕

h:
in(h)=k
out(h)=l

Hom(Vk, Vl) = Hom(Vk, Vl)
⊕b′

has weights b′, b′ − 2, . . . , 2− b′, the above can be written as
(
qb

′

+ qb
′−2 + · · ·+ q2−b

′
)

Hom(Vk, Vl) = q[b′]q Hom(Vk, Vl)

in the notation (2.8.2). By the same reason C•
k is an equivariant complex.

We assign degree 0 to the middle term. (This complex is the complex in [45, 4.2]
with a modification of the Gw × C∗-action.)

Lemma 2.9.2. Fix a point [B, i, j] and consider C•
k as a complex of vector spaces.

Then σk is injective.

Proof. See [45, p.530]. (Lemma 54 therein is a misprint of Lemma 5.2.)

Note that τk is not surjective in general. In fact, the following notion will play
a crucial role later. Let X be an irreducible component of π−1(x) for x ∈ M0.
Considering τk at a generic element [B, i, j] of X , we set

εk(X)
def.
= codimVk

Im τk.(2.9.3)

Lemma 2.9.4. (1) Take and fix a point [B, i, j] ∈M(v,w). Let τk be as in (2.9.1).
If [B, i, j] ∈ π−1(Mreg

0 (v,w)), then we have

Im τk = Vk for any k ∈ I.(2.9.5)

Moreover, the converse holds if we assume π([B, i, j]) is regular in the sense of

Definition 2.6.4. Namely under this assumption, [B, i, j] ∈ π−1(Mreg
0 (v,w)) if and

only if (2.9.5) holds.

(2) If M
reg
0 (v,w) 6= ∅, then w − v is dominant.
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Proof. (1) See [45, 4.7] for the first assertion. During the proof of [45, 7.2], we have
shown the second assertion, using [45, 3.10] = Proposition 2.3.7.

(2) Consider the alternating sum of dimensions of the complex C•
k . It is equal

to the alternating sum of dimensions of cohomology groups. It is nonnegative, if
M

reg
0 (v,w) 6= ∅ by Lemma 2.9.2 and (1). On the other hand, it is equal to

∑

h:out(h)=k

dimVin(h) +Wk − 2 dimVk = 〈w − v, hk〉.

Thus we have the assertion.

3. Stratification of M0

As was shown in [44, §6] and [45, 3.v], there exists a natural stratification of M0

by conjugacy classes of stabilizers. A local topological structure of a neighborhood
of a point in a stratum (e.g., the homology group of the fiber of π) was studied in
[44, 6.10]. We give a refinement in this section. We define a slice to a stratum,
and study a local structure as a complex analytic space. Our technique is based on
work of Sjamaar-Lerman [50] in the symplectic geometry and hence our transversal
slice may not be algebraic. It is desirable to have a purely algebraic construction
of a transversal slice, as Maffei did in a special case [42].

We fix dimension vectors v, w and denote M(v,w), M(v,w) by M, M in this
section.

3.1. Stratification.

Definition 3.1.1 (cf. Sjamaar-Lerman [50]). For a subgroup Ĝ of G denote by

M(Ĝ) the set of all points in M whose stabilizer is conjugate to Ĝ. A point

[(B, i, j)] ∈ M0 is said to be of G-orbit type (Ĝ) if its representative (B, i, j) is

in M(Ĝ). The set of all points of orbit type (Ĝ) is denoted by (M0)(Ĝ).

The stratum (M0)(1) corresponding to the trivial subgroup 1 is M
reg
0 by defini-

tion. We have the following decomposition of M0:

M0 =
⋃

(Ĝ)

(M0)(Ĝ),

where the summation runs over the set of all conjugacy classes of subgroups of G.
For a more detailed description of (M0)(Ĝ), see [44, 6.5], [45, 3.27].

3.2. Local normal form of the moment map. Let us recall the local normal
form of the moment map following Sjamaar-Lerman [50].

Take x ∈ M0 and fix its representative m = (B, i, j) ∈ µ−1(0). We suppose m

has a closed G-orbit and satisfies µR(m) = 0 by Proposition 2.4.1(1). Let Ĝ be
the stabilizer of m. It is the complexification of the stabilizer in K =

∏
U(Vk)

(see, e.g., [51, 1.6]). Since µ(m) = 0, the G-orbit Gm = G/Ĝ through m is an

isotropic submanifold of M. Let M̂ be the quotient vector space (TmGm)ω/TmGm,
where TmGm is the tangent space of the orbit Gm, and (TmGm)ω is the symplectic
perpendicular of TmGm in TmM, i.e., {v ∈ TmM | ω(v, w) = 0 for all w ∈ TmGm}.
This is naturally a symplectic vector space. A vector bundle T (Gm)ω/T (Gm) over
Gm is called the symplectic normal bundle. (In general, the symplectic normal
bundle of an isotropic submanifold S is defined by TSω/TS.) It is isomorphic to

G ×Ĝ M̂. (In [44, p.388], M̂ was defined as the orthogonal complement of the
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quaternion vector subspace spanned by TmKm with respect to the Riemannian

metric.) The action of Ĝ on M̂ preserves the induced symplectic structure on M̂.

Let µ̂ : M̂→ ĝ∗ be the corresponding moment map vanishing at the origin.

We choose an Ad(Ĝ)-invariant splitting g = ĝ⊕ĝ⊥ and its dual splitting g∗ = ĝ∗⊕
ĝ⊥∗. Let us consider the natural action of Ĝ on the product T ∗G×M̂ = G×g∗×M̂.
With the natural symplectic structure on T ∗G = G×g∗, we have the moment map

µ̃ : G× g∗ × M̂ → ĝ∗

(g, ξ, m̂) 7→ − pr ξ + µ̂(m̂),

where pr ξ is the projection of ξ ∈ g∗ to ĝ∗. Zero is a regular value of µ̃, hence the

symplectic quotient µ̃−1(0)/Ĝ is a symplectic manifold. It can be identified with

G×Ĝ
(
ĝ⊥∗ × M̂

)
via the map

G×Ĝ
(
ĝ⊥∗ × M̂

)
∋ Ĝ · (g, ξ, m̂) 7−→ Ĝ · (g, ξ + µ̂(m̂), m̂) ∈ µ̃−1(0)/Ĝ.

The embedding G/Ĝ into G×Ĝ
(
ĝ⊥∗ × M̂

)
is isotropic and its symplectic normal

bundle is G×Ĝ M̂. Thus two embeddings of Gm ∼= G/Ĝ, one into M and the other

into G×Ĝ
(
ĝ⊥∗ × M̂

)
, have the isomorphic symplectic normal bundles.

The G-equivariant version of Darboux-Moser-Weinstein’s isotropic embedding
theorem (a special case of [50, 2.2]) says the following:

Lemma 3.2.1. A neighborhood of Gm (in M) is G-equivalently symplectomorphic

to a neighborhood of G/Ĝ embedded as the zero section of G ×Ĝ
(
ĝ⊥∗ × M̂

)
with

the G-moment map given by the formula

µ
(
Ĝ · (g, ξ, m̂)

)
= Ad∗(g) (ξ + µ̂(m̂)) .

(Here ‘symplectomorphic’ means that there exists a biholomorphism intertwining

symplectic structures.)

Note that Sjamaar-Lerman worked on a real symplectic manifold with a com-

pact Lie group action. Thus we need to take care when applying their result to
our situation. Darboux-Moser-Weinstein’s theorem is based on the inverse func-
tion theorem, which we have both in the category of C∞-manifolds and in that
of complex manifolds. A problem is that the domain of the symplectomorphism
may not be chosen so that it covers the whole Gm as it is noncompact. We can
overcome this problem by taking a symplectomorphism defined in a neighborhood
of the compact orbit Km first, and then extending it to a neighborhood of Gm, as
explained in the next three paragraphs. This approach is based on a result in [51].

A subset A of a G-space X is called orbitally convex with respect to the G-action
if it is invariant under K (= maximal compact subgroup of G) and for all x ∈ A and
all ξ ∈ k we have that both x and exp(

√
−1ξ)x in A implies that exp(

√
−1tξ)x ∈ A

for all t ∈ [0, 1]. By [51, 1.4], if X and Y are complex manifolds with G-actions,
and if A is an orbitally convex open subset of X and f : A→ Y is a K-equivariant
holomorphic map, then f can be uniquely extended to a G-equivariant holomorphic
map.

Suppose that X is a Kähler manifold with a (real) moment map µR : X → k∗

and that x ∈ X is a point such that µR(x) is fixed under the coadjoint action of K.
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Then [51, Claim 1.13] says that the compact orbit Kx possesses a basis of orbitally
convex open neighborhoods.

In our situation, we have a Kähler metric (§2.4) and we have assumed µR(m) = 0.
Thus Km possesses a basis of orbitally convex open neighborhoods, and we have
Lemma 3.2.1.

Now we want to study local structures of M0, M using Lemma 3.2.1. First
the equation µ = 0 implies ξ = 0, µ̂(m̂) = 0. Thus M0 and M are locally iso-
morphic to ‘quotients’ of G ×Ĝ ({0} × µ̂−1(0)) by G, i.e., ‘quotients’ of µ̂−1(0) by

Ĝ. Here the ‘quotients’ are taken in the sense of the geometric invariant theory.
Following Proposition 2.3.2(1), we say a point m̂ ∈ µ̂−1(0) is stable if the closure

of Ĝ · (m, z) does not intersect with the zero section of µ̂−1(0) × C for z 6= 0.

Here we lift the Ĝ-action to the trivial line bundle µ̂−1(0) × C by ĝ · (m̂, z) =
(ĝ · m̂, χ(g)−1z), where χ is the restriction of the one-parameter subgroup used in
§2.2. Let µ̂−1(0)s be the set of stable points. As in §2.3, we have a morphism

µ̂−1(0)s/Ĝ→ µ̂−1(0)//Ĝ, which we denote by π̂. By [51, Proposition 2.7], we may
assume that the neighborhood ofGm in Lemma 3.2.1 is saturated, i.e., the closure of
the G-orbit of a point in the neighborhood is contained in the neighborhood. Thus
under the symplectomorphism in Lemma 3.2.1, (i) closed G-orbits are mapped to

closed Ĝ-orbits, and (ii) the stability conditions are interchanged.

Proposition 3.2.2. There exist a neighborhood U (resp. U⊥) of x ∈ M0 (resp.

0 ∈ µ̂−1(0)//Ĝ) and biholomorphic maps Φ: U → U⊥, Φ̃ : π−1(U)→ π̂−1(U⊥) such

that the following diagram commutes :

π−1(U)
Φ̃−−−−→
∼=

π̂−1(U⊥)

π

y
yπ̂

U
Φ−−−−→
∼=

U⊥

In particular, π−1(x) = Mx is biholomorphic to π̂−1(0).
Furthermore, under Φ, a stratum (M0)(H) of M0 is mapped to a stratum(
µ̂−1(0)//Ĝ

)
(H)

, which is defined as in Definition 3.1.1. (If (M0)(H) intersects

with U , then H is conjugate to a subgroup of Ĝ.)

The above discussion shows Proposition 3.2.2 except for the last assertion. The
last assertion follows from the argument in [50, p.386].

3.3. Slice. By [44, p.391], we have a Ĝ-invariant splitting M̂ = T × T⊥, where T

is the tangent space Tx(M0)(Ĝ) of the stratum containing x, and Ĝ acts trivially

on T . Thus we have

µ̂−1(0)//Ĝ ∼= T ×
(
T⊥ ∩ µ̂−1(0)

)
//Ĝ,

µ̂−1(0)s/Ĝ ∼= T ×
(
T⊥ ∩ µ̂−1(0)s

)
/Ĝ.

Furthermore, it was proved that
(
T⊥ ∩ µ̂−1(0)

)
//Ĝ and

(
T⊥ ∩ µ̂−1(0)s

)
/Ĝ are

quiver varieties associated with a certain graph possibly different from the original
one, and possibly with edge loops. Replacing U⊥ if necessary, we may assume that
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U⊥ is a product of a neighborhood UT of 0 in T and US of 0 in
(
T⊥ ∩ µ̂−1(0)

)
//Ĝ.

We define a transversal slice to (M0)(Ĝ) at x as

S
def.
= Φ−1

(
U⊥ ∩

(
{0} ×

(
T⊥ ∩ µ̂−1(0)

)
//Ĝ
))

= Φ−1 ({0} × US) .

Since Φ is a local biholomorphism, this slice S satisfies the properties in [13, 3.2.19],
i.e., there exists a biholomorphism

(
U ∩ (M0)(Ĝ)

)
×S

∼=−→ U

which induces biholomorphisms between factors

{x} ×S
∼=−→ S,

(
U ∩ (M0)(Ĝ)

)
× {x} ∼=−→

(
U ∩ (M0)(Ĝ)

)
.

Remark 3.3.1. Our construction gives a slice to a stratum in

M(0,ζC) = µ−1(−ζC)//Gv

for general ζC. (See [44, p.371 and Theorem 3.1] for the definition of M(0,ζC).) In

particular, the fiber π−1(x) of π : M(ζR,ζC) → M(0,ζC) is isomorphic to the fiber of(
T⊥ ∩ µ̂−1(0)s

)
/Ĝ →

(
T⊥ ∩ µ̂−1(0)

)
//Ĝ at 0. This is a refinement of [44, 6.10],

where an isomorphism between homology groups was obtained. We also remark
that this gives a proof of smallness of

π :
⊔

ζC

M(ζR,ζC) →
⊔

ζC

M(0,ζC)

which was observed by Lusztig when g is of type ADE [40]. An essential point is,

as remarked in [44, 6.11], that
(
T⊥ ∩ µ̂−1(0)s

)
/Ĝ is diffeomorphic to an affine alge-

braic variety, and its homology group vanishes for degree greater than its complex
dimension.

For our application, we only need the case when x is regular, i.e., x ∈M
reg
0 (v0,w)

for some v0. Then, by [44, p.392],
(
T⊥ ∩ µ̂−1(0)

)
//Ĝ and

(
T⊥ ∩ µ̂−1(0)

)s
/Ĝ are

isomorphic to the quiver varieties M0(vs,ws) and M(vs,ws), associated with the
original graph with dimension vector

vs = v − v0, ws = w −Cv0,

where

Cv0 =
∑

k∈I

(
2v0
k − akl v0

l

)
Λk if v0 =

∑

k∈I

v0
kαk

in Convention 2.1.4.

Theorem 3.3.2. Suppose that x ∈M
reg
0 (v0,w) as above. Then there exist neigh-

borhoods U , UT , US of x ∈ M0 = M0(v,w), 0 ∈ T , 0 ∈ M0(vs,ws) respectively,

and biholomorphic maps U → UT × US, π−1(U) → UT × π−1(US) such that the

following diagram commutes:

M ⊃ π−1(U) −−−−→
∼=

UT × π−1(US) ⊂ T ×M(vs,ws)

π

y
yid×π

M0 ⊃ U −−−−→
∼=

UT × US ⊂ T ×M0(vs,ws)

In particular, π−1(x) = Mx is biholomorphic to L(vs,ws).
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Furthermore, a stratum of M0 is mapped to a product of UT and a stratum of

M0(vs,ws).

Remark 3.3.3. Suppose that A is a subgroup of Gw × C∗ fixing x. Since the A-

action commutes with the G-action, M̂ has an A-action. The above construction
can be made A-equivariant. In particular, the diagram in Theorem 3.3.2 can be
restricted to a diagram for A-fixed point sets.

4. Fixed point subvariety

Let A be an abelian reductive subgroup of Gw×C∗. In this section, we study the
A-fixed point subvarieties M(v,w)A and M0(v,w)A of M(v,w) and M0(v,w).

4.1. A homomorphism attached to a component of M(v,w)A. Suppose that
x ∈ M(v,w)A is fixed by A. Take a representative (B, i, j) ∈ µ−1(0)s of x. For
every a ∈ A, there exists ρ(a) ∈ Gv such that

a ⋆ (B, i, j) = ρ(a)−1 · (B, i, j),(4.1.1)

where the left hand side is the action defined in (2.7.2) and the right hand side
is the action defined in (2.1.6). By the freeness of the Gv-action on µ−1(0)s (see
Proposition 2.3.2), ρ(a) is uniquely determined by a. In particular, the map a 7→
ρ(a) is a homomorphism.

Let M(ρ) ⊂M(v,w)A be the set of fixed points x such that (4.1.1) holds for some
representative (B, i, j) of x. Note that M(ρ) depends only on the Gv-conjugacy
class of ρ. Since the Gv-conjugacy class of ρ is locally constant on M(v,w)A, M(ρ)
is a union of connected components of M(v,w)A. Later we show that M(ρ) is
connected under some assumptions (see Theorem 5.5.6). As in Proposition 2.3.8,
we have

Proposition 4.1.2. M(ρ) is homotopic to M(ρ) ∩ L(v,w).

We regard V as an A-module via ρ and consider the weight space which corre-
sponds to λ ∈ Hom(A,C∗):

V (λ)
def.
= {v ∈ V | ρ(a) · v = λ(a)v}.

We denote by Vk(λ) the component of V (λ) at the vertex k. We have V =
⊕

λ V (λ).
We regard W as an A-module via the composition

A →֒ Gw × C∗ projection−−−−−−→ Gw.

We also have the weight space decomposition W =
⊕

λW (λ), Wk =
⊕

λWk(λ).
We denote by q the composition

A →֒ Gw × C∗ projection−−−−−−→ C∗.

Then (4.1.1) is equivalent to

Bh(Vout(h)(λ)) ⊂ Vin(h)(q
−m(h)−1λ),

ik(Wk(λ)) ⊂ Vk(q−1λ), jk(Vk(λ)) ⊂Wk(q
−1λ),

(4.1.3)

where m(h) is as in (2.7.1).

Lemma 4.1.4. If Vk(λ) 6= 0, then Wl(q
nλ) 6= 0 for some n and l ∈ I.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



168 HIRAKU NAKAJIMA

Proof. Consider λ satisfying Wl(q
nλ) = 0 for any l ∈ I, n ∈ Z. If we set

Sk
def.
=

⊕

λ as above

Vk(λ),

then S = (Sk)k∈I is B-invariant and contained in Ker j by (4.1.3). Thus we have
Sk = 0 by the stability condition.

The restriction of tautological bundles Vk, Wk to M(ρ) are bundles ofA-modules.
We have the weight decomposition Vk =

⊕
Vk(λ), Wk =

⊕
Wk(λ). We consider

Vk(λ), Wk(λ) as vector bundles over M(ρ).
Similarly, the restriction of the complex C•

k in (2.9.1) decomposes as C•
k =⊕

λC
•
k,λ, where

C•
k,λ ≡ C•

k,λ(ρ) : Vk(q
2λ)

σk,λ−−−→
⊕

h:in(h)=k

Vout(h)(q
m(h)+1λ)⊕Wk(qλ)

τk,λ−−→ Vk(λ).

(4.1.5)

Here σk,λ, τk,λ are restrictions of σk, τk. When we want to emphasize that this is
a complex over M(ρ), we denote this by C•

k,λ(ρ).

The tangent space of M(ρ) at [B, i, j] is the A-fixed part of the tangent space
of M. Since the latter is the middle cohomology group of (2.1.8), the former is the
middle cohomology group of the complex

⊕

λ,k

End (Vk(λ)) −→

⊕
λ,h Hom

(
Vout(h)(λ), Vin(h)(q

−m(h)−1λ)
)

⊕⊕
λ,k Hom

(
Wk(λ), Vk(q−1λ)

)

⊕⊕
λ,k Hom

(
Vk(λ), Wk(q−1λ)

)
−→

⊕

λ,k

Hom
(
Vk(λ), Vk(q−2λ)

)
,

where the differentials are the restrictions of ι, dµ in (2.1.8). Those restrictions
are injective and surjective respectively by Proposition 2.3.2. Hence we have the
following dimension formula:

dimM(ρ)

=
∑

λ

[∑

h

dimVout(h)(λ) dim Vin(h)(q
−m(h)−1λ)

+
∑

k

dimWk(λ)
(
dimVk(q

−1λ) + dimVk(qλ)
)

− dim Vk(λ)
2 − dimVk(λ) dim Vk(q

−2λ)
]
.

(4.1.6)

Recall that we have an isomorphism π−1(Mreg
0 ) ∼= M

reg
0 (Proposition 2.6.2). Let

M
reg
0 (ρ)

def.
= π

(
π−1(Mreg

0 ) ∩M(ρ)
)

= π−1(Mreg
0 ) ∩ π (M(ρ)) .(4.1.7)

By definition, π−1(Mreg
0 (ρ)) = π−1(Mreg

0 ) ∩M(ρ) is an open subvariety of M(ρ)
which is isomorphic to M

reg
0 (ρ) under π.

4.2. A sufficient condition for MA
0 = {0}. Let a = (s, ε) be a semisimple

element in Gw × C∗ and let A be the Zariski closure of {an | n ∈ Z}.
Definition 4.2.1. We say a is generic if M0(v,w)A = {0} for any v. (This con-
dition depends on w.)
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Proposition 4.2.2. Assume that there is at most one edge joining two vertices of

I, and that

λ/λ′ /∈ {εn | n ∈ Z \ {0}}

for any pair of eigenvalues of s ∈ Gw. (The condition for the special case λ = λ′

implies that ε is not a root of unity.) Then a = (s, ε) is generic.

Proof. We prove M0(v,w)A = {0} by induction on v. The assertion is trivial when
v = 0.

Take a point in M0(v,w)A and its representative (B, i, j). As in (4.1.1), there
exists g ∈ Gv such that

a ⋆ (B, i, j) = g · (B, i, j).
We decompose V into eigenspaces of g:

V =
⊕

V (λ), where V (λ)
def.
= {v ∈ V | g · v = λ(a)v}.

We also decompose W into eigenspaces of s as
⊕
W (λ). Then (4.1.3) holds where

q is replaced by ε.
Choose and fix an eigenvalue µ of s. First suppose V (εnµ) 6= 0 for some n. Let

n0
def.
= max {n | V (εnµ) 6= 0} .

Since ε is not a root of unity, we have εnµ 6= εmµ for m 6= n. Hence the above
n0 is well defined. By (4.1.3) (and m(h) = 0 from the assumption), we have
ImBh ∩ V (εn0µ) = 0. By the assumption, we have W (εn0+1µ) = 0, and hence
Im ik ∩ V (εn0µ) = 0 again by (4.1.3). Then we may assume the restriction of
(B, i, j) to V (εn0µ) is 0 as in the proof of Lemma 2.5.3.

Thus the data (B, i, j) is defined on the smaller subspace V ⊖ V (εn0µ). Thus
(B, i, j) = 0 by the induction hypothesis.

If V (εnµ) = 0 for any n, we replace µ. If we can find a µ′ so that V (εnµ′) 6= 0
for some n, we are done. Otherwise, we have V (εnµ) = 0 for any n, µ, and we
have i = j = 0 by (4.1.3). Then we choose µ, which may not be an eigenvalue of s,
so that V (µ) 6= 0 and repeat the above argument. (This is possible since we may
assume V 6= 0.) We have ImBh ∩ V (εn0µ) = 0 and the data B is defined on the
smaller subspace V ⊖ V (εn0µ) as above.

5. Hecke correspondence and induction of quiver varieties

5.1. Hecke correspondence. Take dimension vectors w, v1, v2 such that v2 =
v1+αk. Choose collections of vector spacesW , V 1, V 2, with dimW = w, dimV a =
va.

Let us consider the product M(v1,w)×M(v2,w). We denote by V 1
k (resp. V 2

k )
the vector bundle Vk ⊠ OM(v2,w) (resp. OM(v1,w) ⊠ Vk). A point in M(v1,w) ×
M(v2,w) is denoted by ([B1, i1, j1], [B2, i2, j2]). We regard Ba, ia, ja (a = 1, 2) as
homomorphisms between tautological bundles.

We define a three-term sequence of vector bundles over M(v1,w)×M(v2,w) by

L(V 1, V 2)
σ−→ qE(V 1, V 2)⊕ q L(W,V 2)⊕ q L(V 1,W )

τ−→ q2 L(V 1, V 2)⊕ q2O,
(5.1.1)
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where

σ(ξ) = (B2ξ − ξB1)⊕ (−ξi1)⊕ j2ξ,
τ(C ⊕ a⊕ b) = (εB2C + εCB1 + i2b+ aj1)⊕

(
tr(i1b) + tr(aj2)

)
.

This is a complex, that is, τσ = 0, thanks to the equations εBB + ij = 0 and
tr(i1j2ξ) = tr(ξi1j2). Moreover, it is an equivariant complex with respect to the
Gw × C∗-action.

By [45, 5.2], σ is injective and τ is surjective. Hence the quotient Ker τ/ Imσ
is a Gw × C∗-equivariant vector bundle. Let us define an equivariant section s of
Ker τ/ Imσ by

s =
(
0⊕ (−i2)⊕ j1

)
mod Imσ,(5.1.2)

where τ(s) = 0 follows from εBB + ij = 0 and tr(εB1B1) = tr(εB2B2) = 0. The
point ([B1, i1, j1], [B2, i2, j2]) is contained in the zero locus Z(s) of s if and only if
there exists ξ ∈ L(V 1, V 2) such that

ξB1 = B2ξ, ξi1 = i2, j1 = j2ξ.(5.1.3)

Moreover, Ker ξ is zero by the stability condition for B2. Hence Im ξ is a subspace
of V 2 with dimension v1 which is B2-invariant and contains Im i2. Moreover, such
ξ is unique if we fix representatives (B1, i1, j1) and (B2, i2, j2). Hence we have
an isomorphism between Z(s) and the variety of all pairs (B, i, j) and S (modulo
Gv2-action) such that

(a) (B, i, j) ∈ µ−1(0) is stable, and
(b) S is a B-invariant subspace containing the image of i with dimS = v1 =

v2 − αk.
Definition 5.1.4. We call Z(s) the Hecke correspondence, and denote it by
Pk(v

2,w). It is a Gw × C∗-invariant closed subvariety.

Introducing a connection ∇ on Ker τ/ Imσ, we consider the differential

∇s : TM(v1,w)⊕ TM(v2,w)→ Ker τ/ Imσ

of the section s. Its restriction to Z(s) = Pk(v
2,w) is independent of the connec-

tion. By [45, 5.7], the differential∇s is surjective over Pk(v
2,w). Hence, Pk(v

2,w)
is nonsingular.

By the definition, the quotient V 2
k /V

1
k defines a line bundle over Pk(v

2,w).

5.2. Hecke correspondence and fixed point subvariety. Let A be as in §4
and let M(ρ) be as in §4.1 for ρ ∈ Hom(A,Gv).

Let us consider the intersection (M(w)A×M(w)A)∩Pk(v
2,w). It decomposes

as

(M(w)A ×M(w)A) ∩Pk(v
2,w) =

⊔

ρ1,ρ2

(M(ρ1)×M(ρ2)) ∩Pk(v
2,w).

Take a point ([B1, i1, j1], [B2, i2, j2]) ∈ (M(ρ1) ×M(ρ2)) ∩ Pk(v
2,w). Then we

have

a ⋆ (Bp, ip, jp) = ρp(a)−1 · (Bp, ip, jp), a ∈ A (p = 1, 2),

and there exists ξ ∈ L(V 1, V 2) such that

ξB1 = B2ξ, ξi1 = i2, j1 = j2ξ.
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By the uniqueness of ξ, we must have ρ2(a)ξ = ξρ1(a), that is, ξ : V 1 → V 2 is
A-equivariant. Since ξ is injective, V 1 can be considered as an A-submodule of V 2.

If V 1 =
⊕
V 1(λ) and V 2 =

⊕
V 2(λ) are the weight decompositions, then there

exists λ0 such that

(a) V 1
l (λ)

ξ−→ V 2
l (λ) is an isomorphism if λ 6= λ0 or l 6= k,

(b) V 1
k (λ0)

ξ−→ V 2
k (λ0) is a codimension 1 embedding.

5.3. We introduce a generalization of the Hecke correspondence. Let us define

P
(n)
k (v,w) as

P
(n)
k (v,w)

def.
= {(B, i, j, S) | (B, i, j) ∈M(v,w), S ⊂ V as below}/Gv,(5.3.1)

(a) (B, i, j) ∈ µ−1(0)s,
(b) S is a B-invariant subspace containing the image of i with dimS = v−nαk.

For n = 1, it is just Pk(v,w). We consider P
(n)
k (v,w) as a closed subvariety of

M(v − nαk,w)×M(v,w) by setting

(B1, i1, j1)
def.
= the restriction of (B, i, j) to S,

(B2, i2, j2)
def.
= (B, i, j).

We have a vector bundle of rank n defined by V 2
k /V

1
k .

We shall show that P
(n)
k (v,w) is nonsingular later (see the proof of Lemma

11.2.3).

5.4. Induction. We recall some results in [45, §4]. Let Qk(v,w) be the middle
cohomology of the complex (2.9.1), i.e.,

Qk(v,w)
def.
= Ker τk/ Imσk.

