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1. Introduction

This paper continues our study of quivers with potentials and their representa-
tions initiated in [9]. Here we develop some applications of this theory to the theory
of cluster algebras. As shown in [12], the structure of cluster algebras is to a large
extent controlled by a family of integer vectors called g-vectors, and a family of
integer polynomials called F -polynomials. In the case of skew-symmetric exchange
matrices (the terminology will be recalled later), we find an interpretation of g-
vectors and F -polynomials in terms of representations of quivers with potentials.
Using this interpretation, we prove most of the conjectures about g-vectors and
F -polynomials made in [12].

Now we describe the main results of the paper in more detail. Fix a positive
integer n. As in [11] and [12, Definition 2.8], we work with the n-regular tree Tn

whose edges are labeled by the numbers 1, . . . , n, so that the n edges emanating
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from each vertex receive different labels. We write t k t′ to indicate that vertices
t, t′ ∈ Tn are joined by an edge labeled by k. We also fix a vertex t0 ∈ Tn and a
skew-symmetrizable integer n × n matrix B = (bi,j) (recall that this means that
dibi,j = −djbj,i for some positive integers d1, . . . , dn). We refer to B as the exchange

matrix at t0. To t0 and B we associate a family of integer vectors g�;t = gB;t0
�;t ∈ Zn

(g-vectors) and a family of integer polynomials F�;t = FB;t0
�;t ∈ Z[u1, . . . , un] (F -

polynomials) in n independent variables u1, . . . , un; here � = 1, . . . , n and t ∈ Tn.
Both families can be defined via the recurrence relations on the tree Tn given by
(2.1)–(2.3) and (2.4)–(2.6) below.

Now we state some conjectures from [12].

Conjecture 1.1 ([12, Conjecture 5.4]). Each polynomial FB;t0
�;t has constant term 1.

In view of [12, Proposition 5.3], Conjecture 1.1 is equivalent to the following.

Conjecture 1.2 ([12, Conjecture 5.5]). Each polynomial FB;t0
�;t has a unique mono-

mial of maximal degree. Furthermore, this monomial has coefficient 1, and it is
divisible by all the other occurring monomials.

Conjecture 1.3 ([12, Conjecture 6.13]). For every t ∈ Tn, the vectors gB;t0
1;t , . . . ,

gB;t0
n;t are sign-coherent; i.e., for any i = 1, . . . , n, the i-th components of all these

vectors are either all nonnegative or all nonpositive.

Conjecture 1.4 ([12, Conjecture 7.10(2)]). For every t ∈ Tn, the vectors g
B;t0
1;t , . . . ,

gB;t0
n;t form a Z-basis of the lattice Zn.

Conjecture 1.5 ([12, Conjecture 7.10(1)]). Suppose we have∑
i∈I

aig
B;t0
i;t =

∑
i∈I′

a′ig
B;t0
i;t′

for some t, t′ ∈ Tn, some nonempty subsets I, I ′ ⊆ {1, . . . , n} and some positive
integers ai and a′i. Then there is a bijection σ : I → I ′ such that, for every i ∈ I,
we have

ai = a′σ(i), gB;t0
i;t = gB;t0

σ(i);t′ , FB;t0
i;t = FB;t0

σ(i);t′ .

In particular, for given B and t0, each polynomial FB;t0
i;t is determined by the vector

gB;t0
i;t .

To state our last conjecture, we need to recall the matrix mutation introduced
in [11]. For any k = 1, . . . , n, we define an integer n × n matrix μk(B) = (b′i,j) by
setting

(1.1) b′i,j =

{
−bi,j if i = k or j = k;

bi,j + [bi,k]+ [bk,j ]+ − [−bi,k]+ [−bk,j ]+ otherwise,

where we use the notation

(1.2) [b]+ = max(b, 0).

