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INTRODUCTION 

0.1. Let us consider a finite graph in which no edge joins a vertex with itself. 
This graph defines a symmetric matrix (aij ) indexed by pairs of vertices of the 
graph, where au = 2 and -aij is the number of edges joining i, j if i =I- j. 
Let g be the Lie algebra over Q defined in terms of this matrix by the usual 
Serre relations (a Kac-Moody Lie algebra), let u be its enveloping algebra, and 
let V be the quantized version of u discovered by Drinfeld and limbo (a Hopf 
algebra over Q(v)). 

Let u = u- Q9 UO Q9 u+ (resp. V = V- Q9 VO Q9 V+ ) be the triangular decom-
position of u (resp. V). 
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366 G. LUSZTIG 

0.2. The main discovery of [L2] was the existence of a canonical basis for U-
(in case of graphs of type A, D, E) with some very remarkable properties. 
Among these properties were integrality, a positivity property for structure con-
stants, compatibility with various natural filtrations, and the fact that this basis 
gave rise to canonical bases in all finite-dimensional irreducible representations. 

This was done by two quite different methods, an elementary method and a 
geometric method. 

0.3. In this paper, the geometric method of [L2] is extended to the case of 
arbitrary graphs; we obtain a canonical basis of U- with the same kind of 
properties as in the ordinary case. 

Let us fix an orientation for our graph (or a quiver). From the work of 
Ringel [R] it is known that the algebras u- , U- can be reconstructed purely in 
terms of the representation theory of this quiver, in the case of graphs of type 
A , D, E. (In a not yet written work, Ringel has extended this to the case of 
Oynkin graphs of affine type; using a variant of Ringel's method, Schofield [S] 
has extended Ringel's results on u - , but not those on U- , to arbitrary finite 
graphs.) 

It turns out that by looking more closely at the geometry of representations 
of the quiver one can get not only U- but also a canonical basis for it. 

It is well known that U- is naturally graded: U- = EElv U~ where v are 
functions on the vertices of our graph with values in N and U~ are finite 
dimensional. 

Assume that we are given a complex vector space Vi for each vertex i of 
our graph so that dim Vi = v(i). 

Let E = EEl Hom(Vi , V) where the sum is over all arrows i -t j in the 
orientation. This is a finite-dimensional complex vector space on which the al-
gebraic group Gv = Il Aut Vi acts naturally. The points of E may be regarded 
as representations of our quiver (oriented graph). 

We would like to produce from E finitely many objects which should para-
metrize a basis of U~ . 

In the A, D, E case this task is easily solved: one takes the set of all Gv-
orbits on E. (This set is finite by Gabriel's theorem.) This does not make sense 
in the general case; there may be infinitely many orbits. 

To get around this difficulty, we imitate the definition of character sheaves 
in [U]. As in that theory we have a finite number of varieties (corresponding 
to various kinds of flags) that map properly to E. The direct image of the con-
stant sheaf under each of these maps decomposes as a direct sum of irreducible 
perverse sheaves (up to shift), and the perverse sheaves that appear in this way 
form a finite collection of objects, which satisfies our requirements. 

We can show that this class of perverse sheaves is closed under a certain 
multiplication operation; this eventually leads to a construction of U- endowed 
with a canonical basis provided by the perverse sheaves as above. (That basis 
is in fact independent of the chosen orientation.) 
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0.4. As shown by Drinfeld and Jimbo, V- 0 VO has a natural comultiplication. 
We are able to recover this co multiplication in the language of perverse sheaves. 
(We are again imitating character sheaves, namely the restriction functor of 
[L2].) As a consequence, we obtain a positivity property for the canonical 
basis, with respect to co multiplication, which is new even in the A, D, E case. 
0.5. Another aspect of this work is a study of the singular supports of the per-
verse sheaves connected with our canonical basis. We show that these singular 
supports are contained in a certain remarkable Lagrangian variety (already in-
troduced in [L3]) whose definition is again reminiscent of what happens for 
character sheaves. 
0.6. In a sequel to this paper, we will describe explicitly the perverse sheaves 
connected with our canonical basis in the case of affine Dynkin graphs, in the 
sense that we will describe their support in the framework of the Dlab-Ringel 
theory [DR], and the corresponding local systems on an open part of the support. 
Remarkably, the theory of character sheaves of GLn enters in this description. 
0.7. As we already mentioned, in [L2J, a second construction of the canonical 
basis was given; this was elementary, in the sense that no results from topology 
or algebraic geometry were used. Soon after [L2] became available, Kashiwara 
announced an elementary construction in a somewhat similar spirit of a canon-
ical basis that made sense for general graphs. 

(Kashiwara's construction is given in his very interesting preprint On crystal 
bases of the q-analogue of universal enveloping algebras, which I received after 
this paper had been submitted.) 

Note that the elementary approach to canonical bases, while being elegant, 
cannot provide positivity results of the kind provided by the perverse sheaves 
approach. 

1. PRELIMINARIES 

1.1. We assume given a finite nonempty graph; in this graph, two different 
vertices may be joined by several edges, but no edge may join a vertex with 
itself. Let I be the set of vertices of our graph, and let H be the set of pairs 
consisting of an edge together with an orientation of it. 

Giving such a graph is the same as giving 
(a) two finite sets I, H with I nonempty, 
(b) a map H --+ I denoted h --+ h' , 
(c) a map H --+ I denoted h --+ h" and 
(d) a fixed point free involution h --+ 71 of H; 

these are subject to 
(e) (h)' = h" and 
(f) h' =f:. h" 

for all hE H. 
An orientation of our graph is a choice of a subset Q c H such that QuQ = 

H, QnQ=0. 
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1.2. Let k be an algebraically closed field. 
Let r be the category of finite-dimensional I -graded vector spaces Y = 

EBiEI Yi over k with morphisms being linear maps respecting the grading. We 
shall write Y E r to indicate that Y is an object of r . 

Let N1 be the set of all functions v: I -+ N. For each v E N1 we denote by 
~ the full subcategory of r whose objects are those Y such that dim Yi = 
v(i) for all i E I. Then each object in r belongs to ~ for a unique v, and 
all objects of ~ are isomorphic to each other. 

Given Y E r , let 

Ev = E9 Hom(Yh" Yh")· 
hEH 

More generally, for any subset H' of H we shall consider the subspace Ev H' 

of Ev consisting of all vectors x = (xh) such that xh = 0 whenever Ii E 
H-H'. 

The algebraic group Gv = Il i Aut(Yi ) (naturally a subgroup of Aut(Y)) acts 
on Ev (and on Ev H' ) by (g, x) -+ gx = x' where x~ = gh"xhg;" for all h. , 

1.3. Let y' be an I-graded subspace of Y E r and let x E Ev' We say that 
y' is x-stable if xh(Y~') c Y~II for all hE H. 

In this case, we may consider the linear maps x~: y~, -+ Y~II , x~: Y hi IY~' -+ 

Yh" IY~II induced by xh ' and we obtain elements x' = (x~) E Ev' and x" = 
") hi'" d d b (xh E Ev' . We say t at x ,x are In uce y x. 

1.4. Let v E N1 and suppose that SJ) is the set of all pairs (i, a) where i = 
(i, ' i2 , ••. , im) is a sequence of elements of I and a = (a, ' a2 , ••• ,am) is a 
sequence of integers ~ 0 such that L,: i/=i a, = v(i) for all i E I. 

Now let Y E ~ and let (i, a) E SJ)' A ./lag of type (i, a) in Y is, by 
definition, a sequence ¢ = (Y = yO ::> y' ::> ... ::> ym = 0) of I-graded 
subspaces of Y such that, for any I = 1, 2, ... , m, the graded vector space 
y'-' IY' is zero in degrees =1= i, and has dimension a, in degree i,. 

If x E Ev ' we say that ¢ is x-stable if y' is x-stable (see 1.3) for all h E H 
and all I = 0, 1, ... , m . 

Let 9;,a be the variety of all flags of type (i, a) in Y. 

1.5. In this su~ection we assume that an orientation n for our graph has been 
chosen. Let 9;,a be the variety of all pairs (x, ¢) such that x E Ev,n and 
¢ E 9;, a is x-stable. Gv acts on 9;, a by g: ¢ -+ g¢ where ¢ = (Y = yO ::> 
y' ::> •.. ~ ym = 0) and g¢ = (Y = gYo ::> gY' ::> ... ::> gym = 0). Hence Gv 
acts on 9;,a by g: (x, ¢) -+ (gx, g¢). 

We denote by i'lj a: 9; a -+ Ev n the first projection. With these notations, 
we have the following result. ' 
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Lemma 1.6. (a) Sf,a is a smooth, irreducible, projective variety of dimension 

L al'al 
kl' : i,l=i, 

and Gv acts transitively on it:......-
(b) The second projection Sf, a -+ Sf, a is a vector bundle with fibres of dimen-

sion 
L Hh E nih' = il' ' h" = i/}al,al· 
I' ~I 

(c) Sf, a is a smooth, irreducible variety of dimension 

LHh E nih' = iI" h" = i/}al,al + L al'al· 
I' ~I kl' : il' =i, 

(d) 1Cj ,a is a proper morphism. 
(e) 1C j , a is Gv-equivariant. 

(a) holds since Sf,a is isomorphic to a product over i E I of usual (partial) 
flag manifolds attached to Vi' (d) follows from (a); (e) is obvious and (c) 
follows from (b) and (a). It remains to prove (b). Let us fix if; = (V = VO :::> 
Vi :::> ••• :::> Vm = 0) in Sf, a and let Z be the fibre at if; of the second projection 
in (b). The first projection identifies Z with the set of all x E Ev n such that 
xh (V~/) C V~II for all h E H and all I; this is clearly a linear' subspace of 
Ev, n' Its dimension is equal to 

hence to 

L dim(V~/-1 /V~, ) dim(V~-;; I /V~II ) 
1'~/;hEn 

LHh E nih' = il" h" = il}al,al· 
1'9 

This independent of if; (this can be also seen from the transitivity of the 
Gv- action on Sf,a)' The lemma follows. 

1.7. An element f E Ev is said to be nilpotent if there exists an N 2: 2 such 
that the following condition is satisfied: for any sequence hi' h2' ... , hN in H 

h h h' h" h' h" h' h" h . . I' I' I' suc t at I = 2' 2 = 3'"'' N-I = N' t e composItIOn Jh Jh ... Jh : 
I 2 N 

V h' -+ V h" is zero. 
N I 

Lemma 1.S. (a) If x E Ev and if; = (V = VO :::> Vi :::> '" :::> Vm = 0) is a 
flag of type (i, a) that is x-stable, then Xh(V~-;-I) C V~II for all h E Hand 
I = 1 , 2, ... , m. In particular, x is nilpotent. 

(b) Conversely, if x' E Ev is nilpotent, then there exists (i, a) E S II and a flag 
if; of type (i, a) such that if; is x-stable. 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



370 G. LUSZTIG 

Assume that we are in the setup of (a). If h is such that h' f. i, then 
V~-;-I = V~, and hence Xh(V~-;-I) = Xh(V~,) C V~" ; if h is such that h" f. i, 
h V'-I Vi d h (Vi-I) Vi-I V' t en h" = h" an ence xh h' C h" = h'" 

Since for h E H we cannot have simultaneously h' = i, and h" = i" (a) is 
proved. 

To prove (b), we may assume that V f. 0 and that the result is already proved 
for I -graded vector spaces of dimension strictly smaller than that of V. 

For any k E I and any N ~ 1, let Z(k, N) be the set of all sequences h = 
(hI' h2' ... , hN) in H such that h~' = k, h~ = h~~1 for i = 1, 2, ... , N - 1 . 

For h E Z(k, N), we denote by Vk(h) the image of the composed map 
xhxh ",xh :Vh, -+Vk · 

I 2 N N 

We denote Vk(N) = EhEZ(k,N) Vk(h), a subspace of Vk . We also set 
Vk(O) = Vk · 

Clearly, we have 
(c) Vk(N) = EhEH : h"=kxh(Vh,(N - 1» for all N ~ 1. 

Assume that 
(d) Vk(1) = Vk for all k E I. 

From this we deduce by induction that 
(e) Vk(N) = Vk(N - 1) for all k E I and all N ~ 1. 
For N = 1 this is just (d). Hence we may assume that N ~ 2 and 

Vk(N - 1) = Vk(N - 2) for all k. Then using twice (c) we deduce that 
Vk(N) = EhEH : h"=k xh(Vh,(N - 1» = EhEH : h"=k xh(Vh,(N - 2» = Vk(N - 1) 
and (e) follows. From (e) we see that Vk = Vk(1) = Vk(2) = .... However, by 
the assumption of (b), for large N, we have Vk(N) = 0 for all k. It follows 
that Vk = O. This contradiction shows that (d) is false. Thus, there exists 
k E I such that Vk(1) f. Vk . 

Let VI be the I-graded subspace of V defined by V! = Vk(1) and V; = Vi 
for i f. k. We have Xh(V~,) C V~" for all h E H. Thus the restriction of 
x gives an element x E EVI. It is clear that this element is nilpotent. By the 
induction hypothesis, we can find a flag of some type in VI that is x-stable. 
This flag preceded by V itself constitutes a flag in V that is x-stable. Thus, 
(b) is proved. 

2. A CLASS OF PERVERSE SHEAVES ON Ev n , 

2.1. In this section, as well as in §3 and §4, we assume that an orientation Q 
for our graph has been chosen. 

We fix a prime number I invertible in k. We generally write ~(X) for the 
bounded derived category of complexes of Qrsheaves on an algebraic variety 
X over k. We shall use the notations of [BBD]; in particular, [d] denotes a 
shift by d degrees, f' denotes the inverse image functor, J, denotes direct 
image with compact support, D: ~(X) -+ ~(X) denotes the' Verdier duality 
map, and PHi ( ) denotes perverse cohomology sheaves. 
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Objects of g-(X) are referred to as complexes. The constant I-adic sheaf 
Q, on any algebraic variety will be denoted 1. 

A complex L in g-(X) is said to be semisimple if L is isomorphic to the 
direct sum EB i PHi L[ - i] and if each PHi L is a semisimple perverse sheaf. 

Assume that we are given an action of a connected algebraic group G on X . 
A semisimple complex L in g-(X) is said to be G-equivariant if each PHiL 
is a G-equivariant perverse sheaf (see [Ll, 1.9]). 
2.2. Let V E ~. For each (i, a) E Sy, we set Lj,a;n = ("j,aMI) E g-(Ev,n)' 
(Here, 1 E g-(g;-,a) ; see 1.5.) By the decomposition theorem [BBD], Lj,a;n is 
a semisimple complex. 

We denote by .9"v n the set of isomorphism classes of simple perverse sheaves 
L on Ev n that ha':e the following property: L[d] appears as direct summand 
of L. .~ for some (i, a) E Sy and some dE Z. ], a,~, 

We denote by tffv n the subcategory of g-(Ev n) consisting of all complexes 
that are isomorphic' to finite direct sums of co~plexes of the form L[d'] for 
various L E .9"v, n and various integers d' . Any complex in tffv, n is semisim-
pIe. From 1.6(e) and [Ll, (1.9.2)] it follows that any complex in tffv,n is 
Gv-equivariant. 

If in (i, a) E Sy we have a, = 0 for some I then by omitting i, from i 
and a, from a, we obtain another element (i', a') E Sy, and it is clear from 
the definition that L. . ro = L., a" ro. Hence in the definition of .9"..v ro we may I, a, ~, I" 0lI,,' , ,Ui 

add the condition that 
(a) (i, a) is such that a, > 0 for all I 

and we obtain the same class of perverse sheaves. Since there are only finitely 
many elements of Sy satisfying (a), we see that 

(b) .9"v n contains only finitely many objects (up to isomorphism). 

2.3. Assume that V, V are in ~ and choose an isomorphism 1 : V ~ V 
preserving the grading. This induces an isomorphism I' : Ev, n ~ E", n given by 
1'(X) = x where (x)h = Ih"Xhl;/ for all hE H. Then 1;: g-(Ev,n) --+ g-(E",n) 
is an equivalence of categories, with inverse 1'*; it carries L j a.n E 9?(Ev n) 
to the analogous complex in 91 (E", n) , for each (i, a) E Sy. Hence it defines 
an isomorphism .9"v n ~ .9"" n and an equivalence of categories tffv n ~ tff" n 
(due essentially to the equivariance of the complexes involved). ' , 
2.4. Assume again that V E ~ . Let (i, a) E Sy be such that for two consecu-
tive indices I, 1+ 1 we have if = i'+1 = i. Let (i', a') E Sy be obtained from 
(i, a) by replacing the two entries i" i'+1 by the single entry i and the two 
entries af , a'+1 by the single entry a, + a'+1 . We then have 

(a) Lj,a;n ~ I:L j , ,a';n[-2f(K)] E g-(Ev,n) 
K 

where K runs over the set of all sequences 1 ~ k1 < k2 < .. , < k t ~ al + 
a'+1 and f(K) = L.~~1 (kt - t). This follows from the well-known structure of 
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the cohomology of the Grassmannian of al+l-planes in (al + al+1 )-dimensional 
space. As a consequence, we see that, in the definition of 9'y, 0 we may add 
the condition that 

(b) (i, a) is such that no two consecutive entries of i are equal. 

3. MULTIPLICATION 

3.1. Assume now that we are given V, Vi , V" E '7 such that V E ~, Vi E 
cy/, "cy/, I " I . f I" 
P v', V E P v" ,where v, v ,v E N satls y v = v + v . 

Consider the diagram 
PI I P2 "P3 (a) Ey',O x Eyll,O f-- E ----+ E ----+ Ey,O 

where the notations are as follows. 
E" is the variety of all pairs (x, V) where x E Ey, 0 and V is an x-stable 

I -graded subspace of V such that V E ~II . 
E' is the variety of all quadruples (x, V, R" ,R') where (x, V) E E", R" 

is an isomorphism V" ~ V (in '7) and R' is an isomorphism Vi ~ V / V (in 
'7). 

