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INTRODUCTION

0.1. Let us consider a finite graph in which no edge joins a vertex with itself.
This graph defines a symmetric matrix (g, ;) indexed by pairs of vertices of the
graph, where a;, = 2 and —a;; is the number of edges joining i, j if i # j.
Let g be the Lie algebra over Q defined in terms of this matrix by the usual
Serre relations (a Kac-Moody Lie algebra), let u be its enveloping algebra, and
let U be the quantized version of u discovered by Drinfeld and Jimbo (a Hopf

algebra over Q(v)).

Let u=u ®u’®@u" (resp. U=U" @ U’ ® U") be the triangular decom-

position of u (resp. U).
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366 G. LUSZTIG

0.2. The main discovery of [L2] was the existence of a canonical basis for U™
(in case of graphs of type 4, D, E) with some very remarkable properties.
Among these properties were integrality, a positivity property for structure con-
stants, compatibility with various natural filtrations, and the fact that this basis
gave rise to canonical bases in all finite-dimensional irreducible representations.

This was done by two quite different methods, an elementary method and a
geometric method.

0.3. In this paper, the geometric method of [L2] is extended to the case of
arbitrary graphs; we obtain a canonical basis of U~ with the same kind of
properties as in the ordinary case.

Let us fix an orientation for our graph (or a quiver). From the work of
Ringel [R] it is known that the algebras #~ , U™ can be reconstructed purely in
terms of the representation theory of this quiver, in the case of graphs of type
A, D, E. (In a not yet written work, Ringel has extended this to the case of
Dynkin graphs of affine type; using a variant of Ringel’s method, Schofield [S]
has extended Ringel’s results on %~ , but not those on U™, to arbitrary finite
graphs.)

It turns out that by looking more closely at the geometry of representations
of the quiver one can get not only U™ but also a canonical basis for it.

It is well known that U™ is naturally graded: U =, U, where v are
functions on the vertices of our graph with values in N and U, are finite
dimensional.

Assume that we are given a complex vector space V,; for each vertex i of
our graph so that dimV, = v(i).

Let E = @Hom(V,, V,) where the sum is over all arrows i — j in the
orientation. This is a finite-dimensional complex vector space on which the al-
gebraic group Gy = []; AutV, acts naturally. The points of E may be regarded
as representations of our quiver (oriented graph).

We would like to produce from E finitely many objects which should para-
metrize a basis of U, .

In the 4, D, E case this task is easily solved: one takes the set of all G-
orbits on E. (This set is finite by Gabriel’s theorem.) This does not make sense
in the general case; there may be infinitely many orbits.

To get around this difficulty, we imitate the definition of character sheaves
in [L1]. As in that theory we have a finite number of varieties {corresponding
to various kinds of flags) that map properly to E. The direct image of the con-
stant sheaf under each of these maps decomposes as a direct sum of irreducible
perverse sheaves (up to shift), and the perverse sheaves that appear in this way
form a finite collection of objects, which satisfies our requirements.

We can show that this class of perverse sheaves is closed under a certain
multiplication operation; this eventually leads to a construction of U~ endowed
with a canonical basis provided by the perverse sheaves as above. (That basis
is in fact independent of the chosen orientation.)
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QUIVERS, PERVERSE SHEAVES, AND QUANTIZED ENVELOPING ALGEBRAS 367

0.4. As shown by Drinfeld and Jimbo, U™ ®U° has a natural comultiplication.
We are able to recover this comultiplication in the language of perverse sheaves.
(We are again imitating character sheaves, namely the restriction functor of
[L2].) As a consequence, we obtain a positivity property for the canonical
basis, with respect to comultiplication, which is new even in the 4, D, E case.

0.5. Another aspect of this work is a study of the singular supports of the per-
verse sheaves connected with our canonical basis. We show that these singular
supports are contained in a certain remarkable Lagrangian variety (already in-
troduced in [L3]) whose definition is again reminiscent of what happens for
character sheaves.

0.6. In a sequel to this paper, we will describe explicitly the perverse sheaves
connected with our canonical basis in the case of affine Dynkin graphs, in the
sense that we will describe their support in the framework of the Dlab-Ringel
theory [DR], and the corresponding local systems on an open part of the support.
Remarkably, the theory of character sheaves of GL, enters in this description.

0.7. As we already mentioned, in [L2], a second construction of the canonical
basis was given; this was elementary, in the sense that no results from topology
or algebraic geometry were used. Soon after [L2] became available, Kashiwara
announced an elementary construction in a somewhat similar spirit of a canon-
ical basis that made sense for general graphs.

(Kashiwara’s construction is given in his very interesting preprint On crystal
bases of the g-analogue of universal enveloping algebras, which I received after
this paper had been submitted.)

Note that the elementary approach to canonical bases, while being elegant,
cannot provide positivity results of the kind provided by the perverse sheaves
approach.

1. PRELIMINARIES

1.1. We assume given a finite nonempty graph; in this graph, two different
vertices may be joined by several edges, but no edge may join a vertex with
itself. Let I be the set of vertices of our graph, and let H be the set of pairs
consisting of an edge together with an orientation of it.

Giving such a graph is the same as giving

(a) two finite sets I, H with I nonempty,

(b) amap H — I denoted h — 4,

(c) amap H — I denoted h — 4" and

(d) a fixed point free involution # — & of H;
these are subject to

(e) (B) =h" and

( f) X £ A
forall he H.

An orientation of our graph is a choice of a subset Q ¢ H such that QUQ =
H,QnQ=0.
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368 G. LUSZTIG

1.2. Let k be an algebraically closed field.

Let 7”7 be the category of finite-dimensional 7-graded vector spaces V =
@D, V; over k with morphisms being linear maps respecting the grading. We
shall write V € 77 to indicate that V is an object of 7.

Let N’ be the set of all functions v: I — N. Foreach v € N’ we denote by
7, the full subcategory of 7” whose objects are those V such that dimV, =
v(i) forall i € I. Then each object in 7 belongs to 7/, for a unique v, and
all objects of 7/ are isomorphic to each other.

Given Ve 77, let

E, = @ Hom(V,, V).
heH

More generally, for any subset H' of H we shall consider the subspace Ey y
of E, consisting of all vectors x = (x,) such that x, = 0 whenever 4 €
H-H.

The algebraic group G, = []; Aut(V,) (naturally a subgroup of Aut(V)) acts
on Ey (andon Ey )by (g, x) — gx = x" where x,'l = ghuxhgh_,l forall 4.

1.3. Let V' be an I-graded subspace of Ve 7 and let x € E, . We say that
V' is x-stable if x,(V,,) C V,. forall he H.

In this case, we may consider the linear maps x,: V,, = Vyu, x,: V,./V,, —
V, /V;lu induced by x,, and we obtain elements x' = (x,'i) € E;, and x" =
(x;) € Ey, . We say that x', x” are induced by x.

1.4. Let v € N' and suppose that S, is the set of all pairs (i, a) where i =
(i;, iy, ..., i,) is a sequence of elements of I and a= (a,,4a,,...,q,) isa
sequence of integers > 0 such that ). =i Y= v(i) forall iel.

Now let V€ 7 andlet (i,a) € S,. A flag of type (i,a) in V is, by
definition, a sequence ¢ = (V = Viovis..ov"= 0) of I-graded
subspaces of V such that, forany / =1, 2, ..., m, the graded vector space
VI_I/V’ is zero in degrees # i, and has dimension g, in degree i, .

If x € Ey, we say that ¢ is x-stable if V! is x-stable (see 1.3) forall he H
andall /=0,1,...,m.

Let a be the variety of all flags of type (i, a) in V.

1.5. In this su@ection we assume that an orientation € for our graph has been
chosen. Let # o be the variety of all pairs (x, ¢) such that x € Ey , and
¢ € Z’a is x-stable. G, acts on Z’a by g:¢ — g¢ where ¢ = (V = V05
ViS5...oV"=0) and go=(V=gV’>gV' 5... 5 gV”" =0). Hence Gy
acts on Zv’a by g:(x, ) —(gx, g9).

—~

We denote by =, ,: % , — Ey  the first projection. With these notations,

1,
we have the following result.
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Lemma 1.6. (a) . lsa smooth, irreducible, projective variety of dimension

Z a[/al

1<t iy =i,
and Gy acts transitively on it.
(b) The second projection & , —» F o 18 a vector bundle with fibres of dimen-
sion
! . " .
dtheQh =i, h" =i}aya,
I'<l

—~

(c¢) & . is a smooth, irreducible variety of dimension

i,a
! . " .
Yotlhe Qb =iy, b =i}aq+ > aa,.
I'<l 1<l tig=i,
(d) =,

i a I8 a proper morphism.
(e) =

ia is Gy-equivariant.

(a) holds since .# , is isomorphic to a product over 7/ € I of usual (partial)
flag manifolds attached to V;. (d) follows from (a); (e) is obvious and (c)
follows from (b) and (a). It remains to prove (b). Let us fix ¢ = (V = V0>
vVis...ov'= 0) in Z,a and let Z be the fibre at ¢ of the second projection
in (b). The first projection identifies Z with the set of all x € Ey  such that
xh(VL!) C Vﬁ,u for all 4 € H and all /; this is clearly a linear subspace of
Ey o Tts dimension is equal to

S dim(Vi " vh) dimvint v
I'<l;heQ
hence to
StheQh =iy, h" =i}aya,
I'<i
This independent of ¢ (this can be also seen from the transitivity of the
Gy—action on % _). The lemma follows.

1.7. An element f € E,, is said to be nilpotent if there exists an N > 2 such
that the following condition is satisfied: for any sequence 4,, h,, ..., Ay in H
such that i, = k), hy = h3, ..., h\_, = hy, the composition Sodo Sy
vV, — 'V, is zero.

N 1

Lemma 1.8. (a) If x € E, and (15=(V=V°DVl 5.2 V"=0) isa
flag of type (i, a) that is x-stable, then xh(VZT') - Viu for all h € H and
I=1,2,...,m. In particular, x is nilpotent.

(b) Conversely, if x € E,, is nilpotent, then there exists (i, a) € S, and a flag
¢ of type (i, a) such that ¢ is x-stable.
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370 G. LUSZTIG

Assume that we are in the setup of (a). If % is such that A’ # i, then
V' = Vi, and hence x,(V,:') = x,(V},) C Vi s if & is such that h” #
then Viﬁl =V!, and hence X, (VZTI) C Vi?l = Vilu .

Since for 4 € H we cannot have simultaneously 4" = j, and A" =i, (a) is
proved.

To prove (b), we may assume that V # 0 and that the result is already proved
for I-graded vector spaces of dimension strictly smaller than that of V.

Forany k€I andany N > 1,let Z(k, N) be the set of all sequences h =
(hy, hy, ..., hy) in H suchthat ) =k, h;=h),, for i=1,2,...,N-1.

For h € Z(k, N), we denote by V,(h) the image of the composed map
Xp Xp, X th -V,

We denote V (N) = Zhez(k’N) V,.(h), a subspace of V,. We also set
V. (0)=V,.

Clearly, we have

(© ViN) =2 em nrai X (Vyy (N =1)) forall N> 1.

Assume that

(d) V,(1)=V, forall kel.
From this we deduce by induction that

() Vi(N)=V,(N—1) forall kel andall N> 1.

For N = 1 this is just (d). Hence we may assume that ¥ > 2 and
V. (N -1) = V(N - 2) for all k. Then using twice (c) we deduce that
VilN) = 2oherr cw i XV (N = 1) = Fpep pr e % (Vi (N = 2)) = V(N - 1)
and (e) follows. From (¢) we see that V, =V, (1) =V, (2) =--- . However, by
the assumption of (b), for large N, we have V, (N) =0 for all k. It follows
that V, = 0. This contradiction shows that (d) is false. Thus, there exists
k€I suchthat V, (1) #V,.

Let V' be the I-graded subspace of V defined by V,l( =V, (1) and V; =YV,
for [ # k. We have xh(V,ll,) C V,llu for all ~ € H. Thus the restriction of
x gives an element X € E,, . It is clear that this element is nilpotent. By the
induction hypothesis, we can find a flag of some type in V! that is X-stable.
This flag preceded by V itself constitutes a flag in V that is x-stable. Thus,
(b) is proved.

2. A CLASS OF PERVERSE SHEAVES ON E,

2.1. In this section, as well as in §3 and §4, we assume that an orientation £
for our graph has been chosen.

We fix a prime number [ invertible in k. We generally write Z(X) for the
bounded derived category of complexes of @Z-Sheaves on an algebraic variety
X over k. We shall use the notations of [BBD]; in particular, [d] denotes a
shift by d degrees, f* denotes the inverse image functor, f, denotes direct
image with compact support, D: Z(X) - & (X) denotes the Verdier duality
map, and PH'( ) denotes perverse cohomology sheaves.
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Objects of Z(X) are referred to as complexes. The constant /-adic sheaf
@1 on any algebraic variety will be denoted 1.

A complex L in & (X) is said to be semisimple if L is isomorphic to the
direct sum @,”H'L[—i] and if each *H'L is a semisimple perverse sheaf.

Assume that we are given an action of a connected algebraic group G on X .
A semisimple complex L in Z(X) is said to be G-equivariant if each "H'L
is a G-equivariant perverse sheaf (see [L1, 1.9]).

2.2. Let V€7, . Foreach (i,a)e S, , weset L, , o= (7 )(1) e Z(Ey q).

(Here, 1 e Z (9: .) 5 see 1.5.) By the decomposition theorem [BBD], Li,a; q 1s
a semisimple complex.

We denote by &, , the set of isomorphism classes of simple perverse sheaves
L on Ey , that have the following property: L[d] appears as direct summand
of L, .., forsome (i,a) €S, and some d € Z.

We denote by &y q the subcategory of & (Ev,g) consisting of all complexes
that are isomorphic to finite direct sums of complexes of the form L[d ] for
various L € &, V.0 and various integers d. Any complex in &, V.0 is semisim-
ple. From 1. 6(e) and [L1, (1.9.2)] it follows that any complex in Dy q 18
Gy-equivariant. ‘

If in (i,a) € S, we have a; = 0 for some / then by omitting i, from i
and a; from a, we obtain another element (i', a') € S,, and it is clear from
the definition that L; ,.0=Ly y.q- Hence in the definition of Py.q We may
add the condition that

(a) (i, a) is such that @, > 0 for all /
and we obtain the same class of perverse sheaves. Since there are only finitely
many elements of S, satisfying (a), we see that

(b) Hy q contains only finitely many objects (up to isomorphism).

o

2.3. Assume that V, V are in 7, and choose an isomorphism 1 : V = \%
preserving the grading. This induces an isomorphism 1’ : Ey o=Ej o given by
{(x) = X where (&), = ,»x,1,;' forall A€ H. Then 1: Z(Ey o) —» D (Eg o)
is an equivalence of categories, with inverse i ; it carries Li,q€ g (Ey o)
to the analogous complex in &' (Eg ), for each (i, a) € S, . Hence it defines
an isomorphism % v.aZ =P 0 and an equivalence of categorles @, v.a = @’
(due essentially to the equivariance of the complexes involved).

2.4. Assume again that V€ 7, . Let (i, a) € §, be such that for two consecu-
tive indices /,/+ 1 we have i, =i, =i. Let (i',a’) € S, be obtained from
(i, a) by replacing the two entries i;, {;,, by the single entry / and the two
entries a;, @, , by the single entry a, + @, , . We then have

(@) Liwa ™ XLy wial-2/ ()] € 2(Ey o)
where x runs over the set of all sequences | < k; <k, < - <k, < a4+
a;,, and f(x E,_ —t). This follows from the well-known structure of
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the cohomology of the Grassmannian of g, ,-planes in (g; + g, ,)-dimensional
space. As a consequence, we see that, in the definition of 5"‘,’9 we may add
the condition that

(b) (i, a) is such that no two consecutive entries of i are equal.

3. MULTIPLICATION

3.1. Assume now that we are given V, V', V"’ € 7" such that Ve 7, V' ¢
7., V' €7, , where v, v, v" e N satisfy v =0 +0".

Consider the diagram
(a) Ey oxEp o - E 2L E 2L E
where the notations are as follows.

E" is the variety of all pairs (x, V) where x € Ey o and V is an x-stable
I-graded subspace of V such that V € 7.

E' is the variety of all quadruples (x, V', R”, R') where (x, V)eE", R”
is an isomorphism V' = ¥ (in 7) and R’ is an isomorphism V' = V/V (in
7).

Wehave p,(x, V, R", R) = (x', x") where x, R}, = Ryux,: V}, = V,./V}n
and x, R}, = R,wx,: V), —» V,. forall he H;

py(x, V,R", R)=(x, V), py(x,V)=x.

Note that p, is smooth with connected fibres, p, is a Gy x Gy~-principal
bundle and p, is proper.

Let L' € @ (Ey o) and let L"eg (Eyn o) be two semisimple complexes;
assume that L' is Gy/-equivariant and that L” is Gy.-equivariant. We shall
associate to L', L” acomplex L=L'«L" in Z(Ey o) by the method of [L2,
9.5].