Conjecture 1.6 ([12, Conjecture 7.12]). Let t0
k t1 be two adjacent vertices

in Tn, and let B′ = μk(B). Then, for any t ∈ Tn and � = 1, . . . , n, the g-vectors
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gB;t0
�;t = (g1, . . . , gn) and gB′;t1

�;t = (g′1, . . . , g
′
n) are related as follows:

(1.3) g′j =

{
−gk if j = k;

gj + [bj,k]+gk − bj,k min(gk, 0) if j �= k.

We can now state one of our main results.

Theorem 1.7. The conjectures 1.1–1.6 hold under the assumption that the ex-
change matrix B is skew-symmetric.

Remark 1.8. As explained in [12, Remark 7.11], Conjectures 1.1 and 1.5 imply the
linear independence of cluster monomials in any cluster algebra satisfying a mild
additional condition [12, (7.10)].

Remark 1.9. The above conjectures were established in [13] under some additional
conditions (that the cluster algebras in question admit a certain categorification).
Our method described below has an advantage that the only condition we need is
that the matrix B is skew-symmetric.

As mentioned already, our proof of Theorem 1.7 is based on interpreting g-
vectors and F -polynomials in terms of representations of quivers with potentials.
First of all, a skew-symmetric integer n× n matrix B can be encoded by a quiver
Q(B) without loops and oriented 2-cycles on the set of vertices [1, n] = {1, . . . , n}.
This is done as follows:

(1.4) for any two vertices i �= j, there are [bi,j ]+ arrows from j to i in Q(B).

As is customary these days, we represent a quiver by a quadruple (Q0, Q1, h, t)
consisting of a pair of finite sets Q0 (vertices) and Q1 (arrows) supplied with two
maps h : Q1 → Q0 (head) and t : Q1 → Q0 (tail); every arrow a ∈ Q1 is viewed as
a directed edge a : t(a) → h(a). For the quiver Q(B), the vertex set Q0 is identified
with [1, n].

Recall that a representation M of a quiver Q is specified by a family of finite-
dimensional vector spaces (M(i))i∈Q0

(for simplicity we work over C) and a family
of linear maps a = aM : M(t(a)) → M(h(a)) for a ∈ Q1. The dimension vector dM

of M is given by

(1.5) dM = (dimM(1), . . . , dimM(n)).

For every integer vector e = (e1, . . . , en), we denote by Gre(M) the quiver Grass-
mannian of subrepresentations N ⊆ M with dN = e. In simple terms, an element
of Gre(M) is an n-tuple (N(1), . . . , N(n)), where each N(i) is a subspace of dimen-
sion ei in M(i), and aM (N(j)) ⊆ N(i) for any arrow a : j → i. Thus, Gre(M)
is a closed subvariety of the product of ordinary Grassmannians

∏n
i=1 Grei(M(i)),

hence a projective algebraic variety.
Let χ(Gre(M)) denote the Euler-Poincaré characteristic of Gre(M) (see, e.g.,

[14, Section 4.5]). We associate to a quiver representation M the polynomial FM ∈
Z[u1, . . . , un] given by

(1.6) FM (u1, . . . , un) =
∑
e

χ(Gre(M))
n∏

i=1

uei
i .

We refer to FM as the F -polynomial of M .
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It is immediate from (1.6) that every polynomial FM satisfies properties in Con-
jectures 1.1 and 1.2. Thus, to prove these conjectures for any skew-symmetric ma-

trix B, it suffices to construct, for t0, � and t as above, a representation M = MB;t0
�;t

of Q(B) such that

(1.7) FB;t0
�;t = FM .

We do this in Theorem 5.1 using mutations of quivers with potentials and their
representations introduced and studied in [9].