We introduce the following subsets of M(v,w) (cf. [34, 12.2]):

Mk;n(v,w)
def.
=

{
[B, i, j] ∈M(v,w)

∣∣∣∣∣ codimVk
Im τk = n

}
,

Mk;≤n(v,w)
def.
=

⋃

m≤n

Mk;m(v,w), Mk;≥n(v,w)
def.
=

⋃

m≥n

Mk;m(v,w).

(5.4.1)

Since Mk;≤n(v,w) is an open subset of M(v,w), Mk;n(v,w) is a locally closed
subvariety. The restriction of Qk(v,w) to Mk;n(v,w) is a Gw × C∗-equivariant
vector bundle of rank 〈hk,w − v〉+ n, where we used Convention 2.1.4.

Replacing Vk by Im τk, we have a natural map

p : Mk;n(v,w)→Mk;0(v − nαk,w).(5.4.2)

Note that the projection π (2.3.4) factors through p. In particular, the fiber of π is
preserved under p.

Proposition 5.4.3. Let G(n,Qk(v − nαk,w)|Mk;0(v−nαk,w)) be the Grassmann

bundle of n-planes in the vector bundle obtained by restricting Qk(v − nαk,w)
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to Mk;0(v − nαk,w). Then we have the following diagram:

G(n,Qk(v − nαk,w)|Mk;0(v−nαk,w))
π−−−−→ Mk;0(v − nαk,w)

y∼=

∥∥∥

Mk;n(v,w)
p−−−−→ Mk;0(v − nαk,w)

p2

x∼=

∥∥∥

P
(n)
k (v,w) ∩ (M(v − nαk,w)×Mk;≤n(v,w))

p1−−−−→ Mk;0(v − nαk,w),

where π is the natural projection, and p1 and p2 are restrictions of the projections

to the first and second factors. The kernel of the natural surjective homomorphism

p∗Qk(v − nαk,w) → Qk(v,w) is isomorphic to the tautological vector bundle of

the Grassmann bundle of the first row, and also to the the restriction of the vector

bundle V 2
k /V

1
k over P

(n)
k (v,w) in the third row.

Proof. The proof is essentially contained in [45, 4.5]. See also Proposition 5.5.2 for
a similar result.

5.5. Induction for fixed point subvarieties. We consider an analogue of the
results in the previous subsection for fixed point subvariety M(ρ). Let us use
notation as in §4.1, and suppose that A is the Zariski closure of a semisimple
element a = (s, ε) ∈ Gw × C∗.

Let Qk,λ(ρ) be the middle cohomology of the complex C•
k,λ(ρ) in (4.1.5), i.e.,

Qk,λ(ρ)
def.
= Ker τk,λ/ Imσk,λ.

Let

Mk;(nλ)(ρ)
def.
=

{
[B, i, j] ∈M(ρ)

∣∣∣∣∣ codimVk(λ) Im τk,λ = nλ for each λ

}
.(5.5.1)

Replacing Vk(λ) by Im τk,λ, we have a natural map

pA : Mk;(nλ)(ρ)→Mk;(0)(ρ
′),

where ρ′ : A→ Gv′ (v′ = v −∑nλαk) is the homomorphism obtained from ρ : A→
Gv by replacing Vk(λ) by its codimension nλ subspace. Its conjugacy class is
independent of the choice of the subspace. This map is just the restriction of p in
the previous subsection.

For each λ, let G(nλ, Qk,q−2λ(ρ
′)|Mk;(0)(ρ′)) denote the Grassmann bundle of nλ-

planes in the vector bundle obtained by restricting Qk,q−2λ(ρ
′) to Mk;(0)(ρ

′). Let

∏

λ

G(nλ, Qk,q−2λ(ρ
′)|Mk;(0)(ρ′))

be their fiber product over Mk;(0)(ρ
′).

We have the following analogue of Proposition 5.4.3:
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Proposition 5.5.2. Suppose that ε2 6= 1. We have the following diagram:
∏

λ

G(nλ, Qk,q−2λ(ρ
′)|Mk;(0)(ρ′))

π−−−−→ Mk;(0)(ρ
′)

y∼=

∥∥∥

Mk;(nλ)(ρ)
pA

−−−−→ Mk;(0)(ρ
′),

where π is the natural projection. For each λ, the kernel of the natural surjective

homomorphism (pA)∗Qk,q−2λ(ρ
′) → Qk,q−2λ(ρ) is isomorphic to the tautological

vector bundle of the Grassmann bundle. Moreover, we have

nλ ≥ max
(
0,− rankC•

k,λ(ρ)
)
,(5.5.3)

dimMk;(nλ)(ρ) = dim M(ρ)−
∑

λ

nλ
(
rankC•

k,λ(ρ) + nλ
)
.(5.5.4)

(Here rank of a complex means the alternating sum of dimensions of cohomology

groups.)

Proof. We have a surjective homomorphism (pA)∗Qk,q−2λ(ρ
′)→ Qk,q−2λ(ρ) of codi-

mension nλ over Mk;(nλ)(ρ). This gives a morphism from Mk;(nλ)(ρ) to the fiber
product of Grassmann bundles. By a straightforward modification of the argu-
ments in [45, 4.5], one can show that it is an isomorphism. The details are left to
the reader. The assumption ε2 6= 1 is used to distinguish Qk,λ and Qk,q−2λ.

Let us prove the remaining part (5.5.3), (5.5.4). First note that

rankQk,q−2λ(ρ
′)|Mk;(0)(ρ′) = rankC•

k,q−2λ(ρ
′)

= rankC•
k,q−2λ(ρ) + nλ + nq−2λ.

Since we have an nλ-dimensional subspace in Qk,q−2λ(ρ
′)|Mk;(0)(ρ′), we must have

nq−2λ + rankC•
k,q−2λ ≥ 0.

Replacing q−2λ by λ, we get (5.5.3).
Moreover, we have

dimMk;(nλ)(ρ) = dimMk;(0)(ρ
′) +

∑

λ

nλ

(
rankC•

k,q−2λ(ρ) + nq−2λ

)
.

On the other hand, the dimension formula (4.1.6) implies

dimM(ρ)− dimM(ρ′) =
∑

λ

nλ

(
rankC•

k,λ(ρ) + rankC•
k,q−2λ(ρ) + nλ + nq−2λ

)
.

Since Mk;(0)(ρ
′) is an open subset of M(ρ′), we get (5.5.4).

Note that the inequality (5.5.3) implies that

nλ
(
rankC•

k,λ(ρ) + nλ
)
≥ 0

and the equality holds if and only if

nλ = max
(
0,− rankC•

k,λ(ρ)
)
.

In particular, we have the following analog of [45, 4.6].

Corollary 5.5.5. Suppose ε2 6= 1. On a nonempty open subset M(ρ), we have

codimVk(λ) Im τk,λ = max
(
0,− rankC•

k,λ(ρ)
)

for each λ. Also, the complement is a lower dimensional subvariety of M(ρ).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



174 HIRAKU NAKAJIMA

As an application of this induction, we prove the following:

Theorem 5.5.6. Assume that ε is not a root of unity and there is at most one

edge joining two vertices of I. Then M(ρ) is connected if it is a nonempty set.

Proof. We prove the assertion by induction on dimV , dimW . (The result is trivial
when V = W = 0.)

We first make a reduction to the case when

rankC•
k,λ(ρ) < 0 for some k, λ.(5.5.7)

Fix a µ ∈ Hom(A,C∗) and consider

n0
def.
= max {n | Vk(qnµ) 6= 0 or Wk(q

nµ) 6= 0 for some k ∈ I} .
Since ε is not a root of unity, we have qnµ 6= qmµ for m 6= n. Hence the above n0

is well defined.
Suppose Wk(q

n0µ) 6= 0. By (4.1.3) and the choice of n0, we have

Im jk ∩Wk(q
n0µ) = {0}.

Let us replace Wk(q
n0µ) by 0. Namely we change (restriction of ik) : Wk(q

n0µ)→
Vk(q

n0−1µ) to 0 and all other data are unchanged. The equation µ(B, i, j) = 0 and
the stability condition are preserved by the replacement. Thus we have a morphism

M(ρ)→M′(ρ),

where M′(ρ) is a fixed point subvariety of M(v,w′) obtained by the replacement.
(This notation will not be used elsewhere. The data w is fixed elsewhere.)

Conversely, we can put any homomorphism Wk(q
n0µ) → Vk(q

n0−1µ) to get
a point in M(ρ) starting from a point in M′(ρ). This shows that M(ρ) is the
total space of the vector bundle Hom(Wk(q

n0µ), Vk(q
n0−1µ)) over M′(ρ), where

Wk(q
n0µ) is considered as a trivial bundle. In particular, M(ρ) is (nonempty and)

connected if and only if M(ρ′) is also. By the induction hypothesis, M(ρ′) is
connected and we are done.

Thus we may assume Vk(q
n0µ) 6= 0. Then Ck,qn0µ(ρ) consists of the last term

by the choice of n0. (Note m(h) = 0 under the assumption that there is at most
one edge joining two vertices of I.) Hence we have (5.5.7) with λ = qn0µ.

Now let us prove the connectedness of M(ρ) under (5.5.7). By Corollary 5.5.5,
we have

dimMk;(nλ)(ρ) < dimM(ρ)

unless nλ = max
(
0,− rankC•

k,λ(ρ)
)

for each λ. Hence it is enough to prove the

connectedness of Mk;(n0
λ)(ρ) for n0

λ = max
(
0,− rankC•

k,λ(ρ)
)
.

Let us consider the map pA : Mk;(n0
λ)(ρ) → Mk;(0)(ρ

′). By (5.5.7), dimV be-

comes smaller for Mk;(0)(ρ
′). Hence M(ρ′) is connected by the induction hypoth-

esis. Again by Corollary 5.5.5, Mk;(0)(ρ
′) is also connected. Since pA is a fiber

product of Grassmann bundles, Mk;(n0
λ)(ρ) is connected.

6. Equivariant K-theory

In this section, we review the equivariant K-theory of a quasi-projective variety
with a group action. See [13, Chapter 5] for further details.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



QUIVER VARIETIES AND QUANTUM AFFINE ALGEBRAS 175

6.1. Definitions. Let X be a quasi-projective variety over C. Suppose that a
linear algebraic group G acts algebraically on X . Let KG(X) be the Grothendieck
group of the abelian category of G-equivariant coherent sheaves on X . It is a
module over R(G), the representation ring of G.

A class in KG(X) represented by a G-equivariant sheaf E will be denoted by
[E], or simply by E if there is no fear of confusion.

The trivial line bundle of rank 1, i.e., the structure sheaf, is denoted by OX . If
the underlying space is clear, we simply write O.

Let K0
G(X) be the Grothendieck group of the abelian category of G-equivariant

algebraic vector bundles on X . This is also an R(G)-module. The tensor product
⊗ defines a structure of an R(G)-algebra on K0

G(X). Also, KG(X) has a structure
of a K0

G(X)-module by the tensor product:

K0
G(X)×KG(X) ∋ ([E], [F ]) 7→ [E ⊗ F ] ∈ KG(X).(6.1.1)

Suppose that Y is a G-invariant closed subvariety of X and let U = X \ Y be
the complement. Two inclusions

Y
i−→ X

j←− U
induce an exact sequence

KG(Y )
i∗−−−−→ KG(X)

j∗−−−−→ KG(U) −−−−→ 0,(6.1.2)

where i∗ is given by [E] 7→ [i∗E] and j∗ is given by [E] 7→ [E|U ]. (See [53].)
Suppose that Y is aG-invariant closed subvariety ofX and thatX is nonsingular.

Let KG(X ;Y ) be the Grothendieck group of the derived category of G-equivariant
complexes E• of algebraic vector bundles over X , which are exact outside Y (see
[4, §1]). We have a natural homomorphism KG(X ;Y )→ KG(Y ) by setting

[E•] 7→
∑

i

(−1)i[grHi(E•)].

Here H i(E•) is the ith cohomology sheaf of E•, which is a G-equivariant coherent
sheaf on X which is supported on Y . If IY is the defining ideal of Y , we have
INY ·Hi(E•) = 0 for sufficiently large N . Then

grHi(E•)
def.
=
⊕

j

I
j
Y ·Hi(E•)/Ij+1

Y ·Hi(E•)

is a sheaf on Y , and defines an element in KG(Y ). Conversely if a G-equivariant
coherent sheaf F on Y is given, we can take a resolution by a finite G-equivariant
complex of algebraic vector bundles:

0→ E−n → E1−n → · · · → E0 → i∗F → 0,

where i : Y → X denotes the inclusion. (See [13, 5.1.28].) This shows that the
homomorphism KG(X ;Y ) → KG(Y ) is an isomorphism. This relative K-group
KG(X ;Y ) was not used in [13] explicitly, but many operations were defined by using
it implicitly. When Y = X , KG(X ;X) is isomorphic to K0

G(X). In particular, we
have an isomorphism K0

G(X) ∼= KG(X) if X is nonsingular.
We shall also use equivariant topologicalK-homologyKG

top(X). There are several
approaches for the definition, but we take the one in [54, 5.3]. There is a comparison
map

KG(X)→ KG
top(X)

which satisfies obvious functorial properties.
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Occasionally, we also consider the higher equivariant topological K-homology
group KG

1,top(X). (See [54, 5.3] again.) In this circumstance, KG
top(X) may be

written as KG
0,top(X). But we do not use higher equivariant algebraic K-homology

KG
i (X).
Suppose that Y is a G-invariant closed subvariety of X and let U = X \ Y be

the complement. Two inclusions

Y
i−→ X

j←− U

induce a natural exact hexagon

KG
0,top(Y )

i∗−−−−→ KG
0,top(X)

j∗−−−−→ KG
0,top(U)

x
y

KG
1,top(U)

j∗←−−−− KG
1,top(X)

i∗←−−−− KG
1,top(Y ),

(6.1.3)

for suitably defined i∗, j
∗.

6.2. Operations on K-theory of vector bundles. If E is a G-equivariant vec-
tor bundle, its rank and dual vector bundle will be denoted by rankE and E∗

respectively.
We extend rank and ∗ to operations on K0

G(X):

rank: K0
G(X)→ Zπ0(X), ∗ : K0

G(X)→ K0
G(X),

where π0(X) is the set of the connected components of X . Note that the rank of a
vector bundle may not be a constant, when X has several connected components.
But we assumeX is connected in this subsection for simplicity. In general, operators
below can be defined component-wisely.

If L is a G-equivariant line bundle, we define L⊗r = (L∗)⊗(−r) for r < 0. Thus
we have L⊗r ⊗ L⊗s = L⊗(r+s) for r, s ∈ Z.

If E is a vector bundle, we define

detE
def.
=
∧rankE

E,
∧
uE

def.
=

rankE∑

i=0

ui
∧i
E.

These operations can be extended to K0
G(X) of G-equivariant algebraic vector bun-

dles:

det : K0
G(X)→ K0

G(X),
∧
u : K0

G(X)→ [OX ] +K0
G(X)⊗ uZ[[u]].

This is well defined since we have detF = detE ⊗ detG,
∧
uF =

∧
uE ⊗

∧
uG for

an exact sequence 0→ E → F → G→ 0.
Note the formula

∧
uE = urankE detE

∧
1/uE

∗

for a vector bundle E. Using this formula, we expand
∧
uE into the Laurent

expansion also at u =∞:

u− rankE(detE)∗
∧
uE ∈ [OX ] +K0

G(X)⊗ u−1Z[[u−1]].
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6.3. Tor-product. (Cf. [4, 1.3], [13, 5.2.11].) Let X be a nonsingular quasi-
projective variety with a G-action. Let Y1, Y2 ⊂ X be G-invariant closed subvari-
eties of X . Suppose that E•

1 (resp. E•
2 ) is a G-equivariant complex of vector bundles

over X which is exact outside Y1 (resp. Y2). Then we can construct a complex

· · · −→
⊕

p+q=k

Ep1 ⊗ Eq2 −→
⊕

p+q=k+1

Ep1 ⊗ Eq2 −→ · · ·

with suitably defined differentials from the double complex E•
1 ⊗ E•

2 . It is exact
outside Y1 ∩ Y2. This construction defines an R(G)-bilinear pairing

KG(X ;Y1)×KG(X ;Y2)→ KG(X ;Y1 ∩ Y2).

Since we assume X is nonsingular, we have KG(X ;Y1) ∼= KG(Y1), K
G(X ;Y2) ∼=

KG(Y2), K
G(X ;Y1 ∩ Y2) ∼= KG(Y1 ∩ Y2). Thus we also have an R(G)-bilinear

pairing

KG(Y1)×KG(Y2)→ KG(Y1 ∩ Y2).

We denote these operations by · ⊗LX ·. (It is denoted by ⊗ in [13].)

Lemma 6.3.1 ([13, 5.4.10], [58, Lemma 1]). Let Y1, Y2 ⊂ X be nonsingular G-

subvarieties with conormal bundles T ∗
Y1
X, T ∗

Y2
X. Suppose that Y

def.
= Y1 ∩ Y2 is

nonsingular and TY1|Y ∩TZ2|Y = TY , where |Y means the restriction to Y . Then

for any E1 ∈ K0
G(Y1) ∼= KG

0 (Y1), E2 ∈ K0
G(Y2) ∼= KG

0 (Y2), we have

E1 ⊗LX E2 =
∑

i

(−1)i
∧i
N ⊗ E1|Y ⊗ E2|Y ∈ K0

G(Y ) ∼= KG
0 (Y ),

where N
def.
= T ∗

Y1
X |Y ∩ T ∗

Y2
X |Y .

6.4. Pull-back with support. (Cf. [4, 1.2], [13, 5.2.5].) Let f : Y → X be a
G-equivariant morphism between nonsingular G-varieties. Suppose that X ′ and Y ′

areG-invariant closed subvarieties ofX and Y respectively satisfying f−1(X ′) ⊂ Y ′.
Then the pull-back

E• 7→ f∗E•

induces a homomorphism KG(X ;X ′)→ KG(Y ;Y ′). Via isomorphisms KG(X ′) ∼=
KG(X ;X ′), KG(Y ′) ∼= KG(Y ;Y ′), we get a homomorphism KG(X ′) → KG(Y ′).
Note that this depends on the ambient spaces X , Y .

Let f : Y → X as above. Suppose that X ′
1, X

′
2 ⊂ X , Y ′

1 , Y
′
2 ⊂ Y are G-invariant

closed subvarieties such that f−1(X ′
a) ⊂ Y ′

a for a = 1, 2. Then we have

f∗(E1 ⊗LX E2) = f∗(E1)⊗LY f∗(E2)(6.4.1)

for Ea ∈ KG(X ′
a) (a = 1, 2).

6.5. Push-forward. Let f : X → Y be a proper G-equivariant morphism between
G-varieties (not necessarily nonsingular). Then we have a push-forward homomor-
phism f∗ : KG(X)→ KG(Y ) defined by

f∗[E]
def.
=
∑

(−1)i[Rif∗E].
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Suppose further that X and Y are nonsingular. If X ′ ⊂ X , Y ′ ⊂ Y are G-
invariant closed subvarieties, we have the following projection formula ([13, 5.3.13]):

f∗(E ⊗LX f∗F ) = f∗E ⊗LY F ∈ KG (f(X ′) ∩ Y ′)(6.5.1)

for E ∈ KG(X ′), F ∈ KG(Y ′).

6.6. Chow group and homology group. Let H∗(X,Z) =
⊕

kHk(X,Z) be the
integral Borel-Moore homology of X . Let A∗(X) =

⊕
k Ak(X) be the Chow group

of X . We have a cycle map

A∗(X)→ H∗(X,Z),

which has certain functorial properties (see [19, Chapter 19]).
If Y is a closed subvariety of X and U = X \ Y is its complement, then we have

exact sequences which are analogues of (6.1.2), (6.1.3):

Ak(Y )
i∗−→ Ak(X)

j∗−→ Ak(U)→ 0,(6.6.1)

· · · → Hk(Y,Z)
i∗−→ Hk(X,Z)

j∗−→ Hk(U,Z)
∂∗−→ Hk−1(Y,Z)→ · · · .(6.6.2)

We have operations on A∗(X) and H∗(X,Z) which are analogues of those in
§6.3, §6.4, §6.5. (See [19].)

In the next section, we prove results for K-homology and the Chow group in
parallel arguments. It is the reason why we avoid higher algebraic K-homology.
There is no analogue for the Chow group.

7. Freeness

7.1. Properties (S), (T ), (T ′). Following [14, 39], we say that an algebraic variety
X has property (S) if

(a) Hodd(X,Z) = 0 and Heven(X,Z) is a free abelian group.
(b) The cycle map A∗(X)→ Heven(X,Z) is an isomorphism.

Similarly, we say X has property (T ) if

(a) K1,top(X) = 0 and Ktop(X) = K0,top(X) is a free abelian group.
(b) The comparison map K(X)→ Ktop(X) is an isomorphism.

Suppose that X is a closed subvariety of a nonsingular variety M . We have a
diagram (see [4])

K(X)⊗Q
ch−−−−→ A∗(X)⊗Q

y
y

Ktop(X)⊗Q
ch−−−−→ Heven(X,Q),

where the horizontal arrows are local Chern character homomorphisms in algebraic
and topological K-homologies respectively, the left vertical arrow is a comparison
map, and the right vertical arrow is the cycle map. It is known that the upper
horizontal arrow is an isomorphism ([19, 15.2.16]). Thus the compositeK(X)⊗Q→
Heven(X,Q) is an isomorphism if X has property (S).

Assume that X is nonsingular and projective. We define the bilinear pairing
K(X)⊗K(X)→ Z by

F ⊗ F ′ 7→ p∗(F ⊗LX F ′),(7.1.1)

where p is the canonical map from X to the point.
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We say that X has property (T ′) if X has property (T ) and the pairing (7.1.1)
is perfect. (In [39], this property is called (S′).)

Let G be a linear algebraic group. Let X be an algebraic variety with a G-action.
We say that X has property (TG) if

(a) KG
1,top(X) = 0 and KG

top(X) = KG
0,top(X) is a free RG-module.

(b) The natural map KG(X)→ KG
top(X) is an isomorphism.

(c) For a closed algebraic subgroup H ⊂ G, H-equivariant K-theories satisfy
the above properties (a), (b), and the natural homomorphism KG(X)⊗R(G)

R(H)→ KH(X) is an isomorphism.

Suppose further thatX is smooth and projective. By the same formula as (7.1.1),
we have a bilinear pairing KG(X)⊗KG(X)→ R(G). We say that X has property

(T ′
G) if X has property (TG) and this pairing is perfect.
A finite partition of a variety X into locally closed subvarieties is said to be an

α-partition if the subvarieties in the partition can be indexed X1, . . . , Xn in such a
way that X1 ∪X2 ∪ · · · ∪Xi is closed in X for i = 1, . . . , n. The following is proved
in [14, Lemma 1.8].

Lemma 7.1.2. If X has an α-partition into pieces which have property (S), then

X has property (S).

The proof is based on exact sequences (6.6.1),(6.6.2) in homology groups and
Chow groups. Since we have corresponding exact sequences (6.1.2),(6.1.3) in K-
theory, we have the following.

Lemma 7.1.3. Suppose that an algebraic variety X has an action of a linear alge-

braic group G. If X has an α-partition into G-invariant locally closed subvarieties

which have property (TG), then X has property (TG).

Lemma 7.1.4. Let π : E → X be a G-equivariant fiber bundle with affine spaces

as fibers. Suppose that π is locally a trivial G-equivariant vector bundle, i.e., a

product of base and a vector space with a linear G-action. If X has property (TG)
(resp. (S)), then E also has property (TG) (resp. (S)).

Proof. We first show that π∗ : KG(X) → KG(E) is surjective. Choose a closed
subvariety Y of X so that E is a trivial G-bundle over U = X \ Y . There is a
diagram

KG(Y ) −−−−→ KG(X) −−−−→ KG(U) −−−−→ 0
yπ∗

yπ∗

yπ∗

KG(π−1(Y )) −−−−→ KG(E) −−−−→ KG(π−1(U)) −−−−→ 0,

with exact rows by (6.1.2). By a diagram chase it suffices to prove the surjectivity
for the restrictions of E to U and to Y . By repeating the process on Y , it suffices
to prove it for the case when E is a trivial G-equivariant bundle. By Thom iso-
morphism [53, 4.1] π∗ is an isomorphism if E is a G-equivariant bundle. Thus we
prove the assertion.

Let us repeat the same argument for π∗ : KG
0,top(X) → KG

0,top(E) and π∗ :

KG
1,top(X) → KG

1,top(E) by replacing (6.1.2) by (6.1.3). By the five lemma both

π∗ are isomorphisms. In particular, we have KG
1,top(E) ∼= KG

1,top(X) = 0 by as-
sumption.
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Consider the diagram

KG(X)
π∗

−−−−→ KG(E)
y

y

KG
top(X)

π∗

−−−−→ KG
top(E),

where the vertical arrows are comparison maps. The left vertical arrow is an iso-
morphism by assumption. Thus the right vertical arrow is also an isomorphism by
the commutativity of the diagram and what we just proved above. Condition (c)
for (TG) can be checked in the same way, and E has property (TG).

Property (S) can be checked in the same way.

Lemma 7.1.5. Let X be a nonsingular quasi-projective variety with G×C∗-action

with a Kähler metric g such that

(a) g is complete,

(b) g is invariant under the maximal compact subgroup of G× C∗,

(c) there exists a moment map f associated with the Kähler metric g and the

S1-action (the maximal compact subgroup of the second factor), and it is

proper.

Let

L
def.
= {x ∈ X | lim

t→∞
t · x exists}.

If the fixed point set XC
∗

has property (TG×C∗) (resp. (S)), then both X and L have

property (TG×C∗) (resp. (S)).
Furthermore, the bilinear pairing

KG×C
∗

(X)×KG×C
∗

(L) ∋ (F, F ′) 7−→ p∗(F ⊗LX F ′) ∈ R(G× C∗)(7.1.6)

is nondegenerate if XC
∗

has property (T ′
G×C∗). A similar intersection pairing be-

tween A∗(X) and A∗(L) is nondegenerate if XC
∗

has property (S). Here p is the

canonical map from X to the point.

Proof. By [2, 2.2] the moment map f is a Bott-Morse function, and critical man-
ifolds are the fixed point XC

∗

. Let F1, F2, . . . be the components of XC
∗

. By
[2, §3], stable and unstable manifolds for the gradient flow of −f coincide with
(±)-attracting sets of Bialynicki-Birula decomposition [7]:

Sk = {x ∈ X | lim
t→0

t · x ∈ Fk}, Uk = {x ∈ X | lim
t→∞

t · x ∈ Fk}.

These are invariant under the G-action since the G-action commutes with the C∗-
action.

Note that results in [2] are stated for compact manifolds, but the argument can
be modified to our setting. A difference is that

⋃
k Uk = L is not X unless X is

compact. On the other hand,
⋃
k Sk is X since f is proper.

As in [3], we can introduce an ordering on the index set {k} of components of

XC
∗

such that X =
⋃
Sk is an α-partition and L =

⋃
Uk is an α-partition with

respect to the reversed order.
By [7] (see also [8] for analytic arguments), the maps

Sk ∋ x 7→ lim
t→0

t · x ∈ Fk, Uk ∋ x 7→ lim
t→∞

t · x ∈ Fk
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are fiber bundles with affine spaces as fibers. Furthermore, Sk (resp. Uk) is locally
isomorphic to a G × C∗-equivariant vector bundle by the proof. Thus Sk and Uk
have properties (S) and (TG×C∗) by Lemma 7.1.4. Hence X and L have properties
(S) and (TG×C∗) by Lemmas 7.1.2 and 7.1.3.

By the argument in [39, 1.7, 2.5], the pairing (7.1.6) can be identified with a
pairing

⊕

k

KG×C
∗

(Fk)×
⊕

k

KG×C
∗

(Fk)→ R(G× C∗)

of the form (∑

k

ξk,
∑

k

ξ′k

)
=
∑

k≥k′

(ξk, ξ
′
k′)k,k′

for some pairing ( , )k,k′ : K
G×C

∗

(Fk)×KG×C
∗

(F ′
k)→ R(G×C∗) such that ( , )k,k

is the pairing (7.1.1) for X = Fk. Since ( , )k,k is nondegenerate for all k by the
assumption, (7.1.6) is also nondegenerate.

The proof of the statement for A∗(X), A∗(L) is similar. One uses the fact that
the intersection pairing A∗(Fk) × A∗(Fk) → Z is nondegenerate under property
(S).

7.2. Decomposition of the diagonal.

Proposition 7.2.1 (cf. [16], [13, 5.6.1]). Let X be a nonsingular projective vari-

ety.

(1) Let O∆X be the structure sheaf of the diagonal and [O∆X ] the corresponding

element in K(X ×X). Assume that

[O∆X ] =
∑

i

αi ⊠ βi(7.2.2)

holds for some αi, βi ∈ K(X). Then X has property (T ′).
(2) Let G be a linear algebraic group. Suppose that X has G-action and that

(7.2.2) holds in KG(X×X) for some αi, βi ∈ KG(X). Then X has property (T ′
G).

(3) Let [∆X ] be the class of the diagonal in A(X ×X). Assume that

[∆X ] =
∑

i

p∗1ai ∪ p∗2bi(7.2.3)

holds for some ai, bi ∈ A(X). Then X has property (S).