( V "R' ) (' ") h R' R' I Vi V / We have PI x, ,R, = x ,x were xh hi = h"Xh: hi ---+ h" Vh" 
d R" R" "v" v." 11 h H an Xh hi = h"xh: hi ---+ h" lor a E ; 
P2(x, V, R" , R') = (x, V), P3(X, V) = x. 
Note that PI is smooth with connected fibres, P2 is a Gyl x Gyll-principal 

bundle and P3 is proper. 
Let L' E {g (Ey' ,0) and let L" E {g (Eyll ,0) be two semisimple complexes; 

assume that L' is Gyl-equiyariant and that L" is Gyll-equiyariant. We shall 
associate to L', L" a complex L = L' * L" in {g (Ey 0) by the method of [L2, 
9.5]. ' 

Let LI = L' Q9 L" E {g(Eyl 0 X Eyll 0) (external tensor product). Let L2 = 
p~(LI); this is a Gy, x Gyll-equiyariant semisimple complex on E/, and hence 
there is a well-defined semisimple complex L3 on E" such that p;(L3) ~ L 2 . 
We define L = L' * L" = (P3)!L3 E {g(Ey,o)' 

Lemma 3.2. (a) In the setup of 3.1, we assume that L' E ~y' 0 and L" E ~yll 0-

Then we have L' * L" E ~y o. " 
(b) Assume that (ii, a/) 'E Sv' (resp. (i", a") E Sv")' Let i = iii" (resp. 

a = a'a") be the sequence formed by the sequence i ' (resp. a/) followed by the 
sequence i" (resp. a"). Then (i, a) E Sv' Hence Ljl a" 0 E ~y' 0' Ljll a"' 0 E 
~yll,O' Lj,a;O E ~y,o are well defined. We have L j, :al:o * Ljll ,~II;O = ii,~;O' 

W fi (b) L .1 ( .1 .1 ) ." ( '" .,,) h' erst prove . et I = II'"'' 1m' , I = II'"'' Im" ,SO t at I = 
( .1 .1." .,,) L L' L L" L L L II'"'' 1m" II'"'' Im"' et = j' a'·O' = j" a"'O' = j a'O' 
Recall that L' = (n j, ,a' M1) E {g(Eyl ,0)' 'L '1 = (njll ,a" M1) E'{g(Eyll ,0) " i = 

(n. ),(1) E {g(Ey ,,), where n., ,:.9:, , ---+ Ey, " , n.1I 11:.9:" II ---+ Eyll ,...., 
J, a . ,:.., I ,a 1 ,a , ~, 1, ai, a , ~, 

n. : g: ---+ Ey n , are as in 1.5. We apply the definitions of 3.1 to L', L" . In l,a I,a ,:." 
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~ ~ 

our case we have LI = (n., ,x n., , ) (1) where n., ,x n., ,: g;, ,x g;" 11-+ 
J ,a I ,8 l,a 1 ,8 I ,8 I ,a 

E y ' ,0 X Eyll ,0' 
~ " Let p : Sf,a -+ E be the morphism defined by p(x, ¢) = (x, V) where 
o I '+ /I I ¢ = (V = y ::) y ::) ... ::) ym m = 0) and V = ym . Let L3 = p, (1) E 

9(E"). As in 1.6(d), we see that p is a proper morphism; using also 1.6(c) 
and the decomposition theorem [BBD], we see that L3 is a semisimple complex 
on E" . It is clear that P; (L3) = P~ (L I) (notations of 3.1). It is also clear that 
P3P = nj,a; hence 

L' * L" = (P3ML3) = (P3),p,(I) = (n j ,aMl) = L. 

Thus, (b) is verified. 
Now (a) follows immediately from (b). 

3.3. We want to prove an associativity property of the operation *. Assume 
. 123 12 23 I 2 3· that we are gIven Y ,y ,y ,y, y ,y 10 ~(123)' ~(12) , ~(23) , ~(I) , 

~(2)' ~(3) respectively where 1I(12) = 1I(1) + 1I(2) , 1I(23) = 1I(2) + 1I(3) and 
1I(123) = 1I(1) + 1I(2) + 1I(3). Let Lf E t:!'y! 0' J = 1,2, 3. Then LI * L2 E 

2 3 I 2 '3 AP I 2 3 
t:!'y12 0' L * L E t:!'y 23 0; hence L * (L * L ) E (;Oyl23 0 and (L * L ) * L E 
t:!'yI2;,0 are well defined (see 3.2(a)). ' 

Lemma 3.4. LI * (L2 * L 3) ~ (L 1 * L2) * L3 in t:!'yI23. 

Consider the diagram analogous to that in 3.1(a): 

Ey' ,0 X Ey2 ,0 X E y 3 ,0 !2- X .!2.. y ~ Ey123,0 

where the notation is as follows. 
Y is the variety of all triples (X 123 , V 3, V 23 ) where Xl23 E E y l23 ,0' V 3, V 23 

are x 123 -stable I -graded subspaces of yl23 such that V 3 c V 23 , V 3 , is iso-
h· y3 d V 23 . . h' y23 morp IC to , an IS Isomorp IC to . 

X is the variety of all sequences (X I23 , V 3, V 23 , RI , R2, R 3) where 
(X I23 , V 3, V 23 ) E Y, R3 is an isomorphism y3 ~ V 3, R2 is an isomorphism 
y2 ~ V 231V3 , and RI is an isomorphism yl ~ yl231V23 . 

We have PI (X I23 , V 3, V 23 , RI , R2, R 3) = (Xl, x 2, x 3) where X~23 R{, = 

R{lIx{ for all hE Hand J = 1,2,3; 
P2(X I23 , V 3, V 23 , RI , R2, R 3) = (X 123 , V 3, V 23 ); 

( 123 V3 V23) = Xl23 P3 X " • 

Let LI = LI ®L2 ®L3 (a semisimple complex in 9(Ey' 0 x Ey2 n x E y 3 n)' 
As in 3.1, there is a well-defined semisimple complex L3' E 9(Y) such that 
P~ LI = P;L3' We set L = (P3),L2 E 9 (Eyl2l ,n)' 

It is sufficient to show that 
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These isomorphisms are established by using the standard commutation rela-
tion between inverse image and direct image with compact support in cartesian 
diagrams (base change). We leave the details to the reader. 

3.5. As a consequence of 3.4, it makes sense to consider L 1 * L 2 * ... * L m E 
tffv,n for any L' E tffwl,n' W' E ~l (I = 1, ... , m) where V E ~ satisfies 
v = vi + v 2 + ... + v m • This may be defined either directly, as in the proof of 
3.4, or by applying repeatedly the definition in 3.1 (for two factors) with some 
choice of brackets; the result is then independent of the choice of brackets. 

3.6. Let i E I and let a EN. Let WE r be such that dim Wi = a and 
Wj = 0 for all j =I i. Then Ev,n = O. It is clear that Li,a;n = 1 E ~(W, n). 
(Here we regard i, a as sequences with one term each.) It follows that 

1 E 9'w,n' 

3.7. Let (i, a) E Sv' Let v' be such that v'(i,) = a, and v'(i) = 0 for i =I i, 
( i = 1 , ... , m ) where m is the number of terms in i. Let W' E ~l and let 
L' = 1 E Dwl n for I = 1 , ... , m . 

Assume th~t m ~ 1 . Let V" E ~-vl and let (i", a") E Sv_vl be obtained 
from (i, a) by dropping the first terms ii' a1 • From 3.2(b) we see that 

(a) I 
L j a· ..... = L * L j , a'· n E tffv· n . , ,,), " , 

Applying (a) repeatedly we obtain 
12m A'fi' L. ...... = L * L * ... * L E {,z'v ....... I, a,')' ,,)l.i 

(b) 

/ Note that L E 9'wl,n' see 3.6. 

3.8. The Verdier duality map D: ~(Ev n) ~ ~(Ev n) , , satisfies 

(a) D(L j a' n) = L j a' n[2d(i, a)] , , , , 
~ 

where d(i, a) = dimg;,a is equal to 

(b) :L:Hh E nih' = it', h" = i/}a/,a, + :L: at'a, 
/''5,,' l</' : il,=il 

(see 1.6(c)). It follows that D preserves the subcategory tffv,n and that it 
defines a permutation of the set 9'v n . 

If L' E tffv',n' L" E tffv' ,n are as' in 3.2(a), we have 

D(L' * L") = D(L') * D(L")[2m], 

where m is the dimension of any fibre of PI minus the dimension of any fibre 
of P2 (notation of 3.1); in other words, we have 
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Note also that 
D(L[d]) = D(L)[-d] 

for any L E (§v and any integer d. 

4. RESTRICTION 

4.1. Assume now that we are given V E ~ and an I -graded subspace W of 
V with W E ~. Let T = V /W. Then T E ~ where v = r + OJ • 

Let E(W) be the subspace of Ev,n consisting of all x = (xh ) such that W 
is x-stable. Such x induces elements x' E ET,n and x" E Ew,n (see 1.3). 
We denote by i: E(W) --+ Ev n the canonical inclusion and by p: E(W) --+ 

ET n x Ew n the map defined'by p(x) = (x' ,x") where x', x" are as above. 
A compiex L E 9" (Er , n x Ew, n) is said to belong to (§T, w , n if there 

exist L~, ... ,L; in (§T, n and L~, ... ,L;' in (§w, n such that we have L ~ 
EB~=I L~ I8i L; (external tensor product) in 9"(Er,n x Ew,n)' 

For any L E 9"(Ev n), we set 

resT,W L =P!(tL) E9"(ET,n x Ew,n)' 
Proposition 4.2. (a) If L E (§v n' then resT w L belongs to (§T w n' 

(b)If(i,a)ESv,then' , " 

resT,WLi,a;n 9:! EB Li,a';n I8iLi ,a";n[-2M(a/ , a")] 
, " a ,a 

where the summation is over the pairs of sequences a' ,a" such that (i, a/) E Sr' 
(. ") S d I II h I, a E OJ an a + a = a; we ave 

I II ""'" I. II • I II ""'" I II M(a, a ) = ~Hh E nih = II" h = II}al,al + ~ al,al . 
I' '5,1 kl' : i{, =i{ 

It is clear that (b) implies (a). Hence it is enough to prove (b). The proof 
will be given in 4.8. 

4.3. Let 1li,a: Sf,a --+ Ev,n be as in 1.5. The inverse image of E(W) under 
1li,a is denoted E(W); let it: E(W) --+ E(W) be the restriction 1li,a' Consider 
the composition pit: E(W) --+ ET,n x Ew,n. We have clearly 

(a) P!(i*(Li,a;n)) = (pitMl). 

We now define, for any a', a" as in 4.2(b), some subvarieties E(W, a', a") of 
E(W) as follows. 

E(W, a', a") is the variety of all (x, ¢) E E(W) where ¢ = (V = yO ::) 
Vi::) ... ::) Vm = 0) is such that for any I, (V/- 1 nW)/(VI nW) has dimension 
a;' in degree il (and, necessarily, dimension 0 in degrees =/: it ); here m is the 
number of terms in i. 

It is clear that the E(W, a', a") form a partition of E(W) into locally closed 
subvarieties. 
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III . -- --
For a ,a as above, the morphlsms 7ri , a' : ~,a' -+ ET , nand 7r j , a" : ~,a" -+ 

Ew, n can be defined just as in 1.5 (with V replaced by T, W). Moreover, we 
have a commutative diagram 

!' E(W, a', a") ---t E(W) 

.9:,x.9:" 1,8 1,8 

where !' is the inclusion and I is the morphism defined as follows. If 
(x, ¢) E E(W, a' ,a") is as above, then I(x, ¢) = ((x' , ¢'), (x" , ¢")) where 
(x' , x") = p(x), ¢" is given by the intersections of the subspaces in ¢ with 
Wand ¢' is given by the images of the subspaces in ¢ under the canonical 
projection V -+ T . 

Lemma 4.4. With the notations in 4.3, I is a (locally trivial) vector bundle with 
fibres 01 dimension M(a', a") (see 4.2(b)). 

We fix (x', ¢') E ~,a' and (x", ¢") E ~,a" where ¢' = (T = TO :J TI :J 

.. , :J Tm = 0), ¢" = (W = WO :J Wi :J ... :J W m = 0). Let r be the fibre 
of I at ((x', ¢'), (x" , ¢")). Let us identify T with a (graded) complement 
of W in V. 

Now, giving a graded subspace Vi of V such that V' n W = W, and such 
that the image of V' under the canonical projection V -+ T is TI is the 
same as giving a graded linear map z/: T' -+ W IW'. (To z, corresponds 
the subspace V' of V consisting of all vectors v' + v" E T EB W such that 
v' E T' and z,(v') = v" modulo W'.) The condition that the subspace Vi 
corresponding to z, (as above) is contained in the subspace V'-I corresponding 
to z'_I: T'-I -+ W IW'-I (as above, with I replaced by 1- 1) is that 

(a) for any v' E T/, we have z,(v') = zl_1 (v') as elements of W IW/- I 

(2 :s; I :s; m) . 
We then have automatically that V'-I IV' is zero in degrees =I i, and has 

dimension a, in degree i l • 

Now, giving an element x E Ev,n such that p(x) = (x', x") is the same as 
giving an element 

(b) y = (Yh) E EBhEH Hom(Th" Wh") such that Yh = 0 whenever h rt. n. 
(To Y corresponds x such that xh(v") = x~(v") and xh(v') = x~(v') + 

Yh(v') for all h E H, v' E Th" v" E W h' .) 
The condition that such x satisfies xh (V~,) c V~" (where Vi corresponds 

to z, as above) is that 
() ,,, , I" co h c z, ,h"Xh - xh z, ,h' - Yh: Th, -+ W h" W h" IS zero lor any E H, where 

z/,i is the i-component of z,. (This equality has a meaning since x~(v') E T~II 

and x~ induces a linear map W h' IW~, -+ W h" IW~II , denoted again x~ .) 
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We thus see that r can be identified with the k-vector space r' consisting 
of all (ZI' ... , zm; y) where the graded linear maps z/: TI - W /WI (1 5: I 5: 
m) and y as in (b) are subject to (a) and (c). We have a natural short exact 
sequence 0 - r; - r' - r; - 0 where r; consists of all y as in (b) such 
that Y h (T~,) c W~" for all h, I and r; consists of all (z 1 ' ... , Z m) where 
zl: TI - W /WI are graded linear maps satisfying (a). Clearly, 

dim r~ = L dim(T~,-1 /T~, ) dim(W~-;; 1 /W~,,) ; 
I' s/; hEn 

hence, using the definition of a' , a" , we have 

dimr~ = L Hh E nih' = il' , h" = il}a;,a;'. 
I'sl 

On the other hand, 

dimr; = L dim(T;I-I/T;')dim(W~-I/w~); 
1<1' ; iEI 

hence 
dimr; = 

1</' : i,,=i} 

We have dimr' = dimr; + dimr; = M(a', a"). 
The local triviality statement is left to the reader. 

Lemma 4.5. In the setup of 4.4, we have 

(pit!),(1) ~ Lj,a/;n Q9Lj,a";n[-2M(a', a")]. 

This follows from 4.4 and the commutative diagram in 4.3. 

4.6. We can find a sequence (Z) of closed subsets of E(W) (j E Z) with 
the following properties: Zj_1 C Zj for all j, Zj = E(W) for large j, Zj is 
empty for j < 0, and each difference Zj - Zj_1 is a union of subvarieties of 
the form E(W, a' , a") (see 4.3), which are both open and closed in Zj - Zj_1 . 

If Pj is the inclusion Zj C E(W) and Yj is the inclusion Zj-Zj_1 C E(W), 
then we have a canonical distinguished triangle in g (ET , n x Ew, n) : 

((pitMY),Y; (1) , (pit MPj VJ; (1 )(pit),(Pj_1 ),P;_I (1 )). 

It gives rise to a long exact sequence of perverse cohomomology sheaves 

(a) ... - P HS-1((PitMPj_1VJ;_1 (1)) 

Note that 
(b) 

~ P HS((pitMyj),y;(l)) - P HS((pitMP)!p;(l)) - .... 

(PitMP),P;(l) is P!(i*(Lj,a)) for large j (see 4.3(a)), and is zero for j < O. 
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Lemma 4.7. (a) For each integer j, the maps J in 4.6(a) are zero. 
(b) For each integer j, the complex (pit),(pj),P;(l) in g'(ET,n x Ew,n) is 

semisimple; it is isomorphic to the direct sum 

EB ' II L. ,.n0L. ".n[-2M(a, a )] 1 ,a ,;U. 1 , a ,~l. 

, " a ,a 

where the summation is over the pairs of sequences a', a" as in 4.2 with 
E(W, a' , a") c Zj' 

The proof will go along the lines of [Ll, 3.7]. Assuming that (a) and the 
first assertion of (b) are proved, we prove the second assertion of (b) as follows. 
Since both complexes in question are semisimple, it is enough to prove that they 
have the same PHs for any s. From 4.5 we see that 

(c) (PitMy),y;(l) ~ EB Li,a';n o Li,a";n[-2M(a' ,a")] 
, " a ,a 

where the summation is over the pairs of sequences a', a" as in 4.2 with 
E(W, a' , a") C Zj - Zj_l . In particular, (pit),(y),y;(l) is semisimple. Using 
(a), we see that 4.6(a) decomposes into short exact sequences of semisimple 
perverse sheaves. Hence, PHs((pitMP·),P*(l)) is isomorphic to . J.) 

P HS((pitMPj_1),P;_1 (1)) EB P HS((pitMy),y;(l)). 

Using the last formula, together with (c) and an induction on j we obtain the 
desired equality for PHs. (The case where j < 0 is trivial, by 4.6(b).) 

It remains to prove (a) and the first assertion of (b). By general principles 
[BBD, §6], it is enough to prove them in the case where the ground field is 
an algebraic closure of the finite field Fq with q elements. In this case, we 
can realize 4.6(a) in the category of mixed perverse sheaves over an Fq-form 
of ET n x Ew n' The isomorphism (c) remains valid in this category (with 
the sa~e proof) except that after the shift [-2M(a', a")] one should add the 
Tate twist (-M(a',a")). ByDeligne'stheorem[D] Li a'.n0Li a".n is a pure 
complex of weight zero; after applying to it the shift and the twist'just described, 
it remains pure of weight zero (see [BBD, 6.1.4]). Hence, by (c), 

(d) (PitMy),y;(l) is a pure complex of weight zero. 

It follows that PHs ((pit My), y; (1» is pure of weight s. 
We now show by induction on j that PHs((pitMP·),P*(1)) is a pure complex . ).) 

of weight s. This is obvious for j < 0, by 4.6(b). If we assume that this is true 
for j - 1 , the statement for j follows from 4.6(a), using (d), the statement for 
j - 1 , and the following fact: if Ll -+ L2 -+ L3 is an exact sequence of mixed 
perverse sheaves with Ll ' L3 pure of weight s, then L2 is also pure of weight 
s. 

Now, using [BBD, 5.4.4], it follows that (pitMPj ),P;(1) is pure of weight 
zero. Using the decomposition theorem [BBD, 5.4.5, 5.3.8] it follows that 
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(pitMPj),P;(l) is semisimple. The vanishing of 6 in 4.6(a) follows from the 
fact that 6 is a morphism between two perverse sheaves of different weights. 
This completes the proof of the lemma. 
4.8. We now note that (in view of 4.6(b)), 4.2(a) is a special case of 4.7(b) (for 
large j). This completes the proof of 4.2. 
4.9. We want to prove an associativity property of the operation res in 4.1. 

Assume that we are given V E r and two I -graded subspaces W, W' of V 
such that We W' . We introduce some notation. 