To prove the conjectures involving g-vectors, we need to consider quiver repre-
sentations equipped with some extra structure. First, following [16], we work with
decorated representations M = (M,V ), where M is a representation of Q(B), and
V = (V (i))i∈Q0

is a family of finite-dimensional C-vector spaces, with no maps
attached. Second, M must be nilpotent, that is, annihilated by all sufficiently long
paths in Q(B). Finally and most importantly, the action of arrows in M must
satisfy the relations from the Jacobian ideal of a generic potential on Q(B). The
corresponding setup developed in [9] will be recalled in Section 4; here we just
describe a general form of the relations. For every two arrows a, b ∈ Q1 with
h(a) = t(b), a generic potential S on Q(B) gives rise to an element ∂ba(S) of the
complete path algebra of Q(B): this is a (possibly infinite) linear combination of
paths from h(b) to t(a). For every k ∈ Q0, these elements give rise to the triangle
of linear maps

(1.8) M(k)
βk

�����������

Min(k)

αk

�����������
Mout(k).

γk

��

Here the spaces Min(k) and Mout(k) are given by

(1.9) Min(k) =
⊕

h(a)=k

M(t(a)), Mout(k) =
⊕

t(b)=k

M(h(b)),

the maps αk and βk are given by

(1.10) αk =
∑

h(a)=k

aM , βk =
∑

t(b)=k

bM ,

and, for each a, b ∈ Q1 with h(a) = t(b) = k, the component γa,b : M(h(b)) →
M(t(a)) of γk is given by

(1.11) γa,b = (∂baS)M .

In these terms, the relations on M imposed by the choice of S are just the
following:

(1.12) αk ◦ γk = 0, γk ◦ βk = 0.

We refer to a decorated representation with these properties as a QP-representation
(for “quivers with potentials”).

Now we define the g-vector gM = (g1, . . . , gn) ∈ Zn of a QP-representation M =
(M,V ) by setting

(1.13) gk = dimker γk − dimM(k) + dimV (k) .
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As a first step towards proving Conjectures 1.3–1.6 for B skew-symmetric, in
Theorem 5.1 we construct, for t0, � and t as above, an indecomposable QP-represen-

tation M = MB;t0
�;t of Q(B) such that

(1.14) gB;t0
�;t = gM

(note that M = (M,V ), where the quiver representation M = MB;t0
�;t satisfies

(1.7)).
Our main tool in working with QP-representations is the mutation operation

M �→ μk(M) (for each k ∈ Q0) sending QP-representations of the quiver Q(B)
to those of Q(μk(B)). This operation was introduced and studied in [9], where
it was shown in particular that μk sends indecomposable QP-representations into
indecomposable ones. In terms of the mutations, the family of QP-representations

MB;t0
�;t is determined by the following two properties:

• For t = t0, we have

(1.15) MB;t0
�;t0

= S−
� ,

the negative simple QP-representation such that the only nonzero space
among the M(i) and V (i) is V (�) = C.

• If t0
k t1 in Tn and B′ = μk(B), then

(1.16) MB′;t1
�;t = μk(MB;t0

�;t ).

In contrast with the situation for F -polynomials, where the interpretation (1.7)
immediately implies Conjectures 1.1 and 1.2, deducing Conjectures 1.3–1.6 from
(1.14) requires further work. The main new ingredient is the following integer-
valued function on QP-representations: for a QP-representation M = (M,V ) of a
quiver Q, we define the E-invariant by

(1.17) E(M) = dimHomQ(M,M) +

n∑
k=1

gk dimM(k),

where gk is given by (1.13), and HomQ stands for the space of homomorphisms
of quiver representations. In Theorem 7.1 we prove that E(M) is invariant under
mutations, i.e., for every k we have E(μk(M)) = E(M). Then it follows from

(1.15) and (1.16) that E(MB;t0
�;t ) = 0 for all � and t.

Since the numbers gk may be negative, it is not a priori clear that E(M) takes
nonnegative values. We prove this property in Theorem 8.1, establishing the fol-
lowing much sharper lower bound:

(1.18) E(M) ≥
∑
k∈Q0

(dimker βk · dim(ker γk/ imβk) + dimM(k) · dimV (k)).

As a consequence, for each M of the form MB;t0
�;t , the right-hand side of (1.18) is

equal to 0, and this information turns out to be exactly what we need for proving
Conjectures 1.3–1.6.