Proof. Let pa : X ×X → X denote the projection to the ath factor (a = 1, 2). Let
∆ be the diagonal embedding X → X×X . Then we have [O∆X ] = ∆∗[OX ]. Hence

p1∗

(
p∗2F ⊗LX×X [O∆X ]

)
= p1∗

(
p∗2F ⊗LX×X ∆∗[OX ]

)

= p1∗∆∗

(
∆∗p∗2F ⊗LX [OX ]

)
(by the projection formula)

= F ⊗LX [OX ] (p1 ◦∆ = p2 ◦∆ = idX)

= F.

If we substitute (7.2.2) into the above, we get

F =
∑

i

p1∗

(
p∗2F ⊗LX×X p∗1αi ⊗LX×X p∗2βi

)
=
∑

i

(F, βi)αi.(7.2.4)

In particular, K(X) is spanned by αi’s.
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If mF = 0 for some m ∈ Z \ {0}, then 0 = (mF, βi) = m(F, βi). Hence we have
(F, βi) = 0. The above equality (7.2.4) implies F = 0. This means that K(X)
is torsion-free. Thus we could assume the αi’s are linearly independent in (7.2.2).
Under this assumption, {αi} is a basis of K(X), and (7.2.4) implies that {βi} is
the dual basis.

If we perform the same computation in K0,top(X)⊕K1,top(X), we get the same
result. In particular, {αi} is a basis of K0,top(X)⊕K1,top(X). However, αi, βi are
in K0,top(X), thus we have K1,top(X) = 0. We also have K(X)→ K0,top(X) is an
isomorphism. Thus X has property (T ′).

If X has G-action and (7.2.2) holds in the equivariant K-group, we do the same
calculation in the equivariant K-groups. Then the same argument shows that X
has property (T ′

G).
The assertion for Chow groups and homology groups can be proved in the same

way.

7.3. Diagonal of the quiver variety. Let us recall the decomposition of the di-
agonal of the quiver variety defined in [45, Sect. 6]. In this section, we fix dimension
vectors v, w and use the notation M instead of M(v,w).

Let us consider the product M ×M. We denote by V 1
k (resp. V 2

k ) the vector
bundle Vk ⊠ OM (resp. OM ⊠ Vk). A point in M ×M is denoted by ([B1, i1, j1],
[B2, i2, j2]). We regard Ba, ia, ja (a = 1, 2) as homomorphisms between tautolog-
ical bundles.

We consider the following Gw × C∗-equivariant complex of vector bundles over
M×M:

L(V 1, V 2)
σ−→ q E(V 1, V 2)⊕ q L(W,V 2)⊕ q L(V 1,W )

τ−→ q2 L(V 1, V 2),(7.3.1)

where

σ(ξ)
def.
= (B2ξ − ξB1)⊕ (−ξi1)⊕ j2ξ,

τ(C ⊕ a⊕ b) def.
= (εB2C + εCB1 + i2b+ aj1).

It was shown that σ is injective and τ is surjective (cf. [45, 5.2]). Thus Ker τ/ Imσ
is an equivariant vector bundle. We define an equivariant section s of Ker τ/ Imσ
by

s
def.
=
(
0⊕ (−i2)⊕ j1

)
mod Imσ.

Then ([B1, i1, j1], [B2, i2, j2]) is contained in the zero locus Z(s) of s if and only if
there exists ξ ∈ L(V 1, V 2) such that

ξB1 = B2ξ, ξi1 = i2, j1 = j2ξ.

Moreover ξ is an isomorphism by the stability condition. Hence Z(s) is equal to the
diagonal ∆M. If∇ is a connection on Ker τ/ Imσ, the differential∇s : T (M×M)→
Ker τ/ Imσ is surjective on Z(s) = ∆M (cf. [45, 5.7]). In particular, we have an
exact sequence

0→ ∧max(Ker τ/ Imσ)∗ → · · · → (Ker τ/ Imσ)∗ → OM×M → O∆M → 0.

In KGw×C
∗

(M ×M), Ker τ/ Imσ is equal to the alternating sum of terms of
(7.3.1) which has a form

∑
αi ⊠ βi for some αi, βi ∈ KGw×C

∗

(M). Hence M

satisfies the conditions of Proposition 7.2.1 except the projectivity. Unfortunately,
the projectivity is essential in the proof of Proposition 7.2.1. (We could not define

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



QUIVER VARIETIES AND QUANTUM AFFINE ALGEBRAS 183

(p1)∗ otherwise.) Thus Proposition 7.2.1 is not directly applicable to M. In order

to get rid of this difficulty, we consider the fixed point set MC
∗

with respect to the
C∗-action.

For technical reasons, we need to use a C∗-action, which is different from (2.7.2).
Let C∗ act on M by

Bh 7→ tBh, i 7→ ti, j 7→ tj for t ∈ C∗.(7.3.2)

This induces a C∗-action on M and M0 which commutes with the previousGw×C∗-
action. (If the adjacency matrix satisfies Akl ≤ 1 for any k, l ∈ I, then the new
C∗-action coincides with the old one.) The tautological bundles Vk, Wk become
C∗-equivariant vector bundles as before.

We consider the fixed point set MC
∗

. [B, i, j] ∈M is a fixed point if and only if
there exists a homomorphism ρ : C∗ → Gv such that

t ⋄ (B, i, j) = ρ(t)−1 · (B, i, j)
as in §4.1. Here ⋄ denotes the new C∗-action. We decompose the fixed point set
MC

∗

according to the conjugacy class of ρ:

MC
∗

=
⊔

M[ρ].

Lemma 7.3.3. M[ρ] is a nonsingular projective variety.

Proof. Since M[ρ] is a union of connected components (possibly single component)
of the fixed point set of the C∗-action on a nonsingular variety M, M[ρ] is nonsin-
gular.

Suppose that [B, i, j] ∈ M0 is a fixed point of the C∗-action. It means that
(tB, ti, tj) lies in the closed orbit G · (B, i, j). But (tB, ti, tj) converges to 0 as
t→ 0. Hence the closed orbit must be {0}. Since π : M→M0 is equivariant, MC

∗

is contained in π−1(0). In particular, M[ρ] is projective.

This lemma is not true for the original C∗-action.
We restrict the complex (7.3.1) to M[ρ]×M[ρ]. Then fibers of V 1 and V 2 become

C∗-modules and hence we can take the C∗-fixed part of (7.3.1):

L(V 1, V 2)C
∗ σC

∗

−→
(
q E(V 1, V 2)⊕ q L(W,V 2)⊕ q L(V 1,W )

)C∗ τC
∗

−→ (q2 L(V 1, V 2))C
∗

,

where σC
∗

(resp. τC
∗

) is the restriction of σ (resp. τ) to the C∗-fixed part. Then

σC
∗

is injective and τC
∗

is surjective, and Ker τC
∗

/ ImσC
∗

is a vector bundle which
is the C∗-fixed part of Ker τ/ Imσ.

The section s takes values in Ker τC
∗

/ ImσC
∗

= (Ker τ/ Imσ)C
∗

. Considering
it as a section of KerσC

∗

/ Im τC
∗

, we denote it by sC
∗

. The zero locus Z(sC
∗

) is
Z(s) ∩ (M[ρ] ×M[ρ]) which is the diagonal ∆M[ρ] of M[ρ] ×M[ρ]. Furthermore,
the differential ∇sC

∗

: T (M[ρ]×M[ρ])→ (Ker τ/ Im σ)C
∗

is surjective on Z(sC
∗

) =
∆M[ρ].

Our original Gw×C∗-action (defined in §2.7) commutes with the new C∗-action.
Thus M[ρ] has an induced Gw × C∗-action. By the construction, Ker τC

∗

/ ImσC
∗

is a Gw × C∗-equivariant vector bundle, and sC
∗

is an equivariant section.

Proposition 7.3.4. M[ρ] has properties (S) and (T ′
Gw×C∗). Moreover, M[ρ] is

connected.
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Proof. Let O∆M[ρ] be the structure sheaf of the diagonal considered as a sheaf on

M[ρ]×M[ρ]. By the above argument, the Koszul complex of sC
∗

gives a resolution
of O∆M[ρ]:

0→ ∧max
(Ker τC

∗

/ ImσC
∗

)∗ → · · · → (Ker τC
∗

/ ImσC
∗

)∗

→ OM[ρ]×M[ρ] → O∆M[ρ] → 0,

where max = rankKerσC
∗

/ Im τC
∗

. Thus we have the following equality in the

Grothendieck group KGw×C
∗

(M[ρ]×M[ρ]):

[O∆F] =
∧

−1[(Ker τC
∗

/ ImσC
∗

)∗].

Since σC
∗

is injective and τC
∗

is surjective, we have

[Ker τC
∗

/ ImσC
∗

]

= −[L(V 1, V 2)C
∗

] +
[
(q E(V 1, V 2)⊕ q L(W,V 2)⊕ q L(V 1,W ))C

∗
]

− [(q2 L(V 1, V 2))C
∗

].

Each factor of the right hand side can be written in the form
∑
i αi⊠βi for some

αi, βi ∈ KGw×C
∗

(M[ρ]). For example, the first factor is equal to

L(V 1, V 2)C
∗

=
⊕

m

L(V 1(m), V 2(m)),

where V a(m) is the weight space of V a, i.e.,

V a(m) = {v ∈ V a | t ⋄ v = tmv}.

The remaining factors have a similar description. Thus by Proposition 7.2.1, M[ρ]
has property (T ′

Gw×C∗).

Moreover, the above shows that KGw×C
∗

(M[ρ]) is generated by exterior powers
of Vk(m), Wk(m) and its duals (as an R(Gw × C∗)-algebra). Note that these
bundles have constant rank on M[ρ]. If M[ρ] have components M1, M2, . . . , the
structure sheaf of M1 (extended to M[ρ] by setting 0 outside) cannot be represented
by Vk(m), Wk(m). This contradiction shows that M[ρ] is connected.

The assertion for Chow groups can be proved in exactly the same way. By
the above argument, the fundamental class [∆M[ρ]] is the top Chern class of
Ker τC

∗

/ ImσC
∗

, which can be represented as
∑
i p

∗
1ai ∪ p∗2bi for some ai, bi ∈

A(X).

Theorem 7.3.5. M and L have properties (S) and (TGw×C∗). Moreover, the bi-

linear pairing

KGw×C
∗

(M)×KGw×C
∗

(L) ∋ (F, F ′) 7−→ p∗(F ⊗LM F ′) ∈ R(Gw × C∗)

is nondegenerate. A similar pairing between A∗(M) and A∗(L) is also nondegener-

ate. Here p is the canonical map from M to the point.

Proof. We apply Lemma 7.1.5. By [44, 2.8], the metric on M defined in §2.4 is
complete. By the construction, it is invariant underKw×S1, whereKw =

∏
U(Wk)

is the maximal compact subgroup of Gw. (Note that the hyper-Kähler structure is
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not invariant under the S1-action, but the metric is invariant.) The moment map
for the S1-actions is given by

1

2

(∑

h

‖Bh‖2 +
∑

k

(
‖ik‖2 + ‖jk‖2

)
)
.

This is a proper function on M. Thus Lemma 7.1.5 is applicable. Note that we
have L = {x ∈ M | limt→∞ t ⋄ x exists} as in [44, 5.8]. (Though our C∗-action is
different from the one in [44], the same proof works.)

7.4. Fixed point subvariety. Let A be an abelian reductive subgroup of Gw×C∗

as in §4. Let MA and LA be the fixed point set in M and L respectively. Exactly as
in the previous subsection, we have the following generalization of Theorem 7.3.5.

Theorem 7.4.1. MA and LA have properties (T ) and (S). Moreover, the bilinear

pairing

K(MA)×K(LA) ∋ (F, F ′) 7−→ p∗(F ⊗LMA F ′) ∈ Z

is nondegenerate. A similar pairing between A∗(M
A) and A∗(L

A) is also nonde-

generate. Here p is the canonical map from MA to the point.

7.5. Connectedness of M(v,w). Let us consider a natural homomorphism

R(Gw × C∗ ×Gv)→ KGw×C
∗

(M),(7.5.1)

which sends representations to bundles associated with tautological bundles. If we
can apply Proposition 7.2.1 to M, then this homomorphism is surjective. Unfor-
tunately we cannot apply Proposition 7.2.1 since M is not projective. However,
it seems reasonable to conjecture that the homomorphism (7.5.1) is surjective. In
particular, it implies that M is connected as in the proof of Proposition 7.3.4. This
was stated in [45, 6.2]. But the proof contains a gap since the function ‖s1‖ may
not be proper in general.

8. Convolution

Let X1, X2, X3 be a nonsingular quasi-projective variety, and write pab : X1 ×
X2 ×X3 → Xa ×Xb for the projection ((a, b) = (1, 2), (2, 3), (1, 3)).

Suppose Z12 (resp. Z23) is a closed subvariety of X1 ×X2 (resp. X2 ×X3) such
that the restriction of the projection p13 : p−1

12 (Z12)∩p−1
23 (Z23)→ X1×X3 is proper.

Let Z12 ◦ Z23 = p13

(
p−1
12 (Z12) ∩ p−1

23 (Z23)
)
. We can define the convolution product

∗ : K(Z12)⊗K(Z23)→ K(Z12 ◦ Z23) by

K12 ∗K23
def.
= p13∗

(
p∗12K12 ⊗LX1×X2×X3

p∗23K23

)

for K12 ∈ K(Z12),K23 ∈ K(Z23).
Note that the convolution product depends on the ambient spaces X1, X2 and

X3. When we want to specify them, we say the convolution product relative to X1,
X2, X3.

In this section, we study what happens when X1, X2, X3 are replaced by

(a) submanifolds S1, S2, S3 of X1, X2, X3,
(b) principal G-bundles P1, P2, P3 over X1, X2, X3.

Although we work on nonequivariant K-theory, the results extend to the case
of equivariant K-theory, the Borel-Moore homology group, or any other reasonable
theory in a straightforward way.
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8.1. Before studying the above problem, we recall the following lemma which will
be used several times.

Lemma 8.1.1. In the above setting, we further assume that X1 = X2 and Z12 =
Image∆X1 , where ∆X1 is the diagonal embedding X1 → X1 ×X2. Then we have

(∆X1 )∗[E] ∗K23 = p∗2[E]⊗K23

for a vector bundle E over X1, where p2 : X2 ×X3 → X2 = X1 is the projection,

and ⊗ in the right hand side is the tensor product (6.1.1) between K0(Z23) and

K(Z23).

The proof is obvious from the definition, and is omitted.

8.2. Restriction of the convolution to submanifolds. Suppose we have non-
singular closed submanifolds S1, S2, S3 of X1, X2, X3 such that

(S1 ×X2) ∩ Z12 ⊂ S1 × S2, (S2 ×X3) ∩ Z23 ⊂ S2 × S3.(8.2.1)

By this assumption, we have

(S1 ×X3) ∩ (Z12 ◦ Z23) ⊂ S1 × S3.(8.2.2)

Let Z ′
12 (resp. Z ′

23) be the intersection (S1 × S2) ∩ Z12 (resp. (S2 × S3) ∩ Z23). By
(8.2.2), we have Z ′

12 ◦ Z ′
23 = (S1 × X3) ∩ (Z12 ◦ Z23). We have the convolution

product ∗′ : K(Z ′
12)⊗K(Z ′

23)→ K(Z ′
12 ◦ Z ′

23) relative to S1, S2, S3:

K ′
12 ∗′ K ′

23
def.
= p′13∗

(
p′∗12K

′
12 ⊗LS1×S2×S3

p′∗23K
′
23

)
,

where p′ab is the projection S1 × S2 × S3 → Sa × Sb.
We want to relate two convolution products ∗ and ∗′ via pull-back homomor-

phisms. For this purpose, we consider the inclusion ia× idXb
: Sa×Xb → Xa×Xb,

where ia is the inclusion Sa →֒ Xa ((a, b) = (1, 2), (2, 3), (1, 3)). By (8.2.1), we have
a pull-back homomorphism

K(Z12) ∼= K(X1 ×X2;Z12)
(i1×idX2 )∗−−−−−−−→ K(S1 ×X2;Z12 ∩ S1 ×X2) ∼= K(Z ′

12).

Similarly, we have

K(Z23)
(i2×idX3 )∗−−−−−−−→ K(Z ′

23), K(Z12 ◦ Z23)
(i1×idX3 )∗−−−−−−−→ K(Z ′

12 ◦ Z ′
23).

Proposition 8.2.3. For K12 ∈ K(Z12),K23 ∈ K(Z23), we have

(i1 × idX3)
∗(K12 ∗K23) = ((i1 × idX2)

∗K12) ∗′ ((i2 × idX3)
∗K23) .(8.2.4)

Namely, the following diagram commutes:

K(Z12)⊗K(Z23)
∗−−−−→ K(Z12 ◦ Z23)

(i1×idX2 )∗⊗(i2×idX3)∗
y

y(i1×idX3)∗

K(Z ′
12)⊗K(Z ′

23)
∗′

−−−−→ K(Z ′
12 ◦ Z ′

23).

Example 8.2.5. Suppose X1 = X2, S1 = S2 and Z12 = Image∆X1 , where ∆X1

is the diagonal embedding X1 → X1 × X2. Then the above assumption S1 ×
X2 ∩ Z12 ⊂ S1 × S2 is satisfied, and we have Z ′

12 = Image∆S1 , where ∆S1 is
the diagonal embedding S1 → S1 × S2. If E is a vector bundle over X1, we have
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(i1 × idX2)
∗(∆X1 )∗[E] = (∆S1)∗[i

∗
1E] by the base change [13, 5.3.15]. By Lemma

8.1.1, we have

(∆X1)∗[E] ∗K23 = p∗2[E]⊗K23,

(∆S1)∗[i
∗E] ∗′ (i2 × idX3)

∗K23 = p′∗2 i
∗
1[E]⊗ (i2 × idX3)

∗K23,

where p2 : X2 ×X3 → X2, p
′
2 : S2 ×X3 → S2 are the projections. Note

p′∗2 i
∗[E]⊗ (i2 × idX3)

∗K23 = (i2 × idX3)
∗p∗2[E]⊗ (i2 × idX3)

∗K23

= (i2 × idX3)
∗ (p∗2[E]⊗K23)

by (6.4.1). Hence we have (8.2.4) in this case.

Proof of Proposition 8.2.3. In order to relate ∗ relative toX1,X2, X3 and ∗′ relative
to S1, S2, S3, we replace Xa by Sa factor by factor.

Step 1. First we want to replace X1 by S1. We consider the following fiber
square:

S1 ×X2 ×X3

i1×idX2 × idX3−−−−−−−−−−→ X1 ×X2 ×X3

p′′13

y
yp13

S1 ×X3 −−−−−→
i1×idX3

X1 ×X3,

where p′′13 is the projection. We have

(i1 × idX3)
∗(K12 ∗K23) = (i1 × idX3)

∗p13∗

(
p∗12K12 ⊗LX1×X2×X3

p∗23K23

)

= p′′13∗(i1 × idX2 × idX3)
∗
(
p∗12K12 ⊗LX1×X2×X3

p∗23K23

)

= p′′13∗
(
(i1 × idX2 × idX3)

∗p∗12K12 ⊗LS1×X2×X3
(i1 × idX2 × idX3)

∗p∗23K23

)
,

(8.2.6)

where we have used the base change ([13, 5.3.15]) in the second equality and (6.4.1)
in the third equality. If p′′12 : S1 ×X2 ×X3 → S1 ×X2 denotes the projection, we
have p12 ◦ (i1 × idX2 × idX3) = (i1 × idX2) ◦ p′′12. Hence we get

(i1 × idX2 × idX3)
∗p∗12K12 = p′′∗12 (i1 × idX2)

∗K12.

Similarly, we have

(i1 × idX2 × idX3)
∗p∗23K23 = p′′∗23K23,

where p′′23 : S1×X2×X3 → X2×X3 is the projection. Substituting this into (8.2.6),
we obtain

(i1 × idX3)
∗(K12 ∗K23) = p′′13∗

(
p′′∗12 (i1 × idX2)

∗K12 ⊗LS1×X2×X3
p′′∗23K23

)
.(8.2.7)

Step 2. Next we replace X2 by S2. By (8.2.1), we have a homomorphism

(idS1 ×i2)∗ : K(Z ′
12)
∼= K(S1 × S2;Z

′
12)→ K(S1 ×X2;Z

′
12)
∼= K(Z ′

12),

which is just the identity operator. We will consider (i1 × idX2)
∗K12 ∈ K(Z ′

12) as
an element of K(S1 × S2;Z

′
12) or K(S1 × X2;Z

′
12) interchangeably. We consider
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the fiber square

S1 × S2 ×X3
p′′′12−−−−→ S1 × S2

idS1 ×i2×idX3

y
yidS1 ×i2

S1 ×X2 ×X3 −−−−→
p′′12

S1 ×X2,

where p′′′12 is the projection. By base change [13, 5.3.15], we get

p′′∗12 (i1 × idX2)
∗K12 = p′′∗12 (idS1 ×i2)∗(i1 × idX2)

∗K12

= (idS1 ×i2 × idX3)∗p
′′′∗
12 (i1 × idX2)

∗K12.

By the projection formula (6.5.1), we get

p′′∗12 (i1 × idX2)
∗K12 ⊗LS1×X2×X3

p′′∗23K23

= (idS1 ×i2 × idX3)∗
(
p′′′∗12 (i1 × idX2)

∗K12 ⊗LS1×S2×X3
(idS1 ×i2 × idX3)

∗p′′∗23K23

)
.

Substituting this into (8.2.7), we have

(i1 × idX3)
∗(K12 ∗K23)

= p′′13∗(idS1 ×i2 × idX3)∗

×
(
p′′′∗12 (i1 × idX2)

∗K12 ⊗LS1×S2×X3
(idS1 ×i2 × idX3)

∗p′′∗23K23

)

= p′′′13∗

(
p′′′∗12 (i1 × idX2)

∗K12 ⊗LS1×S2×X3
p′′′∗23 (i2 × idX3)

∗K23

)
,

(8.2.8)

where p′′′13 : S1×S2×X3 → S1×X3, p
′′′
23 : S1×S2×X3 → S2×X3 are the projections,

and we have used p′′′13 = p′′13 ◦ (idS1 ×i2 × idX3) and p′′23 ◦ (idS1 ×i2 × idX3) =
(i2 × idX3) ◦ p′′′23.

Step 3. We finally replace X3 by S3. By (8.2.1), we have a homomorphism

(idS2 ×i3)∗ : K(Z ′
23)
∼= K(S2 × S3;Z

′
23)→ K(S2 ×X3;Z

′
23)
∼= K(Z ′

23),

which is just the identity operator. We consider the fiber square

S1 × S2 × S3
p′23−−−−→ S2 × S3

idS1 × idS2 ×i3

y
yidS2 ×i3

S1 × S2 ×X3 −−−−→
p′′′23

S2 ×X3.

By base change [13, 5.3.15], we get

p′′′∗23 (i2 × idX3)
∗K23 = p′′′∗23 (idS2 ×i3)∗(i2 × idX3)

∗K23

= (idS1 × idS2 ×i3)∗p′∗23(i2 × idX3)
∗K23.

Substituting this into (8.2.8), we obtain

(i1 × idX3)
∗(K12 ∗K23)

= p′′′13∗

(
p′′′∗12 (i1 × idX2)

∗K12 ⊗LS1×S2×X3
(idS1 × idS2 ×i3)∗p′∗23(i2 × idX3)

∗K23

)

= p′′′13∗(idS1 × idS2 ×i3)∗
×
(
(idS1 × idS2 ×i3)∗p′′′∗12 (i1 × idX2)

∗K12 ⊗LS1×S2×S3
p′∗23(i2 × idX3)

∗K23

)

= (idS1 ×i3)∗p′13∗
(
p′∗12(i1 × idX2)

∗K12 ⊗LS1×S2×S3
p′∗23(i2 × idX3)

∗K23

)
,
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where we have used (6.5.1) in the second equality and p′′′13 ◦ (idS1 × idS2 ×i3) =
(idS1 ×i3) ◦ p′13, p′′′12 ◦ (idS1 × idS2 ×i3) = p′12 in the third equality. Finally, by
(8.2.2), the homomorphism (idS1 ×i3)∗ is just the identity operator K(Z ′

12 ◦Z ′
23)→

K(Z ′
12 ◦ Z ′

23). Thus we have the assertion.

8.3. Convolution and principal bundles. Let G be a linear algebraic group
and suppose that we have principal G-bundles πa : Pa → Xa over Xa for a = 1, 2, 3.
Consider the restriction of the principal G-bundle πa× idXb

: Pa×Xb → Xa×Xb to
Zab for (a, b) = (1, 2), (2, 3). Then the pull-back homomorphism gives a canonical
isomorphism

(πa × idXb
)∗ : K(Zab)

∼=−→ KG((πa × idXb
)−1Zab).(8.3.1)

Similarly we have an isomorphism

(π1 × idX3)
∗ : K(Z12 ◦ Z23)

∼=−→ KG((π1 × idX3)
−1(Z12 ◦ Z23)).(8.3.2)

Let G act on Pa×Pb diagonally. We assume that there exists a closed G-invariant
subvariety Z ′

ab of Pa × Pb such that

the restriction of idPa
× πb : Pa × Pb → Pa ×Xb to Z ′

ab is proper, and

(idPa
× πb)(Z ′

ab) = (πa × idXb
)−1Zab

(8.3.3)

for (a, b) = (1, 2), (2, 3).
Let p′ab be the projection P1 × P2 × P3 → Pa × Pb. Since the restriction of the

projection p′13 : p′−1
12 (Z ′

12)∩ p′−1
23 (Z ′

23)→ P1×P3 is proper, we have the convolution
product ∗′ : KG(Z ′

12)⊗KG(Z ′
23)→ KG(Z ′

12 ◦ Z ′
23) given by

K ′
12 ∗′ K ′

23
def.
= p′13∗

(
p′∗12K

′
12 ⊗LP1×P2×P3

p′∗23K
′
23

)

forK ′
12 ∈ KG(Z ′

12), K
′
23 ∈ KG(Z ′

23). We want to compare this convolution product
with that on K(Z12)⊗K(Z23).

By (8.3.3), we have

(idPa
× πb)∗K ′

ab ∈ KG((idPa
× πb)(Z ′

ab)) = KG((πa × idXb
)−1Zab).

Via (8.3.1), we define

Kab
def.
= ((πa × idXb

)∗)
−1

(idPa
× πb)∗K ′

ab ∈ K(Zab).(8.3.4)

Thus we can consider the convolution product K12 ∗K23.
By the construction, we have

(idP1 × π3)(Z
′
12 ◦ Z ′

23) = (π1 × idX3)
−1(Z12 ◦ Z23).

Noticing that the restriction of idP1 × π3 to Z ′
12 ◦ Z ′

23 is proper, we have

(idP1 × π3)∗(K
′
12 ∗′ K ′

23) ∈ KG((π1 × idX3)
−1(Z12 ◦ Z23).

Combining this with (8.3.2), we have

((π1 × idX3)
∗)−1 (idP1 × π3)∗(K

′
12 ∗′ K ′

23) ∈ K(Z12 ◦ Z23).

Proposition 8.3.5. In the above setup, we have

(π1 × idX3)
∗(K12 ∗K23) = (idP1 × π3)∗(K

′
12 ∗′ K ′

23).(8.3.6)
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Namely the following diagram commutes:

KG(Z ′
12)⊗KG(Z ′

23)
∗′

−−−−→ KG(Z ′
12 ◦ Z ′

23)y
y

K(Z12)⊗K(Z23)
∗−−−−→ K(Z12 ◦ Z23),

where the left vertical arrow is

((π1 × idX2)
∗)

−1
(idP1 × π2)∗ ⊗ ((π2 × idX3)

∗)
−1

(idP2 × π3)∗,

and the right vertical arrow is

((π1 × idX3)
∗)−1 (idP1 × π3)∗.

Example 8.3.7. Suppose X1 = X2, P1 = P2 and Z12 = Image∆X1 , where ∆X1 is
the diagonal embedding X1 → X1×X2. If we take Z ′

12 = Image∆P1 , where ∆P1 is
the diagonal embedding P1 → P1 × P2, the assumption (8.3.3) is satisfied. In fact,
the restriction of idP1 × π2 to Z ′

12 is an isomorphism. Take a vector bundle E and

consider K12 = ∆X1∗[E]. By the isomorphism K(X1)
π∗
1−→
∼=

KG(P1), we can define

K ′
12 = ∆P1∗π

∗
1 [E]. Then both (idP1 × π2)∗K

′
12 and (π1× idX2)

∗K12 is ∆′
∗[E] where

∆′ : P1 → (idP1 × π2)∆P1 = (π1 × idX2)
−1∆X1 is the natural isomorphism. Hence

(8.3.4) holds for K12 and K ′
12. By Lemma 8.1.1, we have

(∆X1 )∗[E] ∗K23 = p∗2[E]⊗K23,

(∆P1)∗[π
∗
1E] ∗′ K ′

23 = p′∗2 π
∗
2 [E]⊗K ′

23,

where p2 : X2 ×X3 → X2, p
′
2 : P2 ×X3 → P2 are the projections. We can directly

check (8.3.6) in this case.