Consider the commutative diagram 
i l PI 

Ev/w,n x Ew,n Ev,n -EI ---+ 

i4 r is r i6 r 
E2 

i2 
-E3 

P2 
---+ E4 

P4l Psl P6l 

i3 P 
Ev/w',n x EW',n - E5 ~ Ev/w',n x EW'/w,n x Ew,n 

where the notation is as follows. 
EI is the subspace of Ev,n consisting of all x such that W is x-stable. 
E2 is the subspace of Ev, n consisting of all x such that W' is x-stable. 
E3 is the subspace of Ev , n consisting of all x such that Wand W' are 

x-stable. 
E 4 is the variety of all pairs (y, y') in Ev /W ,n x Ew ,n such that W' /W is 

y-stable. 
E5 is the variety of all pairs (z, Z/) in Ev/w' ,n x Ew' ,n such that W is 

z'-stable. 
ii' ... , i6 are the natural inclusions and PI' ... 'P6 are the obvious projec-

tions. 
We define a functor 

res~/w' ,w'/w: 9"(Ev/w,n x Ew,n) --+ 9" (Ev/w' ,n x EW'/w,n x Ew,n) 
as the composition (P6)' i; . 

We define a functor 

res~,/w,w: 9"(Ev/w' ,n x Ew' ,n) --+ 9" (Ev/w' ,n x EW'/w,n x Ew,n) 
as the composition (P3),i;. 

From the definition we have 

res~/w" w'/wCL I ® L 2) ~ resv/w' ,w'/w(LI ) ® L2 

for any LI E 9"CEv/w,n)' L2 E 9"CEw,n) and 

res~,/w, WCL3 ® L4 ) = L3 ® resw'/w, wCL4) 
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for any L3 E 9'(Ev/w' ,n)' L4 E 9'(Ew' ,n) (external tensor products). 

Proposition 4.10. Let L E 9'(Ev, n)' In the setup of 4.9, we have 

re~/w" w' /wresv/w, w(L) ~ res~,/w, WresVjW', w,(L). 

We must show that (with notations of 4.9) we have (P6)!i~(Pl)!i;(L) !:::< 

(P3)!i;(P4)!i;(L). From the diagram in 4.9 we see that in the sequence 

(P6)!i;(Pl)!i;(L); (P6)!(P2)!i;i;(L); (P3)!(Ps)!i;i;(L); (p3)!i;(P4)!i;(L) , 

any two consecutive complexes are isomorphic. The proposition is proved. 

5. FOURIER-DELIGNE TRANSFORM 

5.1. In this section we assume that k is an algebraic closure of a finite field 
Fq . We fix a nontrivial character Fq ~ Q;. This defines an Artin-Schreier 
local system of rank 1 on k; its inverse image under any morphism T: X ~ k 
of algebraic varieties is a local system 2'T of rank 1 on X. 

5.2. Assume given two orientations 0, 0' c H for our graph. For any V E r 
we define T: Ev,nun' ~ k by T(x) = L:h tr(xhxii) where the sum is taken 
over all hE 0 - (0 n n'). (The last trace is that of an endomorphism of Vh" .) 
The function T is Gv-invariant. Hence the local system 2'T on Ev , nun' is 
well defined (see 5.1) and Gv-equivariant. 

We have two surjective linear maps 

(a) 
6 6' 

Ev n f-- Ey nun' -- Ey n' , , , 

defined by t5(x) = Y ,t5'(x) = y' where Yh = xh for h EO, Yh = 0 for 
h in, y~ = x h for h E 0', Y~ = 0 for h i n' . 

Next, we consider the functor 7: 9'(Ev n) ~ Ev n' defined by 7(L) = 
t5((t5*(L) ®2'T)[D] where D = L:hdimVh,'dimVh" {sum over all hEn-
(0 nO')). This is a special case of the Fourier-Deligne transform from the 
derived category on a vector bundle to that on the dual vector bundle. (The 
vector bundles in question are Ev n ~ Ev nnn' and Ev n' ~ Ey nnn'; T 
may be used to identify one vector bundle with the dual or'the other:) 

3 W fi V Gy/, V' Gy/, d V" Gy/, h h ,,, 5.. e now x E p v ' E p v' an E p v" suc t at v = v + v . 
Assume that L' E 9'(Ey, n) is a semisimple Gv,-equivariant complex and 
that L" E 9'(Ev" n) is a'semisimple Gv,,-equivariant complex. Then L' * 
L" E g-(Ev,n) is ~ell defined; hence 7(L' * L") E 9'(Ev,n') is well defined. 
On the other hand, 7(L') (resp. 7(L")) is a semisimple, Gv,-equivariant 
(resp. Gv" -equivariant) complex in 9' (Ev' , n') (resp. 9' (Ev" ,n' ) ), by general 
properties of the Fourier-Deligne transform. Hence 7(L')*7(L") E 9'(Ev n') 
is well defined. We have the following result. ' 
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Theorem 5.4. In the setup 0/5.3. we have 

7(L' * L") e:'! 7(L') *7(L")[C] 

in ::g (Ev , n') where 

C = l: (v" (h')v' (h") - v' (h')v" (h")). 
hEn-(nnn') 

We consider the commutative diagram 

Ueb r UJc r Ugd r 
Xe 

UeJ 
-Xf 

UJg 
-Xg 

Uja r Uhe r UiJ r 
Xh ~x. I 

Uhk 1 u,fl Ugp 1 
Xj 

Ukj 
Ukf X +---- X k -, 

Ukn 1 Ufo 1 
Xm 

Urnn Uno 
Xo 

Uop 
Xp +---- Xn - -

in which the notations are as follows. 
Xa=Ev',nxEv",n' 
Xc is the variety of all pairs (x, V) where x E Ev, n and V is an x-stable 

I -graded subspace of V such that V E ~II • 

Xb is the variety of all quadruples (x, V, R" , R') where (x, V) E Xc' R" 
is an isomorphism V" e:'! V (in r), and R' is an isomorphism V' e:'! V/V (in 
r). 

Xd=Ev,n· 
Xm = Ev' ,n' x EVil ,n" 
Xo is the variety of all pairs (y, V) where y E Ev n' and V is a y-stable 

I -graded subspace of V such that V E ~II • ' 

Xn is the variety of all quadruples (y, V, R" ,R') where (y, V) E Xo ' R 
is an isomorphism V" e:'! V (in r), and R' is an isomorphism V' e:'! V/V (in 
r). 

Xp = Ev,n" 
Xg = Ev,nun' . 
Xf is the variety of all triples (z, V) where z E X g , V is an I-graded 

subspace of V such that V E ~II, and V is x-stable where x = o(z) 
(see 5.2). 
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Xe is the variety of all quadruples (z, V, R" , R') where (z, V) E X f , R" 
is an isomorphism V" ~ V (in 'Y), and R' is an isomorphism V' ~ V / V (in 
'Y). 

Xi is the variety of all pairs (z, V) where z E Xg and V is a z-stable 
I -graded subspace of V such that V E ~" . 

X h is the variety of all sequences (z, V, R", R') in Xe such that (z, V) E 
Xi . 

X. = Ev ' nun' x Ev" nun" J, , 
X k is the variety of all sequences (x', x" , y, V, R" ,R') such that 

'" ('" " " (y, V, R ,R) E Xn , x, x ) E Xa , Rh"Xh = YhRh': V h' ---> V h" /~" , and 
"""" J:' h ' YhRh' = Rh"xh : Vh' ---> ~" lor all En n n . 

Xl is the variety of all sequences (s', s" , y, V) where (y, V) E Xo and 

s' = (s~) E EB Hom(Vh, /~" V h" /~,,), 
hEn-(nnn') 

s" = (s~) E EB Hom(~,,~,,). 
hEn-(nnn') 

The maps u ba ' u be ' u ed ' Unm ' Uno' u op are defined as in 3.1. 
The maps u gd ' u gp are rJ and rJ' of 5.2; the maps u ja ' u jm are of the form 

rJ x J and rJ' x rJ' . 
The map ueb takes (z, V, R" ,R') to (J(z), V, R" , R') . 
The map U fe takes (z, V) to (J(z), V). 
The map uef takes (z, V, R" ,R') to (z, V). 
The map U fg is the first projection. 
The maps uhe ' Uif are the obvious imbeddings. 
The map Uhi takes (z, V, R" ,R') to (z, V). 
The map ukj takes (x', x" , y, V, R" ,R') to 
'V' / """" YhRh': h' ---> V h" ~'" YhRh' = Rh"zh: V h' ---> Vh" 

, "" h x h ' zh=xh forall En. 

( ' " , , z , z ) where Rh"zh = 
for all hEn', and z~ = 

Th k ( '" V " ') ('" ) h R' , e map Ukl ta es x, x ,y, ,R, R to s, s ,y, V were h"xh = 
'" / """ "" .. I h n (n n') shRh': V h' ---> V h" ~'" and ShRh' = Rh"xh : V h' ---> ~" lor alE u- unu . 

h ( """" , T e map uhk takes z, V, R ,R) to (x ,x ,y, V, R ,R) where Y = 
5:' () d (' ") (V R" R') u z an x, x = ubaueb z, , , . 

The map ui/ takes (z, V) to (s', s" , y, V) where Y = rJ' (z) and s', s" 
are induced by x = rJ(z) . 

The map ukn takes (x', x" , y, V, R" ,R') to (y, V, R" , R') . 
The map Uto takes (s', s" , y, V) to (y, V). 
Recall that in 5.2 we have defined a function T: X g ---> k; the same con-

struction applied to the two factors of Xj gives two analogous functions on Xj 
whose sum is again denoted T: Xj ---> k. It is easy to check that the composi-
tions Tu fgUefUhe' Tu fguifu hi , TUkjU hk coincide as functions X h ---> k and 
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that there is a unique function X, -+ k whose composition with ui/ (resp. with 
uk' ) gives the function Xi -+ k (resp. Xk -+ k) just considered. 

Hence we can define local systems of rank 1 on 

Xj' Xk ' Xh' X" Xi' Xe , Xf' Xg 
that are .2"T on X j ' Xg and correspond to each other under inverse image by 

We shall denote each of these local systems by .2" . 
Let La = L' ® L" E g(Xa) (external tensor product). Let Lb = u~aLa E 

g(Xb) ; let Lc E g(Xc) be the unique semisimple complex such that u~cLc = 
Lb and let Ld = (ucd)!Lc E g(Xd). Let Lg = U;dLd E g(Xg) and let 
Lp = (ugpMLg ®.2") E g(Xp) . 

By definition, we have Y(L' *L") = Lp[D] , where D = Lh lI(h')II(h") (sum 
over all hEn - (n n n')) . 

Now let Lj = u;aLa E g(X) and Lm = (ujmMLj ®.2") E g(Xm). This 
is a semisimple, Gv' x Gv"-equivariant complex. Let Ln = u:mLm E g(Xn) , 
and let Lo E g(Xo) be the unique semisimple complex such that u:oLo = Ln . 
Let L~ = (uop)!LO E g(Xp) . 

By definition, we have 

Y(L') * Y(L") = L~[D' + D"] 

where D' = Lh 1I'(h')II'(h") , D" = Lh 1I"(h')II"(h") (sum over all hEn-
(nnn')). 

Hence it suffices to prove that 

(a) L ~ L' [D' + D" - D + C]. p p 

Let Le = u;bLb E g(XJ, L f = ujcLc E g(Xf ). Then L f is a semisimple 
complex (since Lc is semisimple and ufc is smooth with connected fibres) and 
L e = u; fL f' Moreover, (u f g)! L f = L g (since the diagram U f c' U cd ' U f g , U gd 
is cartesian). Hence we may go from La to Lp by the shorter chain Le = 
(ubaueb)*La' Le = u;fLf (Lf semisimple), Lp = (UgpUfgMLf®.2"). 

Similarly, we may go from La to L~ by the shorter chain Lk = (ujauk)*La E 

g(Xk) , Lk = u:,L, (L, E g(X,) semisimple), L~ = (uopu'oML, ®.2") . 
Let Lh = u~kLk E g(Xh) , Li = u;,L, E g(X). Note that ui/ is a vector 

bundle with fibres of dimension Do = Lh II' (h')II" (h") (sum over all h E 
n-(nnn')). 

It follows that Li is semisimple (recall that L, is semisimple) and that 
(uU)!L i = L,[-2Do]' Hence we have (uopu'ouilML i ®.2") = L~[-2Do]' We 
have the identity C = D - D' - D" - 2Do. Hence it is enough to prove that 

(al) Lp ~ L~[-2Do]' 
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We have u~iLi = Lh and it follows that we may go from La to L~ by the 
chain Lh = (UjaUkjUhk)* La E 9(Xh), Lh = u~iLi (Li E 9(XJ semisimple), 
L~[-2Do1 = (Uopu/ouuMLi @2"). 

We now show that u;fL f is semisimple. This is not obvious since Uif is 
not smooth; however, we have u;fLf = (ufeuij)* Le with Le semisimple and 
U feuif a vector bundle. Our assertion follows. 

Now both u;fL f and Li are semisimple and they have the same inverse 
image Lh under uhi (a smooth morphism with connected fibres). It follows 
that u;fLf ~ L i . Since uopu/ouu = ugpu fguij we see that L~[ -2Do1 = 
(ugpu fguijMu;f(L f @ 2")) . 

We now see that (at) would be a consequence of the following statement: 
(c) L f @2" and (Uif)!u;fLf@2" have the same image under (ugpUfg )!. 

An equivalent statement is the following one: 
(cl) if u' denotes the inclusion of Xf - Xi into Xf (as an open subset), 

then (u gp U fgu'M u'* (L f @ 2") = O. 
(We use the distinguished triangle associated with the partition Xf = Xi U 

(Xf - Xi)') 
We now consider the commutative diagram 

U fc I 

~X 
U 

Xb f-- X f f-- Xf-Xi e 

Ub 1 ucl U f 1 u"l 
W fc W 

I 

Yb ~Y f-- Yf f-- Yf-X, e 

v'l wIll 

Xa Xp 

where the notations are as follows. 
Ye is the variety of all triples (s', s", V) where V is an I-graded subspace 

of V such that V E ~'" s' = (s~) E EBhEn-(nUn') Hom(Vhl/Vh" Vh"/fh") , 
" (") ffi H (V. V.) s = Sh E WhEn-(nUn') om hi, h" . 

Yf is the variety of all quadruples (s', s" , y, V) where (s', s', V) E Ye 

and Y E Yp satisfies Yh (fhl) C fh" for all h EOn 0' . 
. h . f 11 ('''''') h (' " V) Y Yb IS t e vanety 0 a sequences s, s , V, R ,R were s, s, E e 

and R" ,R' are as in the definition of Xb . 

The map wbe takes (s', s", V, R" ,R') to (s', s" , V) . 
'" ) '" The map W fe takes (s ,s ,y, V to (s ,s , V). 

The map w' is the inclusion (as an open subset). 
The map ub takes (x, V, R" ,R') to (s', s", V, R" , R') where s' ,s" are 

induced by x. 
( '" ,,,. The map ue takes x, V) to (s ,s , V) where s ,s are mduced by x. 
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The map U f takes (z, V) to (s', s" , y, V) where y = r5' (z) and s', s" 
are induced by x = o(z). 

The map u" is the restriction of U f . 
" ('" The map w takes s, s ,y, V) to y. 

The map v' is such that v' ub = uba . 
Let Mb = v'* La E 9(Yb); this is a semisimple complex that is Gv' x GV"-

equivariant, and hence there is a well-defined semisimple complex Me E 9 (YJ 
such that wZeMc = M b . Let M f = wjcMe E 9(Yf ). It is clear that u;Mb = 
L b , u;Me = L e, ujMf = L f (note that ub ' uc ' uf are vector bundles). Hence 

h '*L ,* *M " '*M we ave U f = U U f f = U * w f . 
The statement (c1) can now be rewritten in terms of M f instead of L f : 
(d) (Ugpufgu'Mu"*w'*Mf®2') = O . 

. I I ( . ,,, , ") or equIva ent y usmg UgpUfgU = w w U : 

( " , ") ("* '*M eLl) - 0 W W U ! U W f®..z; - . 

This would be a consequence of the following statement: 
(e) u;' (u"*w'* M f ® 2') = O. 
W h "( ,,* '*M 07) '*M (" =) h . ffi eave u! U w f ® ..z; = W f ® u!..z; ; ence It su ces to prove 

that 
(f) u;'2' = 0 in 9(Yf - Xl)' 
Let us fix a point (s', s" , y, V) E Yf - Xl and let r be the fibre of w' over 

this point. Let T: r -+ k be the restriction of Tu fg . 
By base change, it is enough to prove that the cohomology with compact 

support of r with coefficients in 2'jr is zero. Note that 2'jr is the local 
system defined as in 5.1 in terms of the function T. Hence, by a known 
property of Artin-Schreier coverings, it would be enough to verify the following 
statement: one can identify r with kN for some N so that T is given by a 
nonconstant affine linear form on kN. 

Let us choose an I -graded subspace W of V that is complementary to 
V. We have an isomorphism r ~ ffihEn-cnnn') Hom(J¥,l" f'hll) given by 
(z, V) -+ z' = (z~) where z~ are restrictions of x = o(z). Let y~: f'hll -+ Uih' 
be the composition of the imbedding f'hll -+ V hIt with Yjj: V hIt -+ V h' and with 
the projection Vh, -+ Uih,. A simple computation shows that, in the coordi-
nates (z~), the function T is given by the expression 2:hEn-cnnn') tr(z~y~) + 
constant. (The last trace is that of an endomorphism of f'h" .) We must show 
that the linear part of the last expression is not identically zero. 

Assume that it is identically zero. (Recall that y is fixed.) Then we have 
y ~ = 0 for all h E 0 - (0 nO'). In other words, we have Yjj(f'h") C f'h, for 
all h E 0 - (0 nO'). Hence Yh(f'h') C f'h" for all h EO - (0 nO'). The 
same inclusion holds for h EOn 0' by the definition of Yf . It follows that 
(s', s" , y, V) E Xl' a contradiction. The theorem is proved. 
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5.5. Let 

(a) 

(see 3.8). 
The integer C in SA can be expressed as follows: 

(b) 

This is verified by an easy computation. 

Corollary 5.6. (a) For any (i, a) E Sv we have 

9"'(Li ,a;n) ~ Li,a;n,[d] E ~(Ey,n') 

for some integer d. 
(b) 9"' defines a bijection 9'y, n ~ 9'y, n' . 
(c) 9"' defines an equivalence of categories r§y, n ~ r§y, n' . 

Using SA and 3.7(a) we see that it is enough to prove (a) in the special case 
where both i, a have a single term, so that V is concentrated in a single degree. 
In this case, the maps 6, 6' in 5.2(a) are the identity, and T of 5.2 is zero, 
so that 2'T of 5.2 is 1. Hence in this case, 9"' is the identity functor and (a) 
follows (see 3.6) with d = O. 