Note that in view of (1.15) and (1.16), the QP-representations MB;t0
�;t can be

characterized as those obtained by a sequence of mutations from a negative sim-
ple representation. We conjecture that this family coincides with the family of
indecomposable QP-representations M such that E(M) = 0. As a possible step
towards proving this conjecture, in Section 10 we develop a homological interpre-
tation of E(M) in the case where the potential is finite and the Jacobian algebra
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is finite dimensional. This interpretation is based on constructing a projective pre-
sentation for QP-representations; see Proposition 10.4.

The paper is organized as follows. Sections 2–4 are devoted to preliminaries.
The necessary background on cluster algebras is recalled in Section 2. In Section 3
we collect some general properties of F -polynomials of quiver representations to
be used later. We conclude this section with two examples, showing that a quiver
Grassmannian may be singular, and that it may have negative Euler characteristic.
The necessary background from [9] on quivers with potentials (QP’s) and their
representations is collected in Section 4.

Section 5 contains the first important new result of the paper – Theorem 5.1.
It asserts that the family of QP-representations recursively defined by conditions
(1.15) and (1.16) provides a representation-theoretic interpretation given by (1.7)
and (1.14) of F -polynomials and g-vectors arising in the theory of cluster algebras.
As a consequence, we obtain in Corollary 5.3 a formula for cluster variables in the
coefficient-free cluster algebra, which generalizes the Caldero-Chapoton formula in
[7, Theorem 3].

In Section 6 we prove Proposition 6.1, a technical result preparing the ground-
work for the later proof of the invariance under mutations of the function E(M)
given by (1.17). Roughly speaking, Proposition 6.1 says that the mutation at a ver-
tex k preserves the space of homomorphisms between any two QP-representations
modulo the homomorphisms “confined” to k. This result of independent interest
was already established in [3, Theorem 7.1] but the present proof seems to be much
simpler. In the rest of Section 6 we show that the isomorphism in Proposition 6.1
can be stated in a functorial way.

The main result in Section 7 is Theorem 7.1 establishing in particular the in-
variance of E(M) under mutations. Another useful result there is Proposition 7.3
saying that E(M) is invariant under passing to the dual QP-representation of the
opposite QP.

In Section 8 we prove the bound (1.18) (Theorem 8.1). The proof of Theorem 1.7
is obtained by combining this result with the results in the preceding sections; this
is done in Section 9. The concluding Section 10 is devoted to the above-mentioned
homological interpretation of the E-invariant of QP-representations.

2. Background on g-vectors and F -polynomials

First of all, we recall that the same rule as in (1.1) defines the matrix mutation

μk for any integer m × n matrix B̃ = (bi,j) with m ≥ n, and any k = 1, . . . , n.
This is an involution on the set of integer m × n matrices. We call the top n × n
submatrix B of B̃ the principal part of B̃; then μk(B) is the principal part of

μk(B̃). Note also that, if B is skew-symmetrizable, that is, dibi,j = −djbj,i for
some positive integers d1, . . . , dn, then the same choice of d1, . . . , dn makes μk(B)
skew-symmetrizable as well. In particular, if B is skew-symmetric, then μk(B) is
also skew-symmetric.

We say that a family ofm×n integer matrices (B̃(t)t∈Tn
) is a skew-symmetrizable

(resp. skew-symmetric) matrix pattern of format m× n on Tn if the principal part

B(t) of each B̃(t) is skew-symmetrizable (resp. skew-symmetric), and we have

B̃(t′) = μk(B̃(t)) whenever t k t′. Clearly, such a pattern is uniquely determined
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by each of its matrices B̃(t0), which can be chosen arbitrarily with the only condition
that its principal part is skew-symmetrizable (resp. skew-symmetric).