Let L, =L'® L" € Z(Ey o xEy» o) (external tensor product). Let L, =
p’f(Ll) ; this is a Gy x Gyr-equivariant semisimple complex on E', and hence
there is a well-defined semisimple complex L, on E” such that pJ(L,) = L,.
We define L=L' «L" = (p,),L, € Z(Ey ).

Lemma 3.2. (a) In the setup of 3.1, we assume that L' € &y o and L" € &y ;.
Then we have L'« L" e Gy q-

(b) Assume that (i',a’) € S, (resp. i, a") e S,n). Let i= i'i" (resp.
a =a'a’) be the sequence formed by the sequence i (resp. a') followed by the
sequence i’ (resp. a"). Then (i,a) €S, . Hence Ly o o €&y o, Ly y.q €
Gy o L ,qo€ gv,n are well defined. We have Ly wgxLly grog=L; 4.0

B

! o/ !

We first prove (b). Let i'= (/|,..., &), i' = (},..., i), so that i =

./ . 1 S ? "
(ll""’ lmr,ll,...,lml/). Let L' = Li',a';Q’ L = Li”,a”;Q’ L= Li,a;Q'

Recall that L' = (; ,),(1) € Z(Ey o), L" = (nyn go),(1) € Z(Eyn o), L=
(ﬂi’a)!(l) EQ(EV,Q)’ Where T, l:%  — EVI’Q s TL'il/’ " .u’a// — EVII,Q,

i,a i',a a i
~

7 ot F . — Ey q,areasin 1.5. We apply the definitions of 3.1 to L', L' In

i,a i,
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our case we have L, = (my  xmy )(1) where my o x @y ?Ta x%’a” —
EV q X Ev” Q-

Let p: 9‘7 a2 E” be the morph1sm defined by p(x, ¢) = (x, V) where
6=(V=VoV 5. ..oV —0)and ¥V =V". Let L, = p(l) €
Z(E"). As in 1.6(d), we see that p is a proper morphism; using also 1.6(c)
and the decomposition theorem [BBD], we see that L, is a semisimple complex
on E”. It is clear that p;(L,) = p}(L,) (notations of 3.1). It is also clear that
pyp =m; ,; hence

L'« L" = (py),(Ly) = (py),p(1) = (m; ),(1) = L.

Thus, (b) is verified.
Now (a) follows immediately from (b).

3.3. We want to prove an associativity property of the operation *. Assume
that we are given Vm, Vlz, V23, v! , V2, V3 in 7, (123) 7( 12)> %(23) , %(1),
7 %(3 respectively where v(12) = v(l) +v(2), (23) v(2)+v(3) and

(123) (1 )+1/(2)+1/( ). Let L' € @, o f=1,2,3. Then L'« L% ¢
Gy o, L'+ L> € Gy o hence L'+ (L*xL’) € @y ¢ and (L'« L)« L€

v
@’Vm q are well defined (see 3.2(a)).

Lemma 34. L'« (L« L) = (L'« L)« L’ in Gy .

Consider the diagram analogous to that in 3.1(a):

EV[’QXEVZ,QXEV3’ <—X Y—>EV123,Q

where the notation is as follows.

Y is the variety of all triples (xm , V3, V23) where x'?* ¢ Evmgg, V3, p23
are x'Z.stable I-graded subspaces of V'2® such that V> ¢ V23, 3 , 18 iso-
morphic to v? , and 3 s isomorphic to A\

X is the variety of all sequences (xm, V3, V23, R! , Rz, R3) where

(xm, 3 , V23) €Y, R® isan isomorphism Vixyp? , R? isan isomorphism
Vi V23/V3 ,and R' is an isomorphism V' V123/V23
We have pl(x123 V3 5 R1 R? R3) = ()c1 X%, x ) where xh23R
”xh for all 4 € H and f—l 2,3;
py(x 123’ % ,V23,R R ,R )= (x 123’ V3, V23);
p3(x123, 3, V23) = ¢!
Let L, = L'el*sL® (a semisimple complex in Z'(Ey, a*xEy oxEp Q ).
As in 3.1, there is a well-defined semisimple complex L, € Z(Y) such that
piL =piL;. Weset L=(p;),L, € Z(Eynx q).

It is sufficient to show that

h

LL's(L*+L%, L=L'«LHsL.
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374 G. LUSZTIG

These isomorphisms are established by using the standard commutation rela-
tion between inverse image and direct image with compact support in cartesian
diagrams (base change). We leave the details to the reader.

3.5. As a consequence of 3.4, it makes sense to consider L'« L*s«...xL" ¢
@’V,Q for any L' e Dl o> W e 7, (I=1,...,m) where V € 7, satisfies

v=v'+v 4+ +v™. This may be defined either directly, as in the proof of
3.4, or by applying repeatedly the definition in 3.1 (for two factors) with some
choice of brackets; the result is then independent of the choice of brackets.

36. Let i €I and let a € N. Let W € 77 be such that dimW, = g and
Wj =0 forall j#i. Then Ey o=0.1t is clear that L ,o=1 EZ(W, Q).
(Here we regard i, a as sequences with one term each.) It follows that

leﬂwyg.

3.7. Let (i,a) € S, . Let v' be such that l/l(i )=4a, and v ( ) 0 for i #
(i=1,...,m) where m is the number of terms in i. Let W e %z and let
L'=1eDy , forI=1,

Assume that m > 1. Let V' € 7,_ , and let (i’,a") € S _ . be obtained
from (i, a) by dropping the first terms i, a, . From 3.2(b) we see that

1
(a) Li,a;Q:L >kLi',a';Qeg’V;Q'
Applying (a) repeatedly we obtain

(b) Liyo=L'sL’x xL"ed, .

Note that L' € Pl o> €€ 3.6.
3.8. The Verdier duality map D : Z(Ey o) —» Z(Ey ) satisfies

(a) D(Li,a;g)=Li,a;g[2d(iaa)]

where d(i, a) = dim§ is equal to

(b) Stthe Qi =iy, b =i}aq+ Y. aq
I'<t I<l": D=k

(see 1.6(c)). It follows that D preserves the subcategory &y o and that it
defines a permutation of the set yv,g

If L'e&y o, L" €&y ( are as in 3.2(a), we have
)* D(L")[2m],

where m is the dimension of any fibre of p, minus the dimension of any fibre
of p, (notation of 3.1); in other words, we have

!

D(L' L")y =D(L

"
nm = Z Vhlllhu + V l/ .
heQ
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Note also that
D(L[d]) = D(L)[~d]}

for any L € &, and any integer d .

4. RESTRICTION

4.1. Assume now that we are given V € 7/ and an I-graded subspace W of
V with We 7, . Let T=V/W. Then Te€ 7, where v =1+ w.

Let E(W) be the subspace of Ey  consisting of all x = (x;) such that W
is x-stable. Such x induces elements x' € E; o and x” € Ey, o (see 1.3).
We denote by i: E(W) — Ey  the canonical inclusion and by p: E(W) —
Ep o ¥ Ey o the map defined by p(x) = (x’, x”) where x', x” are as above.

A complex L € Z(Ey o x Ey, ) is said to belong to &} y o if there
exist L), ..., L, in @y o and Ly,...,L in @y q such that we have L &
@j.:l L;. ® L}' (external tensor product) in Z'(Ep o xEy, ).

Forany L e Q(EV,Q) , we set

res; wL =p(i"L) € Z(Ey o xEy o).

Proposition 4.2. (a) If L € &, , then res; w L belongsto @y .
(b)If (i,a)€S,, then

~ ! "
rese wli g0 @ L y.q®L; pol-2M(@,a")]
aI ,all
where the summation is over the pairs of sequences a', &' such that (i, ') € S,,
(i,a") €S, and a' +a" = a; we have
! " ! . " . roon ! 1"
M@ ,a)= Zﬂ{h €eQh =iy, h =i}apa, + Z ara; .
I'<l Il ip=i,
It is clear that (b) implies (a). Hence it is enough to prove (b). The proof
will be given in 4.8.

43. Let m; ,: 9?,1 — Ey o be asin 1.5. The inverse image of E(W) under
7; , is denoted E (W); let 7: E (W) — E(W) be the restriction x; .. Consider

the composition p#: E (W) = Eq o xEy . We have clearly

(a) (" (L .0)) = (pR),(1).

We now define, for any a’, a” as in 4.2(b), some subvaricties E(W, a’, a”) of
E(W) as follows.

E(W,a',a") is the variety of all (x, ¢) € E(W) where ¢ = (V =V’ >
V! 5... 5 V™ =0) is such that for any /, (V"' nW)/(V'nW) has dimension
a;' in degree #; (and, necessarily, dimension O in degrees # i, ); here m is the
number of terms in i.

It is clear that the E(W, a’, a”) form a partition of E(W) into locally closed
subvarieties.
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—~

For a’, a” as above, the morphisms 7 5*.’ o — Ep T.Q and 7, ,»: Zau -

Eyw o can be defined just as in 1.5 (with V replaced by T , W), Moreover we
have a commutative diagram

Ew,a,a") —L— EW)

K b

leegi-au ————-’ETQXEWQ

a
’ 4 ni,a’ Xﬂl/r 4 ’

where f is the inclusion and f is the morphism defined as follows. If
(x, ¢) € E(W,a’,a") is as above, then f(x, ¢) = ((x', ¢'), (x", ¢")) where
(x', x") = p(x), ¢" is given by the intersections of the subspaces in ¢ with
W and ¢ is given by the images of the subspaces in ¢ under the canonical
projection V— T,

Lemma 4.4, With the notations in 4.3, f is a (locally trivial) vector bundle with
fibres of dimension M(a', a") (see 4.2(b)).

We fix (x', ¢') € ?:a/ and (x", ¢") € eéfva where ¢ = (T=T° > T >

DT"=0), ¢"=W=W oW >... 5W" =0). Let T be the fibre
of f at (x', ¢, (x",¢")). Let us identify T with a (graded) complement
of Win V,

Now, giving a graded subspace V! of V such that V' W =W’ and such
that the image of V! under the canonical projection V — T is T’ is the
same as giving a graded linear map z;: T - W/Wl. (To z; corresponds
the subspace V' of V consisting of all vectors v’ +v” € T@® W such that
v' € T and z,(v') = v" modulo W'.) The condition that the subspace V'
corresponding to z, (as above) is contained in the subspace vi-! corresponding
to z,_,: T !5 W/Wl-1 (as above, with / replaced by /— 1) is that

(a) for any v’ € Tl, we have zl(v') = zl_l(v') as elements of W/Wl_l
2<i<m).

We then have automatically that vi-! /Vl is zero in degrees # {; and has
dimension g; in degree ;.

Now, giving an element x € Ey , such that p(x) = (x', x”) is the same as
giving an element

(b) y=(v,) € Bycy Hom(T,,, W) such that y, = 0 whenever & ¢ Q.

(To y corresponds x such that x,(v") = x,(v") and x,(v) = x;(v") +
y,(v") forall he H, v €T, , v" e W, )

The condition that such x satisfies xh(VZI) C Viu (where \4 corresponds
to z, as above) is that

(©) 2, yn Xy = X4 2y 0 = Vi T, — W,./W.. is zero for any h € H, where
z; ; is the i-component of z,. (This equality has a meaning since x,’l(vl) € TL,,
and x, induces a linear map W, /W, — W, /W, , denoted again x| .)
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We thus see that T' can be identified with the k-vector space I consisting
ofall (z,,..., z,,;y) where the graded linear maps z;: T - W/Wl (1<
m) and y as in (b) are subject to (a) and (c). We have a natural short exact
sequence 0 — I = I - T, — 0 where I'| consists of all y as in (b) such

that yh(Tﬁl/) C Win for all 2,/ and F'z consists of all (z,,..., z,) where
z;: T - W/W[ are graded linear maps satisfying (a). Clearly,
dimI} = Y dim(T,~'/T}) dim(W,.' /W)
I'<l;heQ
hence, using the definition of a’, a”, we have
dmT =S H{he Qi =iy, h" =i}apa).
I'<i
On the other hand,
dimT, = Y dim(T; ~/T}) dim(W, "' /W});
i<l'iiel
hence
. ! / "
dimIl’, = E apa; .
1<l’ : i[f=i1
We have dimI” = dimTI"; + dimT, = M(a’, a").
The local triviality statement is left to the reader.
Lemma 4.5. In the setup of 4.4, we have
Prf) (D)2 L y.q®L; g ol-2M@, a")].
This follows from 4.4 and the commutative diagram in 4.3.

4.6. We can find a sequence (Zj) of closed subsets of E(W) (j € Z) with
the following properties: Z,_,CcZ for all j, Z = E(W) for large j, Z; is
empty for j < 0, and each difference Z ;- Z i1 is a union of subvarieties of
the form E(W, a’, a”) (see 4.3), which are both open and closed in Z,~Z,_, .

If B, isthe inclusion Z; C E(W) and 7, is the inclusion Z,-Z, | C E(W),
then we have a canonical distinguished triangle in Z(E; o x Ey o)

*

((pﬁ)!(yj)!y;(l), (pﬁ)!(ﬂj)!ﬂ;(1)(p7~l)g(ﬂj_1)!ﬁj_1(1))-
It gives rise to a long exact sequence of perverse cohomomology sheaves
(@) = H (o), (B;_,),8;_ (1)
L PH (p7),(7,)7 (1) = PH (07),(B,), 81 (1) = ..

Note that

(b)
(pfz)!(,Bj),ﬂ;(l) is p,(i*(Li’a)) for large j (see 4.3(a)), and is zero for j < 0.
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Lemma 4.7. (a) For each integer j, the maps § in 4.6(a) are zero.
(b) For each integer j, the complex (p#),(8,),f;(1) in D (Ep o xEy q) is
semisimple; it is isomorphic to the direct sum

D Liy.a®L; v ql-2M(, a")]

I 1
a,a

where the summation is over the pairs of sequences a’,a’ as in 4.2 with
E(W, a, a") - Zj.

The proof will go along the lines of {L1, 3.7]. Assuming that (a) and the
first assertion of (b) are proved, we prove the second assertion of (b) as follows.
Since both complexes in question are semisimple, it is enough to prove that they
have the same "H° for any s. From 4.5 we see that

(c) (pﬁ)!(yj)!y;(l) = @ Li,a’ a® Li,a” ;Q[—-ZM(a' ) a")]

al ,all
where the summation is over the pairs of sequences a’,a” as in 4.2 with
EW,a',a")cZ, - Z,_,. In particular, (p7),(y;),7;(1) is semisimple. Using
(a), we see that 4.6(a) decomposes into short exact sequences of semisimple
perverse sheaves. Hence, ”H’((p#),(8,),8; (1)) is isomorphic to

pHs((pﬁ)y(.Bj_l)uB;_1(l)) S pHs((pﬁ)g(yj)gY;(l)) .
Using the last formula, together with (c) and an induction on ; we obtain the
desired equality for “H’ . (The case where j < 0 is trivial, by 4.6(b).)

It remains to prove (a) and the first assertion of (b). By general principles
[BBD, §6}], it is enough to prove them in the case where the ground field is
an algebraic closure of the finite field F v with ¢ elements. In this case, we
can realize 4.6(a) in the category of mixed perverse sheaves over an F q-form
of E; o x Ey o. The isomorphism (c) remains valid in this category (with
the same proof) except that after the shift [-2M/(a’, a”)] one should add the
Tate twist (—M(a’, a")). By Deligne’s theorem [D] L, ;. o ®L; . isa pure
complex of weight zero; after applying to it the shift and the twist’juét described,
it remains pure of weight zero (see [BBD, 6.1.4]). Hence, by (c),

(d) (piz)!(yj)!y;(l) is a pure complex of weight zero.

It follows that *H’((p#),(7,),7; (1)) is pure of weight s.

We now show by induction on j that pHs((piz)!(,Bj)!,B;(l)) is a pure complex
of weight s. This is obvious for j < 0, by 4.6(b). If we assume that this is true
for j—1, the statement for .j follows from 4.6(a}, using (d), the statement for
Jj—1, and the following fact: if L, — L, — L, is an exact sequence of mixed
perverse sheaves with L, L, pure of weight s, then L, is also pure of weight
s.

Now, using [BBD, 5.4.4], it follows that (pﬁ),(ﬂj)!ﬂ

(1) is pure of weight
zero. Using the decomposition theorem [BBD, 5.4.5, 5

)
.3.8] it follows that
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(p7),(B j), ﬂ;(l) is semisimple. The vanishing of é in 4.6(a) follows from the
fact that & is a morphism between two perverse sheaves of different weights.
This completes the proof of the lemma.

4.8. We now note that (in view of 4.6(b)), 4.2(a) is a special case of 4.7(b) (for
large j). This completes the proof of 4.2.