Now from (a) it follows that 9"'(L) E 9'y n' for any L E 9'y n' since 
9"' takes irreducible perverse sheaves to irred~cible perverse sheaves (a gen-
eral property of the Fourier-Deligne transform). Hence 9"' defines a map 
9'y,n -t 9'y,n" This map is injective by general properties of the Fourier-
Deligne transform. Hence ~9'y n ::; ~9'y n' . ReYersing the roles of a, a' , we 
obtain the reverse inequality; hence we have an equality and our injective map 
must be a bijection. (It is a map between finite sets, see 2.2(b).) Thus, (b) is 
proved. Clearly, (c) follows from (b). 

6. ANALYSIS OF A SINK 

6.1. In this section we shall assume that we are given an orientation Q for our 
graph and a vertex i E I . 

Given V E ~ and an integer r ~ 0, we define Ey n r to be the set of all 
x E Ey, n such that the sum (over all h E a such that it = i) of the images 
of xh : Vh, -t Vi has codimension r in Vi' The Ey n r form a partition of 
Ey n such that, for any r ~ 0, the union Ey n >r = Ur'~r Ey n r' is closed in 
Ev:n· "- -" 

6.2. If L E 9'y,n' we denote by (J(L) the support of L (a closed, irreducible, 
Gy-invariant subvariety of Ey ,n)' Let t(L) be the unique integer ~ 0 such that 
(J(L) c Ey,n,~t(L) and (J(L) i- Ey,n,~t(L)+l' Then (Jo(L) = (J(L) n Ey,n,t(L) 
is an open dense Gy-invariant subset of (J(L). 

We have t(L) ::; v(i) . 
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6.3. For any r ~ 0, let II, E N1 be defined by 1I,(i) = rand IIr(j) = 0 for all 
j E [, j f= i. We denote by Vr a vector space in ~ . We denote by lr the 
complex 1 on Ev n = {O}. r 

r' 

Lemma 6.4. Assume that i is a sink for Q, that is , 

h E Q => h' f= i. 

We fix a number t such that 0 ~ t ~ 1I(i). Let V E ~ and let W be an [-
graded subspace of V such that W E ~-v . Let d = t(II(i) - t). Let L E.9v n 

t ' 
and let K E .9w,n' 

(a) Let L E .9v ,n be such that t(L) = t. Then resv/w, w L E ~w,n is a direct 
sum offinitely many summands of the form K'[/] for various K' E .9w ,n and 
various I E Z; exactly one of these summands satisfies t(K') = 0 and 1= d; 
the others satisfy t(K') > O. 

(b) Let K E .9w,n be such that t(K) = O. Then It * K E ~v,n is a direct 
sum offinitely many summands of the form L"[/'] for various L" E .9v ,n and 
various f" E Z; exactly one of these summands satisfies t(L") = t and I' = d; 
the others satisfy t(L") > t. 

(c) Consider the sets {L E .9v,nlt(L) = t} and {K E .9w,nlt(K) = O}. 
Associate to L in the first set the K in the second set such that some shift of K 
is a summand of resv/w, w L; associate to K in the second set the L in the first 
set such that some shift of L is a summand of 1 t * K. These give two bijections 
between our two sets, inverse to each other. 

We first prove (b). We consider the commutative diagram 

Ew,n 
PI , 

~E" P, E ~E -- vn , 

fI f'I fllI gI 
I I I 

a(K) 
PI I P2 " P, X ~a --a --

jI j'I j'II kI 
ql , q2·· II 

ao(K) ~ ao -- ao 
q, -- Xo 

where the notations are as follows. 
The first row is as in 3.1(a) (with V" = W, V' = VjW; note that Ev/w,n = 

0). We have a' =p;l(a(K)), a" = P2(a') , X = P3(a") , a~ = p;l(ao(K)) , 
a~ = p2(a~), Xo = X n Ev,n,!; the maps in the second and third row are in-
duced by those in the first row and the vertical maps are the obvious inclusions. 
Let K2 E .sY(E') , K3 E .sY(E") be semisimple complexes such that p~(K) ~ 

p;(K3) ~ K2. By definition, It * K = (P3),K3 E ~v,n' We have K = frK4 for 
a well-defined irreducible perverse Gw-equivariant complex K4 E .sY(a(K)). 
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Hence there exist well-defined semisimple complexes Ks E [g(a') and K6 E 

[g(a") such that (P~)*(K4) ~ (P;)*(K6) ~ Ks' Let K7 = (P~)!K6 E .91(X). 
Now I( Ks and 1(' K6 are semisimple since /, /' are closed imbeddings. It 
follows that I( Ks = K2 and 1(' K6 = K3· Clearly, (P3)!K3 = g!K7 . In particu-
lar, 

(d) the support of (P3)!K3 is contained in X. 
Let K8 = j* K4 E [g(ao)' This is an irreducible Gw-equivariant complex 

since j is the inclusion of an open dense set. Hence there exist well-defined 
semisimple complexes K9 E .91(a~) and KlO E .91(a~) such that q~(K8) ~ 

q;(KlO ) ~ K9. Note that K9[dd and KlO[dl - d2] are irreducible, perverse 
where dl , d2 are the dimensions of the fibres of PI ,P2' Using the fact that i 
is a sink, we see easily that dl - d2 = d. Thus, 

(e) KlO[d] is an irreducible perverse sheaf. 
Let Kll = (%)!KlO E [g(Xo) . 
Using the fact that j', j" are open imbeddings we see that K9 = j'* Ks and 

K '''*K S' h d' .", k . . h k*K 10 = ) 6 • mce t e 1agram ) ,P3' q3' 1S cartes1an, we ave 7 = 
KII . It is easy to check that q3 is an isomorphism. Hence from (e) it follows 
that Kll [d] is an irreducible perverse sheaf. 

Summarizing, we see that the complex (P3)!K3[ -d] E Dv,n has support 
contained in X, and its restriction to the open set Xo of X is irreducible 
perverse; note that Xo c Ev,n,t and X -Xo c Ev,n,~t+1 . This clearly implies 
(b). 

We now prove (a). Consider the commutative diagram 

Ew,n ~ E" P3 
Ev n ---> , 

U2 r U3 r U4 r 
ao ~ a~(L) 

U6 
---> ao(L) 

where the notation is as follows. 
The map u l takes y to (x, W) where x E Ev,n is uniquely determined 

by the requirements that W is x-stable and y is induced by x. (This is well 
defined since i is a sink.) 

We have a~(L) = p;l(ao(L)) , ao = u~la~'(L). The maps us' u6 are in-
duced by u I ' P3; the vertical maps are the obvious inclusions. 

The composition P3UI identifies Ew,n with a subspace of Ev,n, and it fol-
lows from the definitions that resv/w,wL = (P3UI)*L E ~w,n . Clearly, ao is 
open in the support of (P3 U I) * L, is contained in Ew, n, 0 and its complement 
in the support of (P3U I )* L is contained in Ew n >1' Hence, to prove (a) it is 
enough to prove that u; (P3U I )* L[ -d] is an irredu~ilile perverse sheaf or, equiv-
alently, that u;u;u;L[-d] is an irreducible perverse sheaf., Let LI = u;L. This 
is an irreducible perverse sheaf on ao(L) since ao is open dense in the support 
of L. Let L2 = u;LI . It is easy to see that u6 is an isomorphism; hence L2 is 
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an irreducible perverse sheaf on (J'~ (L) . Consider the Gv-equivariant fibration 
p: (J'~ (L) ~ G where G is the variety consisting of all I -graded subspaces V 
of V such that V IV E ~ and p(x, V) = V. Note that u5 identifies ao with 

t 
the fibre of p at W. Since L2 is an equivariant perverse sheaf and Gv acts 
transitively on G, it follows that u;L2[ -d] is an irreducible perverse sheaf on 
ao and (a) follows. (Note that d = dimG.) 

Now (c) follows easily from the arguments in the proof of (a), (b). This 
completes the proof. 

6.5. We no longer assume that i is a sink for n. 
Let L E 9'v,o (with V E ~). 
For each r such that 0 ~ r ~ vi we shall denote by W, some object of 

~-v . 
We associate to Land i an integer invariant s(L) (or si(L) ). By definition, 

s(L) is the largest integer r such that 0 ~ r ~ v(i) and such that 
(a) there exists L' E e1'w"Q such that some shift of L is isomorphic to a 

direct summand of 1, * L' E e1'v o' 
(This is well defined since (a)' is satisfied with r = 0.) 

Proposition 6.6. Assume that we are in the setup of6.5 and that k is as in 5.1. 
(a) There exist complexes L;,(s(L) <,' ~ v(i)) and L';,(s(L) ~ r' ~ v(i)) in 

e1'w,t ,0 such that 

L (J) ( EB 1" * L~') ~ EB 1" * L';, 
,'>s(L) ,t~s(L) 

in e1'v 0 and such that L~(L)[f] E 9'w 0 for some integer f· 
, s(L) , 

(b) If i is a sink for n, then s(L) = t(L). 

We can find an orientation .0' for our graph such that i is a sink for n' . 
Let !T be as in 5.2. 

Using 5.4, 5.6, we see that s(!T(L)) is defined and is equal to s(L); we also 
see that the truth of (a) for !T(L) implies the truth of (a) for L. Thus we see 
that it is enough to prove the proposition under the additional assumption that 
i is a sink for n. 

From 6.4 we see that 6.5(a) is satisfied with r = t(L); it follows that 
(c) s(L) 2:: t(L). 

Next we show that 
(d) s(L) ~ t(L). 
Assume that 6.5(a) holds for some r ~ v(i) and some L'. Then it holds 

with some L' E 9'w 0; some shift of this L' is a direct summand of some 
L j a 0 (on Ew 0) ~here (i, a) E Sv_v . Hence 6.6(a) holds with L' = L j a o' 

'Using 3.7(a)''we see then that 1, * L' = L j , ,a',O for some (i', a') E Sv 's~ch 
that the first entry of i' is r. 
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Now the support of L i , ,a' ,Q is clearly contained in the set of all x in EV,Q 
such that x leaves stable some I -graded subspace W of V with V / W E ~ . 

For such x we have xh (V h') C J-V; for all hEn such that h" = i, since ~e 
then have h' ¥-i ,and xh(Vh,) = xh(Jf'h') C J-V;. This shows that the support of 
L i , ,a' ,Q is contained in Ev , Q, ~r' Since some shift of L is a direct summand 
of L i" a' ,Q' it follows that the support of L is contained in Ev , Q, ~r' Thus 
r ~ t(L) and (d) follows. Combining (c),(d) we see that (b) holds. 

Next we prove (a); we may replace there s(L) by t(L) as we have just seen. 
Now (a) is trivial in the case where t(L) = v(i): in this case, we may take 
L;(L) = 0, L;~L) = L. Hence we may assume that t(L) < v(i) and that (a) is 
already proved when L is replaced by an L" with t(L") > t(L) . 

Using 6.4 we see that there exists K E 9'w Q such that 11(L) * K E ($'v Q 
I(L) , , 

is a direct sum of finitely many summands of the form L"[/'] for various 
L" E 9'v Q and various I' E Z; exactly one of these summands satisfies 
L" = L; the others satisfy t(L") > t(L). 

Applying the induction hypothesis to each L" ¥- L above we see that (a) 
holds for L. The proposition is proved. 

7. MULTIPLICATIVE GENERATORS 

7.1. In this section we fix an orientation n for our graph. 

Lemma 7.2. Let L E 9'v Q with V¥-O 0 There exists some i E I such that 
sj(L) > 00 (See 6.5(a).) , 

We have V E ~. By the definition of 9'v, n' there exist (i, a) E SIJ and 
fEZ such that L[f] is a direct summand of L j aoQ in ($'v Q' As in 2.2, we 
see that we may assume that all coordinates of a are 'strictly positive; moreover, 
a is non empty since V¥-O. Using now 3.7(a), we see that if we set i = i l 
(first entry of i), then s;(L) ~ a l > O. The lemma is proved. 

Proposition 7.3. Let L E 9'v Q with V E ~. 
There exist L 1 , ••• , LN, LN+1 ' ••• , LN+M E ($'v,Q such that the following 

hold. 
(a) Each L j is of the form Li,a;Q[d] for some (i, a) E SIJ and some integer 

d. 
(b) L ffi (LI ffi .. · ffi LN) ~ LN+1 ffi .. · ffi LN+M in ($'v,n' 

This is trivial for V = 0; hence we may assume that V¥-O and that the 
result is already proved for graded vector spaces of total dimension strictly 
smaller than that of V. 

By general principles, we may assume that k is as in 5.1. By 7.2 we can 
find i E I so that sj(L) > O. We apply 6.6(a) to L and this i. The induction 
hypothesis is applicable to each L~" L';. appearing there. The desired result 
follows, using 3.7 (b). 
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8. COMPATIBILITY OF MULTIPLICATION WITH RESTRICTION 

8.1. In this section we assume that we are given an orientation n for our graph. 
We will need a variant of the construction of the product * in 3.1. Assume 

that we are given six objects T, T' , T" , W, Wi , W" of r such that T is 
isomorphic to T' EB T" and W is isomorphic to Wi EB W" (together with the 
grading). Consider the diagram 

E E E E ql F' q2 F" q3 E 
T' ,0 X w/ ,0 x T",O X w" ,0....-- --+ --+ T,O x Ew,o 

where the notations are as follows. 
F" is the variety of all quadruples (z, y, T, W) where Z E ET 0' Y E 

Ew , 0' T is a z-stable I -graded subspace of T such that T is isomorphic to 
T" and W is an y-stable I -graded subspace of W such that W is isomorphic 
to W". 

F' is the variety of all sequences (z, y, T, W, r, U, S, t) such that 
(z, y, T; W) E F" and r : T" 9:! T, U : T' 9:! TIT, S : W" 9:! W, t : 
Wi 9:! WI Ware isomorphisms in r . 

We have ql (z, y, T, W, r, u, s, t) = (Z', y', z", y") where zhrh' = rh"z~/: 
" I I " " T h, -t Th", zhuh' = uh"zh: Th' -t ThIITh", Yhsh' = sh"Yh: Wh' -t Uh", 

Yhth' = th"Y~: W~, -t Wh"IWh" for all hE H; q2(z,y, T, W, r, u, s, t) = 
(z, y, T, W), q3(z, y, T, W) = (z, y). 

Note that ql is smooth with connected fibres, q2 is a GT , x Gw' X GT" X GW"-
principal bundle, and q3 is proper. 

Now given L' E ~T/, w/ ,0 and L" E ~T", W" ,0' we can form the external 
tensor product L' 0 L" (a semisimple, GT, x Gw/ X GT" x Gw"-equivariant 
complex on ET, 0 x Ew' 0 X ET" 0 X EWII 0)' Then, just as in 3.1, there is 
a well-defined s~misimpl~ comple~ L on F" such that q;(L) 9:! q;(L' 0 L") 
in 91"(F' ). By definition, L' * L" = (q3)*(L) E 91"(ET -,o x Ew,o)' This is 
additive in L' and in L" ; moreover, if L' is an external tensor product L l0L2 
(with Ll E ~T' 0 and L2 E ~w/ 0) and L" is an external tensor product 
L3 0 L4 (with £3 E ~T" 0 and L~ E ~W" 0)' then one can easily verify that 
L' * L" is isomorphic to the external tensor ~roduct (L) * L 3) 0 (L2 * L 4) , where 
L) * L3 E ~T,O and L2 * L4 E ~w,o are defined as in 3.1 (with V, Vi, V" 
replaced by T, T' , T" or by W, Wi, W"). It follows that, in general, we have 
L ' L" A7P * E""T,W,O' 

8.2. Assume now that we are given V, V' , V" E r such that V E ~, Vi E 
Of/" " Of/" hi" I . f ,,,. P'v" V E P'v"'w ere 1/,1/,1/ EN satlsy 1/=1/ +1/ (asm3.1). At 
the same time we are given (as in 4.1) an I-graded subspace W of V with 
W E ~. Let T = V /W. Then T E ~ where 1/ = r + ()) . 

Let L' E ~v/ 0 and let L" E ~V" o. Then L' * L" E ~v 0 is defined as in 
3.1, 3.2, and re~, w(L' * L")) E ~T, ~,o is defined as in 4.1: 4.2. 
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8.3. Let ,AI' be the set of all ordered quadruples K = (a' , p' , a" ,p") of ele-
f I h h ' , p' II II p" , II p' p" ments 0 N suc t at 1/ = a + ,1/ = a + ,r = a + a , OJ = + . 

For each K = (a', p', a", p") E ,AI' we choose a graded subspace W'(K) 
'f V' d d d b W"() f V" h h W'() 0'/' d o an a gra e su space K 0 suc t at KEy p' an 

W"(K) E 'rp". Let T'(K) = v' /W'(K) , T"(K) = V" /W"(K); then T'(K) E ~, 

and Til (K) E ~" . 
Applying the construction of 4.1 to V', W' (K), T' (K) ,L' (resp. to V", 

W" (K), Til (K), L") instead of V, W, T, K, we obtain a complex L~ = 
L ' mY (L" II mY ) re!l.r'(K),W'(K) E ~T'(K),W'(K),n resp. K = resT"(K),W"(K)L E ~T"(K),W"(K),n 

instead of re~, W L E (!'T, w, n . 
f ' d" , II Afi' Next, rom LK an LK we can construct a complex LK * LK E ~T, W, n 

by the construction in 8.1 applied to T, T' = T'(K) , Til = T"(K) , w, w' = 
W' (K), W" = W" (K). We can now state the following result. 

Proposition 8.4. Assume that k is as in 5.1. With the notations in 8.2, 8.3, we 
have 

in (!'T, W , n' where 

g(K) = L a' (i)p" U)Hh E nih' = i, h" = j} + L a" (i)P' (i). 
i ,jEI iEI 

L K' M' mY d K" Mil mY b h h L' K' '" M' et , E ~v', n an , E ~v", n e suc t at E9 = 
and L" E9 K" ~ Mil. Clearly, if the proposition is true for (K', K") and for 
(M' ,Mil) (instead of (L', L") ) then it is automatically true for (L', L") . 

By 7.3, we can find K', M' , K", Mil as above, which are direct sums of 
shifts of complexes of the form L j a' n' We see therefore that it is enough to 
prove the proposition under the additional assumption that L, L' are direct 
sums of shifts of complexes of the form L j a' n . 

It follows immediately that it is enough to' prove the proposition in the special 
case where L' = L., '. ('\ and L" = L." ". ('\ (with (i', a') E S , and (i" , a") E 

I ,a ,~" I ,a ,~" v 
Sy" ). 