Now choose any skew-symmetrizable n × n integer matrix B and any vertex
t0 ∈ Tn. We associate to B and t0 the skew-symmetrizable matrix pattern of
format 2n× n such that B̃(t0) = (bi,j) has principal part B, and its bottom part is
the n × n identity matrix, that is, bn+i,j = δi,j for i, j = 1, . . . , n; we refer to this
pattern as the principal coefficients pattern associated to B and t0. Let us denote
this pattern simply as (B̃(t) = (bi,j(t)))t∈Tn

(with the understanding that B and
t0 are fixed).

Now, according to [12, Proposition 6.6], the vectors g�;t = gB;t0
�;t can be defined

by the initial conditions

(2.1) g�;t0 = e� (� = 1, . . . , n)

together with the recurrence relations

g�;t′ = g�;t for � �= k;(2.2)

gk;t′ = −gk;t +

n∑
i=1

[bi,k(t)]+gi;t −
n∑

i=1

[bn+i,k(t)]+bi(2.3)

for every edge t k t′ in Tn . Here e1, . . . , en are the unit vectors in Zn, and
b1, . . . ,bn are the columns of B.

Similarly, by [12, Proposition 5.1], the polynomials F�;t = FB;t0
�;t (u1, . . . , un) can

be defined by the initial conditions

(2.4) F�;t0 = 1 (� = 1, . . . , n) ,

together with the recurrence relations

F�;t′ = F�;t for � �= k;(2.5)

Fk;t′ =

∏n
i=1 u

[bn+i,k(t)]+
i F

[bi,k(t)]+
i;t +

∏n
i=1 u

[−bn+i,k(t)]+
i F

[−bi,k(t)]+
i;t

Fk;t
,(2.6)

for every edge t k t′ in Tn .

For instance, if t1
k t0 , then gB;t0

k;t1
= −ek+

∑n
i=1[−bi,k]+ei and FB;t0

k;t1
= uk+1.

Here is a specific example for the cluster algebra of type A2 (cf. [12, Exam-
ples 2.10, 3.4, 6.7]).

Example 2.1. Let n = 2. The tree T2 is an infinite chain. We denote its vertices
by . . . , t−1 , t0 , t1 , t2 , . . . and label its edges as follows:

(2.7) · · · 2 t−1
1 t0

2 t1
1 t2

2 t3
1 · · · .

Let B =
[

0 1
−1 0

]
. The g-vectors g�;t = gB;t0

�;t and F -polynomials F�;t = FB;t0
�;t are

shown in Table 1 (the last column will be explained later).

Observing that B̃(t5) is obtained from B̃(t0) by interchanging the two columns,
and comparing g-vectors and F -polynomials at t0 and t5, we obtain the following
periodicity property:

g�;tm+5
= g3−�;tm , F�;tm+5

(u1, u2) = F3−�;tm(u2, u1) (m ∈ Z) .

Returning to the general situation, we note that the definition makes it clear
that all F�;t(u1, . . . , un) are rational functions with coefficients in Q. The following
stronger statement was proven in [12, Propositions 3.6, 5.2].
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Table 1. g-vectors, F -polynomials, and h-vectors in type A2

t B̃(t) g1;t g2;t F1;t F2;t h1;t h2;t

t0

[
0 1
−1 0
1 0
0 1

] [
1
0

] [
0
1

]
1 1

[
0
0

] [
0
0

]

t1

[
0 −1
1 0
1 0
0 −1

] [
1
0

] [
0
−1

]
1 u2 + 1

[
0
0

] [
0
−1

]

t2

[
0 1
−1 0
−1 0
0 −1

] [
−1
0

] [
0
−1

]
u1u2 + u1 + 1 u2 + 1

[
−1
0

] [
0
−1

]

t3

[
0 −1
1 0
−1 0
−1 1

] [
−1
0

] [
−1
1

]
u1u2 + u1 + 1 u1 + 1

[
−1
0

] [
−1
0

]

t4

[
0 1
−1 0
1 −1
1 0

] [
0
1

] [
−1
1

]
1 u1 + 1

[
0
0

] [
−1
0

]

t5

[
0 −1
1 0
0 1
1 0

] [
0
1

] [
1
0

]
1 1

[
0
0

] [
0
0

]

Proposition 2.2. Each of the rational functions F�;t(u1, . . . , un) is a polynomial
with integer coefficients, which is not divisible by any ui.