4.9. We want to prove an associativity property of the operation res in 4.1.
Assume that we are given V € 7° and two I-graded subspaces W, W’ of V
such that W ¢ W'. We introduce some notation.
Consider the commutative diagram

iy )
Ey o E, : Eyw.a*XEw g
,;,T isT fGT
i, ’
E, E, & E,
| | |
E x E S g b E x E E
vw o X Bw o 5 vw',q X Bww o X Bw o

where the notation is as follows.
E, is the subspace of E, , consisting of all x such that W is x-stable.

E, is the subspace of Ey o consisting of all x such that W' is x-stable.

E, is the subspace of E, (, consisting of all x such that W and W' are
Xx-stable.

E, is the variety of all pairs (y, y') in EV/W,Q x Ey o such that W /W is
y-stable.

E, is the variety of all pairs (z, Z') in E, W o X Ey o such that W is
z'-stable.

i,,..., I arethe natural inclusions and p,, ..., p. are the obvious projec-

o h 6 1 6

tions.

We define a functor

!
resv/w, ,WI/W: g(EV/W,Q X EW,Q) — g(Ev/w/ Q X EW”/W,Q X EW,Q)

as the composition (py),l .

We define a functor

!
resw//w,w: Q(EV/W',Q X EW',Q) — Q(EV/WI’Q X EW'/W,Q X EW,Q)

as the composition (p,),i; .

From the definition we have

/ [l
resy w wwily ® Ly) = 1esy w ww(Ly) ®L,

for any L, e@(EV/W,Q), L,e Z(Ey ) and

res'w,/w,w(Lg’ QL) =L;® resw,/w)w(L“)
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forany Ly € Z(Ey,y o), L, € Z(Ey ) (external tensor products).

Proposition 4.10. Let L € Z(Ey ). In the setup of 4.9, we have

’ ~ /
reSy w' w' w IeSyw wll) =T8Sy vy wresy (L)

We must show that (with notations of 4.9) we have (pg),ic(p,),i;(L) =
(p3),53(p,),iz(L) . From the diagram in 4.9 we see that in the sequence

(p6)1i2(p1)[i:(l‘); (p6)!(p2)!l.;i;(L) (173> (p5) 1214(['); (p3),i;(p4)!i:(L) s

any two consecutive complexes are isomorphic. The proposition is proved.

5. FOURIER-DELIGNE TRANSFORM

5.1. In this section we assume that k is an algebraic closure of a finite field
F,. We fix a nontrivial character F g @7 This defines an Artin-Schreier
local system of rank 1 on k; its inverse image under any morphism 7: X — k
of algebraic varieties is a local system %} of rank 1 on X .

5.2. Assume given two orientations Q, Q c H for our graph. Forany Ve &
we define 7T: Ey qugr — k by T(x) = >, tr(x,x;) where the sum is taken
overall 7€ Q—(QNQ'). (The last trace is that of an endomorphism of Vi)
The function T is Gy-invariant. Hence the local system %7 on Ey aua’ is
well defined (see 5.1) and Gy-equivariant.

We have two surjective linear maps

g s
(a) Ey o Ey que — Ev o

defined by 6(x) =y ,d'(x) = y' where y, = x, for h € Q, y, = 0 for
h¢Q, y;z=xh for he Q, y;1=0 for h ¢ Q.

Next, we consider the functor % : Z(Ey o) — Ey o defined by F(L) =
6/(6"(L) ® Z)[D] where D = Y, dimV, dimV,, (sum over all # € Q —
(QnN Q). This is a special case of the Fourier-Deligne transform from the
derived category on a vector bundle to that on the dual vector bundle. (The
vector bundles in question are EV Q EV ong and EV Q = EV ang's T
may be used to identify one vector bundle with the dual of the other. )

53. Wenow fix Ve 7, V€7, and V' € 7}, such that v = v/ + "
Assume that L' € 9 (EVI,Q) is a semisimple G, -equivariant complex and
that L" € Z(Ey» o) is a semisimple Gy.-equivariant complex. Then L’ x
L" € Z(Ey o) is well defined; hence F (L'« L") € Z(Ey o) is well defined.
On the other hand, F(L') (resp. F(L")) is a semisimple, Gy:-equivariant
(resp. Gyn-equivariant) complex in Z'(Eys o) (resp. Z(Ey» o)), by general
properties of the Fourier-Deligne transform. Hence # (L')+% (L") € Z (Ey )
is well defined. We have the following result.
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Theorem 5.4. In the setup of 5.3, we have
FL'xL"Y=2F L)y« F(L"C]
in =9(143‘,,9,) where
C = Z (V”(h,)l//(h”) _ V/(/’l,)I/H(hH)).
heQ—(QNQ")

We consider the commutative diagram

Upr
Xe

“kj Uy
X, X, X,
uknl u/alv
mn Uy Upp
X, X, X, X,

in which the notations are as follows.

Xa = EVI,Q X. Ev/l,g .

X, is the variety of all pairs (x, V) where x € Ey o and V' is an x-stable
I-graded subspace of V such that V € 7). .

X, is the variety of all quadruples (x, ¥, R", R') where (x,V)e X, R”
is an isomorphism V' =V (in '), and R’ is an isomorphism V' & V/V (in
7).

X, = EV’Q .

m‘=EvI,QI>'<EVII’QI. .

X, is the variety of all pairs (y, V') where y € Ey o and V' is a y-stable
I-graded subspace of V such that V€7, .

X, is the variety of all quadruples (y, V, R", R') where (y, V)€ X,, R
is an isomorphism V' = ¥ (in %), and R’ is an isomorphism V' = V/V (in
7).

Xp = EV,Q' .

= E TN
g V,QuQ . .

X ; is the variety of all triples (z, V) where z € X g7 V' is an I-graded

subspace of V such that V' € 7., and V is x-stable where x = (z)

(see 5.2).
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X, is the variety of all quadruples (z, V', R”, R) where (z, V) e X,, R
is an isomorphism V' 2 ¥V (in 7°), and R’ is an isomorphism V' = V/V (in
7).

X; is the variety of all pairs (z, V) where z € X, and V is a z-stable
I-graded subspace of V such that V' € 7. .

X, is the variety of all sequences (z,¥, R”, R') in X, such that (z,V) €
X, .

I
Xj = EV, ,QUQ’ X EV”,QUQ, .
X, is the variety of all sequences (x',x",y,V,R", R) such that
" / ’ 1 ! 7 ! !
v /I//’ R " R//) e,,X"’ (x, x7) € Xa’ Rh”x,h = thh': Vh' - Vh”/V” , and
thh, = Rhuxh . Vhl — V. forall he QnNnQ .
X, is the variety of all sequences (s', s, y, V) where (v, V) € X, and

!

s=@6pe @  Hom(Vy/Vy,Vu/Vi),

 heQ—(QNQ)
" 1
N =(Sh)€ @ Hom(%/, V//).
hEQ—(QNQ")
The maps u,,, u,,., U4, U, , U, , u,, are defined as in 3.1.

The maps Ugy» Uy, aTE 6 and &' of 5.2; the maps Ujps Uy, are of the form
dxd and &' xd'.

The map u,, takes (z, V', R", R') to (6(z),V,R", R)).

The map u, takes (z, V) to (6(z), V).

The map u,, takes (z, V', R", R) to (z, V).

The map u e is the first projection.

The maps u,,, ; ¢ are the obvious imbeddings.

The map u,, takes (z, V, R',R) to (z,V).

The map u,; takes x',x",y,V,R",R) 10 (', ") where Rz, =
R,V = V[V, v,Ry = Ryuzy: Vi — Vi forall he Q' and z, =
x,'l, z;l' =x,'1' forall e Q.

The map u,, takes (x', x", v, V, R, R') to (s', sy, V) where R;ux,; =
syRy: Vi — V[V, and SZRZ« =Ryux,: V, — V,u forall h e Q-(QnQ').

The map u,, takes (z,V,R",R') to (x',x",y,V,R", R") where y =
§'(z) and (x', x") =uyu,(z, V,R", R).

The map u, takes (z, V) to (s',s”,y, V) where y = 6'(z) and s, s"
are induced by x =4d(z).

The map u,, takes (x',x",y,V,R",R) o (y,V,R",R).

The map u,, takes s",s",y,V) to (y,V).

Recall that in 5.2 we have defined a function 7: X : k; the same con-
struction applied to the two factors of X ; gives two analogous functions on X ;
whose sum is again denoted 7: X s~k It is easy to check that the composi-
tions Tufguefuhe, Tufguifuhi, Tukjuhk coincide as functions X, — k and
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that there is a unique function X, — k whose composition with #,, (resp. with
u,, ) gives the function X, — k (resp. X, — k) just considered.
Hence we can define local systems of rank 1 on

Xj, X, X, X, X;, Xe,Xf, X
that are ,E”T on X I X A and correspond to each other under inverse image by

Upgs Ugps Upes Uips Upjs Upjs Uppes Upys Uy
We shall denote each of these local systems by & .

Let L, = L'® L" € Z(X,) (external tensor product). Let L, = u, L, €
Z(X,);let L, € Z(X,) be the unique semisimple complex such that “Zc . =
L, and let L, = (u,)\L, € D(X,;). Let L, = uy, L, € Z(X,) and let
L,=(u,)(L,®Z) €D (X,).

By definition, we have & (L'« L") = L [D], where D =Y, v(h")v(h") (sum
overall e Q- (QNQ")).

NowletL=uL€9( X;) and L, = (u;,,)(L;®.Z) € Z(X,). This

ja"a
is a semisimple, Gy x Gy»-equivariant complex Let L, = unmLm €EZ(X,),
andlet L, € Z(X,) be the unique semisimple complex such that u oLy = L
Let Lp_( op).L 69( )

By definition, we have
FLY«F (L") =L[D +D"]

where D' = 3, v/ (W)'(h"), D" =3, v"(W)w"(h") (sum over all h € Q ~
QnQY).

Hence it suffices to prove that
(a) L,=2L[D'+D"-D+C].

Let L, =u,, L, € Z(X,), L = ufc . € Z(X;). Then L, is a semisimple
complex (since L, is semisimple and u 1o 18 smooth with connected fibres) and
_Le = u;f_Lf. Moreover, (u,),L, = L, (since the diagram u, , 4, U, ugd
is cartesian). Hence we may go from L, oL, by the shorter chain L, =
(Upathep) Ly> Ly=ugeL, (Ly semlstmple) L,=(ugu, (L, ®F).

Similarly, we may go from L,toL, by the shoner chain L, = (u atk j)*La €
D(X,), L, =uy, L, (L, € Z(X)) semisimple), L, = (u,,u,,),(L, & Z).

Let L, =u, L, € Z(X,), L, =u,L, € Z(X,). Note that u,, is a vector
bundle with fibres of dimension Dy = Y, v'(h')v"(h") (sum over all & €
Q- (QnQH).

It follows that L; is semisimple (recall that L, is semisimple) and that
(), L; = L[-2Dy]. Hence we have (u,u,u,)(L; ® £) = L [-2D,)]. We
have the identity C = D — D' — D" — 2D, . Hence it is enough to prove that

(al) L, =L [-2D].
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We have u;‘“.L,. = L, and it follows that we may go from L, to L; by the
chain L, = (u;,u uy,) L, € Z(X,), L, = u, L, (L, € D( i) semisimple),
L [-2Dy] = (,,u,u) (L, ® L) .

We now show that u* L y is semisimple. This is not obvious since u, if is
not smooth; however, we have U fo = (ugu ) L, with L, semisimple and
sl @ vector bundle. Our assertion follows

Now both u;‘fL 7 and L, are semisimple and they have the same inverse
image L, under u,; (a smooth morphism with connected fibres). It follows
that u:.’fo = L,. Since Uppliolhy = Ug Ur U o WE SCE that L;[—2D0] =
(gt gt (Ui (L, ® Z)). '

We now see that (al) would be a consequence of the following statement:

(¢) L, ®.Z and (y )ulfL ®.Z have the same image under (u,,u;,),.
An equivalent statement is the following one:

(c1) if &' denotes the inclusion of X =X into X, (as an open subset),
then (ug,u, u) U (L, ®F)=0.

(We use the d1st1ngu1shed triangle associated with the partition X = X; U
(X - X ,‘) )

We now consider the commutative diagram

U
U, fe u

X, — X, X, X, - X,
ool el

y, .y, 1y, v Y, - X,
'U’ l ’LU”

X, X,

where the notations are as follows.
Y, is the variety of all triples (s, s”, V) where V' is an I-graded subspace

of V such that V € 7, s’ = (s;) € Bcqquayy oMV, /Vy, Vy [ Vi)
5" = (sy) € Bpeq—(qua) Hom(Vy, Vi) -

Yf is the variety of all quadruples (s’, sy, V) where (s', s, V) e Y,
and y € Y, satisfies y,(V,,) C ¥, forall he QnQ'.

Y, is the variety of all sequences (s',s",V,R", R) where (s, s, V)e Y,
and R”, R’ are as in the definition of X, b

The map w,, takes (s, s", V,R",R) 1o (s',s", V).

The map w,, takes ", 5", y,V) 1o (s,s", V).

The map w' is the inclusion {(as an open subset).

The map u, takes (x, V,R",R) to (s',s", V,R", R') where s, s" are
induced by x.

The map u, takes (x, V) to (s',s”, V) where s', s” are induced by x.
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The map u, takes (z, V) to (s',s",y, V) where y = 6'(z) and s, s"
are induced by x = 6(z).

The map u" is the restriction of u s

The map w"” takes (s',s",y, V) to y.

The map v’ is such that v'u, = u,_.

Let M, = v'*La € Z(Y,); this is a semisimple complex that is Gy x Gyn-
equivariant, and hence there is a well-defined semisimple complex M, € Z(Y,)
such that w, M, = M, . Let M, = w; M, € Z(Y,). It is clear that u; M, =
L,, u:MC =L, u}M = L f (note that u,, u., u + are vector bundles). Hence
we have L, = u"*uw'M, =u" « w'*Mf.

The statement (c1) can now be rewritten in terms of M, instead of L 7

(@) (ugyu ) (" w" M, © F)=0.

. . ’ I '
or equivalently (using Ugplh etk =W WU ):

(w//w/u//)!(uu*w/*Mf 2.Z)=0.
This would be a consequence of the following statement:
(€ (U w"M,®Z)=0.
We have u)'(u""w" "M, ® &) = w" M, ® (1] Z); hence it suffices to prove
that
(f) /& =0in (Y, - X)).
Let us fix a point (s, s",y, V)€ Y, - X, andlet T be the fibre of w' over

this point. Let 7 : T — k be the restriction of Tu 1e-

By base change, it is enough to prove that the cohomology with compact
support of I' with coefficients in .Z|I" is zero. Note that Z|I" is the local
system defined as in 5.1 in terms of the function 7. Hence, by a known
property of Artin-Schreier coverings, it would be enough to verify the following
statement: one can identify I" with k" for some N so that T is given by a
nonconstant affine linear form on k”

Let us choose an I-graded subspace W of V that is complementary to
V. We have an isomorphism ' & @heg_(gnQI)Hom(Wh,, V,») given by
(z,V)—zZ = (z;) where z; are restrictions of x = d(z). Let y';: Vi — Wy
be the composition of the imbedding V) — V,» with y;.: V,, — V,, and with
the projection V,, — W,,. A simple computation shows that, in the coordi-
nates (z;l) , the function 7' is given by the expression Eheﬂ~(mgl) tr(z;l y 'y) +
constant . (The last trace is that of an endomorphism of V., .) We must show
that the linear part of the last expression is not identically zero.

Assume that it is identically zero. (Recall that p is fixed.) Then we have
y5=0 forall 1€ Q- (QnQ). In other words, we have yz(V,) C ¥, for
all he Q- (QNQ'). Hence y,(Vy) C Vo forall h e Q- (QnN Q). The
same inclusion holds for # € QN Q' by the definition of Y,. It follows that

(s'.s", v, V)€ X,, a contradiction. The theorem is proved.
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5.5. Let

(a) mo', V") = Y vy + Y vy
heQ i

(see 3.8).

The integer C in 5.4 can be expressed as follows:
(b) C=myw, v"~my',v").
This is verified by an easy computation.
Corollary 5.6. (a) For any (i, a) € S, we have
F Ly as0) 2L a0ldl € D (Ey o)

for some integer d .
(b) F defines a biject.ion Py.a = ,93‘,,9., .
(c) F defines an equivalence of categories @y o =@y o .

Using 5.4 and 3.7(a) we see that it is enough to prove (a) in the special case
where both i, a have a single term, so that V is concentrated in a single degree.
In this case, the maps &, 6  in 5.2(a) are the identity, and T of 5.2 is zero,
so that .77, of 5.2 is 1. Hence in this case, & is the identity functor and (a)
follows (see 3.6) with d =0.