Proof of Proposition 8.3.5. As in the proof of Proposition 8.2.3, we replace Xa by
Pa factor by factor.

Step 1. First we replace X1 by P1. Consider the following fiber square:

P1 ×X2 ×X3

π1×idX2 × idX3−−−−−−−−−−→ X1 ×X2 ×X3

p′′13

y
yp13

P1 ×X3 −−−−−→
π1×idX3

X1 ×X3,

where p′′13 is the projection. By base change [13, 5.3.15] and (6.4.1), we have

(π1 × idX3)
∗(K12 ∗K23) = (π1 × idX3)

∗p13∗

(
p∗12K12 ⊗LX1×X2×X3

p∗23K23

)

= p′′13∗(π1 × idX2 × idX3)
∗
(
p∗12K12 ⊗LX1×X2×X3

p∗23K23

)

= p′′13∗
(
(π1 × idX2 × idX3)

∗p∗12K12 ⊗LP1×X2×X3
(π1 × idX2 × idX3)

∗p∗23K23

)

= p′′13∗
(
p′′∗12 (π1 × idX2)

∗K12 ⊗LP1×X2×X3
p′′∗23K23

)
,

(8.3.8)

where p′′12 : P1 × X2 × X3 → P1 × X2 and p′′23 : P1 × X2 × X3 → X2 × X3 are
projections.
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Step 2. Consider the fiber square

P1 × P2 ×X3
p′′′12−−−−→ P1 × P2

idP1 ×π2×idX3

y
yidP1 ×π2

P1 ×X2 ×X3 −−−−→
p′′12

P1 ×X2,

where p′′′12 is the projection. By base change [13, 5.3.15], we have

(idP1 × π2 × idX3)∗p
′′′∗
12 K

′
12 = p′′∗12 (idP1 ×π2)∗K

′
12 = p′′∗12 (π1 × idX2)

∗K12,

where we have used (8.3.4) for (a, b) = (1, 2). Substituting this into (8.3.8), we get

(π1 × idX3)
∗(K12 ∗K23)

= p′′13∗
(
(idP1 × π2 × idX3)∗p

′′′∗
12 K

′
12 ⊗LP1×X2×X3

p′′∗23K23

)

= p′′13∗(idP1 × π2 × idX3)∗
(
p′′′∗12 K

′
12 ⊗LP1×P2×X3

(idP1 × π2 × idX3)
∗p′′∗23K23

)
,

(8.3.9)

where we have used (6.5.1) in the second equality. Let p′′′23 : P1×P2×X3 → P2×X3

be the projection. By p′′23 ◦ (idP1 × π2 × idX3) = (π2 × idX3) ◦ p′′′23, we have

(idP1 × π2 × idX3)
∗p′′∗23 = p′′′∗23 (π2 × idX3)

∗.

We also have

p′′13∗(idP1 × π2 × idX3)∗ = p′′′13∗,

where p13 : P1 × P2 × X3 → P1 × X3 is the projection. Substituting these two
equalities into (8.3.9), we get

(π1 × idX3)
∗(K12 ∗K23) = p′′′13∗

(
p′′′∗12 K

′
12 ⊗LP1×P2×X3

p′′′∗23 (π2 × idX3)
∗K23

)
.

(8.3.10)

Step 3. Consider the fiber square

P1 × P2 × P3
p′23−−−−→ P2 × P3

idP1 × idP2 × π3

y
yidP2 × π3

P1 × P2 ×X3
p′′′23−−−−→ P2 ×X3.

By base change [13, 5.3.15], we have

(idP1 × idP2 × π3)∗p
′∗
23K

′
23 = p′′′∗23 (idP2 × π3)∗K

′
23 = p′′′∗23 (π2 × idX3)

∗K23,

where we have used (8.3.4) for (a, b) = (2, 3) in the second equality. Substituting
this into (8.3.10), we have

(π1 × idX3)
∗(K12 ∗K23)

= p′′′13∗

(
p′′′∗12 K

′
12 ⊗LP1×P2×X3

(idP1 × idP2 × π3)∗p
′∗
23K

′
23

)

= p′′′13∗(idP1 × idP2 × π3)∗
(
(idP1 × idP2 × π3)

∗p′′′∗12 K
′
12 ⊗LP1×P2×P3

p′∗23K
′
23

)
.

By p′′′13 ◦ (idP1 × idP2 × π3) = (idP1 × π3) ◦ p′13 and p′′′12 ◦ (idP1 × idP2 × π3) = p′12, we
get

(π1 × idX3)
∗(K12 ∗K23) = (idP1 × π3)∗ ◦ p′13∗

(
p′∗12K

′
12 ⊗LP1×P2×P3

p′∗23K
′
23

)
.

This proves our assertion.
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9. A homomorphism Uq(Lg)→ KGw×C
∗

(Z(w)) ⊗Z[q,q−1] Q(q)

9.1. Let us define an analogue of the Steinberg variety Z(v1,v2;w) by

{(x1, x2) ∈M(v1,w)×M(v2,w) | π(x1) = π(x2)}.(9.1.1)

Here π(x1) = π(x2) means that π(x1) is equal to π(x2) if we regard both as elements
of M0(∞,w) by (2.5.4). This is a closed subvariety of M(v1,w)×M(v2,w).

The map p13 : p−1
12 (Z(v1,v2;w)) ∩ p−1

23 (Z(v2,v3;w)) → M(v1,w) ×M(v3,w)
is proper and its image is contained in Z(v1,v3;w). Hence we can define the
convolution product on the equivariant K-theory:

KGw×C
∗

(Z(v1,v2;w))⊗KGw×C
∗

(Z(v2,v3;w))→ KGw×C
∗

(Z(v1,v3;w)).

Let
∏

v1,v2

′
KGw×C

∗

(Z(v1,v2;w))

be the subspace of
∏

v1,v2 KGw×C
∗

(Z(v1,v2;w)) consisting of elements (Fv1,v2)
such that

(1) for fixed v1, Fv1,v2 = 0 for all but finitely many choices of v2,
(2) for fixed v2, Fv1,v2 = 0 for all but finitely many choices of v1.

The convolution product ∗ is well defined on
∏′

v1,v2 KGw×C
∗

(Z(v1,v2;w)). When

the underlying graph is of type ADE, M(v,w) is empty for all but finitely many
choices of v, so

∏′ is just the direct product
∏

.
Let Z(w) denote the disjoint union

⊔
v1,v2 Z(v1,v2;w). When we write

KGw×C
∗

(Z(w)),

we mean
∏′

v1,v2 KGw×C
∗

(Z(v1,v2;w)) as convention.

The second projection Gw × C∗ → C∗ induces a homomorphism R(C∗) →
R(Gw × C∗). Thus R(Gw × C∗) is an R(C∗)-algebra. Moreover, R(C∗) is isomor-

phic to Z[q, q−1] where qm corresponds to L(m) in (2.8.1). Thus KGw×C
∗

(Z(w))
is a Z[q, q−1]-algebra.

The aim of this section and the next two sections is to define the homomor-
phism from Uq(Lg) into KGw×C

∗

(Z(w))⊗Z[q,q−1] Q(q). We first define the map on
generators of Uq(Lg), and then check the defining relation.

9.2. First we want to define the image of qh, hk,m.
Let C•

k(v,w) be the Gw × C∗-equivariant complex over M(v,w) defined in

(2.9.1). We consider C•
k(v,w) as an element of KGw×C

∗

(M(v,w)) by identify-
ing it with the alternating sum

−[q−2Vk] +


q−1


⊕

l:k 6=l

[−〈hk, αl〉]qVl ⊕Wk




− [Vk].

The rank of the complex (2.9.1), as an element of KGw×C
∗

(M(v,w)) (see §6.2),
is given by

rankC•
k(v,w) = −

∑

l:k 6=l

(αk, αl) dimVl + dimWk − 2 dimVk = 〈hk,w − v〉.
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Let ∆ denote the diagonal embedding M(v,w)→M(v,w) ×M(v,w);

qh 7−→
∑

v

q〈h,w−v〉∆∗OM(v,w),

p+
k (z) 7−→

∑

v

∆∗

(∧
−1/z(C

•
k (v,w))

)+

,

p−k (z) 7−→
∑

v

∆∗

(
(−z)rankC•

k(v,w) detC•
k (v,w)∗

∧
−1/z(C

•
k (v,w))

)−
,

(9.2.1)

where ( )± denotes the expansion at z =∞, 0 respectively. Note that

ψ±
k (z) = q±hk

p±k (qz)

p±k (q−1z)
7−→

∑

v

qrankC•
k(v,w)∆∗

(∧
−1/qz(C

•
k (v,w))

∧
−q/z(C

•
k(v,w))

)±

.

9.3. Next we define the images of ek,r and fk,r. They are given by line bundles
over Hecke correspondences.

Let v1, v2 and Pk(v
2,w) be as in §5.1. By the definition, the quotient V 2

k /V
1
k

defines a line bundle over Pk(v
2,w). The generator ek,r is very roughly defined as

the rth power of V 2
k /V

1
k , but we need a certain modification in order to have the

correct commutation relation.
For the modification, we need to consider the following variants of C•

k(v,w):

C′•
k (v,w)

def.
= Cokerσk, C′′•

k (v,w)
def.
= Vk[−1],(9.3.1)

where Vk[−1] means that we consider the complex consisting of Vk in degrees 1 and
0 for other degrees. Since α is injective, we have C•

k (v,w) = C′•
k (v,w)+C′′•

k (v,w)

in KGw×C
∗

(M(v,w)). We have the corresponding decomposition of the Cartan
matrix C:

C = C′ + C′′, where C′ def.
= C− I, C′′ def.

= I.

We identify C′ (resp. C′′) with a map given by

v =
∑

vkαk ∈
⊕

Zαk 7→
∑

vk(αk − Λk)
(
resp.

∑
vkΛk

)
∈ P.

We also need matrices CΩ, CΩ given by

CΩ
def.
= I−AΩ, CΩ

def.
= I−AΩ,

where AΩ, AΩ are as in (2.1.1). We also identify them with maps
⊕

Zαk → P
exactly as above.

Let ω : M(v1,w)×M(v2,w)→M(v2,w)×M(v1,w) be the exchange of factors.
Let us denote ω

(
Pk(v

2 + αk,w)
)
⊂M(v2 +αk,w)×M(v2,w) by P−

k (v2,w). As

on Pk(v,w), we have a natural line bundle over P−
k (v2,w). Let us denote it by

V 1
k /V

2
k .

Now we define the images of ek,r, fk,r by

ek,r 7−→
∑

v2

(−1)−〈hk,CΩv
2〉
[
i∗
(
q−1V 2

k /V
1
k

)⊗r−〈hk,C
′′
v

2〉 ⊗ detC′•
k (v2,w)∗

]
,

fk,r 7−→
∑

v2

(−1)〈hk,w−CΩv
2〉
[
i−∗
(
q−1V 1

k /V
2
k

)⊗r+〈hk,w−C
′
v

2〉 ⊗ detC′′•
k (v2,w)∗

]
,

(9.3.2)
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where i : Pk(v
2,w) → Z(v2 − αk,v2;w) and i− : P−

k (v2,w) → Z(v2 + αk,v
2;w)

are the inclusions. Hereafter, we may omit i∗ or i−∗ , hoping that it causes no
confusion.

9.4.

Theorem 9.4.1. The assignments (9.2.1), (9.3.2) define a homomorphism

Uq(Lg)→ KGw×C
∗

(Z(w)) ⊗Z[q,q−1] Q(q)

of Q(q)-algebras.

We need to check the defining relations (1.2.1)–(1.2.11). We do not need to
consider the relations (1.2.1), (1.2.5) because we are considering Uq(Lg) instead of
Uq(ĝ). The relations (1.2.2), (1.2.3) and (1.2.4) follow from Lemma 8.1.1 and the
fact that E ⊗F ∼= F ⊗E. The relation (1.2.6) also follows from Lemma 8.1.1. The
remaining relations will be checked in the next two sections.

10. Relations (I)

10.1. Relation (1.2.7). Fix a vertex k ∈ I and take v1, v2 = v1 + αk. Let i
be the inclusion Pk(v

2,w) → Z(v1,v2;w) and let p1 and p2 be the projections
Pk(v

2,w)→M(v1,w) and Pk(v
2,w)→M(v2,w) respectively.

By Lemma 8.1.1, we have

∆∗
∧

−1/z(C
•
l (v

1,w)) ∗ i∗
[

∞∑

r=−∞

(
q−1V 2

k /V
1
k

)⊗r
w−r

]
∗∆∗

(∧
−1/zC

•
l (v

2,w)
)−1

= i∗

[
∧

−1/zp
∗
1(C

•
l (v

1,w))⊗
(∧

−1/zp
∗
2(C

•
l (v

2,w))
)−1

⊗
∞∑

r=−∞

(
q−1V 2

k /V
1
k

)⊗r
w−r

]
.

(10.1.1)

We have the following equality in KGw×C
∗

(Pk(v
2,w)):

V 1
k = V 2

k − V 2
k /V

1
k .

Hence we have

∧
−1/zp

∗
1C

•
l (v

1,w)⊗
(∧

−1/zp
∗
2C

•
l (v

2,w)
)−1

=
∧

−1/z[〈hk, αl〉]q
(
q−1V 2

k /V
1
k

)
.

Substituting this into (10.1.1), we get

∆∗
∧

−1/z(C
•
l (v

1,w)) ∗ i∗
[

∞∑

r=−∞

(
q−1V 2

k /V
1
k

)⊗r
w−r

]
∗∆∗

(∧
−1/zC

•
l (v

2,w)
)−1

=





(
1− wq

z

)(
1− w

zq

)
i∗

[
∞∑

r=−∞

(
q−1V 2

k /V
1
k

)⊗r
w−r

]
if k = l,

−〈hk,αl〉−1∏

p=0

(
1− q〈hk,αl〉+1+2pw

z

)−1

i∗

[
∞∑

r=−∞

(
q−1V 2

k /V
1
k

)⊗r
wr

]
otherwise.

This is equivalent to (1.2.7) for x+
l (w). The relation (1.2.7) for x−l (w) can be proved

in the same way.
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10.2. Relation (1.2.8) for k 6= l. Fix two vertices k 6= l. Let v1, v2, v3, v4 be
dimension vectors such that

v2 = v1 + αk = v3 + αl, v4 = v1 − αl = v3 − αk.
We want to compute ek,r∗fl,s and fl,s∗ek,r in the componentKGw×C(Z(v1,v3,w)).

Let us consider the intersection

p−1
12 Pk(v

2,w) ∩ p−1
23 P−

l (v3,w) (resp. p−1
12 P−

l (v2,w) ∩ p−1
23 Pk(v

3,w))

in M(v1,w)×M(v2,w)×M(v3,w) (resp. M(v1,w)×M(v4,w)×M(v3,w)). On
the intersection, we have the inclusion of restrictions of tautological bundles

V 1 ⊂ V 2 ⊃ V 3 (resp. V 1 ⊃ V 4 ⊂ V 3).

Lemma 10.2.1. The above two intersections are transversal, and there is a Gw ×
C∗-equivariant isomorphism between them such that

(a) it is the identity operators on the factor M(v1,w) and M(v3,w),
(b) it induces isomorphisms V 2

k /V
1
k
∼= V 3

k /V
4
k and V 2

l /V
3
l
∼= V 1

l /V
4
l .

Proof. See [45, Lemmas 9.8, 9.9, 9.10 and their proofs].

Since the intersection is transversal, we have

ek,r ∗ fl,s = (−1)−〈hk,CΩv
2〉+〈hl,w−CΩv

3〉p13∗[L],(10.2.2)

where L is the following line bundle over p−1
12 Pk(v

2,w) ∩ p−1
23 P−

l (v3,w):

(
q−1V 2

k /V
1
k

)⊗r−〈hk,C
′′
v

2〉 ⊗
(
q−1V 2

l /V
3
l

)⊗s+〈hl,w−C
′
v

3〉

⊗ detC′•
k (v2,w)∗ ⊗ detC′′•

l (v3,w)∗.

Similarly, we have

fl,s ∗ ek,r = (−1)〈hl,w−CΩv
4〉−〈hk,CΩv

3〉p13∗[L′],(10.2.3)

where L′ is the following line bundle over p−1
12 P−

l (v2,w) ∩ p−1
23 Pk(v

3,w):

(
q−1V 1

l /V
4
l

)⊗s+〈hl,w−C
′
v

4〉 ⊗
(
q−1V 3

k /V
4
k

)⊗r−〈hk,C
′′
v

3〉

⊗ detC′′•
l (v4,w)∗ ⊗ detC′•

k (v3,w)∗.

Let us compare (10.2.2) and (10.2.3). On p−1
12 Pk(v

2,w) ∩ p−1
23 P−

l (v3,w), we
have

detC′•
k (v2,w) = detC′•

k (v3,w)⊗ det
(
[−(αk, αl)]q(q

−1V 2
l /V

3
l )
)

= detC′•
k (v3,w)⊗

(
q−1V 2

l /V
3
l

)⊗−(αk,αl)
.

On the other hand, we have

detC′′•
l (v3,w) = detC′′•

l (v4,w)

on p−1
12 P−

l (v2,w)∩p−1
23 Pk(v

3,w). Hence under the isomorphism in Lemma 10.2.1,
we obtain

L ∼= L′,
where we have used

〈hl,C′v3〉 = 〈hl,C′v4〉 −Alk, 〈hk,C′′v2〉 = 〈hk,C′′v3〉.(10.2.4)
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By

〈hl,CΩv3〉 = 〈hl,CΩv4〉 − (AΩ)lk,

〈hk,CΩv2〉 = 〈hk,CΩv3〉 − (AΩ)kl, (AΩ)lk = (AΩ)kl,

we have

(−1)−〈hk,CΩv
2〉+〈hl,w−CΩv

3〉 = (−1)〈hl,w−CΩv
4〉−〈hk,CΩv

3〉.

Thus we have [ek,r, fl,s] = 0.

10.3. Relation (1.2.10). We give the proof of (1.2.10) for ± = + in this subsec-
tion. The relation (1.2.10) for ± = − can be proved in a similar way, and hence is
omitted.

Fix two vertices k 6= l. Let v1, v2, v3, v4 be dimension vectors such that

v2 = v1 + αk, v4 = v1 + αl, v3 = v2 + αl = v4 + αk = v1 + αk + αl.

We want to compute ek,r∗el,s and el,s∗ek,r in the componentKGw×C(Z(v1,v3,w)).
Let us consider the intersection

p−1
12 Pk(v

2,w) ∩ p−1
23 Pl(v

3,w) (resp. p−1
12 Pl(v

4,w) ∩ p−1
23 Pk(v

3,w))

in M(v1,w)×M(v2,w)×M(v3,w) (resp. M(v1,w)×M(v4,w)×M(v3,w)).

Lemma 10.3.1. The above two intersections are transversal respectively.

Proof. The proof below is modeled on [45, 9.8, 9.9]. We give the proof for
p−1
12 Pk(v

2,w)∩p−1
23 Pl(v

3,w). Then the same result for p−1
12 Pl(v

4,w)∩p−1
23 Pk(v

3,w)
follows by k↔ l, v2 ↔ v4.

We consider the complex (5.1.1) for Pk(v
2,w) and Pl(v

3,w):

L(V 1, V 2)
σ12

−→ E(V 1, V 2)⊕ L(W,V 2)⊕ L(V 1,W )
τ12

−→ L(V 1, V 2)⊕O,

L(V 2, V 3)
σ23

−→ E(V 2, V 3)⊕ L(W,V 3)⊕ L(V 2,W )
τ23

−→ L(V 2, V 3)⊕O,

where we use suffixes 12, 23 to distinguish endomorphisms. We have sections s12

and s23 of Ker τ12/ Imσ12 and Ker τ23/ Imσ23 respectively.
Identifying these vector bundles and sections with those of pull-backs to M(v1,w)

×M(v2,w)×M(v3,w), we consider their zero loci Z(s12) = Pk(v
2,w)×M(v3,w)

and Z(s23) = M(v1,w)×Pl(v
3,w).

As in the proof of [45, 5.7], we consider the transpose of ∇s12, ∇s23 via the
symplectic form. Their sum gives a vector bundle endomorphism

t(∇s12) + t(∇s22) : Ker tσ12/ Im tτ12 ⊕Ker tσ23/ Im tτ23

→ TM(v1,w)⊕ TM(v2,w)⊕ TM(v3,w).

It is enough to show that the kernel of t(∇s12) + t(∇s23) is zero at (x1, x2, x3).
Take representatives (Ba, ia, ja) of xa (a = 1, 2, 3). Then we have ξ12, ξ23 which

satisfy (5.1.3) for (Ba, ia, ja). Suppose that

(C′12, a′12, b′12) (mod Im tτ12)⊕ (C′23, a′23, b′23) (mod Im tτ23)
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lies in the kernel. Then there exist γa ∈ L(V a, V a) (a = 1, 2, 3) such that




εC′12 ξ12 = γ1B1 −B1 γ1,

b′12 = γ1 i1,

−a′12 ξ12 = −j1 γ1,





ε ξ23C′23 = γ3B3 −B3 γ3,

ξ23 b′23 = γ3 i3,

−a′23 = −j3 γ3,




ε(ξ12 C′12 + C′23 ξ23) = γ2B2 −B2 γ2,

ξ12 b′12 + b′23 = γ2 i2,

−a′12 − a′23ξ23 = −j2γ2.

(10.3.2)

Then we have

B3
(
ξ23(γ2ξ12 − ξ12γ1)− γ3ξ23ξ12

)
=
(
ξ23(γ2ξ12 − ξ12γ1)− γ3ξ23ξ12

)
B1,

j3
(
ξ23(γ2ξ12 − ξ12γ1)− γ3ξ23ξ12

)
= 0.

Hence we have

ξ23(γ2ξ12 − ξ12γ1)− γ3ξ23ξ12 = 0(10.3.3)

by the stability condition.
Consider the equation (10.3.3) at the vertex l. Since k 6= l, ξ12l is an isomor-

phism. Hence (10.3.3) implies that Im ξ23l is invariant under γ3
l . Since Im ξ23l is a

codimension 1 subspace, the induced map γ3
l : V 3

l / Im ξ23l → V 3
l / Im ξ23l is a scalar

which we denote by λ23. Moreover, there exists a homomorphism ζ23
l : V 3

l → V 2
l

such that

γ3
l − λ23 idV 3

l
= ξ23l ζ

23
l .

For another vertex l′ 6= l, ξ23l′ is an isomorphism, hence we can define ζ23
l′ so that

the same equation holds also for the vertex l′. Thus we have

γ3 − λ23 idV 3 = ξ23ζ23.(10.3.4)

Substituting (10.3.4) into (10.3.2) and using the injectivity of ξ23, we get




C′23 = ε(ζ23B3 −B2 ζ23),

a′23 = j3(ξ23ζ23 + λ23 idV 3),

b′23 = (ζ23ξ23 + λ23 idV 2)i2.

This means that (C′23, a′23, b′23) = tτ23(ζ23 ⊕ λ23).
Substituting (10.3.4) into (10.3.3) and noticing ξ23 is injective, we obtain

(
γ2 − (ζ23ξ23 + λ23 idV 2)

)
ξ12 = ξ12γ1.(10.3.5)

Thus Im ξ12 is invariant under γ2 − (ζ23ξ23 + λ23 idV 2). Arguing as above, we can
find a constant λ12 and a homomorphism ζ12 : V 2 → V 1 such that

γ2 − (ζ23ξ23 + λ23 idV 2)− λ12 idV 2 = ξ12ζ12.(10.3.6)

Substituting this equation into (10.3.2), we get




C′12 = ε(ζ12B2 −B1 ζ12),

a′12 = j2(ξ12ζ12 + λ12 idV 2),

b′12 = (ζ12ξ12 + λ12 idV 1)i1.

This means that (C′12, a′12, b′12) = tτ12(ζ12 ⊕ λ12). Hence t(∇s12) + t(∇s23) is
injective.
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Let us consider the variety Z̃kl (resp. Z̃lk) of all pairs (B, i, j) ∈ µ−1(0)s and
S ⊂ V 3 satisfying the following:

(a) S is a subspace with dimS = v1 = v3 − αk − αl,
(b) S is B-stable,
(c) Im i ⊂ S,
(d) the induced homomorphismBh : V 3

k /Sk→V 3
l /Sl (resp. Bh : V 3

l /Sl→V 3
k /Sk)

is zero for h with out(h) = k, in(h) = l.

Then Z̃kl/Gv3 (resp. Z̃lk/Gv3) is isomorphic to p−1
12 Pk(v

2,w)∩p−1
23 Pl(v

3,w) (resp.
p−1
12 Pl(v

2,w) ∩ p−1
23 Pk(v

3,w)). The isomorphism is given by defining

(B1, i1, j1)
def.
= the restriction of (B, i, j) to S,

(B2, i2, j2)
def.
= the restriction of (B, i, j) to S′,

(
resp. (B4, i4, j4)

def.
= the restriction of (B, i, j) to S′′

)
,

(B3, i3, j3)
def.
= (B, i, j),

where S′ (resp. S′′) is given by

S′
m

def.
=

{
Vm if m 6= l

Sl if m = l

(
resp. S′′

m
def.
=

{
Vm if m 6= k

Sk if m = k

)
.

It is also clear that the restriction of p13 to Z̃kl/Gv3 (resp. Z̃lk/Gv3) is an iso-

morphism onto its image. Hereafter, we identify Z̃kl/Gv3 (resp. Z̃lk/Gv3) with

the image. Then Z̃kl/Gv3 and Z̃lk/Gv3 are closed subvarieties of Z(v1,v3;w).

Let ikl : Z̃kl/Gv3 → Z(v1,v3;w) (resp. ilk : Z̃lk/Gv3 → Z(v1,v3;w)) denote the
inclusion.

The quotient V 3
k /Sk (resp. V 3

l /Sl) forms a line bundle over

Z̃kl/Gv3 = p−1
12 Pk(v

2,w) ∩ p−1
23 Pl(v

3,w)

(resp. Z̃lk/Gv3 = p−1
12 Pl(v

2,w)∩p−1
23 Pk(v

3,w)). By the above consideration, ek,r ∗
el,s (resp. el,s ∗ ek,r) is represented by

(10.3.7)

(−1)〈hk,CΩv
2〉+〈hl,CΩv

3〉ikl∗[(q
−1V 3

k /Sk)
⊗r−〈hk,C

′′
v

2〉 ⊗ (q−1V 3
l /Sl)

⊗s−〈hl,C
′′
v

3〉

⊗ detC′•
k (v2,w)∗ ⊗ detC′•

l (v3,w)∗]

(resp.

(−1)〈hl,CΩv
4〉+〈hk,CΩv

3〉ilk∗[(q
−1V 3

l /Sl)
⊗s−〈hl,C

′′
v

4〉 ⊗ (q−1V 3
k /Sk)

⊗r−〈hk,C
′′
v

3〉

⊗ detC′•
l (v4,w)∗ ⊗ detC′•

k (v3,w)∗]).

Note that we have

〈hk,CΩv2〉+ 〈hl,CΩv3〉 = 〈hl,CΩv4〉+ 〈hk,CΩv3〉 ± (αk, αl),

〈hk,C′′v2〉 = 〈hk,C′′v3〉, 〈hl,C′′v3〉 = 〈hl,C′′v4〉,
detC′•

k (v2,w) = detC′•
k (v3,w)⊗ (q−1V 3

l /Sl)
⊗(αk,αl),

detC′•
l (v4,w) = detC′•

l (v3,w)⊗ (q−1V 3
k /Sk)

⊗(αk,αl).

(10.3.8)
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Set b′ = −(αk, αl). We consider

⊕

out(h)=k,in(h)=l

Bh

as a section of the vector bundle q[b′]q Hom(V 3
l /Sl, V

3
k /Sk) over Z̃kl/Gv3 . Let us

denote it by skl. Similarly
⊕

out(h)=k,in(h)=lBh is a section (denoted by slk) of the

vector bundle q[b′]q Hom(V 3
k /Sk, V

3
l /Sl) over Z̃lk/Gv3 .

Lemma 10.3.9. The section skl (resp. slk) is transversal to the zero section (if it

vanishes somewhere).

Proof. Fix a subspace S ⊂ V 3 with dimS = v1. Let P be the parabolic subgroup of
Gv3 consisting of elements which preserve S. We also fix a complementary subspace
T . Thus we have V 3 = S ⊕ T . We will check the assertion for skl. The assertion
for slk follows if we exchange k and l.

We consider

M̃
def.
=





(B, i, j) ∈M(v3,w)

∣∣∣∣∣∣∣

B(S) ⊂ S, Im i ⊂ S,
Bh : V 3

k /Sk → V 3
l /Sl is 0 for h

with out(h) = k, in(h) = l




.

It is a linear subspace of M(v3,w). Let µ̃ : M̃ → L(V 3, S) be the composition

of the restriction of the moment map µ : M(v3,w) → L(V 3, V 3) to M̃ and the
projection L(V 3, V 3) → L(V 3, S). Let µ̃−1(0)s denote the set of (B, i, j) ∈ µ̃−1(0)
which is stable. It is preserved under the action of P and we have a Gv3 -equivariant
isomorphism

Gv3 ×P µ̃−1(0)s ∼= Z̃kl.