We now fix � and t, and discuss the dependency of gB;t0
�;t and FB;t0

�;t on the initial

vertex t0 and the initial exchange matrix B. More precisely, choose some k ∈ [1, n],

and suppose that t0
k t1 and B1 = μk(B). We will relate the vectors gB;t0

�;t and

gB1;t1
�;t and the polynomials FB;t0

�;t and FB1;t1
�;t . This requires some preparation.

Recall that a semifield (P, ·,+) is an abelian multiplicative group (P, ·) en-
dowed with a binary operation of addition which is commutative, associative, and
distributive with respect to the multiplication in P. With every finite family of
indeterminates u1, . . . , u� one can associate two semifields: the universal semifield
Q sf(u1, . . . , u�), and the tropical semifield Trop(u1, . . . , u�) (cf. [12, Definitions 2.1,
2.2]). Recall that Q sf(u1, . . . , u�) is the set of all rational functions in u1, . . . , u�

which can be written as subtraction-free rational expressions, while Trop(u1, . . . , u�)
is the multiplicative group of Laurent monomials ua1

1 · · ·ua�

� with the addition ⊕
given by

(2.8)
∏
j

u
aj

j ⊕
∏
j

u
bj
j =

∏
j

u
min(aj ,bj)
j .

Since (2.6) does not involve subtraction, every F -polynomial FB;t0
�;t (u1, . . . , un)

belongs toQ sf(u1, . . . , un) (although it is still not known in general whether all these
polynomials have positive coefficients). Note that every subtraction-free rational

expression F (u1, . . . , un) (in particular, every FB;t0
�;t ) can be evaluated at any n-

tuple of elements y1, . . . , yn of an arbitrary semifield P. We denote the result of this

evaluation by F |P(yi ← ui). Using this notation, we denote by hB;t0
�;t = (h1, . . . , hn)
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the integer vector given by

(2.9) xh1
1 · · ·xhn

n = FB;t0
�;t |Trop(x1,...,xn)(x

−1
i

∏
j �=i

x
[−bj,i]+
j ← ui).

Example 2.3. In the situation of Example 2.1, the vectors h�;t = hB;t0
�;t are given

in the last column of Table 1. In this case, the formula (2.9) for the vector h�;t =
(h1, h2) takes the form

xh1
1 xh2

2 = F�;t|Trop(x1,x2)(x
−1
1 x2, x

−1
2 ).

For example, since F1;t2 = u1u2 + u1 + 1, we obtain

F1;t2 |Trop(x1,x2)(x
−1
1 x2, x

−1
2 ) = x−1

1 ⊕ x−1
1 x2 ⊕ 1 = x−1

1 ;

hence h1;t2 =

[
−1
0

]
.

Next we recall the Y -seeds and their mutations (see [12, Definitions 2.3, 2.4]).
A (labeled) Y -seed in a semifield P is a pair (y, B), where

• y = (y1, . . . , yn) is an n-tuple of elements of P, and
• B = (bi,j) is an n×n skew-symmetrizable integer matrix.

The Y -seed mutation at k ∈ [1, n] transforms (y, B) into a Y -seed μk(y, B) =
(y′, B′), where B′ = μk(B) is given by (1.1), and the n-tuple y′ = (y′1, . . . , y

′
n) is

given by

(2.10) y′i =

{
y−1
k if i = k;

yiy
[bk,i]+
k (yk + 1)−bk,i if i �= k.

The following result is immediate from [12,Proposition 6.8, formulas (6.26),(6.28)].