Now from (a) it follows that F# (L) € S, o for any L € & , since
F takes irreducible perverse sheaves to irreducible perverse sheaves (a gen-
eral property of the Fourier-Deligne transform). Hence # defines a map
‘@v,n — 9”‘,, o - This map is injective by general properties of the Fourier-
Deligne transform. Hence §% o < §9% o . Reversing the roles of €2, Q' we
obtain the reverse inequality; hence we have an equality and our injective map
must be a bijection. (It is a map between finite sets, see 2.2(b).) Thus, (b) is
proved. Clearly, (c) follows from (b).

6. ANALYSIS OF A SINK

6.1. In this section we shall assume that we are given an orientation Q for our
graph and a vertex (i € 1.

Given V € 7 and an integer r > 0, we define Ey o , to be the set of all
x € Ey g such that the sum (over all 4 € Q such that 2" = i) of the images
of x,:V, — V, has codimension r in V,. The Ey o, form a partition of
Ey o suchthat, forany r >0, the union Ey o 5. =U,5,Ey o , is closed in

v,Q-

6.2. If L e %, o, wedenote by o(L) the support of L (a closed, irreducible,
Gy-invariant subvariety of Ey ). Let #(L) be the unique integer > O such that
o(L) C Ev,n,zt(L) and o(L) ¢ Ey 0.51p)41 - Then o,(L) = a(L) NEy o 41
is an open dense Gy-invariant subset of g(L).

We have t(L) <v(i).
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6.3. Forany r >0, let v, € N be defined by v, (i)=r and v,(j) =0 for all
Jj€1I,j#1i. Wedenote by V, a vector space in 7, . We denote by 1, the

complex 1 on Ev,,n = {0}.
Lemma 6.4, Assume that | is a sink for Q, that is,
heQ=h'#i.
We fix a number t such that 0 <t <v(i). Let Ve 7 andlet W be an I-

graded subspace of 'V suchthat We 7, . Let d = t(uI(i) ~1). Let Le P g
and let K €Pw.a- l

(a) Let L € &y o besuchthat (L) =t. Then resyy wL € @y o isadirect
sum of finitely many summands of the form K'(f'] for various K' € ‘@w,n and
various f' € Z; exactly one of these summands satisfies t(K') =0 and f =d;
the others satisfy t(K') > 0.

(b) Let K € Py, o be such that t(K) =0. Then 1, xK € @y o is a direct
sum of finitely many summands of the form L"[f"} for various L" € P, o, and
various f" € Z; exactly one of these summands satisfies t(L") =1t and f' =d;
the others satisfy t(L") > t.

(c) Consider the sets {L € Py q|t(L) = t} and {K € Fy o|t(K) = 0}.
Associate to L in the first set the K in the second set such that some shift of K
is a summand of resy VLW L ; associate to K in the second set the L in the first
set such that some shift of L is a summand of 1,x K. These give two bijections
between our two sets, inverse to each other.

We first prove (b). We consider the commutative diagram

Eygo — E 2 F 2. E,,
I d
ag(K) ﬁp; o n, a” 7 X
[ .

0,(K) n a, 4 o, % X,

where the notations are as follows.

The first row is as in 3.1(a) (with V' =W, V' = V/W; note that Ey y o =
0). We have ¢’ = p'(a(K)), 0" = p,(d"), X =p3(a"), o = by ' (5,(K)),
gy = py(0y), Xy=XnN E, g ,; the maps in the second and third row are in-
duced by those in the first row and the vertical maps are the obvious inclusions.
Let K, € Z(E"), K, € Z(E") be semisimple complexes such that p(K) =
py(K3) = K, . By definition, 1, * K = (p;),K; € &, o. We have K = fK, for
a well-defined irreducible perverse G,-equivariant complex K, € Z(g(K)).
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Hence there exist well-defined semisimple complexes K € & (¢') and K, €
Z (") such that (p))"(K,) = (p))"(K,) = K. Let K, = (p3),K, € Z(X).
Now fK, and f'K, are semisimple since /', f” are closed imbeddings. It
follows that f, K, = K, and f'K, = K,. Clearly, (p,)K; = gK,. In particu-
lar,

(d) the support of (p,),K; is contained in X .

Let Kg = j"K4 € Z(ag,). This is an irreducible Gy-equivariant complex
since j is the inclusion of an open dense set. Hence there exist well-defined
semisimple complexes K, € Z(0;) and K|, € Z(g,) such that g;(K;) =
q; (K,,) = K,. Note that Kj[d,] and K [d, —d,] are irreducible, perverse
where d,, d, are the dimensions of the fibres of p,, p,. Using the fact that i
is a sink, we see easily that d, —d, = d. Thus,

(e) K,y[d] is an irreducible perverse sheaf.

Let K|, = (¢;),K,, € Z(X,).

Using the fact that j', j” are open imbeddings we see that K, = j"K, and
K= j"*K6. Since the diagram j”, pg , 45, k 1is cartesian, we have k*K7 =
K,, . It is easy to check that g, is an isomorphism. Hence from (e) it follows
that K,,[d] is an irreducible perverse sheaf.

Summarizing, we see that the complex (p;),K;[—d] € Dy o has support
contained in X, and its restriction to the open set X, of X is irreducible
perverse; note that X, C EV’Q, ,and X —-X, C EV,Q,Zt e This clearly implies
(b).

We now prove (a). Consider the commutative diagram

U H Ps
EW,Q E EV,Q

MZT 143)[ u4]\
G, —— ay(L) —— g,(L)

where the notation is as follows.

The map u, takes y to (x, W) where x € Ey o is uniquely determined
by the requirements that W is x-stable and y is induced by x. (This is well
defined since i is a sink.)

We have a(')'(L) = p;I(ao(L)) , Op = ufla(;'(L). The maps u,, u, are in-
duced by u,, p,; the vertical maps are the obvious inclusions.

The composition p,u, identifies Ey o with a subspace of Ey g, and it fol-
lows from the definitions that res, wowl = (p3ul)*L €&y q - Clearly, 7, is
open in the support of (p3u1)*L , 1s contained in Ey oo and its complement
in the support of (p3ul)*L is contained in Ey o, > - Hence, to prove (a) it is
enough to prove that u;(p,u,)*L[—d] is an irreducible perverse sheaf or, equiv-
alently, that w ugu,L[—d] is an irreducible perverse sheaf. Let L, = u,L . This
is an irreducible perverse sheaf on (L) since ¢, is open dense in the support
of L. Let L, = u;L1 . It is easy to see that u, is an isomorphism; hence L, is
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an irreducible perverse sheaf on a(;'(L) . Consider the Gy-equivariant fibration
p: a(')'(L) — G where G is the variety consisting of all /-graded subspaces V
of V suchthat V/V € 7, and p(x, V)=V . Note that u identifies 7, with
the fibre of p at W, Since L, is an equivariant perverse sheaf and G, acts
transitively on G, it follows that u;Lz[—d ] is an irreducible perverse sheaf on
G, and (a) follows. (Note that d = dimG.)

Now (¢) follows easily from the arguments in the proof of (a), (b). This
completes the proof.

6.5. We no longer assume that { is a sink for Q.
Let L€ %y o (with Ve 7).
For each r such that 0 < r < v, we shall denote by W, some object of
v-v, "
We associate to L and i an integer invariant s(L) (or s,(L)). By definition,
s(L) is the largest integer r such that 0 <r < »(i) and such that
(a) there exists L' € @w,,a such that some shift of L is isomorphic to a

direct summand of 1,xL € &y .
(This is well defined since (a) is satisfied with r =0.)

Propeosition 6.6. Assume that we are in the setup of 6.5 and that k is as in 5.1.
(a) There exist complexes L.(s(L) < ¥ <wv(i)) and L. (s(L) <r <wv(i)) in
Gy, a such that

Lo( @ 1-L)= @ 141

r'>s(L) r'>s(L)

in @, o and such that Ly, [f]€ Py, 1.0 for some integer f.
(b) If i is a sink for Q, then s(L)=1t(L).

We can find an orientation Q' for our graph such that i is a sink for Q'.
Let % beasin 5.2

Using 5.4, 5.6, we see that s(# (L)) is defined and is equal to s(L); we also
see that the truth of (a) for % (L) implies the truth of (a) for L. Thus we see
that it is enough to prove the proposition under the additional assumption that
i is a sink for Q.

From 6.4 we see that 6.5(a) is satisfied with r = ¢(L); it follows that

(¢) s(L) 2 t(L).
Next we show that

(d) s(L)<u(L).

Assume that 6.5(a) holds for some r < v(i) and some L'. Then it holds
with some L' € Py, . some shift of this L' is a direct summand of some

L, o (on Ey o)where (i,a) €S, , . Hence 6.6(a) holds with L' = Li.qa-
Using 3.7(a) we see then that 1, x L' =L, , o for some (i',a’) € S, such
that the first entry of i is r.
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Now the support of L, 2.0 is clearly contained in the set of all x in Ev Q
such that x leaves stable some I-graded subspace W of V with V/W € %

For such x we have x,(V,) C W, for all h € Q such that h" =i, since we
then have A’ #i,and x,(V,) = x,(W,;) C W,. This shows that the support of
Ly v a is contained in Ey o Sy Since some shift of L is a direct summand
of L, a0 it follows that the support of L is contained in EV o >y Thus
r< t( ) ‘and (d) follows. Combining (c),(d) we see that (b) holds. -

Next we prove (a); we may replace there s(L) by #(L) as we have just seen.
Now (a) is trivial in the case where ¢(L) = v(i): in this case, we may take
Ly =0, Ly;, = L. Hence we may assume that #(L) < v(i) and that (a) is
already proved when L is replaced by an L” with #(L") > t(L).

Using 6.4 we see that there exists K € &, o such that 1, iy * Kedy g

is a direct sum of finitely many summands of the form L"[f”] for various
L" € P, o and various f” € Z; exactly one of these summands satisfies
L" = L the others satisfy (L") > t(L).

Applying the induction hypothesis to each L” # L above we see that (a)
holds for L. The proposition is proved.

7. MULTIPLICATIVE GENERATORS

7.1. In this section we fix an orientation € for our graph.

Lemma 7.2. Let L € & with V # 0. There exists some i € I such that
5;,(L) > 0. (See 6.5(a).)

We have V € 7). By the definition of &, , there exist (i, a) € S, and
f € Z such that L[f] is a direct summand of L; ;. in Gy q- As in 2.2, we
see that we may assume that all coordinates of a are strictly positive; moreover,
a is nonempty since V # 0. Using now 3.7(a), we see that if we set [ = i
(first entry of i), then s,(L) > a, > 0. The lemma is proved.

Proposition 7.3. Let L € &, v.Q with Ve 7, .

There exist L, ..., Ly LN+1, LN+M € @V’Q such that the following
hold.
(a) Each L;is of the form Li,a;g[d] Jor some (i, a) € S, and some integer

d.
) Le(L,@ - ®Ly) =Ly, ® &Ly, in& q.

This is trivial for V = 0; hence we may assume that V # 0 and that the
result is already proved for graded vector spaces of total dimension strictly
smaller than that of V.,

By general principles, we may assume that k is as in 5.1. By 7.2 we can
find i €I sothat s5,(L) >0. We apply 6.6(a) to L and this i{. The induction
hypothesis is applicable to each L L, appearing there. The desired result
follows, using 3.7(b).
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8. COMPATIBILITY OF MULTIPLICATION WITH RESTRICTION

8.1. In this section we assume that we are given an orientation Q for our graph.

We will need a variant of the construction of the product * in 3.1. Assume
that we are given six objects T, T, T', W, W', W’ of 2" such that T is
isomorphic to T'@® T and W is isomorphic to W & W" (together with the
grading). Consider the diagram

Ep o XEw oXEp o X Eye g i Er o XEy g
where the notations are as follows.

F" is the variety of all quadruples (z,y, T, W) where z € E; o, ¥ €
Ey o, T isa z-stable I-graded subspace of T such that T is isomdrphic to
T” and W isan y-stable I-graded subspace of W such that W is isomorphic
to W'

F is the variety of all sequences (z,y,T,W,r,u,s, t) such that
(z,y, T,W)eF' and r : T =T, u:T 2T/T, s: W =W, :
W' = W/W are isomorphisms in 7.

We have ¢,(z, v, T, W, r,u,s5,0) = (2, y', 2", y") where z,r,, = r,uz):
T;l/' — Ay ,, Zhlfh' = uth;ll T;l’ — Th”/Th” s YpSy = Sh//y;:: W;:/ - W,
Yoty =4y, Wy = W /W, forall he H; g,(z,y, T, W,r,u,s,t)=
(z,», T, W), qy(z,y, T, W)=(z,y).

Note that g, is smooth with connected fibres, g, isa G x Gy X Gy X Gy
principal bundle, and ¢, is proper.

Now given L' ¢ @T’,w’, q and L" e gT”,W”, o> We can form the external
tensor product L' @ L” (a semisimple, Gy x Gy x Gyv X Gyn-equivariant
complex on Ep o X Ey g % Epi g xEgr g ). Then, just as in 3.1, there is
a well-defined semisimple complex L on F' such that ¢;(L) = ¢/ (L' ® L")
in Z(F). By definition, L'« L" = (g3),(L) € (B g x Ey ). This is
additive in L' andin L”; moreover, if L' is an external tensor product L, ®L,
(with L, € @p o and L, € @y o) and L” is an external tensor product
Ly®L, (with L; € @ o and L, € dyu ), then one can easily verify that
L'xL" is isomorphic to the external tensor product (L,*L;)®(L,*L,), where
Ly xL, ¢ @’Tﬂ and L,x L, € @w,g are defined as in 3.1 (with V, V', V"
replaced by T, T', T' orby W, W', W”). It follows that, in general, we have
L'xL" e @T,W,Q .

8.2. Assume now that we are given V, V', V' € 7" such that Ve 7,, V' ¢
7, V' e 7, where v, v, e N’ satisfy v = v’ +v” (as in 3.1). At
the same time we are given (as in 4.1) an [-graded subspace W of V with
WeZ .Let T=V/W. Then Te 7, where v =1+ w.

Let L'€ @, o andlet L” € @y . Then L'« L" € &,  is defined as in
3.1, 3.2, and resy (L' * L") € @y y o is defined as in 4.1, 4.2.
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8.3. Let .#" be the set of all ordered quadruples ¥ = (o', 8', a”, B”) of ele-
ments of N’ suchthat v’ =o'+ 8, v/ =d ' +8", t=d' +a", 0=8+8".
For each k¥ = (o', B, ", B") € # we choose a graded subspace W'(x)
of V' and a graded subspace W'(x) of V" such that W'(x) € 7, and
W) € 730 . Let T'(x) = V//W'(x), T'(x) = V'/W"(x); then T'(x) € 7,
and T'(x) € 7.

Applying the construction of 4.1 to V', W(x), T'(x), L' (resp. to V
W (x), T"(K), L") instead of V,W, T, K, we obtain a complex L
resy ) wi) L € G wi .o (18D Ly = 168100 oo L € @iy o,
1nstead of resT’WL E @)T,W,Q'

Next, from L, and L] we can construct a complex L, x L € T w.a
by the construction in 8.1 applied to T, T = T'(x), T' = T"(x), W, W' =
W (x), W = W”(x). We can now state the following result.

o)

/
K
(1), 2

Proposition 8.4. Assume that k is as in 5.1. With the notations in 8.2, 8.3, we
have

resT’W(L' « L")~ @ L:C * L:[—2g(1c)]
KeEN

in @y w o, Where

gie)= > MR NHhe QK =i, k' = j}+> " (1)B'(D)
i, jel iel

Let K', M € & o and K", M" € @yu o be such that L' & K’ = M’
and L" & K" = M" . Clearly, if the proposition is true for (K " K ”) and for
(M', M") (instead of (L', L")) then it is automatically true for (L', L").

By 7.3, we can find K, M', K", M" as above, which are direct sums of
shifts of complexes of the form Li,.q- Wesee therefore that it is enough to
prove the proposition under the additional assumption that L, L' are direct
sums of shifts of complexes of the form Li,a-

It follows immediately that it is enough to prove the proposition in the special
case where L' = Ly g.q and L' = Ly g g (with (i, a)e S, and (i, a") e

S,0).
Define (i,a) € S, asin 3.2;then L'« L" = L, , o by 3.2(b) and, by 4.2, we

have

(a) res; wlL' s L") = @ L; v.q® L o ol-2M(c, ¢")]

Pt
¢ ,c

where the summation is over the pairs of sequences ¢ , ¢’ such that (i, ¢') € S,
(i,c")e S, and ¢ +¢” =a. Here,

M, "= Zn{h eQi = i B = z,}c;,c;’ + Z cl/!c,”.