Note that the L(V 3, T )-part of the moment map µ vanishes on M̃ thanks to the

definition of M̃.
The assertion follows if we check that

dµ̃⊕Π: M̃→ L(V 3, S)⊕ q[b′]q Hom(V 3
l /Sl, V

3
k /Sk)

is surjective at (B, i, j) ∈ µ̃−1(0)s. Here Π: M̃ → q[b′]q Hom(V 3
l /Sl, V

3
k /Sk) is the

natural projection. Thus it is enough to show that dµ̃ : M̃ ∩ KerΠ → L(V 3, S) is
surjective.

Suppose that ζ ∈ L(S, V 3) is orthogonal to dµ̃(M̃ ∩KerΠ), namely

tr (ε(δB B +B δB)ζ + δi j ζ + i δj ζ) = 0

for any (δB, δi, δj) ∈ M̃ ∩KerΠ. Hence we have

0 = jζ ∈ L(S,W ), 0 = Bζ − ζB|S ∈ L(S, V 3),

where B|S is the restriction of B to S. Therefore the image of ζ is invariant under
B and contained in Ker j. By the stability condition, we have ζ = 0. Thus we have
proved the assertion.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



200 HIRAKU NAKAJIMA

Let Z(skl) (resp. Z(slk)) be the zero locus of skl (resp. slk). By Lemma 10.3.9,

we have the following exact sequence (Koszul complex) on Z̃kl/Gv3 (resp. Z̃lk/Gv3):

0→ ∧max
(q[b′]q Hom(V 3

l /Sl, V
3
k /Sk))

∗ → · · · → (q[b′]q Hom(V 3
l /Sl, V

3
k /Sk))

∗

→ OZ̃kl/G
v
3
→ OZ(skl) → 0

(resp.

0→ ∧max
(q[b′]q Hom(V 3

k /Sk, V
3
l /Sl))

∗ → · · · → (q[b′]q Hom(V 3
k /Sk, V

3
l /Sl))

∗

→ OZ̃lk/G
v
3
→ OZ(slk) → 0).

Hence we have the following equality inKGw×C
∗

(Z̃kl/Gv3) (resp.KGw×C
∗

(Z̃lk/Gv3)):

OZ(skl) =
∧

−1(q[b
′]q Hom(V 3

l /Sl, V
3
k /Sk))

∗

(
resp. OZ(slk) =

∧
−1(q[b

′]q Hom(V 3
k /Sk, V

3
l /Sl))

∗
)
.

Both Z(skl) and Z(slk) consist of all pairs (B, i, j) ∈ µ−1(0)s and S ⊂ V 3 satisfying
the following:

(a) S is a subspace with dimS = v1 = v3 − αk − αl,
(b) S is B-stable,
(c) Im i ⊂ S,
(d) the induced homomorphism B : V/S → V/S is zero,

modulo the action of Gv3 . In particular, we have Z(skl) = Z(slk). Hence we have

ikl∗
[∧

−1(q[b
′]q Hom(V 3

l /Sl, V
3
k /Sk))

∗
]

= ilk∗
[∧

−1(q[b
′]q Hom(V 3

k /Sk, V
3
l /Sl))

∗
]
.

This implies

ikl∗
[
(q−1V 3

k /Sk)
⊗r ⊗ (q−1V 3

l /Sl)
⊗s ⊗∧−1(q[b

′]q Hom(V 3
l /Sl, V

3
k /Sk))

∗
]

= ilk∗
[
(q−1V 3

k /Sk)
⊗r ⊗ (q−1V 3

l /Sl)
⊗s ⊗∧−1(q[b

′]q Hom(V 3
k /Sk, V

3
l /Sl))

∗
]

(10.3.10)

by the projection formula (6.5.1). Multiplying this equality by z−rw−s and taking
the sum with respect to r and s, we get

b′∏

p=1

(1− qb′−2pw

z
)

∞∑

r,s=−∞

ikl∗
[
(q−1V 3

k /Sk)
⊗r ⊗ (q−1V 3

l /Sl)
⊗s
]
z−rw−s

=
b′∏

p=1

(1 − qb′−2p z

w
)

∞∑

r,s=−∞

ilk∗
[
(q−1V 3

k /Sk)
⊗r ⊗ (q−1V 3

l /Sl)
⊗s
]
z−rw−s.

Comparing this with (10.3.7) and using (10.3.8), we get (1.2.10).

10.4. Relation (1.2.11). We give the proof of (1.2.11) for ± = + in this sub-
section, assuming other relations. (The relations (1.2.8) with k = l and (1.2.9)
will be checked in the next section, but its proof is independent of results in this
subsection.) The relation (1.2.11) for ± = − can be proved in a similar way, and
hence is omitted.

By the proof of [45, 9.3], operators ek,0, fk,0 acting on KGw×C
∗

(Z(w)) are locally
nilpotent. (See also Lemma 13.2.4 below.) It is known that the constant term of
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(1.2.11), i.e.,

b∑

p=0

(−1)p
[
b
p

]

qk

epk,0el,0e
b−p
k,0 = 0,(10.4.1)

can be deduced from the other relations and the local nilpotency of ek,0, fk,0 (see,
e.g., [13, 4.3.2] for the proof for q = 1). Thus our task is to reduce

∑

σ∈Sb

b∑

p=0

(−1)p
[
b
p

]

qk

ek,rσ(1)
· · · ek,rσ(p)

el,sek,rσ(p+1)
· · · ek,rσ(b)

= 0(10.4.2)

to (10.4.1). This reduction was done by Grojnowski [23], but we reproduce it here
for the sake of completeness.

For p ∈ {0, 1, . . . , b}, let v0, . . . ,vb+1 be dimension vectors with

vi =

{
vi−1 + αk if i 6= p+ 1,

vi−1 + αl if i = p+ 1.

Let

πij : M(v0,w)× · · · ×M(vb+1,w)→M(vi,w)×M(vj ,w)

be the projection. Let

P̂p
def.
= π−1

12 (Pk(v
1,w)) ∩ · · · ∩ π−1

p−1,p(Pk(v
p,w))

∩ π−1
p,p+1(Pl(v

p+1,w)) ∩ π−1
p+1,p+2(Pk(v

p+2,w)) ∩ · · · ∩ π−1
b,b+1(Pk(v

b+1,w)).

(10.4.3)

This is equal to

{(B, i, j, V 0 ⊂ · · · ⊂ V b+1) | as below}/Gvb+1 ,

(a) (B, i, j) ∈ µ−1(0)s (in M(vb+1,w)),
(b) V i is a B-invariant subspace containing the image of i with dimV i = vi.

In particular, we have line bundles V i/V i−1 on P̂p (i = 1, . . . , b + 1). By the

definition, there exists a line bundle Lp(r1, . . . , rb; s) ∈ KGw×C
∗

(P̂p) such that

ek,r1 · · · ek,rp
el,sek,rp+1 · · · ek,rb

= π0,b+1∗Lp(r1, . . . , rb; s).

Moreover, we have

(10.4.4)

Lp(r1, . . . , rb; s) =
(
q−1V 1

k /V
0
k

)⊗r1⊗· · ·⊗
(
q−1V pk /V

p−1
k

)⊗rp

⊗
(
q−1V p+1

l /V pl

)⊗s

⊗
(
q−1V p+2

k /V p+1
k

)⊗rp+1

⊗ · · · ⊗
(
q−1V b+1

k /V bk
)⊗rb ⊗ Lp(0, . . . , 0; 0).

Now consider the symmetrization. By (10.4.4), we have

∑

σ∈Sb

Lp(rσ(1), . . . , rσ(b); s) = T (V b+1
k /V 0

k )⊗
(
q−1V p+1

l /V pl

)⊗s
⊗ Lp(0, . . . , 0; 0)

for some tensor product T (V b+1
k /V 0

k ) of exterior products of the bundle V b+1
k /V 0

k

and its dual. (In the notation in §11.4 below, T (V b+1
k /V 0

k ) corresponds to the

symmetric function
∑

σ∈Sb
x
rσ(1)

1 · · ·xrσ(b)

b .) Note that we have q−1V p+1
l /V pl =
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q−1V b+1
l /V 0

l . Thus T (V b+1
k /V 0

k )⊗
(
q−1V b+1

l /V 0
l

)⊗s
can be considered as a vector

bundle over π0,b+1(P̂p). Then the projection formula implies that
∑

σ∈Sb

π0,b+1∗Lp(rσ(1), . . . , rσ(b); s)

= T (V b+1
k /V 0

k )⊗
(
q−1V b+1

l /V 0
l

)⊗s ⊗ π0,b+1∗Lp(0, . . . , 0; 0).

Noticing that T (V b+1
k /V 0

k ) ⊗
(
q−1V b+1

l /V 0
l

)⊗s
is independent of p, we can derive

(10.4.2) from (10.4.1).

11. Relations (II)

The purpose of this section is to check the relations (1.2.8) with k = l and (1.2.9).
Our strategy is the following. We first reduce the computation of the convolution
product to the case of the graph of type A1 using results in §8 and introducing
modifications of quiver varieties and Hecke correspondences. Then we perform the
computation using the explicit description of the equivariant K-theory for quiver
varieties for the graph of type A1.

In this section we fix a vertex k.

11.1. Modifications of quiver varieties. We take a collection of vector spaces
V = (Vl)l∈I with dimV = v. Let µk be the Hom(Vk, Vk)-component of µ : M(v,w)
→ L(V, V ), i.e.,

µk(B, i, j)
def.
=

∑

in(h)=k

ε(h)BhBh + ikjk.

Let

M̃(v,w)
def.
=
{

(B, i, j) ∈ µ−1
k (0)

∣∣∣
⊕

out(h)=k

Bh ⊕ jk : Vk

→
⊕

out(h)=k

Vin(h) ⊕Wk is injective
}/

GL(Vk).

This is a product of the quiver variety for the graph of type A1 and the affine space:

M̃(v,w) = M(vk, N)×M′(v,w),

where

vk = dimVk, N = −
∑

l:l 6=k

(αk, αl) dimVl + dimWk,

M′(v,w)
def.
=

⊕

h :
in(h) 6=k
out(h) 6=k

Hom(Vout(h), Vin(h))⊕
⊕

l : l 6=k

Hom(Wl, Vl)⊕Hom(Vl,Wl).

Moreover, the variety M(vk, N) is isomorphic to the cotangent bundle of the Grass-
mann manifold G(vk, N) of vk-dimensional subspaces in the N -dimensional space.
(See [44, Chap. 7] for details.) The isomorphism is given as follows: M(vk, N) is
the set of GL(vk,C)-orbits of i : CN → Cvk , j : Cvk → CN such that

(a) ij = 0,
(b) j is injective.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



QUIVER VARIETIES AND QUANTUM AFFINE ALGEBRAS 203

The action is given by (i, j) 7→ (gi, jg−1). Then

M(vk, N) ∋ G · (i, j) 7→ (Image j ⊂ CN )

defines a map M(vk, N)→ G(vk, N), and the linear map

ji : CN/ Image j −→ Image j

defines a cotangent vector at Image j.
Let µ−1(0)s be as in Definition 2.3.1 and let µ−1

k (0)s be the set of stable points

in µ−1
k (0). Although the stability condition (2.3.1) was defined only for (B, i, j) ∈

µ−1(0), it can be defined for any (B, i, j) ∈M(v,w). Let

M̃◦(v,w)
def.
= µ−1

k (0)s/GL(Vk), M̂(v,w)
def.
= µ−1(0)s/GL(Vk).

We have a natural action of

G′
v

def.
=

∏

l:l 6=k

GL(Vl)

on M̃(v,w), M̃◦(v,w) and M̂(v,w). We have the following relations between these
varieties:

(a) M̃◦(v,w) is an open subvariety of M̃(v,w),

(b) M̂(v,w) is a nonsingular closed subvariety of M̃◦(v,w) (defined by the equa-
tion µl = 0 for l 6= k),

(c) M̂(v,w) is a principal G′
v
-bundle over M(v,w).

The vector space Vk defines vector bundles M̃(v,w), M̃◦(v,w), M̂(v,w) and
M(v,w). We denote all of them by Vk for brevity, hoping that it causes no confu-
sion.

11.2. Modifications of Hecke correspondences. Fix n ∈ Z>0. Take collections
of vector spaces V 1 = (V 1

l )l∈I , V
2 = (V 2

l )l∈I whose dimension vectors v1, v2 satisfy
v2 = v1 + nαk. (For the proof of Theorem 9.4.1, it is enough to consider the case
n = 1. But we study general n for a later purpose.) These data will be fixed
throughout this subsection, and we use the following notation:

M̃1 = M̃(v1,w), M̃2 = M̃(v2,w), M̃◦
1 = M̃◦(v1,w), M̃◦

2 = M̃◦(v2,w),

M̂1 = M̂(v1,w), M̂2 = M̂(v2,w), M1 = M(v1,w), M2 = M(v2,w).

Consider M̃1 and M̃2. These varieties are products of quiver varieties for the
graph of type A1 and the affine space. We fix an isomorphism V 1

l
∼= V 2

l for l 6= k.
Then we have identifications G′

v1
∼= G′

v2 and M′(v1,w) ∼= M′(v2,w). We write
them asG′ and M′ respectively for brevity. We write Vl for V 1

l and V 2
l for l 6= k. Let

us define a subvariety P̃
(n)
k ⊂ M̃1×M̃2 as the product of the Hecke correspondence

for the graph of type A1 and the diagonal for the affine space. Namely

P̃
(n)
k

def.
= P

(n)
k (v2

k, N)×∆M′

∩ ∩
M̃1 × M̃2 = M(v2

k − n,N)×M(v2
k, N)×M′ ×M′,

where v2
k = dim V 2

k and

N = −
∑

l:l 6=k

(αk, αl) dimV 1
l + dimWk = −

∑

l:l 6=k

(αk, αl) dim V 2
l + dimWk.
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Here P
(n)
k (v2

k, N) ⊂ M(v2
k − n,N) ×M(v2

k, N) is the generalization of the Hecke
correspondence introduced in (5.3.1). Since the graph is of type A1, it is isomorphic
to the conormal bundle of

O(n)(v2
k, N)

def.
= {(V 1

k , V
2
k ) ∈ G(v2

k − n,N)×G(v2
k, N) | V 1

k ⊂ V 2
k }.

The quotient V 2
k /V

1
k defines a vector bundle over P

(n)
k (v2

k, N) of rank n.
We have

P̃
(n)
k ∩

(
M̃◦

1 × M̃2

)
⊂ M̃◦

1 × M̃◦
2, P̃

(n)
k ∩

(
M̃1 × M̃◦

2

)
⊂ M̃◦

1 × M̃◦
2.(11.2.1)

The latter inclusion is obvious from the definition of stability, and the former one
follows from the argument in [45, Proof of 4.5]. Let

P̃
(n)◦
k

def.
= P̃

(n)
k ∩

(
M̃◦

1 × M̃◦
2

)
.

For ([B1, i1, j1], [B2, i2, j2])∈P̃
(n)
k , the first factor [B1, i1, j1] satisfies µ(B1, i1, j1)

= 0 if and only if the other factor [B2, i2, j2] also satisfies µ(B2, i2, j2) = 0. This
implies that

P̃
(n)◦
k ∩

(
M̂1 × M̃◦

2

)
⊂ M̂1 × M̂2, P̃

(n)◦
k ∩

(
M̃◦

1 × M̂2

)
⊂ M̂1 × M̂2.

(11.2.2)

Let

P̂
(n)
k

def.
= P̃

(n)◦
k ∩

(
M̂1 × M̂2

)
.

The quotient V 2
k /V

1
k defines vector bundles over P̃

(n)
k , P̃

(n)◦
k and P̂

(n)
k . For brevity,

all are simply denoted by V 2
k /V

1
k .

Let us denote by ia the inclusion M̂a ⊂ M̃◦
a for a = 1, 2. By (11.2.2), the

inclusion map i1 × id
M̃◦(v2,w)

: M̂(v1,w) × M̃◦(v2,w) → M̃◦(v1,w) × M̃◦(v2,w)

induces the pull-back homomorphism with support

(i1 × id
M̃◦

2
)∗ : KG′×Gw×C

∗

(P̃
(n)◦
k )→ KG′×Gw×C

∗

(P̂
(n)
k ).

Similarly, we have

(id
M̃◦

1
×i2)∗ : KG′×Gw×C

∗

(P̃
(n)◦
k )→ KG′×Gw×C

∗

(P̂
(n)
k ).

Lemma 11.2.3. We have

(i1 × id
M̃◦

2
)∗[O

P̃
(n)◦
k

] = [O
P̂

(n)
k

], (id
M̃◦

2
×i2)∗[OP̃

(n)◦
k

] = [O
P̂

(n)
k

].

More generally, if T (V 2
k /V

1
k ) denotes a tensor product of exterior products of the

bundle V 2
k /V

1
k and its dual, we have

(i1 × id
M̃◦

2
)∗[T

(
V 2
k /V

1
k

)
] = [T

(
V 2
k /V

1
k

)
⊗O

P̂
(n)
k

],

(id
M̃◦

1
×i2)∗[T

(
V 2
k /V

1
k

)
] = [T

(
V 2
k /V

1
k

)
⊗O

P̂
(n)
k

].

Proof. The latter statement follows from the first statement and the formula (6.4.1).
Thus it is enough to check the first statement, and the first statement follows from

the transversality of intersections (11.2.2) in M̃◦
1 × M̃◦

2.
Let µ′ : M(v,w) →⊕

l 6=k gl(Vl) be the
⊕

l 6=k gl(Vl)-part of the moment map µ.

It induces a map M̃◦
a →

⊕
l 6=k gl(Vl) for a = 1, 2. Let us denote it by µ′

a. Thus we

have M̂a = µ′−1
a (0). Composing µ′

a with the projection pa : M̃◦
1 × M̃◦

2 → M̃◦
a, we
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have a map µ′
a ◦ pa : M̃◦

1 × M̃◦
2 →

⊕
l 6=k gl(Vl) for a = 1, 2. We denote it also by

µ′
a for brevity. It is enough to show that the restriction of the differential dµ′

a to

T P̃
(n)◦
k is surjective on P̂

(n)
k = P̃

(n)◦
k ∩ (M̃◦

1 × M̂2) = P̃
(n)◦
k ∩ (M̂1 × M̃◦

2).
We consider the homomorphisms σk, τk defined in (2.9.1) where (B, i, j) is re-

placed by (Ba, ia, ja) (a = 1, 2). We denote them by σak and τak respectively.

Take a point ([B1, i1, j1], [B2, i2, j2]) ∈ P̂
(n)
k . Then

B1
h = B2

h (in(h) 6= k, out(h) 6= k), i1l = i2l , j1l = j2l (l 6= k),

and there exists ξk : V 1
k → V 2

k such that

ξkB
1
h = B2

h, B1
h
ξk = B2

h
(in(h) = k), ξki

1
k = i2k, j1k = j2kξk.

The tangent space T P̃
(n)◦
k is isomorphic to the space of (δB1, δi1, δj1, δB2, δi2, δj2)

∈M(v1,w)×M(v2,w) such that

δB1
h = δB2

h (if in(h) 6= k, out(h) 6= k),

δi1l = δi2l , δj1l = δj2l (for l 6= k),

τak δσ
a
k + δτak σ

a
k = 0 (a = 1, 2),

ξk ◦ δτ1
k = δτ2

k , δσ1
k = δσ2

k ◦ ξk

(11.2.4)

modulo the image of

{(δξ1k, δξ2k) ∈ gl(V 1
k )× gl(V 2

k ) | δξ2k ξk = ξkδξ
1
k}

7−→





δξ1kB
1
h, −B1

h
δξ1k, δξ

2
kB

2
h, −B2

h
δξ2k (in(h) = k),

δξ1ki
1
k, −j1kδξ1k, δξ2ki2k, −j2kδξ2k

other components are 0,

(11.2.5)

where

δσak =
⊕

in(h)=k

δBa
h
⊕ δjak , δτak =

⊕

in(h)=k

ε(h)δBah + δiak (a = 1, 2),

and we have used the identification V 1
l
∼= V 2

l for l 6= k.
Now suppose that (ζl)l 6=k ∈

⊕
l 6=k gl(Vl) is orthogonal to the image of dµ′

a|T P̃
(n)◦
k

.

Putting ζk = 0, we consider ζ = (ζl) as an element of L(V a, V a). Then

tr (εδBa(Baζ − ζBa) + δia jaζ + ζia δja) = 0

for any (δB1, δi1, δj1, δB2, δi2, δj2) ∈ T P̃
(n)◦
k . Since the image of (11.2.5) lies in the

kernel of dµ′
a, the above equality holds for any (δB1, δi1, δj1, δB2, δi2, δj2) satisfying

(11.2.4).
Taking (δB1, δi1, δj1, δB2, δi2, δj2) from ∆M′(v,w), we find

Bahζout(h) = ζin(h)B
a
h if in(h) 6= k, out(h) 6= k,

ζli
2
l = 0, j2l ζl = 0 if l 6= k.

(11.2.6)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



206 HIRAKU NAKAJIMA

Next taking (δB1, δi1, δj1, δB2, δi2, δj2) from the other component (data related
to the vertex k), we get

σak ◦


 ∑

in(h)=k

ε(h)Bahζout(h), 0




=


 ⊕

in(h)=k

ζout(h)B
a
h
⊕ 0


 ◦ τak ∈ End


 ⊕

in(h)=k

Vout(h) ⊕Wk


 .

Comparing Hom(Vout(h),Wk)-components, we find

ε(h)jkB
a
hζout(h) = 0.(11.2.7)

Comparing Hom(Vout(h), Vout(h′))-components, we have

Ba
h′ε(h)B

a
hζout(h) = ζout(h′)B

a
h′ε(h)B

a
h.(11.2.8)

If we define

Sl
def.
=

{
Im ζl if l 6= k,∑

in(h)=k Im
(
Bahζout(h)

)
if l = k,

(11.2.6), (11.2.7) and (11.2.8) imply that S = (Sl) is Ba-invariant and contained in
Ker j. Thus S = 0 by the stability condition. In particular, we have ζ = 0. This
means that dµ′

a|T P̃
(n)◦
k

is surjective.

Let πa : M̂a →Ma be the projection (a = 1, 2). Then we have

the restriction of id
M̂1
× π2 : M̂1 × M̂2 → M̂1 ×M2 to P̂

(n)
k is proper,

(id
M̂1
× π2)(P̂

(n)
k ) = (π1 × idM2)

−1(P
(n)
k ),

the restriction of π1 × id
M̂2

: M̂1 × M̂2 →M1 × M̂2 to P̂
(n)
k is proper,

(π1 × id
M̂2

)(P̂
(n)
k ) = (idM1 × π2)

−1(P
(n)
k ).

(11.2.9)

By these properties, we have homomorphisms

(π1 × idM2)
∗−1

(
id

M̂1
× π2

)
∗

: KG′×Gw×C
∗

(P̂
(n)
k )→ KGw×C

∗

(P
(n)
k ),

(idM1 × π1)
∗−1

(
π1 × id

M̂2

)
∗

: KG′×Gw×C
∗

(P̂
(n)
k )→ KGw×C

∗

(P
(n)
k ).

Lemma 11.2.10. We have

(π1 × idM2)
∗−1

(
id

M̂1
× π2

)
∗
[O

P̂
(n)
k

] = [O
P

(n)
k

],

(idM1 × π2)
∗−1

(
π1 × id

M̂2

)
∗
[O

P̂
(n)
k

] = [O
P

(n)
k

].

More generally, if T (V 2
k /V

1
k ) denotes a tensor product of exterior products of the

bundle V 2
k /V

1
k and its dual, we have

(π1 × idM2)
∗−1

(
id

M̂1
× π2

)
∗
[(π1 × π2)

∗T
(
V 2
k /V

1
k

)
] = [T

(
V 2
k /V

1
k

)
],

(idM1 × π2)
∗−1

(
π1 × id

M̂2

)
∗
[(π1 × π2)

∗T
(
V 2
k /V

1
k

)
] = [T

(
V 2
k /V

1
k

)
].
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Proof. The latter statement follows from the former one together with the projec-
tion formula (6.5.1). Thus it is enough to prove the former statement.

By definition, (π1 × idM2)
−1(P

(n)
k ) consists of

(GL(V 1
k ) · (B1, i1, j1), Gv2 · (B2, i2, j2)) ∈ M̂1 ×M2

such that there exists ξ ∈ L(V 1, V 2) satisfying (5.1.3). We fix representatives
(B1, i1, j1), (B2, i2, j2). Then the above ξ is uniquely determined. Recall that we

have chosen the identification V 1
l
∼= V 2

l for l 6= k over M̂1 × M̂2. Let us define
ξ′ ∈ L(V 2, V 2) by

ξ′l
def.
=

{
id if l = k,

ξl otherwise.

We define a new datum

(B3, i3, j3)
def.
= (ξ′−1B2ξ′, ξ′−1i2, j2ξ′).

By definition, we have

ξkB
1
h = B3

h, B1
h

= B3
h
ξk (in(h) = k), ξki

1
k = i3k, j1k = j3kξk,

B1
h = B3

h (in(h) 6= k, out(h) 6= k), i1l = i3l , j1l = j3l (l 6= k).

Hence (GL(V 1
k ) · (B1, i1, j1),GL(V 2

k ) · (B3, i3, j3)) is contained in P̂k. Moreover,
GL(V 2

k ) · (B3, i3, j3) is independent of the choice of the representative (B2, i2, j2).

Thus we have defined a map (π1 × idM2)
−1(P

(n)
k )→ P̂

(n)
k by

(GL(V 1
k ) · (B1, i1, j1), Gv2 · (B2, i2, j2))

7→ (GL(V 1
k ) · (B1, i1, j1),GL(V 2

k ) · (B3, i3, j3)),

which is the inverse of the restriction of id
M̃1
×π2. In particular, this implies

(
id

M̂1
× π2

)
∗
[O

P̂
(n)
k

] = [O
(π1×idM2

)−1(P
(n)
k )

].

Since π1 × idM2 : (π1 × idM2)
−1(P

(n)
k )→ P

(n)
k is a principal G′-bundle, we have

(π1 × idM2)
∗[O

P
(n)
k

] = [O
(π1×idM2

)−1(P
(n)
k )

].

Thus we have proved the first equation. The second equation can be proved in a
similar way.

11.3. Reduction to the rank 1 case. First consider the relation (1.2.8) for k = l.
Let v1, v2, v3, v4 be dimension vectors such that

v1 = v3, v2 = v1 + αk, v4 = v1 − αk.
We want to compute x+

k (z) ∗ x−k (w) and x−k (w) ∗ x+
k (z) in the component

KGw×C(Z(v1,v3,w)),

and then compare it with the right hand side of (1.2.8) with k = l in the same
component.

Let M̂(va,w), M̃(va,w), M̃◦(va,w), G′
va and M′(va,w) be as in §11.1. Let

Pk(v
a,w), P̂k(v

a,w), P̃k(v
a,w), P̃◦

k(v
a,w) be the Hecke correspondence and its

modifications introduced in §11.2. (We drop the superscript (n) and write the di-

mension vector va, w.) Let ω be the exchange of factors as before. Let Ẑ(va,vb;w),
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Z̃(va,vb;w), Z̃◦(va,vb;w) be subvarieties in M̂(va,w) × M̂(vb,w), M̃(va,w) ×
M̃(vb,w), M̃◦(va,w)× M̃◦(vb,w) defined in the same way as Z(va,vb;w).

We have the following commutative diagram:

KGw×C
∗

(Pk(v2,w)) × KGw×C
∗

(ωPk(v2,w)) −−−−→ KGw×C
∗

(Z(v1,v3;w))
x

x

KG′×Gw×C
∗

(P̂k(v2,w)) × KG′×Gw×C
∗

(ωP̂k(v2,w)) −−−−→ KG′×Gw×C
∗

(Ẑ(v1,v3;w))
x

x

KG′×Gw×C
∗

(P̃◦
k(v2,w)) × KG′×Gw×C

∗

(ωP̃◦
k(v2,w)) −−−−→ KG′×Gw×C

∗

(Z̃◦(v1,v3;w))
x

x

KG′×Gw×C
∗

(P̃k(v2,w)) × KG′×Gw×C
∗

(ωP̃k(v2,w)) −−−−→ KG′×Gw×C
∗

(Z̃(v1,v3;w)).

The horizontal arrows are convolution products relative to

(1) M(v1,w), M(v2,w), M(v3,w),

(2) M̂(v1,w), M̂(v2,w), M̂(v3,w),

(3) M̃◦(v1,w), M̃◦(v2,w), M̃◦(v3,w),

(4) M̃(v1,w), M̃(v2,w), M̃(v3,w).