Define (i, a) E Sy as in 3.2; then L' *L" = Lj,a;n by 3.2(b) and, by 4.2, we 
have 

(a) resT, w(L' * L") ~ EB Lj,c';n IZi Lj,c" ;n[ -2M(e' , e")] 
, " c ,c 

where the summation is over the pairs of sequences e' , e" such that (i, e') E S, ' 
(. ") S d' II 1 ,e E w an e + e = a. Here, 
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Let us now fix K E /Y as in 8.3. By 4.2, 

L~ ~ E9 L i, ,d";O 0 L i, ,e" ;0[-2M(d', e')] 
d' ,e' 

where the summation is over the pairs of sequences d', e' such that (i', d') E 
Sa" (i', e') ESp' and d' + e' = a' . Similarly, 

L"~ ffi £." d".,....0L.1I ".,....[-2M(d",e")] K \:I7 1, , ~, 1, e ,:lkli 

d" ,e" 

where the summation is over the pairs of sequences d" , e" such that (i", d") E 
Sail, (i", e") ESp" and d" + e" = a" . 

Using now 3.2(b) and the results in 8.1, we see that 

(b) L' * L" ~ ffi £.,," d'd". n 0 L.,." '''. n[-2M(d' , e') - 2M(d" , e")] K Ie 'l7 JI, ,oU I] ,ee ,u 

where the summation is taken over the quadruples of sequences d', d" , e' , e" 
h h (., d') S ('" d") S (" ') S ('" ") S d' , suc t at I, E a" I, E a'" I, e E p" I ,e E p"' + e = 

, d d" " "(H ".", h b . d f h " a , an + e = a. ere I I IS t e sequence 0 tame rom t e sequence 1 

followed by i" and d'd", e' e" have a similar meaning.) We note the identity 
g(K) = M(d'd" , e' e") - M(d' , e') - M(d" , e"), 

which is easily verified. Using this identity together with (a) and (b), we obtain 
the desired result. 

9. RANK 2 

9.1. In this section we shall assume that I has exactly two elements: i and j . 
Let N be the number of edges joining i, j ; thus, H has exactly 2N elements, 

Let V E 'Y be such that dim v: = 1, dim Vj = N + 1. Let no = {h E 

Hlh" = j}. 
9.2, We now fix an orientation n for our graph (not necessarily no)' 

Let n' = {h E nih' = i}, n" = {h E nih" = i}. We denote by a', a" the 
number of elements of n' ,n" respectively. 

The set /Y of nilpotent elements in Ev, 0 is the set of all x E Ev, 0 such 
that xh xh = 0 for all hi E n" , h2 E n' or, equivalently, such that the sum of 

I 2 

images of the maps xh (h En') is contained in the intersection of the kernels 
of the maps Xh (h E nil) . 

We define a stratification /Y = UP'~P"~' ,p" as follows: ~, ,p" is the set of 
all x E /Y such that the sum of images of the maps xh(h En') has codimension 
p' and the intersection of the kernels of the maps xh (h En") has codimension 

" , V P m j' 
Clearly, 
() AI"' 'f d I 'f N 1 ' , " " , ", f a .H p' ,p" IS nonempty 1 an on y 1 + - P :::; a ,p :::; a ,p 2: p ; 1 

these conditions are satisfied, then ~, ,p" is smooth, irreducible, of dimension 
a'(N + 1 - p') + a"p" + p"(p' - p") + p'(N + 1 - p'). 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



394 G. LUSZTIG 

9.3. For any p E [0, N + 1] let Sp be the variety of all pairs (x, W) where 
x E Ev,n' W is a codimension p subspace of Vj , and xh(V j ) C W (h E QI), 
xh I W = 0 (h E n"). Let Sp C Ev , n be the image of the first projection 
Sp ...... Ev,n' Then the first projection defines a proper map 7rp : Sp ...... Sp. 

It is easy to see that Sa" = Sa"+l ' but apart from this, the subvarieties Sp 
are distinct. 

Proposition 9.4. Let Ip (p E [1 , N + 1]) be the simple perverse sheaf on Ey, n 
defined by the subvariety Sp and the local system 1 on its smooth part. Let I; 
(p E [0, N + 1]) be the complex of sheaves (7rpM1)[dimSp] extended by zero 
on the complement of Sp in Ev , n' We have 

(a) I~ = 10 , I~+l = IN+1 , 

(b) I; = Ip $ Ip_1 if 1~ P ~ a", I; = Ip $ Ip+l if a" + 1 ~ p ~ N. 
(c) la" = la"+l . 

Note that 
(d) Sp is the union of the strata ~I ,p" such that pi ;::: P ;::: p", N + 1 - pi ~ 

I "<" a ,p _ a . 
One of these strata will be open, namely the one with minimal pi and max-

imal p" . Thus, if p > a" , then p ;::: N + 1 - a' = a" + 1 and the open stratum 
is ~,a" ; if p ~ a" , then p < N + 1 - a' = a" + 1 and the open stratum 
is .A;;"+l ,p' In particular, Sa" = Sa"+l since they have the same open dense 
stratum, .A;;"+l ,a'" Using 9.2(a), we see that the dimension of Sp is equal to 
(p + a')(N + 1 - p) + a"p. 

We now consider the fibre F of 7rp : Sp ...... Sp at a point of ~I ,p" (as 
in (d». We compute p(p', p") = dimSp - dim~1 ,p" - 2dimF. Note that 
dimF = (pi - p)(p - p"). It follows that p(p', p") = (pi - a" - 1)(p' - p) + 
( " ") ( '" " . I". . a -p p-p )-(p -p)(p-p). We can wnte P(p ,p) mtwodtfferent 
ways: 

(e) p(p', p") = (p' - a" - 1)(p' - p) + J.(p - p") and 
(f) p(p', p") = (a" - p")(P - pI!) + (-J. - 1)(p' - p) 

h 1" I" W ere A = a + p - p - p . 
We have pi - a" - 1 ;::: 0, pi ;::: P ;::: p"; moreover, clearly, either J. or 

-J. - 1 is ;::: O. Using one of the expressions (e) or (f) for p(p', p") we see 
that p(p', p") ;::: O. 

Assume now that p(p', p") = O. 
If J. ~ -2, we see from (f) that pi = P and either p" = p or p" = a" . The 

alternative p" = a" cannot occur since it would imply J. = 0; the alternative 
p" = p cannot occur either since it would imply pi = p" contradicting pi > 
a" ;::: a" . 
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If A > 0, we see from (e) that p = p" and either p' = p or p' = a" + 
1. The alternative p' = a" + 1 cannot occur since it would imply that A = 
-1 ; the alternative p' = p cannot occur either since it would imply p' = p" 

d.· I II II contra Ictmg p > a ~ a . 
f ) . I II II I II If A = 0, we see rom (e that eIther p = p and p = a or p = a + 1 

and p" = p - 1 ; in the first case, we have p ~ a" + 1 , while in the second case 
we have p ::; a" + 1 . 

If A = -1 , we see from (f) that either p = p" and p' = a" + 1 or p" = a" 
and p' = p + 1 ; in the first case, we have p ::; a" , while in the second case we 
have p ~ a". 

The inequality p(p', p") ~ 0 shows that the proper map 7[p: Sp -+ Sp is 
semismall in the sense of Goresky and MacPherson. (Note that Sp is smooth.) 
Hence I; is a direct sum of finitely many simple perverse sheaves on Ev, n . 
One of these is necessarily I p ' which appears with mUltiplicity one. Now the 
cohomology sheaves of (7[pMl) are constant on each stratum ~I ,p" since 7[p 
restricted to a stratum is a Grassmannian bundle. It follows that any summand 
of I; other than Ip must be a simple perverse sheaf defined by the closure of 
one of the strata with constant coefficients. The strata that contribute are de-
termined by the equation p(p', p") = O. As we have seen earlier, this equation 
has at most one solution other than the open stratum, and the closure of that 
stratum is either Sp+l or Sp_l' This solution, if it exists, gives a summand 
that appears with multiplicity one in I; since the fibres of 7[p are irreducible. 
The proposition follows. 

Corollary 9.5. In g(Ev,n) we have 

E9 I; ~ E9 I; 
p even p odd 

where p is subject to 0::; p ::; N + 1 in both sums. 
9.6. The set 9'v,n consists in our case of Ip (p E [1, N + 1]); this follows 
from the definitions and from 2.2(a), 2.4(b). 

10. DEFINITION OF THE CANONICAL BASIS B OF V-

10.1. We shall again fix an orientation n for our graph. Let %y n be the 
abelian group with one generator (L) for each isomorphism class of objects 
of tff'v n and with relations (L) + (L') = (L") whenever L" is isomorphic to 
L EEl Ll. 

We regard Jrv,n as a module over s/ = Z[v, V-I] (v is an indeterminate) 
by defining v(L) = (L[I]) , v-I(L) = (L[-I]). It is clearly a free s/-module 
with basis (L) where L runs over 9'v,n' 

From 2.3 we see that, given V, V in ~, there is a canonical isomorphism 
%y, n ~ Jfv, n' Hence we obtain a s/ -module Jr;" n provided with natural 
isomorphisms % n ~ %y n' for any V E ~. We may regard Li a' n as v, , , , 
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elements of .Jt;, n for any (i, a) E Sv . On the other hand, !Jllv n gives rise to 
a canonical basi's of .Jt;" n . ' 

10.2. The operation * in 3.1 defines a .w'-bilinear map (denoted (a', a") -
, " CO" CO" CO" C ,,, I h h ,,, a *a ): .Av' ,nX./l-v",n - .Av,n' lor any v ,v ,v E N suc t at v = v +v . 

Th' h h ., . (' ")'" , (" III) C , CO" IS as t e assocIatIvIty property a *a *a = a * a *a lor any a E .Av ' , 

a" E .Jt;,1I, a'" E .Jt;,'11 . (See 3.4.) 
We now define a new .w' -bilinear map .Jt;,',n x .Jt;,1I,n - .Jt;"n (for v = 

, " ) (' ") , " rn (v' v"), " h v+v by a,a -aoa =v n ' a*a were 

mn(v' , v") = I: v' (h')v" (h") + I: v' (i)v" (i). 
hEn i 

Th' . h h .. , (' ") ", , (" III) C IS agam ave t e aSSOCIatIvIty property a 0 a 0 a = a 0 a 0 a lor 
any a' E .Jt;,1 , n' a" E .Jt;,11 , n' a'" E .Jt;,", , n' (This follows from the identity 

,,, ('''''') (""') ('" "') h' h' '1 mn(v ,v )+mn v +v ,v = mn v ,v +mn v ,v +v ,w IC IS easl y 
verified.) Thus (a', a") - a' 0 a" defines a structure of associative graded .w'-
algebras on %n = Eev.Jt;, n' (The grading is by elements 'v E N1 .) This 
algebra has a unit element in %a,n' Note that 

(a) %n has a canonical basis defined by the elements of !Jllv,n for various 
VEr. 

10.3. Now D (see 3.8) defines an involution of % as a graded abelian group; 
from the formulas in 3.8 we see that this is a ring homomorphism that is semi-
linear with respect to the involution of the ring .w' that takes v to v -I . 

10.4. In the setup of 4.1, let ~ w n be the the abelian group with one gener-
ator (L) for each isomorphism class of objects of ~T w n and with relations 
(L)+(L') = (L") whenever L" is isomorphic to L(J)L". We regard ~ w n as 
a module over .w' by defining v(L) = (L[l]), v-I(L) = (L[-I]). It i~ clearly 
a free .w' -module with basis (LI ® L 2 ) where LI (resp. L 2 ) runs over !JllT, n 
(resp. !Jllw,n)' Hence the external tensor product defines an isomorphism of 
.w'-modules ~,n ®s( %w,n ~ ~,w,n' 

The functor resT, w : ~v, n - ~T, w, n is additive; hence it induces a ho-
momorphism re~, w : %y, n - ~,w, n' This can be regarded as a homo-
morphism (of .w' -modules) resT, ()): .Jt;" n - Jf., n ® %()), n (where T E 'P;, 
WE~). 

10.5. We have the following associativity property. Assume that we have v = 
a+a'+a" (in N1 ). Then the homomorphisms (l®rescr',crl)rescr,cr'+cr" and 
(rescr ,cr' ® 1) rescr+cr , , cr" from .Jt;" n to ~,n ® ~I ,n ® ~II ,n coincide. (See 
4.10.) 
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,,, Ib hh ' " , C1!7 10.6. Let II ,II ,r, wEN e suc t at II + II = r + w. Let L E VbV ' n' 
L" E ~It ,n' The following equality holds in ~,n ®Jfw,n: ' 

, " '"" f(K) , " resT,w(L 0 L ) = L.J v resa, ,p,(L) 0 resalt ,plt(L ) 
K 

where the sum is taken over all K = (a', p' , a" , P") E ./11", notation of 8.3 
(thus, II' = a' + p', II" = a" + p", r = a' + a", W = p' + p" ), and 

f(K) = L(p'(h')a"(h") - a'(h')p"(h")) + L(a'(i)p"(i) - p'(i)a"(i)). 
hen ~I 

(By definition, (at ® a2 ) 0 (a3 ® a4 ) = (at 0 a3 ) ® (a2 0 a4 ) for at E ~, ,n' 
a2 E %p' ,n' a3 E ~It ,n' a4 E %pit ,n .) This follows from 8.4 and the identity 

f(K) = -2g(K) + mn(a' + p' , a" + P") - mn(a' , a") - mg(p' , P"). 

10.7. We consider the abelian group ZI of all functions I - Z (with the 
pointwise sum operation); this contains NZ as a submonoid. Let r be the 
group algebra of this group with coefficients in .PI; thus, r has an .PI-basis 
{K"la E ZI} and KaKa' = Ka+a,. Let rKg be the .PI-module r®oW' Jfg . 
Proposition 10.S. There is a unique associative .PI-algebra structure on rKg 
such that 

(K" ® L)(K,,' ® L') = v'(P ,a') K,,+,,' ® (L 0 L') 

for any L E %p ,g' L' E %p' ,g' and any a, a' E ZI , where 

r(p, a') = - L p(h')a' (h") + 2 L p(i)a' (i). 
heH ieI 

This follows from the associativity of the product L 0 L' and the identity 
r(p, a') + r(p + p' , a") = r(p' , a") + r(p , a' + a"). 

10.9. We shall write KaL instead of Ka ®L E rKg . The algebra structure 10.8 
on r Kg gives rise in the usual way to an algebra structure on r Kn ® oW' r Kg . 
We have the following result. 

Proposition 10.10. There is a unique coassociative .PI-coalgebra structure on 
r Kg with comultiplication ~: r Kn - r Kg ® r Kg such that for any L E ~ ,n 
and any (J E ZI we have 

~(KuL) = L vs(T,W)(Ku ® KU _ T) resT,w(L) 
T,W 

where the sum is taken over all r, w in N1 such that r + w = II ; the last product 
is computed in the algebra r Kn ® oW' r Kg ; we have 

s(r, w) = - L r(h')w(h") + L r(i)w(i). 
hen ieI 

This follows from the associativity property 10.5 of res and the identity 
s(y + y' , y") + s(y, y') = s(y, y' + y") + s(y' , y"). 
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Proposition 10.11. The comultiplication ~ : rKg -+ rKg 0 rKg is an algebra 
. homomorphism. 

Let L' E %, rl, L" E % II rl, and let 0", a" be in Z. Let v = v' + v" . v ,~" v ,:''' 

Recall from 1 0.2 that L' 0 L" = vmn(v', v") L' * L". By 1 0.6, 10.8, 10.10, we 
have 

~(Ka,L' KaliL") 

= ~(vr(v' ,a") Ka'+a"(L' 0 L")) 

- ""' r(v',a")+s(r,w)(K ,o,K ) (L' L") - w V a'+a" '<Y a'+a"-r resr,w 0 
r,w 

L: r(v' ,a")H(r,w)+!(K) ,,, = V (K,+ II 0K,+ "_ ) res , p,(L) ores II pll(L ) 
(J(J or; r Q:, 0:, 

K 

(in the first sum, r, W E N1 are subject to r + W = v; in the second K = , p' " ".. ",,,,,,, (a, ,a, p ) is subject to v = a + p , v = a + p ). 
On the other hand, we have 

~(Ka,L')~(KaIlL") 

= ,,",vs(a',P')+s(al'P")(K ,0K, ,) 
W a a-a 

K 

x res, p' (L')(K II 0 K "_ II) res II p" (L") 
Q, a (In Cl', 

L: S'(K) ,,, 
= V (K, II 0 K '+ II , II) res , p' (L ) 0 res II p" (L ) a +0" (J a -Q -0; Q , Q' , 

K 

where K is as in the previous formula and s' (K) = s(a' , P') + s(a" , P") + 
r( a' , a") + r(p' , a" - a") . 

It remains to verify the following identity: 

r(v' , a") + s(r, w) + f(K) = s(a', P') + s(a", P") + r(a' , a") + r(p' , a" - a") 

h ,,, p' p" d' , "S· () ( ) were r = a + a , W = + an v = a + a . lnce r , ,s, are 
bilinear, this is equivalent to the identity 

s(a', P") + s(a", P') = r(p', a") + f(K). 

which is easily verified. 

10.12. For each i E I and a E N we denote by F/a) the canonical basis 
element of % g where f.l is such that f.l(i) = a and f.l(j) = 0 for all j =1= i. J-l, 
(This corresponds to the complex 1 on the zero vector space Ev g' where 
W E ~.) Note that F?) is the unit element of the algebra %g. It i~ clear that 

(a) 

where D is as in 10.3. 
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To state the following result we introduce some notation on Gaussian bino-
mial coefficients: 

a k -k II V -v 
[a]! = -I ' 

k=l V - V 

[ '] _ [a + a']! a, a - ,. 
[aMa ]! 

Proposition 10.13. (a) For any (i, a) E Sv (with m terms each) we have the 
following equalities in %n: 

D(L. ) = v 2d(i,a) L. 
l,a,n l,a,n 

where d (i, a) is as in 3.8(b) and 
L. = Vd(i, a) F(a,) 0 F(a2) 0 •.. 0 F(am ). 

l,a,n II 12 1m 

(D is as in 10.3.) 
(b) The elements F?) (i E I, a E N) generate the .9f -algebra %n. 
( c) If i E I and a, a' EN, we have 

F (a) F(a') _ [ ']F(a+a') 
i 0 i - a,a i 

in %n' 
( d) Let I, ] be distinct elements of I and let N be the number of edges 

joining them in our graph. We have the following equality in %n: 
N+I 
2:) -ll F?) 0 F?) 0 Ft+ I - P) = O. 
p=O 

The first formula in (a) follows from 3.8(a). 
From 3.7(a) we see that the two sides of the second formula in (a) are equal 

for a certain unknown value for the exponent of v . The value of that exponent 
can be determined by applying the ring involution D to the two sides of that 
equality, using the first formula in (a) and 10.12(a). 