I'<t 1<l s ip=i,
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Let us now fix k € ./ as in 8.3. By 4.2,
I ~ I3
L2@L g.q®L g ol-2M{, ¢)]
d e
where the summation is over the pairs of sequences d ', e’ such that (i', d’) €
Sy, (i',¢) €S, and d +¢' =a’. Similarly,
14 A n 1
LK = @ Li” Y ® Li” e )Q[—ZM(d , € )]
d’/ s ell

where the summation is over the pairs of sequences d”, e such that (i’, d") €
Syrs (i, €") €Sy and d"+¢" =a".
Usmg now 3.2(b) and the results in 8.1, we see that

(b) LoxL, 2@ Ly ggr,0® Ly ger ol-2M(d, &)~ 2M(d", "]
where the summation is taken over the quadruples of sequences d', d”, e,
such that (', d) e S,, (i",d") e S, (i',€)eS,, (", ¢")eSy, d+e'=

a’,and d” + e" =a’. (Here i'i’ is the sequence obtained from the sequence i
followed by i’ and d'd”, e'e” have a similar meaning.) We note the identity

gy =M@Wd", e’y - M@, &) - M@, "),

which is easily verified. Using this identity together with (a) and (b), we obtain
the desired result.

"

9. RANK 2

9.1. In this section we shall assume that I has exactly two elements: i and ;.
Let N be the number of edges joining i, j; thus, H has exactly 2N elements.

Let V € 77 be such that dimV, = 1, dimVj =N+1. Let Q) = {h ¢
Hh" = j}.
9.2. We now fix an orientation Q for our graph (not necessarily Q, )

Let Q' ={hecQH = i}, Q” ={heQJh" =i}. We denote by a’, a” the
number of elements of Q', Q" respectively.

The set /" of nilpotent elements in Ey o is the set of all x € Ey o such
that x, x, =0 forall &, € Q", h, € Q' or, equivalently, such that the sum of

images of the maps x, (A € Q') is contained in the intersection of the kernels
of the maps x, (heQ").

We define a stratification A" =, ».#, . as follows: ./, .. is the set of
all x € 4 such that the sum of images of the maps x,(h € Q) has codimension
p' and the intersection of the kernels of the maps x,(h € Q") has codimension
p" inV IE

Clearly,

(a) A, ,» isnonempty if and only if N+1-p'<d’, p" <d", p' > p";if
these conditions are satisfied, then /I{, " is smooth, irreducible, of dimension
a,(N+1— )+allpll+p (p’—p,/)+p/(N+1‘—pl),
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9.3. Forany p € [0, N + 1] let Sp be the variety of all pairs (x, W) where
x €Ey o, W isacodimension p subspace of V;,and x,(V)c W (heQ),
xh!W =0 (heQ") Let S, CEy be the image of the first projection
S — EV o - Then the first projection defines a proper map T, S — S

It is easy to see that Sy =8 1 but apart from this, the subvarletles Sp
are distinct.

Proposition 9.4. Let I, (p€[l, N+1]) be the simple perverse sheaf on Ey o
defined by the subvariety S, and the local system 1 on its smooth part. Let II',
(p €10, N +11) be the complex of sheaves (n,)(1)[dimS,] extended by zero
on the complement of S, in Ey o. We have

()I"I IN+1 IN+1’

) ,=I,el,_ if1<p<d’, I=L &l  ifd"+1<p<N.

p+l
(C) Ian = Ia//+1
Note that
(d) S, is the union of the strata .#,, . suchthat p'>p > p", N+1-p' <
! " n
a,p <a.

One of these strata will be open, namely the one with minimal p’ and max-
imal p”. Thus, if p >a”,then p> N+1-a' =4" +1 and the open stratum
is %,al; if p<a’,then p < N+1-a =4d"+1 and the open stratum
is Au_, ,. In particular, S;» = S, since they have the same open dense
stratum /// "y . Using 9. 2( a), we see that the dimension of S is equal to
(p+a)(N+1— )+a"p. N

We now consider the fibre F of 7, : S, — S, at a point of /4, . (as
in (d)). We compute B(p’, p") = dimS, — dim.#,, » —2dimF . Note that
dimF = (p' — p)(p — p"). It follows that B(p’', p")= (@ —-a" - 1)(p' - p) +
@ -p"p-p")- @ —p)p-p"). We can write B(p, p") in two different
ways:

o I I 1 I "

() Bp,p)=Ww -a -1)(p -p)+Alp-p ) and

) B, p")=@" -p"Yo-p")+ (=A=' ~p)
where A=a"+p—-p -p".

We have p' —a” —1 > 0, p' > p > p": moreover, clearly, either 4 or
-4 —1is > 0. Using one of the expressions (e) or (f) for S(p’, p”') we see
that B(p’, p") > 0.

Assume now that g(p’, p") =0

If 4 < —2, we see from (f) that p' = p and either p” =p or p”" =a”. The
alternative p” = a@” cannot occur since it would imply A = O; the alternative
p" = p cannot occur either since it would imply p’ = p” contradicting p’ >
a” > a/l .
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If 1> 0, we see from (e) that p = p” and either p' = p or p' = a" +
1. The alternative p’ = @” + 1 cannot occur since it would imply that A =
—1; the alternative p’ = p cannot occur either since it would imply p’ = p”
contradicting p' > a” > 4" .

If 4 =0, we see from (e) that either p' = p and p" =4a" or p' =a" +1
and p” =p —1; in the first case, we have p > a” + 1, while in the second case
we have pga“+1.

If A= -1, we see from (f) that either p=p"” and p'=a" +1 or p" = 4"
and p’ = p + | ; in the first case, we have p < 4", while in the second case we
have p > a”. 5

The inequality S(p’, p”) > 0 shows that the proper map m,: S, — S, is
semismall in the sense of Goresky and MacPherson. (Note that §p is smooth.)
Hence I}'7 is a direct sum of finitely many simple perverse sheaves on Ey .
One of these is necessarily I , which appears with multiplicity one. Now the
cohomology sheaves of (7 )!(1) are constant on each stratum /Vp’ " since m,
restricted to a stratum is a Grassmanman bundle. It follows that any summand
of Ip other than Ip must be a simple perverse sheaf defined by the closure of
one of the strata with constant coefficients. The strata that contribute are de-
termined by the equation f(p’, p”') = 0. As we have seen earlier, this equation
has at most one solution other than the open stratum, and the closure of that
stratum is either Sp 4 O Sp_1 . This solution, if it exists, gives a summand
that appears with multiplicity one in [ 1’) since the fibres of T, are irreducible.
The proposition follows.

Corollary 95. In Z(Ey o) we have
] ~ /
DL=D7,
p even p odd
where p is subject to 0 < p < N + 1 in both sums.

9.6. The set S, o consists in our case of I, (p € [1, N + 1]); this follows
from the definitions and from 2.2(a), 2.4(b).

10. DEFINITION OF THE CANONICAL BASIS B oF U~

10.1. We shall again fix an orientation € for our graph. Let .Z/V o be the
abelian group with one generator (L) for each isomorphism class of objects
of &, o and with relations (L) + (L') = (L") whenever L" is isomorphic to
LaelL'.

We regard %,  as a module over & =Z[v, v (v is an indeterminate)
by defining v(L) = (L[1]), —l( L) = (L[-1]). It is clearly a free .&/-module
with basis (L) where L runs over g"v Q-

From 2.3 we see that, given V, V in 7, , there is a canonical isomorphism
jf/v o & H . Hence we obtam a -module l%y’g provided with natural
1somorph1sms %,Q & ,%’V’Q, for any V € 7. We may regard L ,q as
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elements of Z, , for any (i, a) € S, . On the other hand, &, (, gives rise to
a canonical basis of .7,

10.2. The operation * in 3.1 defines a . -bilinear map (denoted (a’, a”) —
a'xd"): Zy ox T q—F, o, forany v, 0" ve N’ such that v = v/ +v"
This has the associativity property (a'*a”)+a” = a'x(a"+d"") forany a’ € %,
ad'eZy, a" € Z . (See 3.4.

We now define a new & -bilinear map %z, o x Z,» o — %, o (for v =

/
mg(v',v'"y 1

!
vV +u"Y by (@, d")—d 0d" =v a' «a" where

=Zy/(h/ // // +ZV l/ (l

heQ
This again have the associativity property (@' oa”)od"” =a’ o(a’ 0a”) for
any d' € %, o, a" € 5"/,, q-d"€ ./‘Z’m - (This follows from the identity
mo(v', v )+mQ(V " ") = mg (" "')-l—mg(u v"+v""), which is easily
verified.) Thus (a', a") — a’ 0a” deﬁnes a structure of associative graded .« -
algebras on 7, = @, %, . (The grading is by elements ‘v € NI.) This
algebra has a unit element 1n Z, ¢ - Note that
(a) Zg has a canonical bas1s deﬁned by the elements of &, ( for various
Ve7 .

10.3. Now D (see 3.8) defines an involution of .Z° as a graded abelian group;
from the formulas in 3.8 we see that this is a ring homomorphism that is semi-
linear with respect to the involution of the ring & that takes v to vl

10.4. In the setup of 4.1, let 52’T w.Q be the the abelian group with one gener-
ator (L) for each isomorph1sm class of objects of @T w. o and with relations

(L)+(L'y = (L") whenever L” isisomorphic to LGBL We regard 7 y o as

a module over & by defining v(L) = (L[1]), ( ) = (L[-1]). It is clearly
a free &/ -module with basis (L, ® L,) where L1 (resp. L,) runs over & o
(resp. Py o) Hence the external tensor product defines an isomorphism of
& -modules Zra®y Fw o= wa-

The functor IesSy y ! é’v Qg — @T w.Q is additive; hence it induces a ho-
momorphism resy i’/v Q— J‘Z/T w.Q- This can be regarded as a homo-
morphism (of & -modules) res, % ~ FZ, g ® %, q (Where T € 7,

We7, ).

10.5. We have the following associativity property. Assume that we have v =
o+ad +ad’ (in N ). Then the homomorphisms (1 ®res  «)res, .  » and
(res, o ®l)res, i o from 7, 5 to %, g ®5z’fa,,9 ®L%au’9 coincide. (See
4.10.)
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10.6. Let v/, v", 7, w € N’ besuchthat v’ +v" =1+ w. Let L' € VANY
L' e Fi - The following equality holds in %, ®ﬁf/

L OL ZU I'CS ' ﬂ (L ) oreS " plI(L”)

where the sum is taken over all ¥ = (o', ', ", B”) € /', notation of 8.3
(thus, 1//=a'+ﬂ/, 1/”=a”+ﬂ”, ‘r=a/+a”, w—ﬂ'+ﬂ”) and

fe) =Y (B'(h)a"(A") — o' (B)B"(h")) + > _(a( - B'(D)a" ().

heQ i€l
(By definition, (a; ® a,) o (a; ® a,) = (a;0a;) ® (a,04,) for a; € 7, .,
a, € %, o 4 € '%a”,ﬂ , 4 € %’ o -) This follows from 8.4 and the identity
f(x) = —2g(k) + mg(a’ + /3’, a” + 8" = mg(a, ") = mg (B, B").

10.7. We consider the abelian group Z' of all functions I — Z (with the
pointwise sum operation); this contains NZ as a submonoid. Let ' be the
group algebra of this group with coefficients in &7 ; thus, I" has an &/ -basis
{K|ocZ'} and KK, =K, .. Let [K, be the &/ -module I'®,, 7, .

Proposition 10.8. There is a unique associative </ -algebra structure on T'K,

such that g
47 /
(K, ® L)(K, @ L= Ka+a,®(LoL)

forany Le %y o, L'€e Zy o, andany a,d’ € Z', where
— 3 B () +2 3 Bl (i
heH iel
This follows from the associativity of the product Lo L' and the identity
rB,a)+r(f+p 0"y =r(B' ") +r(B, a +a).
10.9. We shall write K L instead of K ® L € 'K, . The algebra structure 10.8

on 'K, gives rise in the usual way to an algebra structure on I'K, ® , I'K, .
We have the following result.

Proposition 10.10. There is a unique coassociative £ -coalgebra structure on
I'K,, with comultiplication A:TK, — TK, ® 'K, such that for any L € Z, o

and any o € Z' we have
AK,L) =Y v K, 9K, )res, (L)
T,0

where the sum is taken over all T, w in N' such that T+w = v ; the last product
is computed in the algebra TK, ® , 'K, ; we have

s(t, w) =— Z 1(he(h") + Z T(i)e(i

heQ i€l
This follows from the associativity property 10.5 of res and the identity

sr+y Y +s@ Y =5, Y+ 500 Y.
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Proposition 10.11. The comultiplication A : TK, — T'K, ® T'K,, is an algebra
-homomorphism.

let L'€ %, o, L' € Zu o, andlet o', 6" bein Z. Let v =0 +0".

Recall from 10.2 that L' o L” = v * )L/ « 1" . By 10.6, 10.8, 10.10, we
have

AK, LK, L")
=A(,Ur(u ,o!! Ka'+a (LIOL”))

r' o Ns(t, @) ’ "
= Z (KG'I+0'” ® Ka/+o'”——r) resr’w(L ol )

g +ag

_ZU v o) s(r, o)+ Sk (K, /,®Ka/+ﬂ~_1)resa,,ﬂ!(L/)oresau,ﬂ"(L”)

(in the first sum, 7, w € N are subject to 7+ w = v; in the second x =
@, B ,a", B") is subject to v' =o' + g, v =d" + g
On the other hand, we have

AK, LYAKK, L")
S AR Y o

o'~a')
! 1
X IS I’BI(L )(Kau ® Ko‘”—a”) I'eSan ,ﬂ”(L )
! "
= Z U (7 "o & KO'I+G'”"‘Q,—C!”) I’eSa: ’BI (L ) o] I‘esau ,ﬁ”(L )
where x is as in the previous formula and s'(x) = s(a’, f) +s(a”, B") +

rie, "y +r(B, 0" -a").
It remains to verify the following identity:

W', 6" st )+ f(0) =5, B + s, BT (e ") 4 (B, 0" - )

where 1=a +a”, w=8+p8" and v' =o' +a". Since r(, ),s(, ) are
bilinear, this is equivalent to the identity

s@, B +s@”, By =r(B", ")+ flx).
which is easily verified.

10.12. For each i € I and a € N we denote by F. (a) the canonical basis
element of %,Q where u is such that u(i) = a and u( i) =0 forall j#1i.
(This corresponds to the complex 1 on the zero vector space Ev,n’ where

We W# .) Note that Fl.(o) is the unit element of the algebra Z, . It is clear that

(a) D(Fl(a)) — E(a)

where D is asin 10.3.
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To state the following result we introduce some notation on Gaussian bino-

mial coefficients:
a k —k

M!‘"‘H%’ [a,a/]_[a+a]g

tu—v  [alld],”

Proposition 10.13. (a) For any (i, a) € S, (with m terms each) we have the
Jollowing equalities in Z, :

D(Li,a,Q) =
where d(i, a) is as in 3.8(b) and

_ . d(,a) (a) (ay) (a,)
L s q=v Fill°Fizz°"'°Fim .

(D isasin 10.3.)
(b) The elements Fl.(“) (iel, aeN) generate the &/ -algebra %, .
(Ifiel and a,d € N, we have

2d(i,a)
v L .0

};vl(a) OF}(a) — [a, a/].F}(a+a)

in Zg.
(d) Let i, j be distinct elements of I and let N be the number of edges
joining them in our graph. We have the following equality in %, :

N+1 . N
Z(—l)pF;(p)OF:]()OE( +‘17)_____0'
=0

The first formula in (a) follows from 3.8(a).

From 3.7(a) we see that the two sides of the second formula in (a) are equal
for a certain unknown value for the exponent of v . The value of that exponent
can be determined by applying the ring involution D to the two sides of that
equality, using the first formula in (a) and 10.12(a).

Now (b) follows from (a) and from 7.3. The equality (c) follows from (a)
and 2.4(a); (d) follows from (a) and 9.5.

Proposition 10.14. Let Q' be a second orientation of our graph. Assume that k
isasin5.1. Then F (see 5.2, 5.6) defines an </ -linear isomorphism Zg, = Fey
(preserving the grading) which will be denoted again by F .

(@) F : Zo = Zy is an algebra isomorphism. It takes the canonical basis
(10.2(a)) of Z onto the canonical basis of Fgy .

(b) There is a unique algebra homomorphism TK, = T'K, that takes K L
to K (L) forany o € Z' and any L € Zg. This is compatible with the
comultiplication.

(a) follows from 5.4, 5.5, 5.6. The first statement of (b) follows from (a). To
verify the compatibility in the second statement, it is enough to verify it on the
algebra generators of 7, (see 10.13(b)) and on the generators of I", where it
is obvious.
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10.15. Let #~ be the — part of the enveloping algebra u of the Lie algebra
(over Q) attached by Kac and Moody to the generalized symmetric Cartan
matrix (al.j) indexed by I x I where a; =2 and ~q;; is the number of edges
joining I, j in the graph, for i # j. This is the Q-algebra defined by generators
F, (ielI) and relations

N+1

Z(“l)p <N+ I)P}?F}F}Nﬂ_l) =0
p=0 p
forany i # j (with N = -4, ).

Let U™ be the — part of the quantized enveloping algebra U (over A4',
the quotient field of & ) attached by Drinfeld and Jimbo to the same Cartan
matrix. This is the A4’-algebra defined by generators F, (i €I) and relations

N+1
Z[p’ N+1 —p]FfFif}NH—p =0
A p=0
forany i # j (with N = —aq, ; ). (U itself has additional generators K, K, H
E (iel).)