The vertical arrows between the first and the second rows are homomorphisms given
in Proposition 8.3.5. The arrows between the second and the third are homomor-
phisms given in Proposition 8.2.3. By the properties (11.2.2), (11.2.9) and

(a) Z̃◦(v1,v3;w) ∩
(
M̂(v1,w)× M̃◦(v2,w)

)
⊂ Ẑ(v1,v3;w),

(b) the restriction of π1 × id
M̂(v3,w)

: M̂(v1,w) × M̂(v3,w) → M(v1,w) ×
M̂(v3,w) to Ẑ(v1,v3;w) is proper,

(c) (π1 × id
M̂(v3,w)

)(Ẑ(v1,v3;w)) ⊂ (idM(v1,w)× π3)
−1(Z(v1,v3;w)),

those homomorphisms can be defined. Finally the arrows between the third and
the fourth are restrictions to open subvarieties.

The commutativity for the first and the second squares follows from Propositions

8.3.5 and 8.2.3 respectively. The last square is also commutative since M̃◦(va,w)

is an open subvariety of M̃(va,w) and since we have (11.2.1).
Recall that the modified Hecke correspondence in the last row is the product of

the Hecke correspondence for type A1 and the diagonal ∆M′(v1,w). Under the
composite of vertical homomorphisms, ek,r, fk,s at the upper left are the images of
the exterior products of the corresponding elements for type A1 and O∆M′(v1,w) at
the lower left, except for the following two differences:

(a) the groups acting on varieties are different,
(b) the sign factors in (9.3.2), which involve the orientation Ω, are different.

For the quiver varieties of type A1, the group is

GL


 ⊕

h:out(h)=k

Vin(h) ⊕Wk


× C∗ ∼= GLN (C)× C∗.
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But, if we define a homomorphism G′ ×Gw × C∗ → GLN (C)× C∗ by

((gl)l∈I:l 6=k, (hl′)l′∈I , q) 7−→


 ⊕

h:out(h)=k

qm(h)gin(h) ⊕ hk, q


 ,

we have an induced homomorphism in equivariant K-groups: KGLN (C)×C
∗

( ) →
KG′×Gw×C

∗

( ). (Here m(h) is as in (2.7.1).) It is compatible with the convolution

product, hence it is enough to check the relation in KGLN (C)×C
∗

( ).
Furthermore, the sign factor cancels out in ek,r ∗fk,s. Thus the above differences

make no effect when we check the relation (1.2.8).
By the commutativity of the diagram, ek,r∗fk,s is the image of the corresponding

element in the lower right.
We have a similar commutative diagram to compute fk,s ∗ ek,r. Hence the com-

mutator [ek,r, fk,s] is the image of the corresponding commutator in the lower right.
In the next section, we will check the relation (1.2.8) for type A1. In particular, the
commutator in the lower right is represented by tautological bundles, considered

as an element of the K-theory of the diagonal ∆M̃(v1,w). Note that O
∆M̃(v1,w)

is mapped to O∆M(v1,w) by examples in §8, and that the tautological bundles

on M̃(v1,w) are restricted to tautological bundles on M(v1,w). Hence we have
exactly the same relation (1.2.8) for the general case.

Similarly, we can reduce the check of the relation (1.2.9) to the case of type A1.

11.4. Rank 1 case. In this subsection, we check the relation when the graph is of
type A1. This calculation is essentially the same as the one by Vasserot [58], but
we reproduce it here for the convenience of the reader. (Remark that our C∗-action
is different from the one in [58]. The definition of ek,r, etc. is also different.) We
drop the subscript k ∈ I as usual.

We prepare several notations. For a, b ∈ Z, let

[a, b]
def.
=

{
{a, a+ 1, . . . , b} if b ≥ a,
∅ otherwise.

Let

R
def.
= Z[q, q−1][x±1 , . . . , x

±
N ].

For a partition I = (I1, I2) of the set {1, . . . , N} into 2 subsets, let SI = SI1 × SI2
be the subgroups of SN consisting of permutations which preserve each subset. For
a subgroup G ⊂ SN , let RG be the subring of R consisting of elements which are
fixed by the action of G. If J is another partition of {1, . . . , N}, we define the
symmetrizer SJ

I : RSI∩SJ →RSJ by

f 7→
∑

σ∈SJ/SI∩SJ

σ(f),

where R is the quotient field of R. For each v ∈ [0, N ], let [v] be the partition
([1, v], [v + 1, N ]). If I = (I1, I2) is a partition of {1, . . . , N} into 2 subsets and
k ∈ I1 (resp. k ∈ I2), we define a new partition τ+

k (I) (resp. τ−k (I)) by

τ+
k (I)

def.
= (I1 \ {k}, I2 ∪ {k})

(
resp. τ−k (I)

def.
= (I1 ∪ {k}, I2 \ {k})

)
.
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If I = (I1, I2) is a partition and f ∈ RS[v] , we define

f(xI)
def.
= f(xi1 , . . . , xiv , xj1 , . . . , xjN−v

),

where I1 = {i1, . . . , iv}, I2 = {j1, . . . , jN−v}.
Let M(v,N) be the quiver variety for the graph of type A1 with dimension

vectors v, N . It is isomorphic to the cotangent bundle of the Grassmann variety
of v-dimensional subspaces of an N -dimensional space. Let G(v,N) denote the
Grassmann variety contained in M(v,N) as the 0-section. Let Z(v1, v2;N) be the
analogue of Steinberg’s variety as before. The following lemma is crucial.

Lemma 11.4.1 ([58, Lemma 13], [13, Claim 7.6.7]). The representation of
⊕

KGLN (C)×C
∗

(Z(v1, v2;N))

on
⊕
KGLN (C)×C

∗

(T ∗G(v,N)) by convolution is faithful.

Thus it is enough to check the relation in
⊕
KGLN (C)×C

∗

(T ∗G(v,N)).
Let P(n)(v,N) ⊂ M(v − n,N) ×M(v,N) be as in (5.3.1). It is the conormal

bundle of

O(n)(v,N)
def.
= {(V 1, V 2) ∈ G(v − n,N)×G(v,N) | V 1 ⊂ V 2}.

We denote the projections for P(v,N) by p1, p2, and the projections for O(v,N)
by P1, P2. Note that both P1, P2 are smooth and proper. Let π1, π2 denote the
projections T ∗G(v − n,N)→ G(v − 1, N), T ∗G(v,N)→ G(v,N).

Lemma 11.4.2 ([58, Corollary 4]). For E ∈ KGLN (C)×C
∗

(G(v,N)) (resp. E ∈
KGLN (C)×C

∗

(G(v − n,N))), we have

[OP(n)(v,N)] ∗ π∗
2E =

∑

i

(−q−2)iπ∗
1P1∗

(
[
∧i
TP1]⊗ P ∗

2E
)

(
resp. [OP(n)(v,N)] ∗ π∗

1E =
∑

i

(−q−2)iπ∗
2P2∗

(
[
∧i
TP2]⊗ P ∗

1E
))

,

where TP1 (resp. TP2) is the relative tangent bundle along the fibers of P1 (resp.
P2).

Proof. As explained in [58, Corollary 4], the result follows from Lemma 6.3.1. The
factor q−2 is introduced to make the differential in the Koszul complex equivariant.

By the Thom isomorphism [13, 5.4.17],

π∗ : KGLN (C)×C
∗

(G(v,N))→ KGLN (C)×C
∗

(T ∗G(v,N))

is an isomorphism. Moreover, we have the following explicit description of the
K-group of the Grassmann variety (cf. [13, 6.1.6]):

KGLN (C)×C
∗

(G(v,N)) ∼= R(C∗ ×GLv(C)×GLN−v(C)) ∼= RS[v] ,

where S[v] = Sv × SN−v acts as permutations of x1, . . . , xv and xv+1, . . . , xN . If
E denotes the tautological rank v vector bundle over G(v,N) and Q denotes the
quotient bundle O⊕N/E, the isomorphism is given by

ei(x1, . . . , xv) 7→
∧i
E, ei(x

−1
1 , . . . , x−1

v ) 7→ ∧i
E∗,

ei(xv+1, . . . , xN ) 7→ ∧i
Q, ei(x

−1
v+1, . . . , x

−1
N ) 7→ ∧i

Q∗,
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where ei denotes the ith elementary symmetric polynomial.
The tautological vector bundle V is isomorphic to qE, and W is isomorphic to

the trivial bundle O⊕N . Let C•(v,N) (resp. C′•(v,N), C′′•(v,N)) be the com-
plex (2.9.1) (resp. (9.3.1)) over M(v,N). In the description above, we have

∧
−1/zC

•(v,N) =


 ∏

u∈[1,v]

(1− z−1qxu)




−1
∏

t∈[v+1,N ]

(1 − z−1q−1xt),

detC′•(v,N) =
∏

t∈[v+1,N ]

q−1xt, detC′′•(v,N) =
∏

u∈[1,v]

q−1x−1
u .

(11.4.3)

We also have

KGLN (C)×C
∗

(O(n)(v,N)) ∼= RS[v−n]∩S[v] ,

where

S[v−n] ∩ S[v]
∼= Sv−n × Sn × SN−v

acts as permutations of x1, . . . , xv−n, xv−n+1, . . . , xv, and xv+1, . . . , xN . The nat-
ural vector bundle V 2/V 1 is q(xv−n+1 + · · · + xv). The relative tangent bundles
TP1, TP2 are

[TP1] =

N∑

t=v+1

v∑

k=v−n+1

xt
xk
, [TP2] =

v−n∑

u=1

v∑

k=v−n+1

xk
xu
.

Lemma 11.4.4 ([58, Proposition 6]). (1) The pull-back homomorphisms

P ∗
1 : KGLN (C)×C

∗

(G(v − n,N))→ KGLN (C)×C
∗

(O(v,N)),

P ∗
2 : KGLN (C)×C

∗

(G(v,N))→ KGLN (C)×C
∗

(O(v,N))

are identified with the natural homomorphisms

RS[v−n] → RS[v−n]∩S[v] , RS[v] → RS[v−n]∩S[v]

respectively.

(2) The push-forward homomorphisms

P1∗ : KGLN (C)×C
∗

(O(v,N))→ KGLN (C)×C
∗

(G(v − n,N)),

P2∗ : KGLN (C)×C
∗

(O(v,N))→ KGLN (C)×C
∗

(G(v,N))

are identified with the natural homomorphisms

RS[v−n]∩S[v] ∋ f 7→ S
[v−n]
[v]

(
f

N∏

t=v+1

v∏

k=v−n+1

(1− xk
xt

)−1

)
,

RS[v−n]∩S[v] ∋ f 7→ S
[v]
[v−n]

(
f

v−1∏

u=1

v∏

k=v−n+1

(1− xu
xk

)−1

)

respectively. (The right hand sides are a priori in R, but they are in fact in R.)
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Using the above lemmas, we can write the operators x+(z) explicitly as:

x+(z)f = (−1)N−vS
[v−1]
[v]

(
f

∞∑

r=−∞

(xv
z

)r
x−vv

×
∏

t∈[v+1,N ]

qx−1
t

(
1− xv

xt

)−1(
1− q−2 xt

xv

))

=
∑

k∈[v,N ]

f(xτ−

k [v−1])

∞∑

r=−∞

(xk
z

)r
x−Nk

∏

t∈[v,N ]\{k}

qxk − q−1xt
xk − xt

,

for f ∈ RS[v] . Similarly,

x−(w)g = (−1)1−vS
[v]
[v−1]

(
g

∞∑

s=−∞

(xv
w

)s
xN−v+1
v

×
∏

u∈[1,v−1]

qxu

(
1− xu

xv

)−1(
1− q−2 xv

xu

))

=
∑

l∈[1,v]

g(xτ+
l [v])

∞∑

s=−∞

(xl
w

)s
xNl

∏

u∈[1,v]\{l}

q−1xl − qxu
xl − xu

for g ∈ RS[v−1] .
Let us compare x+(z)x+(w) with x+(w)x+(z) in the component

KGLN (C)×C
∗

(T ∗G(v,N))→ KGLN (C)×C
∗

(T ∗G(v − 2, N))

as follows:

x+(z)x+(w)f

= −
∑

l∈[v−1,N ]

∑

k∈[v−1,N ]\{l}

f(xτ−

k τ
−

l [v−2])

∞∑

r=−∞

(xk
w

)r ∞∑

s=−∞

(xl
z

)s
x−Nk x−Nl

×
∏

t∈[v−1,N ]\{k,l}

qxk − q−1xt
xk − xt

∏

u∈[v−1,N ]\{l}

qxl − q−1xu
xl − xu

,

x+(w)x+(z)f

= −
∑

k∈[v−1,N ]

∑

l∈[v−1,N ]\{k}

f(xτ−

l τ
−

k [v−2])
∞∑

r=−∞

(xk
w

)r ∞∑

s=−∞

(xl
z

)s
x−Nk x−Nl

×
∏

t∈[v−1,N ]\{k}

qxk − q−1xt
xk − xt

∏

u∈[v−1,N ]\{k,l}

qxl − q−1xu
xl − xu

.

(11.4.5)

Hence we have

x+(w)x+(z) =
qw − q−1z

q−1w − qz x
+(z)x+(w).

The relation (1.2.9) for x−(z), x−(w) can be proved in the same way.
Let us compare x−(w)x+(z) and x+(z)x−(w) in the component

KGLN (C)×C
∗

(T ∗G(v,N))→ KGLN (C)×C
∗

(T ∗G(v,N))
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as follows:

x−(w)x+(z)f =
∑

l∈[1,v]

∑

k∈[v+1,N ]∪{l}

f(xτ−

k τ
+
l [v])

∞∑

r,s=−∞

(xk
z

)r (xl
w

)s ( xl
xk

)N

×
∏

t∈([v+1,N ]∪{l})\{k}

qxk − q−1xt
xk − xt

∏

u∈[1,v]\{l}

q−1xl − qxu
xl − xu

,

x+(z)x−(w)f =
∑

k∈[v+1,N ]

∑

l∈[1,v]∪{k}

f(xτ+
l τ

−

k [v])

∞∑

r,s=−∞

(xk
z

)r (xl
w

)s( xl
xk

)N

×
∏

t∈[v+1,N ]\{k}

qxk − q−1xt
xk − xt

∏

u∈([1,v]∪{k})\{l}

q−1xl − qxu
xl − xu

.

Terms with k 6= l cancel out for x+(z)x−(w)f and x−(w)x+(z)f . Thus

[
x+(z), x−(w)

]

=
∑

k∈[v+1,N ]

∞∑

r,s=−∞

(xk
z

)r (xk
w

)s ∏

t∈[v+1,N ]\{k}

qxk − q−1xt
xk − xt

∏

u∈[1,v]

q−1xk − qxu
xk − xu

−
∑

l∈[1,v]

∞∑

r,s=−∞

(xl
z

)r (xl
w

)s ∏

t∈[v+1,N ]

qxl − q−1xt
xl − xt

∏

u∈[1,v]\{l}

q−1xl − qxu
xl − xu

.

Let

A(x)
def.
=

∏

u∈[1,v]

(x− xu)
∏

t∈[v+1,N ]

(x − xt),

B(x)
def.
=

∏

u∈[1,v]

(q−1x− qxu)
∏

t∈[v+1,N ]

(qx− q−1xt).

Then we have

[
x+(z), x−(w)

]
=

1

q − q−1

∑

m∈[1,N ]

∞∑

r,s=−∞

(xm
z

)r (xm
w

)s x−1
m B(xm)

A′(xm)
.

Applying the residue theorem to 1
q−q−1

∑∞
r,s=−∞

(
x
z

)r ( x
w

)s B(x)
A(x)

dx
x , we get

[
x+(z), x−(w)

]
=

1

q − q−1

(
∞∑

r=−∞

( z
w

)r (B(z)

A(z)

)+

−
∞∑

r=−∞

( z
w

)r (B(z)

A(z)

)−
)
,

where
(
B(z)
A(z)

)±
∈ C[[z∓]] denotes the Laurent expansion of B(z)

A(z) at z = ∞ and 0

respectively. Since

B(z)

A(z)
= qN−2v

∧
−1/(qz)C

•(v,N)
∧

−q/zC
•(v,N)

by (11.4.3), we have completed the proof of Theorem 9.4.1.
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12. Integral structure

In this section, we compare UZ
q (Lg) with KGw×C

∗

(Z(w)). In the case of the
affine Hecke algebra, the equivariant K-group of the Steinberg variety is isomorphic
to the integral form of the affine Hecke algebra (see [13, 7.2.5]). We shall prove a
weaker form of the corresponding result for quiver varieties in this section.

12.1. Rank 1 case. We first consider the case when the graph is of type A1. We
drop the subscript k. We use the notation in §11.4. We also consider ω(P(n)(v,N))
where P(n)(v,N) is as in (5.3.1) and ω : M(v − n,N) ×M(v,N) → M(v,N) ×
M(v − n,N) is the exchange of factors. We identify its equivariant K-group with
RS[v−n]∩S[v] as in §11.4. In particular, the vector bundle V 1/V 2 is identified with
q(xv−n+1 + · · ·+ xv).

Lemma 12.1.1. (1) Let p1 < · · · < ps be an increasing sequence of integers and

let n1, . . . , ns be a sequence of positive integers such that
∑
ni = n. Let λ be the

partition

((p2 − p1)
n2 · · · (ps − p1)

ns) .

Then for g ∈ KGLN (C)×C
∗

(T ∗G(v − n,N)), we have

f (n1)
p1 f (n2)

p2 · · · f (ns)
ps

g

= ±qL
∑

{l1,...,ln}

g(xτ+
l1
···τ+

ln
[v])(xl1 · · ·xln)N+p1Pλ(xl1 , . . . , xln ; q2)

×
∏

i=1,...,n
u∈[1,v]\{l1,...,ln}

q−1xli − qxu
xli − xu

for some L ∈ Z. Here Pλ is the Hall-Littlewood polynomial (see [41, III(2.1)]), and

the summation runs over the set of unordered n-tuples {l1, . . . , ln} ⊂ [1, v] such that

li 6= lj for i 6= j.
(2) Let us consider a tensor product T (V 1/V 2) of exterior products of the bun-

dle V 1/V 2 and its dual over ω(P(n)(v,N)), and denote by T (xv−n+1, . . . , xv) ∈
Z[x±v−n+1, . . . , x

±
v ]Sn ⊂ RS[v−n]∩S[v] the corresponding element in the equivariant

K-group. Then for g ∈ RS[v−n], we have the following formula:

[
T (V 1/V 2)⊗ detC′′•(v − n,N)⊗−n

]
∗ g

= ±
∑

{l1,...,ln}

g(xτ+
l1
···τ+

ln
[v]) (xl1 . . . xln)v−n T (xl1 , . . . , xln)

×
∏

i=1,...,n
u∈[1,v]\{l1,...,ln}

q−1xli − qxu
xli − xu

,

where the summation runs over the set of unordered n-tuples {l1, . . . , ln} ⊂ [1, v]
such that li 6= lj for i 6= j.
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Proof. (1) Generalizing (11.4.5), we have the following formula for fr1fr2 . . . frn
:

KGLN (C)×C
∗

(G(v − n,N))→ KGLN (C)×C
∗

(G(v,N)):

fr1fr2 . . . frn
g =±

∑

(l1,...,ln)

g(xτ+
l1
···τ+

ln
[v])x

r1
l1
· · ·xrn

ln
(xl1 · · ·xln)N

×
∏

i=1,...,n
t∈[1,v]\{l1,...,ln}

q−1xli − qxu
xli − xu

∏

i>j

q−1xli − qxlj
xli − xlj

,

where the summation runs over the set of ordered n-tuples (l1, . . . , ln) such that
li ∈ [1, v], li 6= lj for i 6= j.

Choose r1 ≤ r2 ≤ · · · ≤ rn so that

(r1, r2, . . . , rn) = (p1, . . . , p1︸ ︷︷ ︸
n1 times

, p2, . . . , p2︸ ︷︷ ︸
n2 times

, . . . ).

Consider the following term which appeared in the above formula:

∑

σ∈Sn

xr1lσ(1)
· · ·xrn

lσ(n)

∏

i>j

q−1xlσ(i)
− qxlσ(j)

xlσ(i)
− xlσ(j)

= (xl1 · · ·xln)r1
∑

σ∈Sn

x0
lσ(1)

xr2−r1lσ(2)
· · ·xrn−r1

lσ(n)

∏

i>j

q−1xlσ(i)
− qxlσ(j)

xlσ(i)
− xlσ(j)

.

By [41, III(2.1)] it is equal to

(xl1 · · ·xln)r1q−n(n−1)/2vλ(q
2)Pλ(xl1 , . . . , xln ; q2),

where Pλ is the Hall-Littlewood polynomial and

vλ(q
2) = qn1(n1−1)/2[n1]q!q

n2(n2−1)/2[n2]q! · · · qns(ns−1)/2[ns]q! .

Thus we have the assertion.
(2) By Lemmas 11.4.2, 11.4.4 we have

[
T (V 1/V 2)⊗ detC′′•(v − n,N)⊗−n

]
∗ g

= S
[v]
[v−n]

(
g T (xv−n+1, . . . , xv)

∏

u∈[1,v−n]

(qxu)
n

×
∏

l∈[v−n+1,v]

(
1− xu

xl

)−1(
1− q−2 xl

xu

))

= ±
∑

{l1,...,ln}

g(xτ+
l1
···τ+

ln
[v]) (xl1 . . . xln)v−n T (xl1 , . . . , xln)

×
∏

i=1,...,n
u∈[1,v]\{l1,...,ln}

q−1xli − qxu
xli − xu

.
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12.2. Let KGw×C
∗

(Z(w))/torsion be

Image
(
KGw×C

∗

(Z(w))→ KGw×C
∗

(Z(w))⊗Z[q,q−1] Q(q)
)
.

(It seems reasonable to conjecture that KGw×C
∗

(Z(v1,v2;w)) is free over
R(Gw × C∗) since it is true for type An. But I do not know how to prove it
in general.)

Theorem 12.2.1. The homomorphism in Theorem 9.4.1 induces a homomorphism

UZ
q (Lg)→ KGw×C

∗

(Z(w))/torsion.

Remark 12.2.2. The homomorphism is neither injective nor surjective. It is likely
that there exists a surjective homomorphism from a modification of UZ

q (Lg) to

KGw×C
∗

(Zreg(w))/torsion for a suitable subset Zreg(w) of Z(w), as in [45, 9.5,
10.15].

Proof of Theorem 12.2.1. It is enough to check that e
(n)
k,r , f

(n)
k,r , qh and the coeffi-

cients of p±k (z) are mapped to KGw×C
∗

(Z(w)). For qh and the coefficients of p±k (z),
the assertion is clear from the definition.

For e
(n)
k,r and f

(n)
k,r , we can use a reduction to the rank 1 case as in §11. Namely,

it is enough to show the assertion when the graph is of type A1.
Now if the graph is of type A1, Lemma 12.1.1 together with Lemma 11.4.1 show

that f
(n)
r is represented by a certain line bundle over ω(P(n)(v,N)) extended to

Z(v, v − n;N) by 0. We leave the proof for e
(n)
r as an exercise. The only thing we

need is to write down an analogue of Lemma 12.1.1 for e
(n)
r . It is straightforward.

12.3. The moduleKGw×C
∗

(L(w)). By Theorems 12.2.1 and 7.3.5, KGw×C
∗

(L(w))
is a UZ

q (Lg)-module. We show that it is an l -highest weight module in this subsec-
tion.

Lemma 12.3.1. Let P
(n)
k (v,w) be as in (5.3.1) and let ω : M(v − nαk,w) ×

M(v,w)→M(v,w)×M(v−nαk ,w) denote the exchange of factors. Let T (V 1
k /V

2
k )

be a tensor product of exterior products of the vector bundle V 1
k /V

2
k and its dual

over ω(P
(n)
k (v,w)). Let us consider it as an element of KGw×C

∗

(Z(v,v−nαk;w)).

Then
[
T (V 1

k /V
2
k )⊗ detC′′•

k (v − nαk,w)⊗−n
]

can be written as a linear combina-

tion (over Z[q, q−1]) of elements of the form

f
(n1)
k,p1

f
(n2)
k,p2
· · · f (ns)

k,ps
∗ [O∆M(v−nαk,w)] (n1 + n2 + · · ·+ ns = n, pi distinct),

where ∆M(v − nαk,w) is the diagonal in M(v − nαk,w)×M(v − nαk,w).

Proof. As in §11, we may assume that the graph is of type A1. Now Lemma 12.1.1
together with the fact that Hall-Littlewood polynomials form a basis of symmetric
polynomials implies the assertion.

Proposition 12.3.2. Let [0] ∈ KGw×C
∗

(L(0,w)) be the class represented by the

structure sheaf of M(0,w) ∼= L(0,w) = point. Then

KGw×C
∗

(L(w)) = UZ

q (Lg)− ∗ (R(Gw × C∗)[0]) .

Proof. The following proof is an adaptation of the proof of [45, 10.2], which was
inspired by [35, 3.6] in turn.
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We need the following notation:

Lk;n(v,w)
def.
= L(v,w) ∩Mk;n(v,w), Lk;≤n(v,w)

def.
= L(v,w) ∩Mk;≤n(v,w),

Lk;≥n(v,w)
def.
= L(v,w) ∩Mk;≥n(v,w).

We prove KGw×C
∗

(L(v,w)) ⊂ UZ
q (Lg)− ∗ (R(Gw × C∗)[0]) by induction on the

dimension vector v. When v = 0, the result is trivial since KGw×C
∗

(point) =
R(Gw × C∗). Consider L(v,w) and suppose that

if v − v′ ∈
⊕

Z≥0αk \ {0},
then KGw×C

∗

(L(v′,w)) ⊂ UZ

q (Lg)− ∗ (R(Gw × C∗)[0]).
(12.3.3)

Take [E] ∈ KGw×C
∗

(L(v,w)). We want to show

[E] ∈ UZ

q (Lg)− ∗ (R(Gw × C∗)[0]) .

We may assume that the support of E is contained in an irreducible component of
L(v,w) without loss of generality. In fact, suppose that SuppE ⊂ X ∪Y such that
X is an irreducible component. Since Y is a closed subvariety of X ∪ Y and since
X ∩ Y is a closed subvariety of X , we have the diagram

KGw×C
∗

(Y )
i∗−−−−→ KGw×C

∗

(X ∪ Y )
j∗−−−−→ KGw×C

∗

(X \ Y ) −−−−→ 0
x i′′∗

x
∥∥∥

KGw×C
∗

(X ∩ Y )
i′∗−−−−→ KGw×C

∗

(X)
j′∗−−−−→ KGw×C

∗

(X \ Y ) −−−−→ 0,

where the first and the second row are exact by (6.1.2). Thus there exists [E′] ∈
KGw×C

∗

(X) such that j′∗[E′] = j∗[E]. Then j∗([E] − i′′∗ [E′]) = 0, and therefore
there exists E′′ ∈ KGw×C

∗

(Y ) such that [E] = i∗[E
′′]+ i′′∗ [E

′]. By induction on the
number of irreducible components in the support, we may assume that the support
of E is contained in an irreducible component, which is denoted by XE .

Let us consider εk defined in (2.9.3). If εk(XE) = 0 for all k ∈ I, XE must be
L(0,w) by Lemma 2.9.4. We have nothing to prove in this case. Thus there exists
k such that εk(XE) > 0. Set n = εk(XE). By the descending induction on εk, we
may assume that

if Supp(E′) ⊂ Lk;≥n+1(v,w), then [E′] ∈ UZ

q (Lg)− ∗ (R(Gw × C∗)[0]).(12.3.4)

Since Lk;≤n(v,w) is an open subvariety of L(v,w), we have an exact sequence

KGw×C
∗

(Lk;≥n+1(v,w))
a∗−→ KGw×C

∗

(L(v,w))
b∗−→ KGw×C

∗

(Lk;≤n(v,w))→ 0

by (6.1.2). Consider b∗[E]. By (12.3.4), it is enough to show that

there exists [Ẽ] ∈ UZ

q (Lg)− ∗ [0] such that b∗[E] = b∗[Ẽ].(12.3.5)

Since XE ∩ Lk;≤n(v,w) ⊂ Lk;n(v,w), the support of b∗(E) is contained in
Lk;n(v,w). We have a map

P : Lk;n(v,w)→ Lk;0(v − nαk,w)
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which is the restriction of the map (5.4.2). Recall that this map is a Grassmann
bundle (see Proposition 5.4.3). Let us denote its tautological bundle by S. Then
b∗[E] can be written as a linear combination of elements of the form

[T (S)]⊗ P ∗[E0],

where T (S) is a tensor product of exterior powers of the tautological bundle S and

E0 ∈ KGw×C
∗

(Lk;0(v − nαk,w)). Since the homomorphism

b′∗ : KGw×C
∗

(L(v − nαk,w))→ KGw×C
∗

(Lk;0(v − nαk,w))

is surjective by (6.1.2), there exists [E1] ∈ KGw×C
∗

(L(v − nαk,w)) such that
b′∗[E1] = [E0].