Now (b) follows from (a) and from 7.3. The equality (c) follows from (a) 
and 2.4(a); (d) follows from (a) and 9.5. 

Proposition 10.14. Let 0' be a second orientation of our graph. Assume that k 
is as in 5.1. Then Y (see 5.2, 5.6) defines an .9f -linear isomorphism %n ~ %nJ 
(preserving the grading) which will be denoted again by !7 . 

(a) !7 : %n ~~, is an algebra isomorphism. It takes the canonical basis 
(1O.2(a)) of %n onto the canonical basis of ~,. 

(b) There is a unique algebra homomorphism r Kn ~ r Kn' that takes KaL 
to Ka!7(L) for any a E Zl and any L E %n' This is compatible with the 
comultiplication. 

(a) follows from 5.4, 5.5, 5.6. The first statement of (b) follows from (a). To 
verify the compatibility in the second statement, it is enough to verify it on the 
algebra generators of %n (see 1O.13(b)) and on the generators of r, where it 
is obvious. 
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10.15. Let u - be the - part of the enveloping algebra u of the Lie algebra 
(over Q) attached by Kac and Moody to the generalized symmetric Cart an 
matrix (a i) indexed by I x I where au = 2 and -aij is the number of edges 
joining i, j in the graph, for i =I j . This is the Q-algebra defined by generators 
Fi (i E I) and relations 

~(-I)P (N + I)FP FFN +1- p = 0 L..t P JIJ 
p=o 

for any i =I j (with N = -au ). 
Let U- be the - part of the quantized enveloping algebra U (over A', 

the quotient field of .PI ) attached by Drinfeld and limbo to the same Cartan 
matrix. This is the A' -algebra defined by generators Fi (i E I) and relations 

N+l 
~ p N+l-p L..t[p, N + 1 - p]Fj FiFj = 0 
p=o 

for any i =I j (with N = -aij ). (U itself has additional generators K i , K i- 1 , 

Ei (i E I) .) 
We shall regard U- as a N1 -graded algebra; the grading U- = EBv U~ is 

uniquely defined by the condition that for all i E I we have Fi E U; where 
jj(i) = 1 and jj(j) = 0 for j =I i. 

Note that U~ is a finite-dimensional A'-vector space for any v E N 1 • 

Similarly, u - is a graded N1 -algebra. 

10.16. From 10.13(c),(d) we see that there exists a unique A'-algebra homo-
morphism An: U- -+ %n 0 A' such that An(F) = F}'l for all i E I. 

Theorem 10.17. (a) An is an isomorphism of A'-algebras. 
(b) Let 0 ' be a second orientation of our graph. Then An' = .7 An where .7 

is as in 10.14(a). 
(c) Let B be the inverse image under An of the canonical basis of %n' Then 

B is an A' -basis of U- that is independent of o. (We call it the canonical basis 
of U-.) 

First note that (b) holds: it is enough to verify the equality in (b) on the 
algebra generators Fi , where it is obvious. 

In the rest of the proof we assume that, for a particular orientation 0, we 
have 

(d) dimQ u; :::; dimQ ~ , n 0 Q 
for all v. (Here, Q is regarded as a .PI-algebra with v -+ -1 .) 

We now prove (a). Note that An is compatible with the NI-gradings, that 
the homogeneous components of these gradings are finite-dimensional, and that 
An is surjective (see 10.13(b),(c)). 
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Hence to prove (a) it is enough to prove that 

(e) dimA, u~ ~ dimA'~,g ®A' 

for any v. By general principles, it is enough to verify this in the case where 
k is as in 5.1. In that case, dimA, ~ g ® A' is independent of the choice 
of orientation, by 10. 14(a). Hence it is enough to verify (e) for a particular 
orientation Q, for example for one such that (d) holds. 

Since u - is a specialization of U- for v = 1, we have dim A' U; ~ 
dimQ u; ; hence (d) implies 

dimA, U~ ~ dimQ~,g ®Q = dimA'~,g ®A' 

for any v. This proves (a). 
To prove (c), we may again assume by general principles that k is as in 5.1. 

In that case, (c) follows immediately from (a),(b) and 1O.14(a). This completes 
the proof, except for the verification of (d); that verification will be done in 
10.21. 

10.18. Let X be a variety over k. Let M(X) be the Q-vector space of all 
constructible functions I: X - Q , that is, of all functions such that I-I (a) is 
constructible for any a E Q and is empty for all but finitely many a. 

Following MacPherson [M], for any morphism m: X - X' of varieties 
we define linear maps m*: M(X') - M(X) and m,: M(X) - M(X') by 
(m* I)(x) = I(m(x)) , (m/)(x') = ~aEQ ax(m- I (x') n I-I (a)) , where X de-
notes Euler characteristic in /-adic cohomology with compact support. 

These operations are related to the analogous operations in derived category 
as follows. 

If L E ~(X), we can attach to L the function IL E M(X) defined by 
IL(x) = ~i-1)j dim~iL where ~iL are the stalks of the cohomology 
sheaves of L at x EX. Now let L' E ~(X'). We then have m/L = Im,L and 
m* I L, = 1m. L" We also have IL[d) = (_l)d IL for any integer d. . 

10.19. F or any V E 'P" , we define L (V, n) to be the vector space of all func-
tions in M(Ev g) that are constant on the orbits of Gv ' Now let V, V', V" 
be as in 3.1, a~d let I E M(Ev',g)' I' E M(Ev",g)' We define a func-
tion I * I' E M(Ey g) formally as in 3.1. We shall use the notations of 3.1. 
Let 1;, E M(Ev', g ~ EVil, g) be given by 1;, (x' ,x") = I (x')/' (x"). Then 
there is a unique function 1; E M(E") such that P~ 1;, = p;1; ; by definition, 
I * I' = (P3M/3)· 

Next we note that given v E N1 ,the vector spaces L(V, n) for various V E 
~ can all be identified in a coherent way with a single vector space L(v, Q) 
(by the invariance condition on the functions considered). The operation above 
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becomes a pairing L(v' , Q) x L(v", 0) --+ L(v, Q) denoted (I, I') --+ 

I * I'. Let L(O) = ffiIlL(v, 0). The operation * makes L(O) into an 
associative Q-algebra. 

Let i E I; let ).l be such that ).l(i) = 1 and ).lU) = 0 for j =I i. Then 
L().l, 0) is one dimensional, with a canonical basis element F j corresponding 
to the function on {O} with value 1. Let La(O) be the sub algebra of L(Q) 
generated by the elements Fj (i E I) , and let La(v, Q) = Lev , Q) n La(Q) . 
Then La(O) = ffi ll La(v , Q) . 

The definition of La(O) given above is a reformulation of a definition given 
by Schofield in [S] (which is itself a variant of a construction of Ringel [RD. We 
shall recall the definition of [S] in a slightly different form, more convenient for 
our purposes. 

Let S~ be the set of all sequences i such that (i, a) E SII where a is a 
sequence of form (1, 1, ... , 1). 

Let R be the Q-vector space with basis indexed by the elements i in UII S~ . 
We regard R as an associative algebra with product i'i" as in 3.2(b). 

For any V E ~ and any x E Ev,n we define a linear form tx: R --+ Q 
by tx(i) = 0 if i E S~, with v' =I v and tx(i) = X(1t j ,a)-I(x)) if i E S~; 
here (a) = (1, 1, ... 1) and llj a is as in 1.5. Let J be the intersection of the 
kernels of t x for various V, x as above. One shows that J is a two-sided ideal 
in R, and one defines L~ (0) as the Q-algebra R/J. We define a Q-linear 
map R --+ L(O) by associating to a basis element i of R the constructible 
function x --+ tx(i) on Ev,n (where i E S~ and V E ~). It is clear that 
the kernel of this map is exactly J and its image is exactly La(Q). Hence it 
defines an isomorphism 
(a) 

compatible with multiplication. We shall denote the element of L~ (Q) corre-
sponding to F j E La (0) , again by F j • 

The following proposition is proved in [S]. 
Proposition 10.20. Assume that 0 has no cycles or, in other words, that we 
cannotfind m ~ 2 and hI ' h2' ... , hm in 0 such that h;' = h;+l for 1 ::; i < m 
and h~ = h~. Then there is a unique Q-algebra isomorphism u- ~ L~(Q) 

under which Fj corresponds to Fj for all i E I . 

10.21. We define a new product L(v' , 0) xL(v", 0) --+ L(v, 0) by (I, /') 
(' ") 

--+ lol' = (-1 )mn 11 ,11 1*1' . This defines a new associative algebra structure 
on L(O) for which the subalgebra generated by the F j is the same subspace 
La(O) , but with a new multiplication. 

Let V E ~. The correspondence L --+ fL (see 10.18) defines a homomor-
phism of abelian groups ~,n --+ L(V, Q). This extends uniquely to a Q-
linear map ~ ,n®Q --+ L(V, 0), where Q is regarded as a .9I-module with v 
acting as -1 . This may be regarded as a Q-linear map Je;,. n ® Q --+ L (v , Q) ; 
hence it gives rise to a Q-linear map Jrn ® Q --+ L(O). From the definitions 
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and from the results in 10.18, we see that this is a Q-algebra homomorphism 
(for the new algebra structure on L(n)). It clearly takes F?) to F j , and 
hence, by 1O.13(b),(c) its image is exactly ,AQ(Q). 

It follows that 
(a) 

for all v. It is easy to see that our graph has at least one orientation n for 
which there are no cycles. For such n we can combine (a) with 10.19(a) 
and with the conclusion of 10.20 and we see that 10.17(d) holds. (Note that 
the isomorphisms in 1O.19(a) and 10.20 are compatible with natural gradings.) 
Thus, Theorem 10.17 is proved. 

10.22. Let U~o be the A' -vector space r ® A' U- . According to Drinfeld and 
Jimbo, this is a Hopf algebra with multiplication such that U-, r ® A' are 
sub algebras, and KaFj = V S FiKa' where iE I, 0 E ZI, S = 'EhEH;h'=j o(h")-
2o( i). The comultiplication is given by 

-1 A(F) = 1 ® Fj + Fi ® Kaj , A(Ka) = Ka ® Ka 

where OJ has value 1 at i and value zero at any j =J i. 
The isomorphism in 10.16 can be extended to an isomorphism of A' -vector 

spaces 

by Ka ® Z --t K)'n(z) . 

Proposition 10.23. (a) Xn is an algebra isomorphism. 
(b) Xn is compatible with the comultiplication. 
(a) follows from 10.8 and the definition of An' By 10.11, it is enough to 

check (b) on a set of algebra generators where it is obvious. 
10.24. If V E ~ and V* is the dual space, we have an isomorphism p: Ev, n 9:! 

Ev' ,n given by p(x) = x' where x~: V~, --t V~" is the transpose of xii: Vh" --t 

Vh'· 
This induces an equivalence of categories Il-! : 9(Ev,n) 9:! 9(Ev' ,n) with 

. * Inverse p . 

Lemma 10.25. (a) If (i, a) E Sv we have P!Li,a;n 9:! L i , ,a';n E 9(Ev' ,n) where 
(i' , a') are the sequences obtained by reading (i, a) from right to left. 

(b) P! defines a bijection 9'v,n 9:! 9'v' ,n with inverse p* . 
(c) P! defines an equivalence of categories ($'v, n 9:! ($'v' ,n with inverse p * . 
The (standard) verification of (a) is left to the reader; (b) follows from (a) 

and (c) follows from (b). 
Lemma 10.26. If V, V' , V" are as in 3.1 and L', L" are as in 3.2, then 
p!(L' * L") 9:! p!(L") * p!(L') E ($'v' ,n' 

The proof is standard; it will be omitted. 
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10.27. The operation p! in to.25 induces a ~-linear isomorphism Jf;'"n ~ 
Jf;', n for any v ; hence it induces a ~ -linear isomorphism %n ~ %0' (denoted 
again p!) that carries the canonical basis of the first space onto the canonical 
basis of the second space (see 10.25(b)). It transforms the mUltiplication of 
the first space to the opposite of the multiplication on the second space. This 
follows from 1 0.26 and from the identity 

mn(v' , v") = mO'(v" , v'). 

to.28. Let f: U- -+ U- be the unique A'-linear isomorphism that takes each 
F; to itself and transforms the multiplication into the opposite one. We have 
the equality 

(a) 
(It is enough to check this equality on the generators F;, where it is obvious.) 

11. PROPERTIES OF THE CANONICAL BASIS B OF U- . 
11.1. In this section, Q is fixed, but it is used only in proofs; the results do not 
refer to it. 
Proposition 11.2. For any v E N1 , let By = B n U~. Then B = Uy By (disjoint 
union) and each By is a finite set. 

This is obvious. 
Theorem 11.3. Let U- be the ~ -subalgebra of U- generated by the elements 
([r]!)-I F;' for various i E I and r EN. Then B is an ~ -basis of U- and By 
is an ~ -basis of u- n U~ for any v. 

Indeed, under A.n , U- corresponds to %n' regarded as an ~ -subalgebra 
of %n ® A' . (See 10.13(b).) 

Proposition 11.4. The A'-linear isomorphism f: U- ~ U- (see 10.28) takes B 
onto itself. 

This is clear from 10.27, 10.28. 
Theorem 11.5. (a) Let b', b" E B; let us write their product in U-
"'£bEDfb' ,b" ,bb with fb' ,b" ,b E A'. Then fb' ,b",b E N[v, V-I]. 

(b) Let bE By ; we have 

Il(b) = L 
T, OJ b' ED, ' b" ED", 

in U~o ® U~o where gb' ,b",b E N[v, V-I]. 

as b'b" = 

Let b, b', b" be as in (a). Let V, V', V" be as in 3.1 so that b, b', b" 
correspond respectively to L, L' ,L" in 9'v,n' 9'v',n' 9'v" ,n' Let us write 

L' * L" = E9 Q~(l,d) ® £[d]. 
IE.9'y, Q' dEZ 
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Then from the definitions, we have /;", b" ,b = V S Ed N(L, d)vd for some in-
teger s and (a) follows. 

Now let b, b' , b" be as in (b). Let V, T, W be as in 4.1 so that b, b' , b" 
correspond respectively to L, L', L" in .9v,!l' .9T ,Q' .9w ,Q. Let us write 

re~,wL = 

Then from the definitions, we have gb', b" ,b = V S Ed N(L' , L" , d)vd for some 
integer sand (b) follows. 

11.6. Let b E BII and let i E I. We associate to b, i an integer sj(b) as 
follows. By definition, sj(b) is the largest integer r such that 0 ~ r ~ 1/(i) and 
such that 

(a) there exists z' E U- such that b appears with nonzero coefficient in 
Ft z' , expressed as an A' -linear combination of elements of B or, equivalently, 

(al) there exists b' E B such that b appears with non-zero coefficient in 
Ft b' , expressed as an .9f -linear combination of elements of B. 

(This is well defined since (a) is satisfied with r = 0.) 
Using 6.6 for our Q, we see that 
(b) there exist elements z~, E U- (sj(b) < r' :$ 1/(i)) and z~: E U- (sJb) ~ 

r' :$ 1/(i)) such that 
" I r' /I b+ '" F z, = '" F z, L...J Ir L...J Ir 

r'>sj(b) r'~sj(b) 

d h h /I f B" . f an suc t at zs;(b)v E lor some mteger . 
In particular, we must have 
(c) bE F/j(b)U- . 

Theorem 11.7. (a) For any i E I and any r ~ 0, the intersection FtU- n B is 
an A'-basis of FtU- . 

(b) For any i E I and any r ~ 0, the intersection U-Ft n B is an A' -basis 
ofU-Ft· . 

Let Z E FtU- ; we can write uniquely z = EbEB fbb with /;, E A' . Assume 
that b satisfies fb t= 0 . 

By definition (11.6) we see that r :$ sj(b). By 11.4(c), We have bE F/j(b)U-
and in particular, b E FtU- . This proves (a). Now (b) follows from (a) and 
11.4. 

Corollary 11.8. (a) For any 1/ E N1, the intersection (E jE1 Ft(i)U-) n B is an 
A' b . if" FlI(i)U-- aSlS 0 LJjEI j • 

(b) For any 1/ E N1, the intersection (E jE1 U-Ft(i)) n B is an A' -basis of 
" . U-FlI(i) LJIEI I· 
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11.9. Let vENN. There exists aU-module M(v) with a nonzero vector 
Yo E M(v) with the following properties: 

(a) EjYO = 0 and KjYO = VV(i)yo for all i (Ej' K j are as in 10.15); 
(b) the map U- --. M(v) given by z --. zyo is surjective and its kernel is 

I '" U- FV(i)+ 1 exact y L.JjEI j . 
Moreover, the pair (M(v) , Yo) is unique up to a unique isomorphism. 
Now using 11.8, we obtain the following result. 

Corollary 11.10. The image of B- ((2: jE1 u-FtU)+l)nB) under the map 11.9(b) 
is a (canonical) A' -basis of M(v). 

12. THE VARIETY Av 

12.1. We shall fix a function e : H --. k* such that e(h) + e(li) = 0 for all 
h EH. 

Let V E 'P'. The Lie algebra of Gv is glv = EB j End(V) ; it acts on Ev by 
(a, x) --. [a, x] = x' where x~ = ah"xh - xhah, for all h. 

We define a nondegenerate symplectic form ( , ) on Ev with values in k 
by 

(x, y) = L e(h) tr(xhY7!)' 
hEH 

(Here, tr means trace as endomorphism of V h" .) This form is clearly Gv-
invariant. 

The moment map attached to the Gv-action on the symplectic vector space 
Ev is the map 1fI: Ev --. glv whose i-component IfIj: Ev --. End Vj is given by 

IfIj(X) = L e(h)xhx7!' 
hEH: h"=j 

We have the following identity: 

I I "'" I I (a) ([a, x], x ) = -(x, [a, x ]) = L tr(aj(lfIj(x + x) - IfIj(X) - IfIj(X ))) 

for all a E glv' x, x' E Ev . 

Definition. Av is the set of all nilpotent elements x E Ev such that lfIi(X) = 0 
for all i E I. 

Clearly, Av is a Gv-stable, closed subvariety of Ev' 
Note that the equations IfI/X) = 0 appear in the work [K] of Kronheimer for 

a very particular V associated to an extended Dynkin graph (with Vi being the 
spaces of the irreducible representation of the corresponding finite subgroup of 
SL2(C)). As Ringel informed me, the equations IfIj(x) = 0 have first appeared 
(for ordinary Dynkin graphs) in work of Gelfand and Ponomarev around 1979. 
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12.2. For any k E I and pEN we consider 

AY,k,p = {UIz) E Ayl codimYk CEH~II=k im(fh : Vh, -+ Vk)) = p}. 