We shall regard U™ as a N’ -graded algebra; the grading U™ =@, U, is
uniquely defined by the condition that for all / € I we have F, € U; where
u(i)y=1and u(j)=0 for j#1i.

Note that U, is a finite-dimensional A'-vector space for any v € N,

Similarly, #~ is a graded Nl-algebra.

10.16. From 10.13(c),(d) we see that there exists a unique A’-algebra homo-
morphism A,: U™ — %, ® A’ such that Ao(F,) = F" forall iel.

Theorem 10.17. (a) Ay is an isomorphism of A'-algebras.

(b) Let Q' be a second orientation of our graph. Then Aoy = F Ay where &
is as in 10.14(a).

(c) Let B be the inverse image under A of the canonical basis of Z, . Then
B isan A'-basis of U™ that is independent of Q. (We call it the canonical basis
of U™ )

First note that (b) holds: it is enough to verify the equality in (b) on the
algebra generators [, where it is obvious.

In the rest of the proof we assume that, for a particular orientation Q, we
have

(d) dimgu, <dim,%Z, o ®Q
for all v. (Here, Q is regarded as a &/ -algebra with v — —1.)

We now prove (a). Note that iy is compatible with the N’-gradings, that
the homogeneous components of these gradings are finite-dimensional, and that
Aq is surjective (see 10.13(b),(c)).
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Hence to prove (a) it is enough to prove that
. —_ . !
(e) dim, U, <dim,.Z, ,®4

for any v . By general principles, it is enough to verify this in the case where
k is as in 5.1. In that case, dim A/%’Q ® A’ is independent of the choice
of orientation, by 10.14(a). Hence it is enough to verify (e) for a particular
orientation Q, for example for one such that (d) holds.

Since u~ is a specialization of U™ for v = 1, we have dim, U, <
dimQ u, ; hence (d) implies

. - . « ’
dim , U, _<_d1mQ.2’/V’Q®Q=d1mA,ﬁZV,Q®A

for any v . This proves (a).

To prove (¢), we may again assume by general principles that k is as in 5.1.
In that case, (c) follows immediately from (a),(b) and 10.14(a). This completes
the proof, except for the verification of (d); that verification will be done in
10.21.

10.18. Let X be a variety over k. Let M(X) be the Q-vector space of all
constructible functions f: X — Q, that is, of all functions such that f _l(a) is
constructible for any a € Q and is empty for all but finitely many a.

Following MacPherson [M], for any morphism m: X — X' of varieties
we define linear maps m*: M(X') — M(X) and m: M(X) — M(X') by
(m*f)(x) = f/(m(x)), (mf)x') = Tpeqax(m™ (x')N f7}(a)), where x de-
notes Euler characteristic in /-adic cohomology with compact support.

These operations are related to the analogous operations in derived category
as follows.

If L € Z(X), we can attach to L the function f, € M(X) defined by
fi(x) = X,(=1) dim#/L where #/L are the stalks of the cohomology

sheaves of L at x € X. Nowlet L' € Z(X'). We then have m,f; = f, ; and
m*f,. = f,; . We also have fL[d] = (—l)de for any integer d .

10.19. Forany V€ 77, we define #(V, Q) to be the vector space of all func-
tions in M(E, o) that are constant on the orbits of G,. Now let V, VvV, Vv’
be as in 3.1, and let " € M(Ey o), /" € M(Ey: ). We define a func-
tion f'x " € M(Ey o) formally as in 3.1. We shall use the notations of 3.1.
Let f, € M(Ey o x Eyv o) be given by f(x, x") = f'(x')f"(x"). Then
there is a unique function f; € M(E") such that p]f, = p; f;; by definition,
[ =) ().

Next we note that given v € N, the vector spaces .Z (V, Q) for various V €

7, can all be identified in a coherent way with a single vector space .# (v, Q)

(by the invariance condition on the functions considered). The operation above
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becomes a pairing Z (V' , Q) x £ (V" , Q) — # (v, Q) denoted (f, f') —
fixf". Let #(Q) =@, #(v,Q). The operation * makes .#(Q) into an
associative Q-algebra.

Let i € I; let u be such that g(i) = 1 and u(j) = 0 for j # i. Then
M (u, ) is one dimensional, with a canonical basis element F; corresponding
to the function on {0} with value 1. Let .#,(C2) be the subalgebra of .Z(Q2)
generated by the elements F; (i € I), and let £ (v, Q) = /Z(U , Q) NAHQ) .
Then £,(Q) = D, #£y(v, Q).

The definition of .#(Q) given above is a reformulation of a definition given
by Schofield in [S] (which is itself a variant of a construction of Ringel [R]). We
shall recall the definition of [S] in a slightly different form, more convenient for
our purposes.

Let SB be the set of all sequences i such that (i,a) € §, where a is a
sequence of form (1,1,...,1).

Let R be the Q-vector space with basis indexed by the elements i in | | SS .
We regard R as an associative algebra with product i'i’ as in 3.2(b).

For any V€ 7, and any x € E, o we define a linear form ¢7.: R — Q
by t (i) =0 if i€ SS, with v’ # v and t.(i) = x(ni’a)'l(x)) if ie SS;
here (a)=(1,1,...1) and =,  isasin 1.5. Let .¥ be the intersection of the
kernels of ¢, forvarious V, x as above. One shows that .# is a two-sided ideal
in R, and one defines % (Q) as the Q-algebra R/.# . We define a Q-linear
map R — #(Q) by associating to a basis element i of R the constructible
function x — ¢ (i) on Ey o (where i € SS and V € 7). It is clear that
the kernel of this map is exactly ¥ and its image is exactly .#;(€2). Hence it
defines an isomorphism
(a) My (Q) = M (Q)
compatible with multiplication. We shall denote the element of /%0’ (L) corre-
sponding to F, € /#,(), again by F;.

The following proposition is proved in [S].

Proposition 10.20. Assume that Q has no cycles or, in other words, that we
cannotfind m > 2 and h, h,, ..., h,, in Q suchthat k] = h,, | for L <i<m
and h, = hy. Then there is a unique Q-algebra isomorphism u~ = M, (Q)
under which F, corresponds to F, forall i€I.

10.21. We define a new product .#Z (v, Q) x.# (", Q) — # (v, Q) by (f, /)
= flof! = (=1)"a ") £« £ . This defines a new associative algebra structure
on .#(Q) for which the subalgebra generated by the F; is the same subspace
AM,(€2) , but with a new multiplication.

Let V€ 7, . The correspondence L — f, (see 10.18) defines a homomor-
phism of abelian groups ﬁ“fv,g — M (V, Q). This extends uniquely to a Q-
linear map %,Q®Q — . #(V, Q), where Q is regarded as a & -module with v
acting as —1. This may be regarded as a Q-linear map Z, ,®Q — # (v, Q);
hence it gives rise to a Q-linear map 7, ® Q — .#(Q). From the definitions
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and from the results in 10.18, we see that this is a Q-algebra homomorphism
(for the new algebra structure on .#Z(Q)). It clearly takes Fl.(l) to F,, and
hence, by 10.13(b),(c) its image is exactly .Z;(Q).

It follows that
(a) dimQJ’Z/V’Q ® Q = dimg, Ay (v, Q)
for all v. It is easy to see that our graph has at least one orientation Q for
which there are no cycles. For such Q we can combine (a) with 10.19(a)
and with the conclusion of 10.20 and we see that 10.17(d) holds. (Note that
the isomorphisms in 10.19(a) and 10.20 are compatible with natural gradings.)
Thus, Theorem 10.17 is proved.

10.22. Let U° be the 4'-vector space I'® , U . According to Drinfeld and
Jimbo, this is a Hopf algebra with multiplication such that U”, "'® 4’ are
subalgebras, and K _F, = vsFiKa ,where iel, a¢€ z! , §= ZhEH;h/:ia(h”) -
2a(i) . The comultiplication is given by
AF)=1eF+Fek, ', AK,)=K®K,

where o, has value 1 at [ and value zero atany j #i.

The isomorphism in 10.16 can be extended to an isomorphism of A’-vector
spaces

lg:US'=TK, @4

by K, ®z— K Ay(2).

Proposition 10.23. (a) A, is an algebra isomorphism.

(b) Ay is compatible with the comultiplication.

(a) follows from 10.8 and the definition of 4y. By 10.11, it is enough to
check (b) on a set of algebra generators where it is obvious.
10.24. If Ve 7, and V" is the dual space, we have an isomorphism p: Ev,n =
Ey. g givenby p(x) = x" where x;: V;, — V}. is the transpose of x;: V,» —
V,

b

This induces an equivalence of categories 4, : Z(Ey o) & Z(E,. &) Wwith
inverse p* .
Lemma 10.25. (a) If (i, a) € S, we have pL; ,. o = Ly ;1.5 € Z(E,- q) where
(i', ') are the sequences obtained by reading (i, a) from right to left.

(b) p, defines a bijection Py o =Py o with inverse p” .

(¢) p, defines an equivalence of categories @y o = @y. g Wwith inverse .

The (standard) verification of (a) is left to the reader; (b) follows from (a)
and (c) follows from (b).

Lemma 10.26. If V, V', V" are as in 3.1 and L' ,L" are as in 3.2, then
P!(L/ * L”) = p,_(L”) * p!(LI) € Oy- Q-

The proof is standard; it will be omitted.
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10.27. The operation p, in 10.25 induces a .%/-linear isomorphism .7, , =
jfu,ﬁ for any v ; hence it induces a &/ -linear isomorphism %, = %5 (deﬁoted
again p, ) that carries the canonical basis of the first space onto the canonical
basis of the second space (see 10.25(b)). It transforms the multiplication of
the first space to the opposite of the multiplication on the second space. This
follows from 10.26 and from the identity

" ’

, V).

10.28. Let f: U™ — U~ be the unique A'-linear isomorphism that takes each
F, to itself and transforms the multiplication into the opposite one. We have
the equality

I3 11
mov ,v)= mﬁ(y

(a) (p®DAg=Agf: U - Hod.
(It is enough to check this equality on the generators F,, where it is obvious.)

11. PROPERTIES OF THE CANONICAL BASIS B oF U™ .

11.1. In this section,  is fixed, but it is used only in proofs; the results do not
refer to it.

Proposition 11.2. Forany v € N', let B, = BNU, . Then B=\J, B, (disjoint
union) and each B, is a finite set.

This is obvious.

Theorem 11.3. Let U™ be the o/ -subalgebra of U~ generated by the elements
([r],)_'Fl.’ for various i € I and r € N. Then B is an &/ -basis of U~ and B,
is an &/ -basis of U" NU, forany v.

Indeed, under Ay, U™ corresponds to %, regarded as an ./ -subalgebra
of Z,® A . (See 10.13(b).)
Proposition 11.4. The A'-linear isomorphism f:U” = U~ (see 10.28) takes B
onto itself.

This is clear from 10.27, 10.28.

Theorem 11.5. (a) Let ', b" € B; let us write their product in U™ as b'b" =

ZbGBfl‘)',b”,bb with fb',b”,bEA/‘ Then fb/’bn,bEN['U,’U_l].
(b) Let b € B, ; we have

ABY=3 D &b @K D

.0y ecB ,b"€B,
in US° @ US® where & ' .p € N[y, v_l].
Let b,b', 0" beasin (a). Let V,V', V" be as in 3.1 so that b, b", b”
correspond respectively to L, L', L” in Py o> Py q» Py - Let us write
—=N(I.d) _~
U'st"= @ 0““elLa.
Le, . deL
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Then from the definitions, we have f, ,» , = v’ >, N(L, d)vd for some in-
teger s and (a) follows.

Now let b, 5, b" beasin (b). Let V, T, W be as in 4.1 so that b, b, b”
correspond respectively to L, L', L” in Py ar»Pr.a» Pw. o Let us write

NI LA T T
resp wL = @ o, ® L'® L"[d].
L'edy o,L"ePy o, deL

Then from the definitions, we have g, ,» , =v" 3, N(L', L", d)v? for some
integer s and (b) follows.

11.6. Let b € B, and let / € I. We associate to b, i an integer s,(b) as
follows. By definition, s,(b) is the largest integer r such that 0 < r < v(i) and
such that

(a) there exists z' € U™ such that » appears with nonzero coefficient in
F l.rz' , expressed as an A’-linear combination of elements of B or, equivalently,

(al) there exists ' € B such that b appears with non-zero coefficient in
Fl.’b’ , expressed as an & -linear combination of elements of B.

(This is well defined since (a) is satisfied with r =0.)

Using 6.6 for our Q, we see that

(b) there exist elements z/, € U~ (s,(b) <7 <v(i)) and z, e U~ (s5,(b) <
¥ < v(i)) such that

b+ S F =S F
r'>s,(b) r'>s,(b)
and such that z;:(b)vf € B for some integer f.

In particular, we must have

© beFPu.

Theorem 11.7. (a) For any i € I and any r > 0, the intersection Fl.rU_ NB is
an A'-basis of F/U™ .

(b) Forany i € I and any r > 0, the intersection U”F/ NB is an A'-basis
of U F/.

let z ¢ Fl.rU_ ; wWe can write uniquely z = ZbeB fb with f, € 4. Assume
that b satisfies f, #0.

By definition (11.6) we see that r < s5,(b). By 11.4(c), we have b € Fiy-
and in particular, b € Fl.’U_. This proves (a). Now (b) follows from (a) and
11.4.

Corollary 11.8. (a) Forany v € N’ the intersection (Xier Fl.”(")U_) NB isan
A'-basis of Y., FYu™.

(b) For any v € N’ | the intersection s U—E"(i)) NB is an A'-basis of

Cier UTF
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11.9. Let v € NY. There exists a U-module M (v) with a nonzero vector
Yo € M(v) with the following properties:

(a) Eyy=0 and Ky, = v”(i)yo forall i (E,, K, are as in 10.15);

(b) the map U~ — M(v) given by z — zy, is surjective and its kernel is
exactly ¥, U F/W*!

Moreover, the pair (M(v), y,) is unique up to a unique isomorphism.

Now using 11.8, we obtain the following result.

Corollary 11.10. The image of B—((}¥_;; U™ F'9*YnB) under the map 11.9(b)
is a (canonical) A'-basis of M(v).

12, THE VARIETY Ay

12.1. We shall fix a function & : H — k™ such that g(h) + &(h) = 0 for all
heH.

Let Ve 7. The Lie algebra of Gy is gly = @@, End(V,); it acts on E; by
(a, x)—[a, x]=x" where x, = a,.x, — x,a, forall h.

We define a nondegenerate symplectic form ( , ) on E; with values in k
by

(x, ¥y =) e(h) tr(x, )
heH

(Here, tr means trace as endomorphism of V,..) This form is clearly G-
invariant.

The moment map attached to the Gy-action on the symplectic vector space
E, is the map y: E, — gl, whose i-component y,: E, — EndV, is given by

wix)= > eh)x,x;.
heH : b =i
We have the following identity:

/

@ (la,x], x)=—{x, [a, x]) Ztr (W, (x +x') = w(x) — w,(x'))

for all a € gly, x,x’eEV.

Definition. A, is the set of all nilpotent elements x € E, such that y,(x) =0
forall iel.

Clearly, A, is a Gy-stable, closed subvariety of Ey .

Note that the equations y,(x) = 0 appear in the work [K] of Kronheimer for
a very particular V associated to an extended Dynkin graph (with V; being the
spaces of the irreducible representation of the corresponding finite subgroup of
SL,(C)). As Ringel informed me, the equations ,(x) = 0 have first appeared
(for ordinary Dynkin graphs) in work of Gelfand and Ponomarev around 1979.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



QUIVERS, PERVERSE SHEAVES, AND QUANTIZED ENVELOPING ALGEBRAS 407

12.2. Forany k € I and p € N we consider

Ay i ,= {(fh) €Ayl codimvk( Z im(f, 1V, — Vk)> =p}.
heH : =k
It is clear that for fixed k € I and p, > O, the union Up:psp0 AV,k,p is an
open subvariety of Ay ; hence, Av, k.p is a locally closed subvariety of A, . It
is clearly Gy-stable.

Theorem 12.3. (a) Ay is a closed subvariety of Ey, of pure dimension dimE, /2
(i.e. each irreducible component of A, has dimension equal to dimE,/2).
(b) Ay ., has pure dimension dimEy/2.

12.4. Let k€1 and p € N besuchthat 0 <p <dimV, . Let V' be a subspace
of V. of codimension p.

Let V' € 7 bedefined by V; =V, for i#k and V, = V.