Consider P
(n)′
k (v−nαk,w)∩(Lk;≤n(v,w)×L(v−nαk ,w)). By Proposition 5.4.3,

it is isomorphic to Lk;n(v,w) and the map P can be identified with the projection
to the second factor. Moreover, the tautological bundle S is identified with the
restriction of the natural vector bundle V 1

k /V
2
k . Hence we have

[T (S)]⊗ P ∗[E0] = b∗
(
T (V 1

k /V
2
k ) ∗ [E1]

)
,

where T (V 1
k /V

2
k ) is considered as an element of KGw×C

∗

(Z(v,v − nαk;w)). By
Lemma 12.3.1, T (V 1

k /V
2
k ) can be written as a linear combination of elements

f
(n1)
k,p1

f
(n2)
k,p2

. . . f
(ns)
k,ps
∗ [p∗2 detC′′•

k (v − nαk,w)⊗n],

where p2 : ∆M(v − nαk,w)→M(v − nαk,w) is the projection. By (12.3.3),

[detC′′•
k (v − nαk,w)⊗n ⊗ E1] ∈ UZ

q (Lg)− ∗ (R(Gw × C∗)[0]) .

Hence T (V 1
k /V

2
k )∗[E1] ∈ UZ

q (Lg)−∗(R(Gw × C∗)[0]). Thus we have shown (12.3.5).

13. Standard modules

In this section, we start the study of the representation theory of UZ
q (Lg) using

KGw×C
∗

(Z(w)) and the homomorphism in (12.2.1). We shall define certain mod-
ules called standard modules, and study their properties. Results in this section
hold even if ε is a root of unity.

Note that R(Gw × C∗) is contained in the center of KGw×C
∗

(Z(w)) by

R(Gw × C∗) ∋ ρ 7→ ρ⊗
∑

v

[O∆M(v,w)].

Hence a KGw×C
∗

(Z(w))/torsion-module M (over C), which is l -integrable as a
UZ
q (Lg)-module, decomposes as M =

⊕
Mχ, where χ is a homomorphism from

R(Gw×C∗) to C and Mχ is the corresponding simultaneous generalized eigenspace,
i.e., some powers of the kernel of χ act as 0 onMχ. Such a homomorphism χ is given
by the evaluation of the character at a semisimple element a = (s, ε) in Gw × C∗.
(This gives us a bijection between homomorphisms and semisimple elements.)

What is the meaning of the choice of a = (s, ε) when we consider M as a
UZ
q (Lg)-module? The role of ε is clear. It is a specialization q → ε, and we get

Uε(Lg)-modules. It will become clear later that s corresponds to the Drinfel’d
polynomials by

Pk(u) = (a normalization of) the characteristic polynomial of sk.
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13.1. Fixed data. Let a = (s, ε) be a semisimple element in Gw × C∗ and let A
be the Zariski closure of {an | n ∈ Z}. Let χa : R(A) → C be the homomorphism
given by the evaluation at a. Considering C as an R(A)-module by this evaluation
homomorphism, we denote it by Ca. Via the homomorphism R(Gw×C∗)→ R(A),
we consider Ca also as an R(Gw × C∗)-module. We consider R(A) as a Z[q, q−1]-
algebra, where R(Gw × C∗) is a Z[q, q−1]-algebra as in §9.1.

Let M(w)A, M0(∞,w)A be the fixed point subvarieties of M(w), M0(∞,w)
respectively. Let us take a point x ∈ M0(∞,w)A which is regular, i.e., x ∈
M

reg
0 (v0,w) for some v0.
The data x, a will be fixed throughout this section.

13.2. Definition. As in (2.3.5), let M(v,w)x denote the inverse image of x ∈
M

reg
0 (v0,w) ⊂ M0(∞,w) under the map π : M(v,w) →M0(v,w) →֒M0(∞,w).

It is invariant under the A-action. Let M(w)x be
⊔

v
M(v,w)x. We set

KA(M(w)x)
def.
=
⊕

v

KA(M(v,w)x)

as convention.
Let KA(Z(w))/torsion be

Image
(
KA(Z(w))→ KA(Z(w)) ⊗Z[q,q−1] Q(q)

)
.

Let

Mx,a
def.
= KA(M(w)x)⊗R(A) Ca.(13.2.1)

By Theorem 7.3.5 together with Theorem 3.3.2, KA(M(v,w)x) is a free R(A)-
module. Thus the KA(Z(w))-module structure on KA(M(w)x) descends to a
KA(Z(w))/torsion-module structure. Hence Mx,a is a Uε(Lg)-module via the com-
position of

Uε(Lg)→ KGw×C
∗

(Z(w))/torsion⊗R(Gw×C∗)Ca

→ KA(Z(w))/torsion⊗R(A)Ca.
(13.2.2)

We call Mx,a the standard module.
It has a decomposition Mx,a =

⊕
KA(M(v,w)x)⊗R(A) Ca, and each summand

is a weight space:

qh ∗ v = ε〈h,w−v〉v for v ∈ KA(M(v,w)x)⊗R(A) Ca.(13.2.3)

Thus Mx,a has the weight decomposition as a Uε(g)-module.
In the remainder of this section, we study properties of Mx,a. The first one is

the following.

Lemma 13.2.4. As a Uε(Lg)-module, Mx,a is l -integrable.

Proof. The assertion is proved exactly as in [45, 9.3]. Note that the regularity
assumption of x is not used here.

13.3. Highest weight vector. Recall that π : M(v0,w) → M0(v
0,w) is an iso-

morphism on π−1(Mreg
0 (v0,w)) (Proposition 2.6.2). Under this isomorphism, we

can consider x as a point in M(v0,w). Then M(v0,w)x consists of the single point
x, thus we have a canonical generator of KA(M(v0,w)x). We denote it by [x].

Since x is fixed by A, the fibers (Vk)x, (Wk)x of tautological bundles at x are
A-modules. Then the restriction of the complex C•

k(v
0,w) to x can be considered

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



220 HIRAKU NAKAJIMA

as a complex of A-modules. In particular, it defines an element in R(A). Let us
denote it by C•

k,x.
Let us spell out C•

k,x more explicitly. Since x is fixed by A, we have a homomor-
phism ρ : A → Gv0 by §4.1. It is uniquely determined by x up to the conjugacy.
Then a virtual Gv0 ×Gw × C∗-module

q−1

(⊕

l

[−〈hk, αl〉]qV 0
l ⊕Wk

)

can be considered as a virtual A-module via ρ× (inclusion): A→ Gv0 ×Gw ×C∗.
Its isomorphism class is independent of ρ and coincides with C•

k,x. Note that the

first and third terms in (2.9.1) are absorbed in the term l = k.

Proposition 13.3.1. The standard module Mx,a is an l-highest weight module with

l-highest weight Pk(u)
def.
= χa

(∧
−uC

•
k,x

)
. Namely, the following hold :

(1) Pk(u) is a polynomial in u of degree 〈hk,w − v0〉.
(2)

x+
k (z) ∗ [x] = 0, qh ∗ [x] = ε〈h,w−v

0〉[x],

p+
k (z) ∗ [x] = Pk(1/z)[x], p−k (z) ∗ [x] = (−z)rankC•

k,xPk(1/z) χa
(
(detC•

k,x)
∗
)
[x].

(3) Mx,a = Uε(Lg)− ∗ [x].

Proof. (1) If we restrict the complex C•
k(v

0,w) to x, τk is surjective and σk is
injective by Lemma 2.9.2. Thus C•

k,x is represented by a genuine A-module, and

χa

(∧
−uC

•
k,x

)
is a polynomial in u. The degree is equal to 〈hk,w − v0〉 by the

definition of Ck,x.
(2) The first equation is the consequence of M(v − αk,w)x = ∅, which follows

from Lemma 2.9.4. The remaining equations follow from the definition and Lemma
8.1.1.

(3) The assertion is proved exactly as in Proposition 12.3.2. Note that the
assumption x ∈M

reg
0 (v0,w) is used here in order to apply Lemma 2.9.4.

Remark 13.3.2. Pk(u) is the Drinfel’d polynomial attached to the simple quotient
of Mx,a, which we will study later.

We give a proof of Proposition 1.2.16 as promised:

Proof of Proposition 1.2.16. It is enough to show that there exists a simple l -
integrable l -highest module with given Drinfel’d polynomials Pk(u). We can con-
struct it as the quotient of the standard module M0,a by the unique maximal proper
submodule. (The uniqueness can be proved as in the case of Verma modules.) Here
the parameter a = (s, ε) is chosen so that Pk(u) = χa

(∧
−uq

−1Wk

)
, i.e., Pk(u) is a

normalization of the characteristic polynomial of sk.

13.4. Localization. Let R(A)a denote the localization of R(A) with respect to
Kerχa.

Let Z(w)A denote the fixed point set of A on Z(w), and let i : M(w)A ×
M(w)A → M(w) × M(w) be the inclusion. Note that it induces an inclusion
Z(w)A → Z(w) which we also denote by i. By the concentration theorem [53]

i∗ : KA(Z(w)A)⊗R(A) R(A)a → KA(Z(w))⊗R(A) R(A)a
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is an isomorphism. Let

i∗ : KA(Z(w)) ∼= KA(M(w) ×M(w);Z(w))

−→ KA(M(w)A ×M(w)A;Z(w)A) ∼= KA(Z(w)A)

be the pull-back with support map. Then i∗i∗ is given by multiplication by
∧

−1N
∗
⊠∧

−1N
∗, where N is the normal bundle of M(w)A in M(w). By [13, 5.11.3],

∧
−1N

∗

becomes invertible in the localized K-group. Thus i∗ is an isomorphism on the lo-
calized K-group. As in [13, 5.11.10], we introduce a correction factor to i∗:

ra
def.
= (1⊠(

∧
−1N

∗)−1) ◦ i∗: KA(Z(w)) ⊗R(A) R(A)a→KA(Z(w)A)⊗R(A) R(A)a.

Then ra is an algebra isomorphism with respect to the convolution.
Since A acts trivially on Z(w)A, we have

KA(Z(w)A) ∼= K(Z(w)A)⊗R(A).(13.4.1)

Thus we have the evaluation map

eva : KA(Z(w)A)⊗R(A) R(A)a ∼= K(Z(w)A)⊗R(A)a → K(Z(w)A)⊗ C,

by sending F ⊗ (f/g) to F ⊗ (χa(f)/χa(g)).
By the bivariant Riemann-Roch theorem [13, 5.11.11],

RR
def.
= (1 ⊠ TdM(w)A) ∪ ch: K(Z(w)A)→ H∗(Z(w)A,Q)

is an algebra homomorphism with respect to the convolution. Here ch is the local
Chern character homomorphism with respect to Z(w)A ⊂ M(w)A ×M(w)A and
TdM(w)A is the Todd genus of M(w)A.

Composing (13.2.2) with all these homomorphisms, we have a homomorphism

Uε(Lg)→ H∗(Z(w)A,C).(13.4.2)

Note that the torsion part in (13.2.2) disappears in the right hand side of (13.4.1)
after tensoring with R(A)a.

We have similar C-linear maps for M(w)x:

Mx,a =KA(M(w)x)⊗R(A) Ca
i∗−→
∼=
KA(M(w)Ax )⊗R(A) Ca

eva−−→
∼=
K(M(w)Ax )⊗ C

ch−→
∼=

H∗(M(w)Ax ,C),
(13.4.3)

where i∗ is an isomorphism by the concentration theorem [53] and the invertibil-
ity of

∧
−1N

∗ in the localized K-homology group, eva is an isomorphism since A

acts trivially on M(w)Ax , and ch is an isomorphism by Theorem 7.4.1 and Theo-
rem 3.3.2. The composition is compatible with the Uε(Lg)-module structure, where
H∗(M(w)Ax ,C) is a Uε(Lg)-module via the convolution together with (13.4.2).

Recall that we have the decomposition

M(w)A =
⊔

ρ

M(ρ),

where ρ runs over the set of homomorphisms A→ Gv (with various v) (§4.1). Let

M(ρ)x
def.
= M(ρ) ∩M(w)Ax .
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Thus we have the canonical decomposition

Mx,a = H∗(M(w)Ax ,C) =
⊕

ρ

H∗(M(ρ)x,C).(13.4.4)

Each summand H∗(M(ρ)x,C) in (13.4.4) is an l -weight space with respect to the
Uε(Lg)-action in the sense that operators ψ±

k (z) act on H∗(M(ρ)x,C) as scalars
plus nilpotent transformations. More precisely, we have

Proposition 13.4.5. (1) Let Vk be the tautological vector bundle over M(v,w).
Viewing

∧
uVk as an element of KA(∆M(v,w))[u], we consider it as an operator

on Mx,a. Then we have

H∗(M(ρ)x,C) = {m ∈Mx,a | (
∧
uVk − χa(

∧
uVk) Id)

N ∗m = 0

for k ∈ I and sufficiently large N},

where χa(
∧
uVk) is the evaluation at a of

∧
uVk, considered as an A-module via

ρ : A→ Gv.

(2) Let us consider

C•
k(v,w) = q−1

(⊕

l

[−〈hk, αl〉]qVl ⊕Wk

)

as a virtual A-module via ρ × (inclusion): A → Gv × Gw × C∗. Then operators

ψ±
k (z) act on H∗(M(ρ)x,C) by

εrankC•
k(v,w)χa

(∧
−1/qzC

•
k (v,w)

∧
−q/zC

•
k(v,w)

)±

(13.4.6)

plus nilpotent transformations.

Proof. (2) follows from (1). We show (1).
Note that O∆M(v,w) is mapped to O∆M(v,w)A under ra, and O∆M(v,w)A is

mapped to the fundamental class [∆M(v,w)A] under RR. Combining with the
projection formula (6.5.1), we find that the operator

∧
uVk is mapped to

(ch ◦ eva ◦ i∗
∧
uVk) ∩ [∆M(v,w)A]

under the homomorphism (13.4.2). Thus as an operator on H∗(M(ρ)x,C), it is
equal to

m 7→ (j∗ ◦ ch ◦ eva ◦ i∗
∧
uVk) ∩m,(13.4.7)

where j : M(ρ)x →M(v,w)A is the inclusion.
Now, on a connected space X , any α ∈ H∗(X,C) acts on H∗(X,C) as a scalar

plus nilpotent operator, where the scalar is the H0(X,C)(∼= C)-part of α. In our
situation, the H0-part of (13.4.7) is given by χa(

∧
uVk). (Although we do not prove

M(ρ)x is connected, the H0-part is the same on any component.)
Furthermore, χa(

∧
uVk) determines all eigenvalues of the operator a acting on

Vk. Hence it determines the conjugacy class of the homomorphism ρ : A → Gv.
Thus the generalized eigenspace of

∧
uVk with the eigenvalue χa(

∧
uVk) coincides

with H∗(M(ρ)x,C).
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13.5. Frenkel-Reshetikhin’s q-character. In this subsection, we study Frenkel-
Reshetikhin’s q-character for the standard module Mx,a. The result is a simple
application of Proposition 13.4.5. Results in this subsection will not be used in the
rest of the paper.

We assume g is of type ADE and ε is not a root of unity in this subsection.
Let us recall the definition of q-character. It is a map from the Grothendieck

group of finite dimensional Uε(Lg)-modules M . As we shall see later in §14.3,
standard modules M0,a (x = 0 is fixed, w and a = (s, ε) ∈ Gw × C∗ are moving)
give a basis of the Grothendieck group, thus it is enough to define the q-character
for standard modules M0,a. We decompose M = M0,a as

M =
⊕

MΨ± ,

as in (1.3.1). Moreover, by Proposition 13.4.5, Ψ±
k (z) have the form

Ψ±
k (z) = εdegQk−degRk

Qk(1/εz)Rk(ε/z)

Rk(1/εz)Qk(ε/z)
,(13.5.1)

where Qk(u), Rk(u) are polynomials in u with constant term 1. (Compare with
[18, Proposition 1]. Note u = 1/z.) Suppose

Qk(u)

Rk(u)
=

∏
r(1 − uakr)∏
s(1− ubks)

.

Then the q-character is defined by

χq(M0,a)
def.
=

∑

Ψ±(z)

dimVΨ±

k (z)

∏

k∈I

∏

r

Yk,akr

∏

s

Y −1
k,bks

,

where Yk,akr
, Yk,bks

are formal variables and χq takes its value in Z[Y ±
k,c]k∈I,c∈C∗ .

(χq should not be confused with χa.)
Let

Ak,a
def.
= Yk,aεYk,aε−1

∏

h:in(h)=k

Y −1
out(h),aεm(h) .

Proposition 13.5.2 (cf. Conjecture 1 in [18]). LetM0,a be a standard module with

x = 0. Suppose that Pk(u) in Proposition 13.3.1 equals

Pk(u) =

nk∏

i=1

(1 − ua(k)
i )

for k ∈ I. Then the q-character of M0,a has the following form:

∏

k∈I

nk∏

i=1

Y
k,a

(k)
i

(
1 +

∑
M ′
p

)
,

where each M ′
p is a product of A−1

l,c with c ∈ ⋃ a(k)
i εZ.

Proof. By Proposition 13.4.5, H∗(M(ρ) ∩ L(w),C) is a generalized eigenspace for
ψ±
k (z) for a homomorphism ρ : A→ Gv. Thus it is enough to study the eigenvalue.

We consider Vk, Wk as A-modules via ρ×(inclusion): A→ Gv×Gw×C∗ as before.
Let Vk(λ), Wk(λ) be weight spaces as in §4.1.
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By the definition of C•
k(v,w) and Pk(u), we have

χa

(∧
−1/qzC

•
k(v,w)

∧
−q/zC

•
k (v,w)

)
= χa

(∧
−1/qzq

−1Wk∧
−q/zq

−1Wk

∏

l

∧
−1/qzq

−1[−〈hk, αl〉]qVl∧
−q/zq

−1[−〈hk, αl〉]qVl

)
,

Pk(u) = χa
(∧

−uq
−1Wk

)
.

By Proposition 13.4.5 we have

Qk(u)

Rk(u)
= Pk(u) χa

(∏

l

∧
−uq

−1[−〈hk, αl〉]qVl
)
,

where Qk(u), Rk(u) are defined by (13.5.1).

Let {c(l)t } be the set of eigenvalues of a ∈ A on Vl counted with multiplicities.
Then we have

χa(
∧

−uq
−1[−〈hk, αl〉]qVl) =





(∏

t

(1− uc(k)t )(1− uε2c(k)t )

)−1

if k = l,

∏

h:
in(h)=k
out(h)=l

∏

t

(1− uεm(h)+1c
(l)
t ) otherwise.

Thus we have

χq(M0,a) =
∑

ρ

dimH∗(M(ρ) ∩ L(w),C)
∏

k∈I

nk∏

i=1

Y
k,a

(k)
i

∏

t

A−1

k,εc
(k)
t

.

Note that the term for ρ with v = 0 has the contribution

∏

k∈I

nk∏

i=1

Y
k,a

(k)
i

,

and any other terms are monomials of A−1

k,εc
(k)
t

which are not constant.

Moreover, we have c
(k)
t ∈ ⋃ a(k)

i εZ by Lemma 4.1.4. This completes the proof.

14. Simple modules

The purpose of this section is to study simple modules of Uε(Lg). Our discussion
relies on Ginzburg’s classification of simple modules of the convolution algebra
[13, Chapter 9]. (See also [37].) He applied his classification to the affine Hecke
algebra. However, unlike the case of the affine Hecke algebra, his classification does
not directly imply a classification of simple modules of Uε(Lg), and we need an
extra argument. A difficulty lies in the fact that the homomorphism Uε(Lg) →
H∗(Z(w)A,C) in (13.4.2) is not necessarily an isomorphism. Our additional input is
Proposition 13.3.1(3). In order to illustrate its usage, we first consider the special
case when a = (s, ε) is generic in the first subsection. In this case, Ginzburg’s
classification becomes trivial. Then we shall review Ginzburg’s classification in
§14.2, and finally we shall study the general case in the last subsection.

We preserve the setup in §13.
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14.1. Let us identify ek,r, fk,r with their image under (13.4.2). Let 1ρ∈H∗(Z(w)A)
denote the fundamental class [∆M(ρ)] of the diagonal of M(ρ)×M(ρ).

Lemma 14.1.1. Let us consider

(M(ρ1)×M(ρ2)) ∩Pk(v
2,w) ⊂ (M(v1,w)A ×M(v2,w)A) ∩Pk(v

2,w),

and let λ0 be the weight of A determined by ρ1 and ρ2 as in §5.2. Then we have

the following equality in H∗((M(ρ1)×M(ρ2)) ∩Pk(v
2,w),C):

p∗2 ch
(∧

−uV
2
l (λ)

)
∩ (1ρ1x

+
k (z)1ρ2)

=

{
p∗1 ch

(∧
−uV

1
l (λ)

)
∩ (1ρ1x

+
k (z)1ρ2) if l 6= k or λ 6= λ0,

(1 − uq
z )p∗1 ch

(∧
−uV

1
l (λ)

)
∩ (1ρ1x

+
k (z)1ρ2) if l = k, λ = λ0.

Proof. We have the following equality in K0((M(ρ1)×M(ρ2)) ∩Pk(v
2,w)):

p∗2V
2
l (λ) =

{
p∗1V

1
l (λ) if l 6= k or λ 6= λ0,

p∗1V
1
k (λ0) + (V 2/V 1) if l = k, λ = λ0,

where V 2/V 1 is (the restriction of) the natural line bundle over Pk(v
2,w). The

assertion follows immediately.

Theorem 14.1.2. Suppose that a = (s, ε) is generic in the sense of Definition

4.2.1. (Hence, L(w)A = M(w)A.) Then the standard module

M0,a = KA(M(w)A)⊗R(A) ⊗Ca ∼= H∗(M(w)A,C)

is a simple Uε(Lg)-module. Its Drinfel’d polynomial is given by

Pk(u) = det(1 − uε−1sk),

where sk is the GL(Wk)-component of s ∈ Gw. Moreover, M0,a is isomorphic to a

tensor product of l -fundamental representations when g is finite dimensional.

Proof. Recall that we have a distinguished vector (we denote it by [0]) in the stan-
dard module M0,a (§13.3). It has the properties listed in Proposition 13.3.1. In

particular, it is the eigenvector for p±k (z), and the eigenvalues are given in terms of
Pk(u) therein. In the present setting, Pk(u) is equal to det(1− uε−1sk).

Let

M◦
0,a

def.
= {m ∈M0,a | ek,r ∗m = 0 for any k ∈ I, r ∈ Z}.

We have [0] ∈ M◦
0,a. We want to show that any nonzero submodule M ′ of M0,a is

M0,a itself. The weight space decomposition (as a Uε(g)-module) (13.2.3) of M0,a

induces that of M ′. Since the set of weights of M ′ is bounded from w with respect
to the dominance order, there exists a maximal weight of M ′. Then a vector in
the corresponding weight space is killed by all ek,r by the maximality. Thus M ′

contains a nonzero vector m ∈M◦
0,a. Hence it is enough to show that M◦

0,a = C[0]

since we have already shown that M0,a = Uε(Lg)− ∗ [0] in Proposition 13.3.1(3).
Let us consider the operator

[∆∗
∧
uVl] ∈ KA(Z(v,v;w))

where ∆: M(v,w) → Z(v,v;w) is the diagonal embedding. If we consider such
operators for various v, l ∈ I, they form a commuting family. Moreover, M◦

0,a is
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invariant under them since we have the relation

ek,r ∗
[
∆∗

∧
uV

2
l

]
=

{[
∆∗
∧
uV

1
l

]
∗ ek,r if k 6= l,[

∆∗

∧
uV

1
k

]
∗ (ek,r + uqek,r+1) if k = l,

where V 1
k , V 2

k are tautological bundles over M(v1,w), M(v2,w) respectively. (Here
v2 = v1 + αk.) Thus M◦

0,a is a direct sum of generalized eigenspaces for ∆∗
∧
uVl.

Let us take a direct summand M◦◦
0,a. By Proposition 13.4.5(1), M◦◦

0,a is contained
in H∗(M(ρ),C) for some ρ : A → Gv. If we can show M◦◦

0,a = C[0], then we get
M◦

0,a = C[0] since M◦◦
0,a is an arbitrary direct summand.

Since a is generic, we have M0(∞,w)A = {0}. Hence

Z(w)A = M(w)A ×M(w)A,

and M(w)A is a nonsingular projective variety (having possibly infinitely many
components). By the Poincaré duality, the intersection pairing

( , ) : H∗(M(w)A,C)⊗H∗(M(w)A,C)→ C

is nondegenerate.
Let tfk,r denote the transpose of fk,r with respect to the pairing ( , ), namely

(fk,r ∗m,m′) = (m, tfk,r ∗m′) for m, m′ ∈ H∗(M(w)A,C).

By the definition of the convolution, tfk,r is equal to ω∗fk,r where ω : M(w)A ×
M(w)A → M(w)A ×M(w)A is the map exchanging the first and second factors
and ω∗ is the induced homomorphism on H∗(M(w)A ×M(w)A,C).

Let us consider 1ρfk,r1ρ′ , where ρ is as above and ρ′ is any other homomorphism.
It is just the projection of fk,r to the component H∗(M(ρ)×M(ρ′),C). We have

1ρ′
tfk,r 1ρ = 1ρ′ ω∗fk,r 1ρ = (p∗1α ∪ p∗2β) ∩ 1ρ′ ek,r′ 1ρ

for some r′ ∈ Z, α ∈ H∗(M(ρ),C), and β ∈ H∗(M(ρ′),C). These α and β come
from asymmetry in the definition of fk,r, ek,r and in the homomorphism (13.4.2).
We do not give their explicit forms, although it is possible. What we need is for β
to be written by tensor powers of exterior products of V 2

k (λ) for various k, λ. Thus
we can write

(p∗1α ∪ p∗2β) ∩ 1ρ′ ek,r′ 1ρ =
∑

r′′

p∗1αr′′ ∩ 1ρ′ ek,r′′ 1ρ

for some αr′′ ∈ H∗(M(ρ),C) by Lemma 14.1.1. Therefore, for m ∈M◦◦
0,a, we have

(fk,r ∗m′,m) = (1ρ fk,r 1ρ′ ∗m′,m) =

(
m′,

∑

r′′

p∗1αr′′ ∩ 1ρ′ ek,r′′ 1ρ ∗m
)

= 0

for any k ∈ I, r ∈ Z, ρ′, m′ ∈ H∗(M(ρ′),C). Here we have used 1ρ ∗ m = m,
1ρ′ ∗m′ = m′, ek,r′′ ∗m = 0. Since H∗(M(w)A,C) = Uε(Lg)− ∗ [0], we have one of
the following:

(a) (m′,m) = 0 for any m′ ∈ H∗(M(w)A,C),
(b) m ∈ C[0].

The first case is excluded by the nondegeneracy of ( , ). Thus we have m ∈ C[0].
Let us prove the last assertion. First consider the case w = Λk for some k. If ε

is not a root of unity, a = (s, ε) ∈ C∗ ×C∗ is generic for the quiver variety M(Λk).
Hence the above shows that the standard module for M(Λk) is simple, and hence
gives an l -fundamental representation.
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Let us return to the case for general w =
∑
k wkΛk. Let a1

k, . . . , a
wk

k be eigenval-
ues of sk counted with multiplicities. By Proposition 1.2.19, it is enough to show
that

dimM0,a =
∏

k

wk∏

i=1

dimM0,ai
k
(Λk),(14.1.3)

whereM0,ak
(Λk) is the standard module for M(Λk) with ak = (sk, ε). Since M(w)A

has no odd homology groups (Theorem 7.4.1), we have

dimM0,a = Euler(M(w)A),

where Euler( ) denotes the topological Euler number. By a property of the Euler
number, we have

Euler(M(w)A) = Euler(M(w)).

If we take a maximal torus T of Gw, the fixed point set M(w)T is isomorphic to∏
k M(Λk)

wk . Again by a property of the Euler number, we have

Euler(M(w)) =
∏

k

Euler(M(Λk))
wk .

Since we have

dimM0,ai
k
(Λk) = Euler(M(Λk)),

we get (14.1.3).

14.2. Simple modules of the convolution algebra. We briefly recall Ginz-
burg’s classification of simple modules of the convolution algebra [13, §8.6]. (See
also [37].)

Let X be a complex algebraic variety. We consider the derived category of com-
plexes of sheaves with constructible cohomology sheaves, and denote it by Db(X).
We use the notation in [13]. For example, we put

ExtkDb(X)(A,B)
def.
= HomDb(X)(A,B[k]),

Ext∗Db(X)(A,B)
def.
=
⊕

k

ExtkDb(X)(A,B).

Ext∗Db(X)(A,A) is an algebra by the Yoneda product. The Verdier duality operator

is denoted by ∨. Given graded vector spaces V , W , we write V
.
= W if there exists

a linear isomorphism which does not necessarily preserve the gradings. We will also
use the same notation to denote that two objects are quasi-isomorphic up to a shift
in the derived category.

Let f : M → X be a projective morphism between algebraic varieties M , X , and
assume that M is nonsingular. Then we are in the setting for the convolution in §8
with X1 = X2 = X3 and Z12 = Z23 = Z, where

Z
def.
= M ×X M = {(m1,m2) ∈M ×M | f(m1) = f(m2)}.