It is clear that for fixed k E I and Po ~ 0, the union Up: p90 AY,k,p is an 
open subvariety of Ay; hence, Ay, k,p is a locally closed subvariety of Ay . It 
is clearly Gy-stable. 

Theorem 12.3. (a) Ay is a closed subvariety of Ey of pure dimension dimEy/2 
(i.e. each irreducible component of Ay has dimension equal to dim Ey/2 ). 

(b) Ay, k , p has pure dimension dim Ey I 2 . 

12.4. Let k E I and pEN be such that 0 < p ~ dim Vk . Let V be a subspace 
of V k of codimension p. 

Let v' E 'F be defined by V~ = Vi for i -::j:. k and V~ = V. 
Let J = EBi Hom(V~, Vi) and let Jo = {(r) E Jlri injective for all i}. Let Y 

be the variety of all triples (t, s, r) E Ay' ,k,O x Ey x Jo such that shrh' = rh"th 
for all h E Hand L e(h)shSJi = O. 

hEH: h"=k 
On Y we have a free Gy,-action 

-I -I (gi): ((th), (Sh) , (r)) -+ ((gh"thgh, ), (Sh) , (rigi )). 

Lemma 12.5. (a) The map (t, s, r) -+ (t, r) is a locally trivialfibration p': Y -+ 

Ay' , k ,ox Jo with fibres isomorphic to k m , where m = - p (dim V k - p) + 
P "L.hEH : h'=k dim V h" . 

(b) The map (t, s, r) -+ s has image equal to Ay, k , p and it defines a mor-
phism p": Y -+ Ay, k,p that is a principal Gy, -bundle. 

(c) If z' is an irreducible component of Ay' ,k, 0' then Z = p" (p,-I (Z' x Jo)) 
is an irreducible component of AV,k,p' 

(d) We have dimZ = dimZ' + (dimEv - dimEy' )/2. 
(e) We have a 1-1 correspondence Z' +-7 Z between the set of irreducible 

components of Ay" k , 0 and the set of irreducible components of Av, k , p . 
(Compare [L3, 8.5].) Assume that (t, r) E Ay' ,k,O X Jo has been fixed; let gr 

be the set of all s E Ev such that (t, s, r) E Y. We must show that gr ~ k m . 

Choose a p-dimensional subspace V of V k ' complementary to V. 
Let g-' be the kernel of the linear map 

E9 Hom(V, Vh ,,) -+ Hom(V, V) 
h: h'=k 

given by (fh) -+ "L.hEH: h'=k e(ii)thfh. It is clear that s -+ (shIV) gives an 
isomorphism gr ~ gr' . But the last linear map is surjective since t E Av' , k, 0; 

hence its kernel has dimension m, as required. Now (b) is easily verified and 
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(c), (e) follow immediately from (a), (b). We see also that in (d) we have 
dimZ +dimGv' = dimZ' +dimJo+m. It is clear that dim Jo-dimGv' +m = 
p(dimVk - p) + m = p E h: h'=k dim Vhlt. 

Thus, dim Z - dim Z' = p Eh : h' =k dim V hit. On the other hand, we have 
dimEv-dimEv' =2pEh:h'=kdhlt and (d) follows. 
Lemma 12.6. If V :f: 0, then Av = Uk ,p>O Av, k,p . 

Let x E Av' Then x is nilpotent, and hence by 1.8(b) there exists an x-
stable flag ¢ = (V = VO ~ Vi ~ ... ~ Vm = 0). Since V:f: 0, we may assume 
that Vi :f: V. By the definition of a flag (1.4), there is a k E I such that 
Vk :f: Vk and V; = Vj for all j :f: k. Let p > 0 be the codimension of Vk in 
Vk . Let hE H be such that h" = k Then by 1.8(a), we have xh(Vh') c Vk 
for all h E H such that h" = k. Thus, we have E hEH : hlt=k xh(Vh') c Vk so 
that x E AV,k,p' 

12.7. We now prove Theorem 12.3. (Compare [L3, 8.7].) We may assume 
that V:f: 0 and that the theorem is already proved for I -graded vector spaces 
of strictly smaller dimension than that of V. From 12.5 and the induction 
hypothesis we see that Av, k , p has pure dimension equal to dim Ev I 2 when-
ever p > O. Now using 12.6, we see that Av has pure dimension equal to 
dim Ev/2. Finally, from this it follows that Av, k, 0 (which is open in Av) has 
pure dimension equal to dim Ev/2 . Theorem 12.3 is proved. 
12.8. Let V E r and let Q be an orientation for our graph. Note that Ev, 11 is 
a lagrangian subspace of Ev complementary to the lagrangian subspace Ev, n . 
Hence the symplectic form ( , ) defines a nonsingular pairing Ev, 11 x Ev, n -
k. 

This shows in particular that Ev is naturally the cotangent bundle of Ev 11' 
We have the following result (compare [L3, 9.3]): ' 
(a) If x' E Ev 11 and x" E Ev n then we have IfJJx' + x") = 0 for all i E I 

if and only if x" is orthogonal ~ith respect to ( , ) to the tangent space to 
the Gv-orbit of x' (regarded as a vector subspace of Ev 11)' 

Indeed, that tangent space is the set of all vectors x E Ev, 11 such that for 
some a E glv we have x = [a, x']. The orthogonal to that tangent space is 
the set of all x" E Ev,n such that for all a E glv we have ([a, x'], x") = 
0, or equivalently (see 12.1(a)) EiEI tr(ailfJi(x' + x")) = 0, or equivalently 
lfJ/x' + x") = 0 for all i. 
Theorem 12.9. Av is a Lagrangian subvariety of Ev . 

The proof is based on the inductive construction of irreducible components 
of Av which has been already used in the proof of 12.3; the details will be 
given elsewhere. This result is not used in the sequel. 
12.10. Let M(V) be the Q-vector space consisting of all constructible functions 
in M(Av) that are constant on the orbits of Gv on Av. 
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I " I ~ I I' ~ " Now let V, V ,V be as in 3.1, and let E M(V), E M(V ). 
We define a function I * I' E M(V) by imitating the construction of 3.1. 

Consider the diagram (analogous to 3.1(a)): 

(a) A A PI F' P2 F" P3 A V' x V" f-- --+ --+ V 

where the notations are as follows. 
F" is the variety of all pairs (x, V) where x E Av and V is an x-stable 

I -graded subspace of V such that V E ~" . 
F' is the variety of all quadruples (x, V, R" ,R') where (x, V) E F", R" 

is an isomorphism Vi ~ V (in W") and R' is an isomorphism Vi ~ VjV (in 
W"). 

W h (V R" R') (' ") h R' '" j e ave PI x, , , = x ,x were xh hf = Rh"xh: Vhf .....-t Vh" Vhf 
" """ s:' lh and xhRh, = Rh"Xh : Vhf .....-t Vh" lor al E H. 

P2(X, V, R" , R') = (x, V), P3(x, V) = x. 
Note that P2 is a Gv' x Gv,,-principal bundle and P3 is proper. (Unlike the 

situation in 3.1, PI is not in general smooth.) 
Let 1; E M(Av' x Av" , n) be given by 1; (x' , x") = I (x')f" (x"). Then 

there is a unique function f3 E M(F") such that p~1; = p;J;; by definition, 
I * f" = (p3MJ;)· 

Next we note that given v E N1 , the vector spaces M(V) for various V E ~ 
can all be identified in a coherent way with a single vector space M(v) (by 
the invariance condition on the functions considered). The operation above 
becomes a pairing M(v' ) x M(v") .....-t M(v) denoted (I, I') .....-t I * I'. Let 
M = €By M(v) . The operation * makes M into an associative Q-algebra. (It 
is a quotient of an algebra like L (n) in 10.18 defined for a graph with the 
same vertices as our graph, but with twice as many edges, in which H is an 
orientation. ) 

Let i E I; let p be such that p(i) = 1 and p(j) = 0 for j =f i. Then M(p) 
is one dimensional, with a canonical basis element Fi corresponding to the 
function on {O} with value 1. Let Mo be the subalgebra of M generated by 
the elements Fi (i E l). Then Mo = €By Mo(v) where Mo(v) = M(v) n Mo' 
Lemma 12.11. Let i =f j in I and let N be the number of edges in our graph 
that join i, j. Then the following identity holds in the algebra Mo: 

N+I pFP FN+I-p 

I)-I) _I, Fj(N I 1- )' = o. 
p=o p. + P . 

Let V E W" be such that dimVi = 1, dimVj = N + 1, and dimVk = 0 for 
all other k. Let H' = {h E Hlh' = i, h" = j} . 

In our case, 

(a) Av = {x E Evl L e(h)xhxli = 0 and xlilXh2 = 0 for all hI' h2 E H'}. 
hEHf 
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(The first condition is 'IIj(x) = 0; the second one is the nilpotency condition. 
The condition 'IIi(X) = 0 is a consequence of the nilpotency condition.) 

Let x E Av' Let WI be the subspace of Vj generated by the images of 
Xh : Vi - Vj for various h E H' . Let Wz be the subspace of Vj given by the 
intersection of the kernels of xli: Vj - Vi for various h E H'. From (a) we 
have ~ c Wz. 

For each p E [0, N + 1], let Fp(x) be the variety of all codimension p 
subspaces W of Vj such that WI eWe Wz. 

The identity to be proved can be rewritten in the following form: 
N+l 

(b) I)-llx(Fp (x)) = 0 
p=a 

for all x E Av' Let d l , d2 be the co dimension of WI' Wz, respectively. 
Now Fp(x) is empty unless d2 ~ p ~ d l ' in which case it is a Grassmannian 

with Euler characteristic X(Fp(x)) = (~1-=-~) . If d l > d2 , we have the identity 

~(-ll (d1 -=-d2) = 0 
-d d l P p- 2 

and (b) follows. 
It remains to show that we always have ~ =I- W2 • We have a diagram 

0- Vj/W2 - Vi EB··· EB Vi - WI - 0 
where the middle term is a direct sum of copies of V I' one for each h E 
H'; the second arrow is defined by Y - (x/i(Y)); the third arrow is (zh) -
L.hEH' e(h)xh(zh)' This diagram is a complex (by (a)), which is acyclic except 
possibly at the middle position. It follows that dim(Vj/Wz) ~ N - dim ~ so 
that dim W2 - dim WI ~ dim Vj - N = 1 ; in particular, we have lifJ =I- Wz and 
the lemma is proved. 

12.12. From 12.11 we see that there is a unique homomorphism of Q-algebras 
)': u- - Ala that takes Fi to Fi for each i E I. (u- is as in 10.15.) 

The following result provides a description of the algebra u - parallel to that 
in 10.18, but without reference to any orientation of our graph. 

Theorem 12.13. )' is an algebra isomorphism u - ~ Ala . 

By the definition of u- and Ma, we have that)' is surjective. To prove that 
)' is injective, we choose, as we may, an orientation Q for our graph that has 
no cycles (see 10.20). 

We define an algebra homomorphism AI - L(Q) as follows. Let V E 
r. Then Ev,n is naturally a subspace of Av' (Any element of Ev,n is 
nilpotent since Q has no cycles; any element x E Ev, n satisfies automatically 
the equations 'II(x) = 0 by the definition of an orientation.) Hence restriction 
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of functions defines a linear map M(V) -+ L(V, Q). It is obvious that this is 
compatible with the operations *. These maps then define the required algebra 
homomorphism M -+ L(Q). 

Consider the composition of homomorphisms 
~ ~ 

u- -+ Mo -+ M -+ L(Q) 

where the first one is y, the second one is the inclusion, and the third one has 
been just constructed. This composition coincides with the homomorphism 

u - ~ L~ (Q) = Lo(Q) c L(Q) 

(of 10.20, 1O.19(a)). (It is enough to check that these coincide on the generators 
Fi ' which is obvious.) Hence the kernel of y is contained in the kernel of the 
homomorphism 10.20. The last kernel is zero, and hence so is the kernel of y. 
The theorem is proved. 

12.14. Let X be an irreducible component of Av where V E ~. We define 
a linear form Tx: Mo(v) -+ Q as follows. Under the canonical identification 
M(V) ~ M(v), the subspace Mo(v) of M(v) is identified to a subspace Mo(V) 
of M(V). We can find an open dense subset Xo of X such that any function 
f E Mo(V) is constant on Xo' (Such an open set exists separately for each f 
since f is constructible; one exists for all f simultaneously since the vector 
space Mo(V) is finite dimensional.) We then define Tx(f) to be the (constant) 
value of f on Xo' 

Let us denote by Zv the set of irreducible components of Av' This set is 
independent of the choice of V as long as V E ~ . 

By associating to each f E Mo(v) the function X -+ Tx(f) , we thus obtain 
a linear function from Mo(v) to the vector space of all functions Zv -+ Q. 

It may be conjectured that this is an isomorphism. This would imply that the 
v-homogeneous part of u - has dimension equal to the number of elements in 
Zv' (This last fact is actually true for graphs of type A, D, E or of affine type 
A, as can be seen from 14.2 and 15.6.) 

12.15. In this section we will show that the constructions in this section are 
essentially independent of the choice of the function e. Let e': H -+ k* be 
another function such that e' (h) + e' (li) = 0 for all h E H. Let ( , )', 1ft;, 
A~ be defined as ( , ), Ifti' Av but in terms of e' instead of e. We can 
find a function 6: H -+ k* such that 6(h) = 6(li) , 6(h)2 = e'(h)e(h)-1 for all 
h EH. 

Then the linear map A: Ev -+ Ev given by A(x) = x', x~ = 6(h)xh for all 
hE H is an isomorphism such that (A(x) , A(y)) = (x, y)' for all x, y E Ev ' 
lfti(A(x)) = 'I';(x) for all x E Ev ' and A(A~) = Av' 

Moreover, the isomorphism A : A~ -+ Av induces a bijection on the sets 
of irreducible components that is independent of the choice of 6. To prove 
this, we may assume that 8' = e so that 6(h) = 6(li) = ±1. We can find 
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- m(h) m: H -- Z such that m(h) + m(h) = 0, (-1) = J(h) for all hE H. Define 
At: Ev -- Ev for all t E k* by At(x) = x', x~ = tm(h) x h . Then At defines 
a I-parameter group of automorphisms of Av; hence it induces the identity 
map on the set of irreducible components of Av' We have A_I = A and our 
assertion follows. 

Clearly, we can always choose e so that e(h) = ±1 for all hE H. 

13. SINGULAR SUPPORTS 

13.1. In this section we assume that k has characteristic zero. 
Let n:· X -- Y be a proper morphism between smooth, connected varieties. 

Let S = n(X) , a closed irreducible subvariety of Y. 
Let X be the variety of all pairs (x,~) where x E X and ~ E r:(X) Y 

(cotangent space ofY at n(x)) are such that ~ is in the kernel of the canonical 
map r:(X)Y -- r;x induced by n. The map X -- r*Y defined by (x,~) -- ~ 

is a proper morphism. We denote its image by Y (a closed subvariety of r* Y) 
and we denote fr: X -- Y the resulting surjective map. 

For any L E .91(Y) we denote by SS(L) the singular support (or character-
istic variety) of L. It is known that SS(L) is a closed lagrangian subvariety 
of r* Y . According to [KS], 

(a) SS(n!(I)) is contained in Y. 
13.2. ~t V E ~ and let (i, a) E Sv' We fix an orientation Q. Let n = 

ni,a: Sf,a -- Ev,n be as in 1.5. By 1.6, the definitions and results of 13.1 are 
applicable to this n (with X = Sf,a and Y = Ev,n)' In our case, r*Y may 
be identified with Ev as in 12.8. Hence Y may be regarded as a subvariety of 
Ev' With these notations, we have the following result. 

Theorem 13.3. (a) We have 

Y = {z E Avlz leaves stable some ¢ E Sf a}' 
(b) One can identify 

X = {(z, ¢) E Av x Sf al¢ is z-stable} 

so that the map fr: X -- Y of 13.1 is (z, ¢) -- z . 

13.4. We begin with some preliminaries to the proof of 13.3. Let (x, ¢) E Sf, a 
where ¢ = (V = VO :J Vi :J ... :J V m = 0) is as in 1.4. Let bo be the subspace 
of glv consisting of all f E glv such that f(V') c V' for all I. 

Let b~ be the subspace of bo consisting of all f E bo that are nilpotent as 
endomorphisms of EBi Vi' 

Let b + be the subspace of Ev, n consisting of all y E Ev, n such that ¢ is 
y-stable. 

Let b be the subspace of Ev, n consisting of all y E Ev n such that ¢ is 
y-stable. 
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The tangent space at (x, ¢» to Sf a is naturally the kernel of the linear map 

(a) Ev,n $ glv/bo -+ Ev,n/b+ 
given by (A, B) -+ C, Ch = Ah + xhBh, - Bh"xh (h E H). 

We now define a linear map 
o (b) b_ -+ Ev,n $ bo 

by D -+ (D, E) where E = (EJ is given by 

E j = L e(h)( -xh0i - Dhxli)' 
hEH: h"=j 

To see that this is well defined, we must check that, in the previous formula, 
E j : Vj -+ Vj is nilpotent. Now ¢> is x-stable and D-stable hence E-stable, so 
that E is nilpotent by 1.8(a). 

We now show that (b) is naturally the transpose of (a). 
First, Ev, n is naturally the dual space of Ev , n via the pairing induced by 

( , ). 
The same pairing identifies b_ with the dual space of Ev,n/b+. (It is easy 

to check that dimb_+dimb+=dimEv,n and that (x,y)=O for all xEb+, 
y E b_. Note that (x, y) = E jE1 tr Tj where T j = Eh ;h"=i xhY!i' Now ¢> is 
x-stable and y-stable hence T-stable, so that T j is nilpotent by 1.8(a). Thus 
tr T j = 0; hence (x, y) = 0.) 

Note also that b~ is naturally the dual space of glv/bo via the pairing induced 
by the pairing glv x glv -+ C, A, A' -+ tr(AA') . 

It remains to verify the following identity: 

(A, D) + tr(BE) = (C, D) 

for any A E Ev n' B E glv' DE b_ where C E Ev n is defined in terms of 
A, B as in (a) and E E glv is defined in terms of D 'as in (b). Thus, we must 
verify the identity: 

L e(h)(tr(Ah0i) - tr(Bh"xh0i) - tr(Bh"Dhxli)) 
h 

= L e(h) tr((Ah + xhBh, - Bh"xh)0i)· 
h 

But this is clear. 
Thus we have proved that (b) is the tra~pose of (a). It follows that 
(c) the cotangent space at (x, ¢» to ~,a is naturally the cokernel of the 

linear map (b). 