Let J = P, Hom(V;, V,) and let J; = {(r;) € J|r; injective for all i}. Let ¥
be the variety of all triples (7, s, r) € Ay, k.o xEyxJy such that s,r,, =r,. ¢,

forall # € H and
Z e(h)s,s; = 0.
heH b=k
On Y we have a free Gy.-action

(8): (8, (54), (1) = (8rty8 ), (5,), (787 )
Lemma 12.5. (a) The map (t, s, r) — (t, r) is a locally trivial fibration p': Y —
Ay i o X Jy with fibres isomorphic to K", where m = —-p(dimV, — p) +

p zhEH . hlzk dithI/ .
(b) The map (t, s, r) — s has image equal to Ay ’ and it defines a mor-

phism p": Y — Ay ., that is a principal Gy,-bundle.

(¢) If Z' is an irreducible component of Ay . then Z =p" (0" N(Z' xJ))
is an irreducible component of Ay i p

(d) We have dimZ = dim Z' + (dimE, — dimE,,)/2.

(¢) We have a 1-1 correspondence Z' — Z between the set of irreducible
components of Ay .  and the set of irreducible components of Ay k. y

(Compare [L3, 8.5].) Assume that (¢, r) € Ay, oxJy has been fixed; let F
be the set of all s € E, such that (¢, s, r) € Y. We must show that & = k"
Choose a p-dimensional subspace ¥ of V,_, complementary to V.
Let F' be the kernel of the linear map
€ Hom(V,V,.) - Hom(V, V)
hih'=k
given by (f,) — EheH ¥ ke(k)thfh It is clear that 5 — (sh]V) gives an

isomorphism F = .. But the last linear map is surjective since ¢ € Ay k.05
hence its kernel has dimension m, as required. Now (b) is easily verified and
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(c), (e) follow immediately from (a), (b). We see also that in (d) we have
dimZ +dim Gy, =dimZ "+dim Jo+m. Itis clear that dim J,—dim Gy +m =
p(dmV, —p)+m=p>, ,_,dimV,. .

Thus, dimZ — dimZ’ = PZ;, w—; dimV,. . On the other hand, we have
dimEy - dimEy, =2p )., .,/_, d,» and (d) follows.

Lemma 12.6. If V # 0, then AV = Uk)p>0 AV,k,p'

Let x € Ay. Then x is nilpotent, and hence by 1.8(b) there exists an x-
stable flag ¢ = (V = Vovis...ovi= 0). Since V # 0, we may assume
that V! # V. By the definition of a flag (1.4), there is a k € I such that
V,lc #V, and V} =V, forall j # k. Let p > 0 be the codimension of V,’c in

V.. Let h € H be such that A" = k Then by 1.8(a), we have x,(V,) C V,

for all 4 € H such that A" = k. Thus, we have 3,5 i X, (Vy) C V, s0
that x € Ay , .

12.7. We now prove Theorem 12.3. (Compare [L3, 8.7].) We may assume
that V # 0 and that the theorem is already proved for I-graded vector spaces
of strictly smaller dimension than that of V. From 12.5 and the induction
hypothesis we see that AV’ k.p has pure dimension equal to dimE, /2 when-
ever p > 0. Now using 12.6, we see that A, has pure dimension equal to
dimE, /2. Finally, from this it follows that AV k.0 (which is open in Ay ) has
pure dimension equal to dimE,, /2. Theorem 123 is proved.

12.8. Let Ve 77 and let Q be an orientation for our graph. Note that Ey o is
a lagrangian subspace of E, complementary to the lagrangian subspace Ev,ﬁ .
Hence the symplectic form { , ) defines a nonsingular pairing Ey oxEy 5—
k.

This shows in particular that E, is naturally the cotangent bundle of Ey q-

We have the following result (compare [L3, 9.3]):

(a) If X' €Ey  and x” € Ey g then we have y,(x'+x") =0 forall ie/
if and only if x” is orthogonal with respect to ( , ) to the tangent space to
the G-orbit of x' (regarded as a vector subspace of Ey q)-

Indeed, that tangent space is the set of all vectors x € EV,Q such that for
some a € gl, we have x = [a, x']. The orthogonal to that tangent space is
the set of all x" € Ey g such that for all a € gl, we have ([a, x'7, x"y =
0, or equivalently (see 12.1(a)) ¥, tr(a,w,(x" + x”)) = 0, or equivalently
p,(x'+x")=0 forall i. \

Theorem 12.9. A, is a Lagrangian subvariety of E,, .

The proof is based on the inductive construction of irreducible components
of Ay which has been already used in the proof of 12.3; the details will be
given elsewhere. This result is not used in the sequel.

12.10. Let M (V) be the Q-vector space consisting of all constructible functions
in M(A,) that are constant on the orbits of Gy on A, .
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Nowlet V, V', V' beasin3.1,and let /' € M(V), /' € M(V").
We define a function f x ' € M(V) by imitating the construction of 3.1.
Consider the diagram (analogous to 3.1(a)):

14 /P /it P
(a) Avr X AVH 4—1 —2’ F _3) AV

where the notations are as follows.
F" is the variety of all pairs (x, V) where x € A, and V is an x-stable
-graded subspace of V such that V€7, .

F' is the variety of all quadruples (x, V, R", R') where (x, V) eF', R"
is an isomorphism V’ 2V (in 7 ) and R’ is an isomorphism V' = V/ V (in
7).

We have p, (x, V, R",R)=(x", x") where x, R}, = R,ux,: V};, = V,u/V,,
and x, R, —R "X ,'l' Vi = Vo forall heH.

p(x,V, R',RY=(x,V), py(x,V)=x.

Note that p, is a Gy x Gyn-principal bundle and p, is proper. (Unlike the
situation in 3.1, p, is not in general smooth.)

Let f; € M(Ay x Ayn o) be glven by fi(x', x") = f/(x")f"(x"). Then
there is a unique functlon freM (F") such that Py f1 = p, f3 ; by definition,
fx = (03),(fy)-

Next we note that given v € N, the vector spaces M (V) for various Ve 7
can all be identified in a coherent way with a single vector space M (v) (by
the invariance condition on the functions considered). The operation above
becomes a pairing M(v') x M(v"') — M(v) denoted (f, f') — f * f". Let
M= &b, M (v). The operation * makes M into an associative Q-algebra. (It
is a quotient of an algebra like .#Z(Q) in 10.18 defined for a graph with the
same vertices as our graph, but with twice as many edges, in which H is an
orientation.)

Let i € 1;let u be suchthat u(i)=1 and u(j) =0 for j # i. Then M(u)
is one dimensional, with a canonical basis element F; corresponding to the
function on {0} with value 1. Let Ho be the subalgebra of M generated by

the elements F, (i € I). Then 1\70 =@, A?O(u) where ﬁo(u) = 1\7(1/) ﬂﬁo.

Lemma 12.11. Let i # j in I andlet N be the number of edges in our graph
that join i, j. Then the following identity holds in the algebra M, :

N+1 N+1-
Z+(_1)1’F_l'pF,Fi—p =0.
o pl I (N+1-p)

Let V& 7 be such that dimV, =1, dimVj =N+1,and dimV, =0 for
allother k. Let H ={he HlW =i, h" =j}.
In our case,

(@) Ay= {x € E,| Z e(h)x,x; =0 and X5 X, = Oforall h, h, € H/}.
heH'
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(The first condition is y;(x) = 0; the second one is the nilpotency condition.
The condition y;(x) =0 is a consequence of the nilpotency condition.)

Let x € Ay. Let W, be the subspace of \Z generated by the images of
XV, -V, for various 4 € H' . Let W, be the subspace of V i given by the
intersection of the kernels of x;: V, — V, for various h € H' . From (a) we
have W, Cc W,.

For each p € [0, N + 1], let Fp(x) be the variety of all codimension p
subspaces W of Vj such that W, c W C W,.

The identity to be proved can be rewritten in the following form:

N+1
(b) S (~1Yx(F,(x)) = 0

p=0
for all x € Ay. Let d,, d, be the codimension of W, W, , respectively.

Now F,(x) is empty unless d, < p <d,, in which case it is a Grassmannian
d,~d

with Euler characteristic x(Fp (x) = ( d _p2) . If d, > d,, we have the identity
dl
(~1)”<‘i,1 dz) =0
p=dz 1 h p

and (b) follows.
It remains to show that we always have W, # W, . We have a diagram

O—V, Wy~ V,& &V, — W —0

where the middle term is a direct sum of copies of V,, one for each # €
H'; the second arrow is defined by y — (xz(»)); the third arrow is (z,) —
>ner €(M)x,(z,) . This diagram is a complex (by (a)), which is acyclic except
possibly at the middle position. It follows that dim(Vj /W,) < N ~dim W, so
that dim W, —dim W, > dimV I N = 1; in particular, we have W, # W, and
the lemma is proved.

12.12. From 12.11 we see that there is a unique homomorphism of Q-algebras
yiu - ANIO that takes F, to F, foreach i€ /. (u isasin 10.15.)

The following result provides a description of the algebra u~ parallel to that
in 10.18, but without reference to any orientation of our graph.

Theorem 12.13. y is an algebra isomorphism u = ]\70.

By the definition of 4~ and }\70 , we have that y is surjective. To prove that
y is injective, we choose, as we may, an orientation Q for our graph that has
no cycles (see 10.20).

We define an algebra homomorphism M- # (QQ) as follows. Let V €
7" . Then Ey o is naturally a subspace of A, . (Any element of Ey o is
nilpotent since 2 has no cycles; any element x € Ey satisfies automatically
the equations y/(x) = 0 by the definition of an orientation.) Hence restriction

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



QUIVERS, PERVERSE SHEAVES, AND QUANTIZED ENVELOPING ALGEBRAS 411

of functions defines a linear map M (V) - A (V, Q). It is obvious that this is
compatible with the operations *. These maps then define the required algebra
homomorphism M — .#(Q).

Consider the composition of homomorphisms

u —>A70—>]f\7—>/%(§2)
where the first one is y, the second one is the inclusion, and the third one has
been just constructed. This composition coincides with the homomorphism

U =M (Q) = M (Q) CH(Q)

(of 10.20, 10.19(a)). (It is enough to check that these coincide on the generators
F,, which is obvious.) Hence the kernel of y is contained in the kernel of the
homomorphism 10.20. The last kernel is zero, and hence so is the kernel of y.
The theorem is proved.

12.14. Let X be an irreducible component of A, where V € 7. We define
a linear form 7,: Mo(u) — Q as follows. Under the canonical identification
M (V) = M (v), the subspace ]I70(1/) of M (v) is identified to a subspace HO(V)
of M (V). We can find an open dense subset X, of X such that any function
fe MO(V) is constant on X, . (Such an open set exists separately for each f
since f is constructible; one exists for all f simultaneously since the vector
space A’?O(V) is finite dimensional.) We then define T',(f) to be the (constant)
value of f on X .

Let us denote by Z, the set of irreducible components of Ay . This set is
independent of the choice of V aslongas Ve 7.

By associating to each f ¢ MO(V) the function X — T,(f), we thus obtain
a linear function from ]\70(1/) to the vector space of all functions Z, — Q.

It may be conjectured that this is an isomorphism. This would imply that the
v-homogeneous part of ¥~ has dimension equal to the number of elements in
Z, . (This last fact is actually true for graphs of type 4, D, E or of affine type
A, as can be seen from 14.2 and 15.6.)

12.15. In this section we will show that the constructions in this section are
essentially independent of the choice of the function &¢. Let &': H — k™ be
another function such that &'(4) +¢&'(h) = 0 forall # € H. Let ¢, Y, t//l.',
A'V be defined as ( , ), w,, Ay but in terms of ¢’ instead of &. We can
find a function 8: H — k™ such that 6(h) = 6(h), 6(h)* =& (h)e(h)™" for all
he H.

Then the linear map 4: E, — Ey given by A(x) =x', x, = (h)x, for all
h € H is an isomorphism such that (4(x), A(y)) = (x,y) forall x,y € E,,
w,(A(x)) = y;(x) forall x e E,,and A(Ay) = A,.

Moreover, the isomorphism A4 : A’V — Ay induces a bijection on the sets
of irreducible components that is independent of the choice of §. To prove
this, we may assume that ¢ = & so that d(h) = 6(h) = £1. We can find

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



412 G. LUSZTIG

m: H — Z such that m(h)+m(h) =0, (=1)"® = §(h) forall h € H. Define
A:E, —E, forall ek" by 4,(x) =x', x, = ""x,. Then 4, defines
a l-parameter group of automorphisms of Ay ; hence it induces the identity
map on the set of irreducible components of A, . We have 4_, = 4 and our
assertion follows.

Clearly, we can always choose & so that ¢(h) ==+1 forall he H.

13. SINGULAR SUPPORTS

13.1. In this section we assume that k has characteristic zero.

Let m: X — Y be a proper morphism between smooth, connected varieties.
Let S = n(X), a closed irreducible subvariety of Y .

Let X be the variety of all pairs (x,&) where x € X and & € T;(X>Y
(cotangent space of Y at m(x)) are such that & is in the kernel of the canonical
map T;(X)Y — T, X induced by 7. The map X - T'Y definedby (x, &) — ¢
is a proper morphism. We denote its image by Y (a closed subvariety of 77Y )
and we denote #: X — Y the resulting surjective map.

Forany L € Z(Y) we denote by SS(L) the singular support (or character-
istic variety ) of L. It is known that SS(L) is a closed lagrangian subvariety
of T"Y . According to [KS],

(a) SS(m,(1)) is contained in ¥ .

13.2. Let Ve 7, and let (i,a) € S,. We fix an orientation Q. Let n =
T ot .éi‘ — Ev,g be as in 1.5. By 1.6, the definitions and results of 13.1 are
applicable to this 7 (with X = 9:"/ . and Y =E, ;). In our case, T'Y may

be identified with E asin 12.8. Hence Y may be regarded as a subvariety of
E, . With these notations, we have the following result.
Theorem 13.3. (a) We have
Y={z¢ Ay|z leaves stable some ¢ € F }.
(b) One can identify
X ={(z, ¢) € Ay x F_,|¢ is z-stable}
sothat themap #: X —» Y of 13.1 is (z,¢)— z.

13.4. We begin with some preliminaries to the proof of 13.3. Let (x, ¢) € ZV a
where ¢ =(V=V° > V' >...0V” =0) isasin 1.4. Let b, be the subspace
of gl consisting of all f € gl, such that f (Vl) cV forall /.

Let bg be the subspace of b, consisting of all f € b, that are nilpotent as
endomorphisms of P,V,.

Let b, be the subspace of E, , consisting of all y € Ey , such that ¢ is

y-stable.
Let b_ be the subspace of Ev,ﬁ consisting of all y € Ey g such that ¢ is

y-stable.
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The tangent space at (x, ¢) to 9; . 1s naturally the kernel of the linear map
(a) Ey o ®8ly/by = Ey o/b,

givenby (4,B)—-C, C,=A4,+x,B,,-B,»x, (h€H).
We now define a linear map

(b) b_—E, 50b
by D — (D, E) where E = (E,) is given by
E;= > eh)(-x,D5—Dyxy).

1
heH : h'"=i
To see that this is well defined, we must check that, in the previous formula,
E;:V, -V, is nilpotent. Now ¢ is x-stable and D-stable hence E-stable, so
that E is nilpotent by 1.8(a).
We now show that (b) is naturally the transpose of (a).
First, Ey o is naturally the dual space of Ey o via the pairing induced by

(,).

The same pairing identifies b_ with the dual space of E, v.Q /b, . (It is easy
to check that dimb_+dimb,_ = dimEy , and that (x, y) = 0 for all xeb,
y € b_. Note that (x,y) = Ezel tr7, ‘Where T, = Eh piei Xy Vg - Now ¢ 1s
x-stable and y-stable hence T-stable, so that T, is nilpotent by 1. 8(a). Thus
tr7, =0; hence (x,y)=0.)

Note also that bg is naturally the dual space of gl, /b, via the pairing induced
by the pairing gl, x gly, — C, 4, A —tr(44").

It remains to verify the following identity:

(4, D) +tr(BE) = (C, D)

forany A €Ey o, Begly, Deb_ where C€Ey g is defined in terms of
A, B asin (a) and E € gl is defined in terms of D as in (b). Thus, we must
verify the identity:
> e(h)(tr(4, Dy) — tr(Bynx, Dy) — tr(Byn D, x3))
h

= Z Ay + x,By — Bux,)Dy) .

But this is clear.

Thus we have proved that (b) is the transpose of (a). It follows that

(c) the cotangent space at (x, ¢) to 9? . is naturally the cokernel of the
linear map (b).

13.5. We now prove Theorem 13.3. Note that the cotangent space at x to
Y =Ey g is naturally Ey g (see 12.8) and the linear map T"n induced by =
from the cotangent space at x to Y = Ey o to the cotangent space at (x, ¢)

to X = '%J,a is given by y — T"n(y) = (¥, 0) modulo the image of 13.4(b).
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The condition that y € E, & satisfies T"n(y) = 0 is therefore that y € b_
and Y-, . ,_; &(A)(x,y5z+y,x;) =0 forall i€ I. Since x,x; =0 and y,y; =0
for all 4 we see that the previous condition is equivalent to

¢ is y-stable and y,(x +y) =0 forall i € 1.
For y € Ey g, the conditions (a), (b) below are equivalent:

(a) ¢ is y-stable ,

(b) X + y is nilpotent and it leaves ¢ stable.