Since Z ◦ Z = Z, we have the convolution product

H∗(Z,C)⊗H∗(Z,C)→ H∗(Z,C).
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Let A be the algebra H∗(Z,C). Set Mx = f−1(x). Then the convolution defines an
A-module structure on H∗(Mx,C). More generally, if Y is a locally closed subset
of X , then H∗(f

−1(Y ),C) has an A-module structure via convolution.
By [13, 8.6.7], we have an algebra isomorphism, which does not necessarily pre-

serve gradings,

A = H∗(Z,C)
.
= Ext∗Db(X)(f∗CM , f∗CM ),

where CM is the constant sheaf on M .
We apply the decomposition theorem [6] to f∗CM . There exists an isomorphism

in Db(X):

f∗CM ∼=
⊕

φ,k

Lφ,k ⊗ Pφ[k],(14.2.1)

where {Pφ} is the set of isomorphism classes of simple perverse sheaves on X such
that some shift is a direct summand of f∗CM . We thus have an isomorphism

A .
=

⊕

i,j,k,φ,ψ

HomC(Lφ,i, Lψ,j)⊗ ExtkDb(X)(Pφ, Pψ).

Set Lφ
def.
=
⊕

k Lφ,k and

Ak def.
=
⊕

φ,ψ

HomC(Lφ, Lψ)⊗ ExtkDb(X)(Pφ, Pψ)

so that A =
⊕Ak. By definition, Ak ·Al ⊂ Ak+l under the multiplication of A. By

a property of perverse sheaves, we have Ak = 0 for k < 0 and Ext0Db(X)(Pφ, Pψ) =
Cδφψ id. Hence,

A = A0 ⊕
⊕

k>0

Ak; A0
∼=
⊕

φ

End(Lφ).(14.2.2)

In particular, the projection A → A0 is an algebra homomorphism. Furthermore,
A0 is a semisimple algebra, and the kernel of the projection, i.e.,

⊕
k>0Ak, consists

of nilpotent elements, thus it is precisely the radical of A. In particular,

{Lφ}φ
is a complete set of mutually nonisomorphic simple A-modules.

For x ∈ X , let ix : {x} → X denote the inclusion. Then H∗(i!xf∗CM ) is an
Ext∗Db(X)(f∗CM , f∗CM )-module. More generally, if iY : Y →֒ X is a locally closed

embedding, then the hyper-cohomology groupsH∗(Y, i!Y f∗CM ) andH∗(Y, i∗Y , f∗CM )
are Ext∗Db(X)(f∗CM , f∗CM )-modules. It is known (see [13, 8.6.16, 8.6.35]) that

H∗(Y, i!Y f∗CM ) is isomorphic toH∗(f
−1(Y ),C) as anA ∼= Ext∗Db(X)(f∗CM , f∗CM )-

module.
For C ∈ Db({x}), we write Hk(C) instead of Hk({x}, C), and H∗(C) instead of

H∗({x}, C). By applying H∗(i!x•) to (14.2.1), we get an isomorphism

H∗(Mx,C)
.
=
⊕

φ,k

Lφ ⊗Hk(i!xPφ).

Let

M≥k(i
!
xf∗CM )

def.
=
⊕

k′≥k

Lφ ⊗Hk′(i!xPφ).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



QUIVER VARIETIES AND QUANTUM AFFINE ALGEBRAS 229

By definition, we have Ak ·M≥l(i
!
xf∗CM ) ⊂ M≥k+l(i

!
xf∗CM ) under the A-module

on H∗(i!xf∗CM ). In particular, M≥k(i
!
xf∗CM ) is an A-submodule for each k. Hence

grM(i!xf∗CM )
def.
=
⊕

k

M≥k(i
!
xf∗CM )/M≥k+1(i

!
xf∗CM )

is an A-module, on which
⊕

k>0Ak acts as 0. By definition,

grM(i!xf∗CM ) ∼=
⊕

φ

Lφ ⊗H∗(i!xPφ),

where the A-module structure on the right hand side is given by a : ξ⊗ξ′ 7→ aξ⊗ξ′.
Thus we have

Theorem 14.2.3. In the Grothendieck group of A-modules of finite dimension

over C, we have

H∗(Mx,C) =
⊕

φ

Lφ ⊗H∗(i!xPφ),

where the A-module structure on the right hand side is given by a : ξ⊗ ξ′ 7→ aξ⊗ ξ′.

Proof. Since grM(i!xf∗CM ) is equal to M(i!xf∗CM ) in the Grothendieck group, the
assertion follows from the discussion above.

14.3. In this subsection, we assume that the graph is of type ADE, and ε is not a
root of unity. We apply the results in the previous subsection to our quiver varieties.

Recall

Z(w)A = {(x1, x2) ∈M(w)A ×M(w)A | πA(x1) = πA(x2)},
where πA : M(w)A → M0(∞,w)A is the restriction of π : M(w) → M0(∞,w).
Thus the results in the previous subsection are applicable to this setting. We have
an algebra isomorphism

H∗(Z(w)A,C)
.
= Ext∗Db(M0(∞,w)A)(π

A
∗ CM(w)A , πA∗ CM(w)A).

Let us denote this algebra by A as in the previous subsection.
Since the graph is of type ADE, we have M0(∞,w) =

⊔
v

M
reg
0 (v,w) by Propo-

sition 2.6.3. Thus we have the stratification M0(∞,w)A =
⊔

M
reg
0 (ρ). (In fact,

this holds under the same assumption as in Theorem 5.5.6: If we decompose
[B, i, j] ∈ M0(∞,w)A as in [45, 3.27], then the restriction of B to V i for i > 0
is zero by Proposition 4.2.2 with w = 0.) Since the restriction

πA|(πA)−1(Mreg
0 (ρ)) : (πA)−1(Mreg

0 (ρ))→M
reg
0 (ρ)

is a locally trivial topological fibration by Theorem 3.3.2, all the complexes in
the right hand side of (14.2.1) (applied to f = πA, M = M(w)A) have locally
constant cohomology sheaves along each stratum M

reg
0 (ρ). Since M

reg
0 (ρ) is irre-

ducible by Theorem 5.5.6, it implies that Pφ is the intersection cohomology complex
IC(Mreg

0 (ρ), φ) associated with an irreducible local system φ on M
reg
0 (ρ). Thus we

have

πA∗ CM(w)A
∼=
⊕

(ρ,φ,k)

L(ρ,φ,k) ⊗ IC(Mreg
0 (ρ), φ)[k](14.3.1)
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for some finite dimensional vector space L(ρ,φ,k). Let L(ρ,φ)
def.
=
⊕

k L(ρ,φ,k). By a
discussion in the previous subsection, {L(ρ,φ)} is a complete set of mutually non-
isomorphic simple A-modules. Via the homomorphism (13.4.2), L(ρ,φ) is considered
also as a Uε(Lg)-module.

Theorem 14.3.2. Assume ε is not a root of unity.

(1) Simple perverse sheaves Pφ whose shift appears in a direct summand of

πA∗ CM(w)A are the intersection cohomology complexes IC(Mreg
0 (ρ)) associated with

the constant local system CM
reg
0 (ρ) on various M

reg
0 (ρ).

(2) Let us denote the constant local system CM
reg
0 (ρ) by Cρ for simplicity. Then

L(ρ,Cρ) is nonzero if and only if M
reg
0 (ρ) 6= ∅. Moreover, there is a bijection between

the set {ρ | L(ρ,Cρ) 6= 0} and the set of l -weights of M0,a which are l-dominant.

(3) The simple A = H∗(Z(w)A,C)-module L(ρ,Cρ) =
⊕

k L(ρ,Cρ,k) is also simple

as a Uε(Lg)-module, and its Drinfel’d polynomial is Pk(u) = χa

(∧
−uC

•
k,x

)
in

Proposition 13.3.1 for x ∈M
reg
0 (ρ).

(4) L(ρ,Cρ) is the simple quotient of Mx,a, where x is a point in a stratum M
reg
0 (ρ).

(5) Standard modules Mx,a and My,a are isomorphic as Uε(Lg)-modules if and

only if x and y are contained in the same stratum.

Proof. We use the transversal slice in §3.3. The idea to use transversal slices is
taken from [13, §8.5].

Choose and fix a point x ∈M0(∞,w)A. Suppose that x is contained in a stratum
M

reg
0 (ρx) for some ρx. We first show

Claim. If Cρx
denotes the constant local system on M

reg
0 (ρx), the corresponding

vector space L(ρx,Cρx ) is nonzero.

If we restrict πA to the component M(ρx), then we have

πA∗ CM(ρx)
.
=
⊕

(ρ,φ)

L′
(ρ,φ) ⊗ IC(Mreg

0 (ρ), φ),(14.3.3)

where L′
(ρ,φ) is a direct summand of L(ρ,φ). The summation runs over the set of

pairs (ρ, φ) such that M
reg
0 (ρ) is contained in πA(M(ρx)). (In fact, (14.3.1) was

obtained by applying the decomposition theorem to each component M(ρx) and
taking the direct sum.) If we restrict (14.3.3) to the open stratum M

reg
0 (ρx) of

πA(M(ρx)), the right hand side of (14.3.3) becomes
⊕

φ

L′
(ρx,φ) ⊗ φ,

where the summation runs over the set of isomorphism classes of irreducible local
systems φ on M

reg
0 (ρx). On the other hand, πA induces an isomorphism between

(πA)−1(Mreg
0 (ρx)) and M

reg
0 (ρx) by Proposition 2.6.2. This means that the restric-

tion of the left hand side of (14.3.3) is the constant local system Cρx
. Hence we

have L′
(ρx,Cρx )

∼= C, and L(ρx,Cρx ) is nonzero. This is the end of the proof of the

claim.
The claim implies the first assertion of (2). Let us prove the latter assertion of

(2). Suppose M
reg
0 (ρ) 6= ∅. Then we have M(ρ) 6= ∅ and H∗(M(ρ) ∩ L(w),C) 6= 0

by Proposition 4.1.2. By Proposition 13.4.5, the corresponding l -weight space is
nonzero, where the l -weight Ψ±(z) = (Ψ±

k (z))k is given by (13.4.6). Furthermore,
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since C•
k (v,w) can be represented by a genuineA-module over a point in M

reg
0 (ρ) by

Lemma 2.9.2, χa
(∧

−uC
•
k(v,w)

)
is a polynomial in u. Thus Ψ±(z) is l -dominant.

Conversely suppose that we have the l -weight space with the l -weight (13.4.6)
nonzero. Since ε is not a root of unity, the ε-analogue of the Cartan matrix
[−〈hk, αl〉]ε is invertible. Hence (13.4.6) determines χa(

∧
uVk), and a homomor-

phism ρ : A → Gv. Moreover, the l -weight space is precisely H∗(M(ρ) ∩ L(w),C)
by Proposition 13.4.5(1). In particular, we have H∗(M(ρ) ∩ L(w),C) 6= 0, and
hence M(ρ) 6= ∅. Furthermore, if we decompose C•

k(v,w) into
⊕

λC
•
k,λ(ρ) as in

§4.1, we have rankC•
k,λ(ρ) ≥ 0 since the l -weight (13.4.6) is l -dominant. By Corol-

lary 5.5.5, τk,λ is surjective for any k, λ on a nonempty open subset of M(ρ). By
Lemma 2.9.4, M

reg
0 (ρ) is nonempty. This shows the latter half of (2).

Let vx denote the dimension vector corresponding to ρx, i.e., M
reg
0 (ρx) ⊂

M
reg
0 (vx,w). Take a transversal slice to M

reg
0 (vx,w) at x as in §3.3. Let S

be its intersection with M0(∞,w)A. Since the transversal slice in §3.3 can be
made A-equivariant (Remark 3.3.3), it is a transversal slice to M

reg
0 (ρx) (at x) in

M0(∞,w)A. Let S̃
def.
= (πA)−1(S). Let ε : S → M0(∞,w)A, ε̃ : S̃ → M(w)A be

the inclusions.
The stratification M0(w)A =

⊔
M

reg
0 (ρ) induces by restriction a stratification

S =
⊔
Sρ where Sρ = M

reg
0 (ρ) ∩ S. Any intersection complex IC(Mreg

0 (ρ), φ)
restricts (up to shift) to the intersection complex IC(Sρ, φ|Sρ

) by transversality.

Here φ|Sρ
is the restriction of φ to Sρ. Taking ε! of (14.3.1), we get

ε!
(
πA∗ CM(w)A

) .
=
⊕

(ρ,φ)

L(ρ,φ) ⊗ IC(Sρ, φ|Sρ
).(14.3.4)

Let iSx : {x} → S be the inclusion. It induces two pull-back homomorphisms iS!
x ,

iS∗x , and there is a natural morphism iS!
x E → iS∗x E for any E ∈ Db(S). We apply

these functors to both sides of (14.3.4) and take cohomology groups. By a property
of intersection cohomology sheaves (see [13, 8.5.3]), the homomorphism

H∗(iS!
x IC(Sρ, φ|Sρ

))→ H∗(iS∗x IC(Sρ, φ|Sρ
))(14.3.5)

is zero unless Sρ = {x} (or equivalently ρ = ρx), in which case it is a quasi-
isomorphism. Thus

Im
[
H∗(iS!

x ε
!πA∗ CM(w)A)→ H∗(iS∗x ε!πA∗ CM(w)A)

] .
=
⊕

φ

L(ρx,φ) ⊗ φx,(14.3.6)

where the summation runs over isomorphism classes of irreducible local systems on
M

reg
0 (ρx), and φx is the fiber of the local system φ at x. Moreover, (14.3.5) is a

homomorphism of A-modules, and (14.3.6) is an isomorphism of A-modules, where
the module structure on the right hand side is given by a : ξ ⊗ ξ′ 7→ aξ ⊗ ξ′.

On the other hand, we have

H∗(iS!
x ε

!πA∗ CM(w)A) = H∗(i!xπ
A
∗ CS̃)

.
= H∗(M(w)Ax ,C).

As shown in (13.4.3), the right hand side is isomorphic to the standard moduleMx,a.
Thus the left hand side of (14.3.6) is a quotient of Mx,a, and it is indecomposable
by Proposition 13.3.1(3). Thus the right hand side of (14.3.6) consists of at most
a single direct summand. Since we have already shown that L(ρx,Cρx ) 6= 0 in the
claim, we get L(ρx,φ) = 0 if φ is a nonconstant irreducible local system. Since x
was an arbitrary point, we have the statement (1).
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Let us prove (3). For the proof, we need a further study of (14.3.6). By the
above discussion, we have

Im
[
H∗(iS!

x ε
!πA∗ CM(w)A)→ H∗(iS∗x ε!πA∗ CM(w)A)

] .
= L(ρx,Cρx ).(14.3.7)

By the base change theorem, we have ε!
(
πA∗ CM(w)A

)
= πS∗ ε̃

!
CM(w)A where πS is

the restriction of πA to S̃. Further, we have ε̃ !
CM(w)A

.
= CS̃ since S̃ is a nonsingular

submanifold of M(w)A. Applying the Verdier duality, we have

Hom
(
H∗(iS!

x ε
!πA∗ CM(w)A),C

) .
= H∗((iS!

x π
S
∗ CS̃)∨)

.
= H∗(iS∗x πS∗ CS̃).

Hence (14.3.7) becomes

Im
[
Mx,a →M∗

x,a

] .
= L(ρx,Cρx ),(14.3.8)

where M∗
x,a is the dual space of Mx,a as a complex vector space. Let us introduce

an A-module on M∗
x,a by

〈a ∗ h, ξ〉 = 〈h, (ω∗a) ∗ ξ〉, a ∈ A, h ∈M∗
x,a, ξ ∈Mx,a,

where 〈 , 〉 denotes the dual pairing, ω : Z(w)A → Z(w)A is the exchange of two fac-
tors of Z(w)A = M(w)A×M0(∞,w)A M(w)A, and ω∗ is the induced homomorphism

on A = H∗(Z(w)A,C). Then (14.3.8) is compatible with A-module structures (cf.
[13, paragraphs preceding 8.6.25]).

The decomposition (13.4.4) induces a similar one for M∗
x,a:

M∗
x,a =

⊕

ρ

Hom(H∗(M(ρ)x,C),C).

The homomorphism Mx,a → M∗
x,a respects the decomposition, and induces a de-

composition on (14.3.8).
Recall that we have the distinguished vector [x] in Mx,a. The component

H∗(M(ρx),C) of Mx,a is 1-dimensional space C[x]. (See §13.3.) By the above
discussion, [x] is not annihilated by the above homomorphism Mx,a →M∗

x,a. Thus
we may consider [x] also as an element of M∗

x,a.
We want to show that any nonzero Uε(Lg)-submodule L′ of L(ρx,Cρx ) is L(ρx,Cρx )

itself. Our strategy is the same as in the proof of Theorem 14.1.2. Since we
already show that L(ρx,Cρx ) is a quotient of Mx,a, Proposition 13.3.1(3) implies

L(ρx,Cρx ) = Uε(Lg)− ∗ [x]. Thus it is enough to show that L′ contains [x]. To show
this, consider

M∗◦
x,a

def.
= {m∗ ∈M∗

x,a | ek,r ∗m∗ = 0 for any k ∈ I, r ∈ Z}.
By the argument as in the proof of Theorem 14.1.2, L′ contains a nonzero vector
in M∗◦

x,a. Hence it is enough to show that M∗◦
x,a = C[x].

As in the proof of Theorem 14.1.2 above, M∗◦
x,a is a direct sum of generalized

eigenspaces for ∆∗

∧
uVl. Let us choose and fix a direct summand M∗◦◦

x,a contained
in H∗(M(ρ)x,C). Then m∗ ∈M∗◦◦

x,a satisfies

〈fk,r ∗m,m∗〉 = 0

for any k, r. Since Mx,a = Uε(Lg)− ∗ [x] by Proposition 13.3.1(3), the above
equation implies that m∗ ∈ Hom(C[x],C). Thus we get M∗◦

x,a = C[x] as desired.
We have shown the statement (4) during the above discussion.
Let us prove (5). Since πA is a locally trivial topological fibration on each

stratum M
reg
0 (ρ), Mx,a and My,a are isomorphic if both x and y are contained
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in M
reg
0 (ρ). Conversely, if Mx,a and My,a are isomorphic as Uε(Lg)-modules, the

corresponding l -highest weights χa

(∧
−uC

•
k,x

)
and χa

(∧
−uC

•
k,y

)
are equal. Since

χa

(∧
−uC

•
k,x

)
determines the homomorphism ρ as in the proof of (2), x and y are

in the same stratum.

Remark 14.3.9. The assumption that ε is not a root of unity is used to apply
Theorem 5.5.6 and to have the invertibility of the ε-analogue of the Cartan matrix.
It seems likely that Theorem 5.5.6 holds even if ε is a root of unity. The latter
condition was used to parametrize the index set of ρ (i.e., Theorem 14.3.2(2)). But
one should have a similar parametrization if one replaces a notion of l -weights in a
suitable way. Thus Theorem 14.3.2 should hold even if ε is a root of unity, if one
replaces the statement (2).

Let P = {P (u) = (Pk(u))k} be the set of l -weights ofM0,a, which are l -dominant.
Since the index set {ρ} of the stratum coincides with P , we may write L(ρ,Cρ) as

L(P ), when M
reg
0 (ρ) corresponds to P ∈ P . The standard module Mx,a depends

only on the stratum containing x, so we may also write Mx,a as M(P ). We have
an analogue of the Kazhdan-Lusztig multiplicity formula:

Theorem 14.3.10. Assume ε is not a root of unity.

For x ∈M0(∞,w)A, let ix : {x} →M0(∞,w)A denote the inclusion. Let P ∈ P
be the l-weight corresponding to the stratum M

reg
0 (ρx) containing x. In the Gro-

thendieck group of finite dimensional Uε(Lg)-modules, we have

M(P ) =
⊕

Q∈P

L(Q)⊗H∗(i!xIC(Mreg
0 (ρQ))),

where M
reg
0 (ρQ) is the stratum corresponding to Q ∈ P, and IC(Mreg

0 (ρQ)) is

the intersection cohomology complex attached to M
reg
0 (ρQ) and the constant local

system CM
reg
0 (ρQ). Here the Uε(Lg)-module structure on the right hand side is given

by a : ξ ⊗ ξ′ 7→ aξ ⊗ ξ′.
This follows from Theorem 14.3.2 and a result in the previous subsection.

Remark 14.3.11. By [13, 8.7.8] and Theorem 7.4.1 with Theorem 3.3.2, the coho-
mology group HdQ+n(i!xIC(Mreg

0 (ρQ))) vanishes for all odd n, where dQ is the
dimension of M

reg
0 (ρQ).

15. The Uε(g)-module structure

In this section, we assume the graph is of type ADE. The result of this section
holds even if ε is a root of unity, if we replace the simple module L(Λ) by the
corresponding Weyl module (see [10, 11.2] for the definition).

15.1. For a given w ∈ ⊕Z≥0Λk, let Vv0(w) be the finite set consisting of all
v ∈ ⊕Z≥0αk such that w − v is dominant and the weight space with weight
w− v0 is nonzero in the simple highest weight Uq(g)-module L(w− v).

Let V(w) be the union of all Vv0(w) for various v0. It is the set consisting of all
v such that w − v is dominant.

Since the graph is of type ADE, we have M0(∞,w) =
⊔

v
M

reg
0 (v,w). Since

M
reg
0 (v,w) is isomorphic to an open subvariety of M(v,w), M

reg
0 (v,w) is irre-

ducible if M(v,w) is connected. Although we do not know whether M(v,w)
is connected or not (see §7.5), we consider the intersection cohomology complex
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IC(Mreg
0 (v,w)) attached to M

reg
0 (v,w) and the constant local system CM

reg
0 (v,w).

It may not be a simple perverse sheaf if M(v,w) is not connected.
We prove the following in this section:

Theorem 15.1.1. As a Uε(g)-module, we have the following decomposition:

ResMx,a =
⊕

v∈V(w)

H∗(i!xIC(Mreg
0 (v,w))) ⊗ L(w− v),

where ix : {x} →M0(∞,w) is the inclusion, and Uε(g) acts trivially on the factor

H∗(i!xIC(Mreg
0 (v0,w))).

Remark 15.1.2. By [13, 8.7.8] and Theorem 7.3.5 with Theorem 3.3.2, the coho-
mology group Hodd(i!xIC(Mreg

0 (v,w))) vanishes.

15.2. Reduction to ε = 1. Suppose that x is contained in a stratum M
reg
0 (v,w).

Take a representative (B, i, j) of x and define ρ(a) as in (4.1.1). Here a is fixed and
we do not consider A. We choose S ∈ gw = LieGw, R ∈ gv = LieGv, E ∈ C so
that expS = s, expR = ρ(a), expE = ε, where a = (s, ε). Let at = (exp tS, exp tE)
for t ∈ C. Then we have

at ∗ (B, i, j) = exp(tR)−1 · (B, i, j)
from (4.1.1). If Ax denotes the stabilizer of x in Gw×C∗, the above equation means
that at ∈ Ax.

Let us consider a Uexp tE(Lg)-module

Mt
def.
= KAx(M(w)x)⊗R(Ax) Cat

parametrized by t ∈ C, where Cat
is an R(Ax)-module given by the evaluation

at at as in §13. When t = 1, we can replace Ax by A by Theorem 7.3.5 and
Theorem 3.3.2, hence the module Mt=1 coincides with Mx,a. Moreover, it depends
continuously on t, also by Theorem 7.3.5.

Let us consider Mt as a Uexp tE(g)-module by the restriction. Since finite di-
mensional Uexp tE(g)-modules are classified by discrete data (highest weights), it
is independent of t. (Simple modules L(Λ) of Uexp tE(g) depend continuously on
t.) Thus it is enough to decompose Mt when t = 0, i.e., s = 1, ε = 1. By The-
orem 7.3.5 and Theorem 3.3.2, KAx(M(w)x) is specialized to H∗(M(w)x,C) at
s = 1, ε = 1. Thus our task now becomes the decomposition of H∗(M(w)x,C) into
simple g-modules.

15.3. When Y is pure dimensional, we denote by Htop(Y,C) the top degree part of
H∗(Y,C), that is, the subspace spanned by the fundamental classes of irreducible
components of Y . Suppose that Y has several connected components Y1, Y2, . . .
such that each Yi is pure dimensional, but dimYi may change for different i. Then
we define Htop(Y,C) as

⊕
Htop(Yi,C). Note that the degree top may differ for

different i since the dimensions are changing.
By [45, 9.4], there is a homomorphism

Uε=1(g)→ Htop(Z(w),C).

In fact, it is the restriction of the homomorphism in (13.4.2) for A = {1}, ε = 1,
composed with the projection

H∗(Z(w),C)→ Htop(Z(w),C).
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For each v, we take a point xv ∈ M
reg
0 (v,w). (By Lemma 2.9.4(2), w − v is

dominant if M
reg
0 (v,w) is nonempty.) By [45, 10.2], Htop(M(w)xv

,C) is the simple
highest weight module L(w−v) via this homomorphism. (In fact, we have already
proved a similar result, i.e., Proposition 13.3.1.)

Proposition 15.3.1. Consider the map π : M(v0,w) → M0(v
0,w). Then π, as

a map into π(M(v,w)), is semi-small and all strata are relevant, namely

2 dimM(v0,w)xv
= codimM0(v,w) for xv ∈M

reg
0 (v,w),

where codim is the codimension in π(M(v,w)).

Proof. See [44, 6.11] and [45, 10.11].

Proposition 15.3.2. We have

π∗
(
CM(v0,w)[dimM(v0,w)]

)
=

⊕

v∈V
v
0(w)

Htop(M(v0,w)xv
,C)⊗ IC(Mreg

0 (v,w)),

(15.3.3)

where xv is taken from M
reg
0 (v,w). (By Theorem 3.3.2 Htop(M(v0,w)xv

,C) is

independent of the choice of xv.)

Proof. By the decomposition theorem for a semi-small map [13, 8.9.3], the left hand
side of (15.3.3) decomposes as

π∗
(
CM(v0,w)[dimM(v0,w)]

)
=
⊕

v,α,φ

L(v,α,φ) ⊗ IC(Mreg
0 (v,w)α, φ),

where M
reg
0 (v,w)α is a component of M

reg
0 (v,w) and IC(Mreg

0 (v,w)α, φ) is the
intersection complex associated with an irreducible local system φ on M

reg
0 (v,w)α.

Moreover, by [13, 8.9.9], we have

Htop(M(v0,w)xv
,C) =

⊕

φ

L(v,α,φ),(15.3.4)

where φ runs over the set of irreducible local systems on the component of
M

reg
0 (v,w)α containing xv. But as argued in the proof of Theorem 14.3.2, the

indecomposability of Htop(M(w)xv
,C) implies that no intersection complex associ-

ated with a nontrivial local system appears in the summand. Moreover the left hand
side of (15.3.4) is independent of the choice of the component by Theorem 3.3.2.
Thus we can combine the summation over α together as
⊕

α,φ

Lv,α,φ ⊗ IC(Mreg
0 (v,w)α, φ) = Htop(M(v0,w)xv

,C)⊗ IC(Mreg
0 (v,w)).

Our remaining task is to identify the index set of v. The fundamental class
[M(v0,w)xv

] is nonzero if M(v0,w)xv
is nonempty. Thus M(v0,w)xv

is nonempty
if and only if

Htop(M(v0,w)xv
,C) 6= 0.

By [45, 10.2] and the construction, Htop(M(v0,w)xv
,C) is isomorphic to the weight

space of weight w−v0 in L(w−v). Thus it is nonzero if and only if v ∈ Vv0(w).
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Take x ∈ M(∞,w) and consider the inclusion ix : {x} → M0(∞,w). Applying
H∗(i!x•) to (15.3.3) and then summing with respect to v0, we get

H∗(M(w)x,C) =
⊕

v∈V(w)

Htop(M(w)xv
,C)⊗H∗(i!xIC(Mreg

0 (v,w))).(15.3.5)

By the convolution product, Htop(M(w)xv
,C) is a module of Htop(Z(w),C). By

[13, §8.9], the decomposition (15.3.5) is compatible with the module structure,
where Htop(Z(w),C) acts on Htop(M(w)xv

,C)⊗H∗(i!xIC(Mreg
0 (v,w))) by z : ξ⊗

ξ′ 7→ zξ ⊗ ξ′. This completes the proof of Theorem 15.1.1.

Added in proof

Crawley-Boevey recently proved that M(v,w) is connected (see §7.5) in “Geom-
etry of the moment map for representations of quivers”, to appear in Compositio
Math.
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MR 86g:32015

[7] A. Bialynicki-Birula, Some theorems on actions of algebraic groups, Ann. of Math. 98 (1973),
480–497. MR 51:3186

[8] J. Carrell and A. Sommese, C∗-actions, Math. Scand. 43 (1978/79), 49–59. MR 80h:32053
[9] V. Chari and A. Pressley, Fundamental representations of Yangians and singularities of R-

matrices, J. reine angew Math. 417 (1991), 87–128. MR 92h:17010
[10] , A guide to quantum groups, Cambridge University Press, Cambridge, 1994.

MR 95j:17010
[11] , Quantum affine algebras and their representations in “Representation of Groups”,

CMS Conf. Proc., 16, AMS, 1995, 59–78. MR 96j:17009
[12] , Quantum affine algebras at roots of unity, Representation Theory 1 (1997), 280–328.

MR 98e:17018
[13] N. Chriss and V. Ginzburg, Representation theory and complex geometry, Progress in Math.
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