13.5. We now prove Theorem 13.3. Note that the cotangent space at x to 
Y = Ev n is naturally Ev n (see 12.8) and the linear map T*n induced by n 
from the cotangent space at x to Y = Ev,n to the cotangent space at (x, ¢» 
to X = .cT.1 is given by y -+ T*n(y) = (y, 0) modulo the image of 13.4(b). ,a 
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The condition that Y E Ey n satisfies T*n(y) = 0 is therefore that y E b_ 
and I:h : h"=i e(h)(xhY/i+Yhx/i) = 0 for all i E [. Since xhx/i = 0 and YhY/i = 0 
for all h we see that the previous condition is equivalent to 

<p is y-stable and lfIi(x + y) = 0 for all i E [. 

For Y E Ey, n' the conditions (a), (b) below are equivalent: 

(a) <p is y-stable , 

(b) x + Y is nilpotent and it leaves <p stable. 

Clearly, if (b) holds then (a) holds (since <p is x-stable). If (a) holds then 
certainly <p is (x + y)-stable and from this we see using 1.8(a) that x + Y is 
nilpotent. Thus the equivalence of (a),(b) is established. 

We now see that Y E Ey,n satisfies T*n(y) = 0 if and only if 

x + y E Ay and <p is (x + y)-stable. 

Theorem 13.3 follows. 

Corollary 13.6. For any L E 9'y n' the singular support SS(L) is a union of 
irreducible components of Ay . ' 

By definition, we can find n as in 13.2 such that some shift of L is iso-
morphic to a direct summand of some n!(I). We therefore have SS(L) c 
SS(n,(I)). By 13.1(a), we have SS(n,(1)) c Y and by 13.3(a) we have Y c 
Ay . ·From these inclusions we deduce that SS(L) c Ay . Now SS(L) is a 
closed lagrangian subvariety of Ey . Hence it has pure dimension equal to 
dim(Ey)/2. On the other hand, according to 12.3, Ay also has pure dimension 
equal to dim(Ey) /2. The corollary follows. 

13.7. One may hope that the following two statements might be true: 
(a) for graphs of type A, D, E, the singular support of any L E 9'y n is 

irreducible, and ' 
(b) for general graphs, there is a unique 1-1 correspondence L -+ XL between 

9'y n and the set of irreducible components of Ay such that XL c SS(L) . 
Statement (a) for type A is closely related to the expected irreducibility of 

singular supports for Schubert varieties of GL(n). 

13.8. We consider an example. We take [ = {i, j}, H = {hi' h2' h3' h4 }, 

with h~ = h; = i, h~' = h~ = j, hi = h3' h2 = h4 • We take n = {hi' h2}, 
e(h l ) = e(h2) = 1, e(h3) = e(h4) = -1. We take V such that Vi = Vj = V is 
a two-dimensional vector space. We identify Ey with the set of all quadruples 
(A, B, A' ,B') of endomorphisms of V, Ey n with the subspace of Ey de-
fined by A' = B' = 0 and Ay with the subspac~ of Ey defined by the equations 
AA' +BB' = 0, A'A+B' B = 0, and by the condition that AA', AB', BA' , BB' 
are nilpotent. 
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Then 9'v,n consists of 6 perverse sheaves L l , ... , L6 with supports of 
dimensions 0, 4, 5, 5, 8, 8 respectively. (L3 , L4 have different supports but 
L5 ,L6 have the same support.) The corresponding local system on an open 
dense part of the support is trivial for Ll ' ... ,L5 and nontrivial for L6 . 

Now Av has six irreducible components Xl' ... , X6 . Notations can be 
arranged so that the following holds: SS(L) = Xj for j = 1, ... , 5 and 
SS(L6) = X5 U X6 . Note also that X6 is the closure of the conormal bundle of 
a 7-dimensional irreducible submanifold of Ev n' Hence 13.7(b) holds in our 
example. ' 

14. EXAMPLE: GRAPHS OF TYPE A, D, E 

14.1. In this section we assume that our graph is of type A, D or E; in par-
ticular, there is at most one edge joining two vertices. We fix an orientation Q 
for the graph. Let V E r . 
Proposition 14.2. (a) Any element x E Ev such that lJIi(X) = 0 for all i E I is 
automatically nilpotent. 

(b) The irreducible components of Av are the closures of the conormal bundles 
of the various Gv-orbits in Ev n' 

Assume that (a) holds. Then, using (a) and 12.8(a) we see that Av is precisely 
the union of the conormal bundles of the various Gv-orbits in Ev n' Since 
there are only finitely many such orbits (Gabriel's theorem) we see that (b) 
holds. It remains to prove (a). The proof of (a) has much in common with that 
in [L2, § 1 0]. 

We can write uniquely x = y + z where y E Ev nand z E Ev n' We 
may regard (V, y) as a representation of our oriented graph. Writing this 
representation as a direct sum of indecomposable representations and using 
[L2, 4.9(c)] we see that there exists a direct sum decomposition V = EB;=1 vP 

where each v P E r is y-stable (i.e., (VP , y) is a representation of our oriented 
graph) and such that that any morphism from the representation (Vp , y) to the 
representation (Vp' , y) is zero whenever pi < p . 

We have a direct sum decomposition 

Similarly, 

I 

E ffi EP,P v,n = 'l7 v,n 
P,P'E[I,v] 

where E~',~ = E9 Hom(V~1 , v~:,), 
hEn 

Ev,n = E9' E~',~ where E~',~ = E9Hom(V~I, V~:,), 
P,P'E[I,v] hEn 

As in [L2, lOA], the subspace EBp:s:p' E~',~ of Ev is contained in the tangent 
space Ty to the Gv-orbit of y. 

Since IJIJy + z) = 0 for all i, we see from 12.8(a) that (z, Ty) = O. Hence 

(z, EBp:s:pl E~',~) = O. But the annihilator in Ev, n of EBp:s:pl E~',~ under 
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( , ) is clearly EBp<p' E~',~. Hence we have z E EBp<p' E~',~. If we denote 
y(q) = EBp :p>q y p , we have 

(d) Y = y(O) :J y(I) :J ". :J y(lI) = 0, 

(e) 

for all h E n, q E [0, 1/ - 1] and 

Yh(Vh~)) C Yh~f 

for all hEn, q E [0, 1/] • 

Now Y is certainly nilpotent as an elementin Ev (since y E Ev,n and our 
graph is a tree); y satisfies the definition of nilpotency in 1.7 with N = III. 
By 1.8(b) applied to y and y p we see that the filtration (d) can be refined to 
a flag <p in Y that is stable under y. 

Then <p is automatically z-stable. Indeed, let Iy be a member of this flag. 
We have y(q) :J IY:J V(q+l) for some q E [0, 1/ - 1]. From (e) it follows that 
zlYh')CYh~;+-I);hence zlYh,)Clyh" for all hEn,whichshowsthat <p is 
z-stable. Now <p is stable under y and under z, and hence it is stable under 
x = y + z. Using now 1.8(a), we see that x is nilpotent. The proposition is 
proved. 

15. EXAMPLE: GRAPHS OF AFFINE TYPE A 

15.1. In this section we assume that n ~ 2, 1= Z/n, and that H consists of 
the arrows 

(a) 

(b) 

i - j with i, j E I, i - j = 1 , 

i ;- j with i, j E I, i - j = 1 ; 

by definition, the involution - : H - H interchanges i - j and i ;- j; if 
h ( ") h" hI! "f h ( ") h" hI! 'L = l - } , we set = l , = } ; 1 = ,;- } , we set = } , = " et 
n be the subset of H consisting of the arrows (a), 

Thus our graph is an affine Dynkin graph of type An and n is an orientation 
of it. We shall take e(i - j) = 1, e(i;- j) = -1 . 

The purpose of this section is to give an explicit combinatorial parametriza-
tion for the set of irreducible components of Av for any Y E 'P" . 

15.2. Let k' ~ k be two integers. We define Y(k', k) E'P" to be the k-vector 
space with basis er (r E [k', k]), I-graded by the requirement that er has 
degree i E I where r == i (mod n). Let x(k', k) E EV(k' ,k),n be defined by 
er - er _ 1 for all r E [k', k], where ek'_1 is interpreted as zero. It is clear 
that (Y(k', k), x(k' , k)) is an indecomposable representation of our oriented 
graph, with x(k', k) nilpotent; the isomorphism class of this representation 
does not change when k', k are simultaneously translated by a multiple of n. 
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Conversely, if (V, x) is an indecomposable finite-dimensional representation 
of our oriented graph, with x E EV n nilpotent, then it is isomorphic to a 
(V(k', k), x(k', k)) as above; moreo~er, (k', k) are uniquely determined up 
to simultaneous translation by a multiple of n. 

Let Z be the set of all pairs (k' ~ k) of integers defined up to simultaneous 
translation by a multiple of n; let Z be the set of all functions Z - N with 
finite support. 

It follows that, given V E 'F , the set of Gv-orbits on the set of nilpotent 
elements in Ev n is naturally indexed by the subset Zv of Z consisting of all 
functions f: Z' - N with finite support such that 

L f(k', k)Hrlk' ~ r ~ k, r == i (mod n)} = dimVi 

for all i E I; the sum is taken over all k' ~ k up to simultaneous translation 
by a multiple of n. This indexing is obtained by attaching to a nilpotent 
element x E Ey, n the following function f: we write (V, x) as a direct 
sum of indecomposable modules and f(k', k) is the number of summands 
isomorphic to (V(k', k), x(k' , k)). In particular, 

(a) Gv has only finitely many orbits on the set of nilpotent elements in Ey ,n' 
We shall denote by &/ the Gv orbit corresponding to f E Zv' 

15.3. An element f E Zv is said to be aperiodic if it satisfies the following 
condition: for any k' ~ k, not all integers f(k', k), f(k' + 1, k + 1), ... , 
f(k'+n-l,k+n-l) are >0. 
15.4. For any rEI, let Endr(V) be the vector space of all linear maps T: V -
V such that T(V i ) C Vi+r for all i E I. 

We may identify Ev n (resp. Ev n) with End_! (V) (resp. End! (V)). (To 
x E Ev,o we associate the T such'that T(v) = X i-+ i_! (v) for all i and all 
v E Vi; to Z E Ev,n we associate the T such that T(v) = Zi+! .... /V) for all i 
and all v E Vi .) 

The following statement is obvious. 
(a) Let x E Ev 0' Z E Ev n' and let T, S be the corresponding elements 

in End_! (V) and 'End! (V). Then x is nilpotent as an element of Ev,o if and 
only if T is nilpotent as an endomorphism of V; Z is nilpotent as an element 
of Ev,n if and only if S is nilpotent as an endomorphism of V. 

The following statement is easily verified. 
(b) Let x, x' E Ev, 0 be nilpotent elements, let T, T' be the corresponding 

elements of End_! (V), and let f, / be the corresponding elements of Zv' 
Assume that there exists S E End! (V) that is invertible as a linear map V - V 
such that TS = ST'. Then f(k', k) = /(k' - 1, k - 1) for all k' ~ k. 
Proposition 15.5. Let f E Zv' The following two conditions are equivalent. 

(a) The conormal bundle of &/ consists entirely of nilpotent elements in Ev' 
(b) f is aperiodic. 
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If x E Ev,n and z E Ev,n then 

'fIi(X + z) = Xi+l-+izi+l ..... i - zi ..... i-IXi-+i-1 for all i E I. 

Using 12.8(a), we see that condition (a) is equivalent to the following condi-
tion: 

(c) Let x E &f' Then for any Z E Ev,n such that 

for all i E I, x + z is nilpotent. 
For x and z as in (c), the condition that x + z is nilpotent is equivalent 

to the condition that z is nilpotent (since x is known to be nilpotent). Using 
15.4(a), we see that (c) is equivalent to the following condition: 

(d) Let x E &f and let T be the corresponding element of End_I (V). Then 
any S E End l (V) such that TS = ST (as endomorphisms of V) is nilpotent 
(as an endomorphism of V). 

Let x, T be as in (d) and assume that S E End l (V) commutes with T 
and is not nilpotent. Consider the canonical decomposition V = v' EI7 V" such 
that Vi, V" are S -stable, and S is invertible on Vi and nilpotent on V". 
Then Vi =f. O. The previous decomposition is automatically compatible with 
the I-grading (since S E End l (V)); moreover, Vi and V" are T-stable (since 
TS = ST). Hence our decomposition is a decomposition of (V, x) as a direct 
sum of two representations of our oriented graph. Let I E Zv" I' E Zv" , be 
attached to these two representations as in 15.2. It is clear that f = r + I' . 
Hence to prove that f is not aperiodic it is enough to show that I is not 
aperiodic. Thus we can assume that V = Vi so that S : V - V is invertible. 
Applying 15.4(b) (with T' = T) we see that f(k' , k) = f(k' - 1 , k - 1) for 
all k' :::; k. This shows that f is not aperiodic. Thus we have proved that if 
(d) does not hold, then (b) does not hold. 

We now show that if f is not aperiodic, then (d) does not hold. Since f is 
not aperiodic, we can find k' :::; k and a direct sum decomposition V = Vi EI7 V2 EI7 
... EI7 Vn+1 of the representation (V, x) of our oriented graph such that the Ith 
summand is isomorphic to the representation (V(k' + I , k + I) , x(k' + I, k + I)) 
(see 15.2) for I = 1, 2, ... , n. It is then clear that there exists a linear map 
S E End l (V) such that S = 0 on Vn+1 and S is an isomorphism of the vector 
space Vi EI7 V2 EI7 ... EI7 Vn onto itself, commuting with T. This shows that (d) 
does not hold. The proposition is proved. 

Corollary 15.6. For any f E Zv' let ~f be the conormal bundle of &f; let ~ f 
be the closure of ~f • 

Then f - ~ f is a 1-1 correspondence between the set of aperiodic elements 
in Zv and the set of irreducible components of Av . 

Let X be an irreducible component of Av' The image of X under the 
canonical projection Ev - Ev , n (with kernel Ev , n) is denoted X'. It is 
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contained in the set of nilpotent elements of Ev n since X consists of nilpotent 
elements. Moreover, it is Gv-stable. Hence it is the union of finitely many Gv-
orbits. Let &;;, ... , &1, be these orbits. By 12.8(a), X is contained in the 
union Cfl;; U· .. U CflJ, . Each of these conormal bundles is irreducible of the same 
dimension as X. It follows that X must be equal to the closure of one of these 
conormal bundles; hence X = Cfl j for some f that, by 15.5, is necessarily 
aperiodic. Conversely, if f E Zv is aperiodic, then any x E Cflj is nilpotent, 
by 15.5, and satisfies IfIj(X) = 0 for all i, by 12.8(a); thus, Cflj is contained in 
Ay , and hence its closure is contained in Ay . Being irreducible of the correct 
dimension, it is an irreducible component of Ay . This completes the proof. 

16. GRAPHS WITH A CYCLIC GROUP ACTION 

16.1. In this section we assume that we are given a finite cyclic group C and 
an action of C on our graph such that the following property is satisfied. If 
C E C fixes an edge, then it fixes both ends of that edge; if an edge and its image 
under C E C have the same end points then that edge is fixed by c. 

This induces actions of C on I and H which are compatible with the maps 
1.1(a),(b),(c);moreover, h,li are never in the same C-orbiton H. 

Let P be the set of orbits of C on I. For pEP let dp be the number 
of elements in p. Given two distinct orbits p, q in P we denote by npq the 
number of elements h E H such that hi E P and hI! E q. Clearly, npq = nqp 

is divisible by both dp and dq • Hence the matrix 
(a) (Qpq)P,qEP given by Qpp = 2 and Qpq = -d;1 npq (for p =1= q) is a 

symmetrizable generalized Cartan matrix. 

16.2. Note that any non symmetric Cartan matrix of affine type can be obtained 
by the procedure of 16.1 starting from an extended Dynkin graph of type A, D 
or E and a suitable cyclic group acting on it. Consider the following extended 
Dynkin graphs with a faithful action of C of the order indicated by a left 
superscript: 

2 ~ 2~1 2~2 2~>3 

A21 - 1 (/2: 2), DI+I (/2: 3), DI+2 (/2: 2), Du (/2: 3), 
2~ 2~ 3~ 3~ 4~ 

E6 , E7 , D 4' E6 , D21+2 (l 2: 1). 
(The right superscript 1, 2, 2: 3 indicates the number of nontrivial orbits of 
C on the set of vertices.) 

The corresponding Cartan matrices are (with the notations in [K, p.44,45]) 
respectively: 

C(1) B(I) d 2) A(2) p(1) E(2) d l ) D(3) A(2) 
1 ' I ' 1 + I' 2/- I' 4 ' 6 ' 2 ' 4 ' 21' 

16.3. We want to sketch the way in which the results of this paper should be 
extended to the case of the quantized enveloping algebra U- corresponding to 
the Cartan matrix 16.2(a). 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



420 G. LUSZTIG 

Let n be an orientation of our graph that is compatible with the C -action. 
(Such n always exists.) 

Let r (C) be the category of finite-dimensional I -graded k-vector spaces V 
with an action of C that have the following properties: if C E C and i E I 
then cVj c VeU) ; if in addition, c(i) = i, then c: Vj -+ Vj is the identity. 

Let V E r(C) be such that V E ~, when the C-action is forgotten. Note 
that we have a natural action of C on Ev preserves the subspace Ev n' 

Let SII, c be the set of all pairs (p, a) where p = (PI' P2' ... ,Pm) is a 
sequence of elements of P and a = (ai' a2 , ••• , am) is a sequence of integers 
~ 0 such that 1:1: jEP{ al = v(i) for all i E I. 

Let (p, a) E SII C. A C -flag oftype (p, a) in V is, by definition, a sequence 
¢ = (V = VO ::) Vi' ::) ... ::) V m = 0) of I -graded C -stable subspaces of V such 
that, for any I = 1, 2, ... , m, the graded vector space V/-I/VI is zero in 
degrees i ¢. PI and has dimension al in degrees i E PI' 

As in 1.4, we say that ¢ is x-stable (where x E Ey) if Vi is x-stable for all 
h E H and all I = 0, 1 , ... , m. Let g;;, a be the variety of all C -flags of type 
(p, a) i~ V. 

Let g;;, a be the variety of all pairs (x, ¢) such that x E Ev, nand ¢ E g;;, a 
is x-stable. 

We denote by 1tp, a : g;;, a -+ Ev, n the first projection. 
We set Lp,a;n = (1tp,aMl) E 9(Ev,n)' This is a semisimple complex which 

is C -equivariant in a suitable sense. It can be decomposed in a direct sum 
of summands L[d] where the L are C-equivariant perverse sheaves that are 
simple (as equivariant perverse sheaves, but not necessarily as perverse sheaves 
without C-action). The set of isomorphism classes of the various L that ap-
pear in this way is denoted g;v, n, c. From this point the development should 
continue as in the case of trivial C, and it should lead to a canonical basis of 
U- indexed by the disjoint union of the sets g;v,n,c (with V running over a 
set of representatives for the isomorphism classes in r C ). 
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