Clearly, if (b) holds then (a) holds (since ¢ is x-stable). If (a) holds then
certainly ¢ is (x + y)-stable and from this we see using 1.8(a) that x +y is
nilpotent. Thus the equivalence of (a),(b) is established.

We now see that y € Ey g satisfies T"n(y) =0 if and only if

X +y €Ay and ¢ is (x + y)-stable.
Theorem 13.3 follows.

Corollary 13.6. For any L € ‘9”‘,79, the singular support SS(L) is a union of
irreducible components of A .

By definition, we can find n as in 13.2 such that some shift of L is iso-
morphic to a direct summand of some 7,(1). We therefore have SS(L) C
SS(m(1)). By 13.1(a), we have SS(7,(1)) C Y and by 13.3(a) we have Y c
Ay . From these inclusions we deduce that SS(L) C A, . Now SS(L) is a
closed lagrangian subvariety of E,. Hence it has pure dimension equal to
dim(E)/2. On the other hand, according to 12.3, Ay also has pure dimension
equal to dim(E,)/2. The corollary follows.

13.7. One may hope that the following two statements might be true:

(a) for graphs of type A, D, E, the singular support of any L € 95\,, q 18
irreducible, and

(b) for general graphs, there is a unique 1-1 correspondence L — X, between
Py q and the set of irreducible components of Ay such that X, C SS(L).

Statement (a) for type A4 is closely related to the expected irreducibility of
singular supports for Schubert varieties of GL(n).

13.8. We consider an example. We take I = {i, j}, H = {h, hy, hy, h,},
with = hy =i, b =h, =j, h,=h,, hy=h,. We take Q = {h,, h,},
e(h)) =e(h,)) =1, &(hy) = e(hy) = —-1. Wetake V such that V, =V, =V is
a two-dimensional vector space. We identify E, with the set of all quadruples
(4, B, A", B') of endomorphisms of V', Ey a with the subspace of E; de-
finedby 4’ = B' =0 and A, with the subspace of E, defined by the equations
AA'+BB =0, A'A+B'B =0, and by the condition that 44, 4B', BA', BB’
are nilpotent.
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Then %, v.Q consists of 6 perverse sheaves L,, ..., L, with supports of
dimensions 0, 4,5,5,8, 8 respectively. (L,, L, have different supports but
L,, Ly have the same support.) The corresponding local system on an open

dense part of the support is trivial for L, ..., L, and nontrivial for L.
Now Ay has six irreducible components X, ..., X,. Notations can be
arranged so that the following holds: SS(L].) =X ; for j =1,...,5 and

SS(Lg) = X;U X, . Note also that X, is the closure of the conormal bundle of
a 7-dimensional irreducible submanifold of Ey o . Hence 13.7(b) holds in our
example,

14. EXAMPLE: GRAPHS OF TYPE 4, D, E

14.1. In this section we assume that our graph is of type 4, D or E; in par-
ticular, there is at most one edge joining two vertices. We fix an orientation Q
for the graph. Let Ve 7.

Proposition 14.2. (a) Any element x € E,, such that y,(x) =0 forall ieI is
automatically nilpotent.

(b) The irreducible components of A, are the closures of the conormal bundles
of the various G-orbits in Ey o

Assume that (a) holds. Then, using (a) and 12.8(a) we see that A, is precisely
the union of the conormal bundles of the various Gy-orbits in Ey a- Since
there are only finitely many such orbits (Gabriel’s theorem) we see that (b)
holds. It remains to prove (a). The proof of (a) has much in common with that
in [L2, §10].

We can write uniquely x = y + z where y € E, V.0 and z € E, 5. We
may regard (V,y) as a representation of our oriented graph. Wr1t1ng this
representation as a direct sum of indecomposable representations and using
[L2, 4.9(c)] we see that there exists a direct sum decomposition V = @;:1 VP
where each V¥ € 7 is y-stable (i.e., (V¥ y) is a representation of our oriented
graph) and such that that any morphism from the representation (V”, y) to the

representation (V7 , y) is zero whenever p’ < p.
We have a direct sum decomposition

Ey o= @ Ey, where Ey = (D Hom(Vi,, Vi)

p.p'ell,v] heQ
Similarly,
! I
- CRPP pp P
E,g= @ Ey% where B, = @@ Hom(V),, Vi)
p,p'Ell,v] heQ

Asin [L2, 10.4], the subspace €
space T, to the Gy-orbit of y.
Since y,(y + z) =0 for all i, we see from 12.8(a) that (z, T,)=0. Hence

(z, B, Ey’q) = 0. But the annihilator in E, 5 of @, E{’G, under

<’ EY %, of E, is contained in the tangent
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'

(, ) isclearly @,_, Ey%. Hence we have z € @,_, Ei'%. If we denote

p<r' Bv, 0"
V@ = D,.,5, V> we have

(d) v=v?5vh 5. .. 5v¥ oo,

(e) 2,(V\9) c vi4r!
forall heQ, ge[0,v—1] and

YV c Vil
forall heQ, ge[0,v].

Now y is certainly nilpotent as an element in Ey, (since y € Ey o and our
graph is a tree); y satisfies the definition of nilpotency in 1.7 with N = |I|.
By 1.8(b) applied to y and V” we see that the filtration (d) can be refined to
aflag ¢ in V that is stable under y.

Then ¢ is automatically z-stable. Indeed, let 'V be a member of this flag.
We have V@ 5 'V 5 V¥ for some ¢ € [0, v — 1]. From (e) it follows that
2,('V,) € V4 s hence z,('V,,) ¢ 'V, forall & € Q, which shows that ¢ is
z-stable. Now ¢ is stable under y and under z, and hence it is stable under

x = y+ z. Using now 1.8(a), we see that x is nilpotent. The proposition is
proved.

15. EXAMPLE: GRAPHS OF AFFINE TYPE A

15.1. In this section we assume that » > 2, I = Z/n, and that H consists of

the arrows

(a) i—j withi,jel,i—-j=1,

(b) ie—j withi,jel,i—j=1;

by definition, the involution ~ : H — H interchanges i — j and { — j; if

h=(Gi—j),weset =i, h" =j;if h=(i—j),weset i =j, h" =i. Let
Q be the subset of H consisting of the arrows (a).

Thus our graph is an affine Dynkin graph of type 4, and Q is an orientation
of it. We shall take e(i — j) =1, e(i — j)=—1.

The purpose of this section is to give an explicit combinatorial parametriza-
tion for the set of irreducible components of Ay forany Ve 7.

15.2. Let k' < k be two integers. We define V(k', k) € 7 to be the k-vector
space with basis e, (r € k', k]), I-graded by the requirement that e, has
degree i € I where r = i (mod n). Let x(k', k) € Eyi k) o be defined by
e, —e_, forall re [k", k], where e, _, is interpreted as zero. It is clear
that (V(K', k), x(k', k)) is an indecomposable representation of our oriented
graph, with x(k' , k) nilpotent; the isomorphism class of this representation
does not change when k', k are simultaneously translated by a multiple of .
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Conversely, if (V, x) is an indecomposable finite-dimensional representation
of our oriented graph, with x € Ey , nilpotent, then it is isomorphic to a
(V(k', k), x(k", k)) as above; moreover, (k', k) are uniquely determined up
to simultaneous translation by a multiple of n.

Let Z be the set of all pairs (k' < k) of integers defined up to simultaneous
translation by a multiple of »; let Z be the set of all functions Z — N with
finite support.

It follows that, given V € 77, the set of Gy-orbits on the set of nilpotent
elements in Ey  is naturally indexed by the subset Z of Z consisting of all
functions f: Z — N with finite support such that

ka Jp{rik' <r<k,r=i (modn)}=dimV,
k'<k
for all i € I; the sum is taken over all k' < k up to simultaneous translation
by a multiple of n. This indexing is obtained by attaching to a nilpotent
element x € Ey  the following function f: we write (V,x) as a direct
sum of indecomposable modules and f(k', k) is the number of summands
isomorphic to (V(k', k), x(k', k)). In particular,
(a) Gy has only finitely many orbits on the set of nilpotent elements in Ey, .
We shall denote by & ' the Gy orbit corresponding to f € Zv-

15.3. An element f € Zv is said to be aperiodic if it satisfies the following
condition: for any k' < k, not all integers f(k', k), f(k'+1,k+1),
flk'"+n—1,k+n—-1) are >0.

15.4. Forany r € I, let End (V) be the vector space of all linear maps 7: V —
V such that T(V,)C 'V, forall iel.

We may identify Ey o (resp. Ey g) with End_ (V) (resp. End,(V)). (To
x € Ey o we associate the T' such that T(v) = x,_; ,(v) for all { and all
veV;;to z€Ey g we associate the 7 such that T(v) =z (v) forall i
and all veV,.)

The following statement is obvious.

(@a)Let x€Ey 5, z€Ey g,andlet T, S be the corresponding elements
in End_,(V) and End (V). Then x is nilpotent as an element of Ey o ifand
only if T is nilpotent as an endomorphism of V; z is nilpotent as an element
of EV g if and only if S is nilpotent as an endomorphism of V.

The followmg statement is easily verified.

(b) Let x, x' e Ev,n be nilpotent elements, let T, T be the corresponding

elements of End_,(V), and let f, f be the corresponding elements of Zv-
Assume that there exists S € End, (V) that is invertible as a linear map V-V
such that TS = ST’ . Then f(k', k)= f'(k' -1,k —1) forall k¥’ <k.
Proposition 15.5. Let [ € Zv- The following two conditions are equivalent.
(a) The conormal bundle of g, consists entirely of nilpotent elements in E, .
(b) f is aperiodic.

i+1e—i
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If x GEV,Q and z EEV,E then

WX+ 2) =X 2~ B Xy forall iel.
Using 12.8(a), we see that condition (a) is equivalent to the following condi-
tion:

(c) Let x € &,. Then for any z € Ey 5 such that

Xitt=iZivte—i = Zieim1Xinin
forall i€ I, x + z is nilpotent.

For x and z as in (c), the condition that x + z is nilpotent is equivalent
to the condition that z is nilpotent (since x is known to be nilpotent). Using
15.4(a), we see that (c) is equivalent to the following condition:

(d) Let x €&, andlet T be the corresponding element of End_,(V). Then
any S € End,(V) such that 7'S = ST (as endomorphisms of V) is nilpotent
(as an endomorphism of V).

Let x, T be as in (d) and assume that S € End,(V) commutes with T
and is not nilpotent. Consider the canonical decomposition V=V & V" such
that V', V"’ are S-stable, and S is invertible on V' and nilpotent on V”.
Then V' # 0. The previous decomposition is automatically compatible with
the I-grading (since S € End,(V)); moreover, V' and V" are T-stable (since
TS = ST). Hence our decomposition is a decomposition of (V, x) as a direct
sum of two representations of our oriented graph. Let [ € Zvl , e Zvn , be
attached to these two representations as in 15.2. It is clear that f = f + f".
Hence to prove that f is not aperiodic it is enough to show that f* is not
aperiodic. Thus we can assume that V = V' so that S :V — V is invertible.
Applying 15.4(b) (with T’ = T) we see that f(k', k) = f(k' =1,k —1) for
all k' < k. This shows that f is not aperiodic. Thus we have proved that if
(d) does not hold, then (b) does not hold.

We now show that if [ is not aperiodic, then (d) does not hold. Since f is
not aperiodic, we can find k' < k and a direct sum decomposition V = vieavie
... @ V" of the representation (V, x) of our oriented graph such that the /th
summand is isomorphic to the representation (V(k'+1, k+1), x(k'+1, k+1))
(see 15.2) for / =1,2,...,n. It is then clear that there exists a linear map
S € End (V) such that $ =0 on V"' and § is an isomorphism of the vector
space V' & V' @@ V" onto itself, commuting with 7. This shows that (d)
does not hold. The proposition is proved.

Corollary 15.6. Forany f € Z,,, let %f be the conormal bundle of @, ; let ?f
be the closure of %f.

Then [ — % s isal-l correspondence between the set of aperiodic elements
in Zy, and the set of irreducible components of A, .

Let X be an irreducible component of A, . The image of X under the
canonical projection Ey — Ey o (with kernel Ey 5) is denoted X'. It is
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contained in the set of nilpotent elements of E,, v, o since X consists of nilpotent
elements. Moreover, it is Gy-stable. Hence it is the union of finitely many G-
orbits. Let é’ O be these orbits. By 12.8(a), X is contained in the
union ?L” u- U ‘E Each of these conormal bundles is irreducible of the same
dxmenswn as X. It follows that X must be equal to the closure of one of these
conormal bundles; hence X = # 7 for some f that, by 15.5, is necessarily
aperiodic. Conversely, if f € Z,, is aperiodic, then any x € %”f is nilpotent,
by 15.5, and satisfies y,(x) =0 for all 7, by 12.8(a); thus, E;’”f is contained in
Ay , and hence its closure is contained in A, . Being irreducible of the correct
dimension, it is an irreducible component of A, . This completes the proof.

16. GRAPHS WITH A CYCLIC GROUP ACTION

16.1. In this section we assume that we are given a finite cyclic group C and
an action of C on our graph such that the following property is satisfied. If
¢ € C fixes an edge, then it fixes both ends of that edge; if an edge and its image
under ¢ € C have the same end points then that edge is fixed by c.

This induces actions of C on I and H which are compatible with the maps
1.1(a),(b),(c); moreover, A, h are never in the same C-orbit on H.

Let P be the set of orbits of C on I. For p € P let dp be the number
of elements in p. Given two distinct orbits p, ¢ in P we denote by Ny, the

number of elements 4 € H such that 4’ € p and 4" € q. Clearly, Moy = My
is divisible by both dp and dq . Hence the matrix

(@) (a,,), 4ep glven by a,, =2 and q,, = —dp_lnpq (for p £q)isa
symmetrizable generalized Cartan matrix.

16.2. Note that any nonsymmetric Cartan matrix of affine type can be obtained
by the procedure of 16.1 starting from an extended Dynkin graph of type 4, D
or E and a suitable cyclic group acting on it. Consider the following extended
Dynkin graphs with a faithful action of C of the order indicated by a left
superscript:

27 2 >3

Ay, (122),°D l+1 (1>3),° 1+2 (122),
yn

Eg, E7’ D4’ Es’ D21+2 (=1).
(The right superscript 1, 2, > 3 indicates the number of nontrivial orbits of
C on the set of vertices.)

The corresponding Cartan matrices are (with the notations in [K, p.44,45])
respectively:

(1>3),

(1 (n (2) (2) (1) (2) (1) (3 (2)

G, B D1+1’A21 1 By EgT, Gyt DY Ay
16.3. We want to sketch the way in which the results of this paper should be
extended to the case of the quantized enveloping algebra U~ corresponding to

the Cartan matrix 16.2(a).
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Let Q be an orientation of our graph that is compatible with the C-action.
(Such Q always exists.)

Let 77(C) be the category of finite-dimensional 7-graded k-vector spaces V
with an action of C that have the following properties: if c € C and i €/
then ¢V, C VC(I.) ; if in addition, ¢(i) =i, then c¢: V; — V, is the identity.

Let V€ Z°(C) be such that V€ 7, when the C-action is forgotten. Note
that we have a natural action of C on E, preserves the subspace Ev,n .

Let S, . be the set of all pairs (p,a) where p = (p,,p,,...,D,,) isa
sequence of elements of P and a=(a,, a,, ..., a,,) is a sequence of integers
> 0 such that ). iep, U = v(i) forall iel.

Let (p, a) € S, c- A C-flag of type (p, a) in V is, by definition, a sequence
¢=(V= Viovis.ov”= 0) of I-graded C-stable subspaces of V such
that, forany / = 1,2, ..., m, the graded vector space Vl_l/Vl is zero in
degrees i ¢ p, and has dimension ¢, in degrees i € p, .

Asin 1.4, we say that ¢ is x-stable (where x € E; ) if V! is x-stable for all

heH andall /=0,1,...,m. Let ‘Z,a be the variety of all C-flags of type
(p,a) in V.,

Let # | be the variety of all pairs (x, ¢) such that x € Eygand €7, |
is x-stable.

We denote by Ty ot 457: 2 Ey g the first projection.

Weset L) ..o =(7, (1) € Q(EV,Q) . This is a semisimple complex which
is C-equivariant in a suitable sense. It can be decomposed in a direct sum
of summands L[d] where the L are C-equivariant perverse sheaves that are
simple (as equivariant perverse sheaves, but not necessarily as perverse sheaves
without C-action). The set of isomorphism classes of the various L that ap-
pear in this way is denoted 97",’9’ ¢ - From this point the development should
continue as in the case of trivial C, and it should lead to a canonical basis of
U™ indexed by the disjoint union of the sets ng’Q’ ¢ (with V running over a

set of representatives for the isomorphism classes in Vs ).
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