Proposition 2.4. Suppose t0
k t1 in Tn, and the Y -seed (y′, B1) in Q sf(y1, . . . ,

yn) is obtained from (y, B) by the mutation at k. Let hk (resp. h′
k) be the k-th com-

ponent of the vector hB;t0
�;t (resp. hB1;t1

�;t ). Then the g-vectors gB;t0
�;t = (g1, . . . , gn)

and gB1;t1
�;t = (g′1, . . . , g

′
n) are related by

(2.11) g′j =

{
−gk if j = k;

gj + [bj,k]+gk − bj,khk if j �= k.

We also have

(2.12) gk = hk − h′
k

and

(2.13) (yk + 1)hkFB;t0
�;t (y1, . . . , yn) = (y′k + 1)h

′
kFB1;t1

�;t (y′1, . . . , y
′
n) .

We conclude this section by recalling [12, Corollary 6.3], which explains why the
g-vectors and F -polynomials play a crucial role in the theory of cluster algebras.
Recall that a cluster algebra A is specified by a choice of a Y -seed (y, B) in a
semifield P. Let F = QP(x1, . . . , xn) be the field of rational functions in commuting
independent variables x1, . . . , xn over the quotient field QP of the integer group ring
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ZP of the multiplicative group P. Then each � and t as above gives rise to a cluster
variable x�;t ∈ F given by

(2.14) x�;t =
FB;t0
�;t |F (ŷ1, . . . , ŷn)

FB;t0
�;t |P(y1, . . . , yn)

xg1
1 · · ·xgn

n ,

where (g1, . . . , gn) = gB;t0
�;t , and the elements ŷ1, . . . , ŷn ∈ F are given by

(2.15) ŷj = yj
∏
i

x
bi,j
i .

Furthermore, all cluster variables are of this form, and A is the ZP-subalgebra of
F generated by all the x�;t.

3. F -polynomials of quiver representations

In this section we use the terminology on quiver representations from the intro-
duction. We work with a quiver Q = Q(B) (see (1.4)). Our goal is to develop some
basic properties of the F -polynomial FM (u1, . . . , un) associated to any representa-
tion M of Q in accordance with (1.6).

Proposition 3.1. Each polynomial FM (u1, . . . , un) has constant term 1. Further-

more, FM (u1, . . . , un) contains the monomial
∏n

i=1 u
dimM(i)
i with coefficient 1, and

it is divisible by all the other occurring monomials.

Proof. It is enough to notice that, for e = (0, . . . , 0) or e = dM (see (1.5)), the
quiver Grassmannian Gre(M) consists of one point. �

Proposition 3.2. For all representations M ′ and M ′′ of Q, we have

(3.1) FM ′⊕M ′′ = FM ′FM ′′ .

Proof. We use the following well-known property of the Euler-Poincaré character-
istic: if a complex torus T acts algebraically on a variety X, then χ(X) = χ(XT ),
where XT is the set of T -fixed points (see, for example, [2]). Take X = Gre(M

′ ⊕
M ′′), and consider the action of T = C∗ on X induced by the T -action on M ′⊕M ′′

given by

t · (m′,m′′) = (tm′,m′′) (m′ ∈ M ′, m′′ ∈ M ′′).

Then a point N ∈ X is T -fixed if and only if the submodule N ⊆ M ′ ⊕M ′′ splits
into N = N ′ ⊕N ′′ for some N ′ ⊆ M ′ and N ′′ ⊆ M ′′. Thus, we have

XT =
⊔

e′+e′′=e

(Gre′(M ′)×Gre′′(M ′′)),

and so

χ(Gre(M
′ ⊕M ′′)) =

∑
e′+e′′=e

χ(Gre′(M ′))χ(Gre′′(M ′′)),

implying (3.1). �

To state our next result, we recall the maps αk and βk in (1.10) (the map γk is
undefined for arbitrary quiver representations). We will denote these maps αk;M

and βk;M if necessary to stress the dependency of a representation M . We denote
by hM = (h1, . . . , hn) the integer vector given by

(3.2) hk = hk(M) = − dim kerβk;M .
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Now assume that FM belongs to Q sf(u1, . . . , un) (the semifield of subtraction-
free rational expressions), hence can be evaluated in an arbitrary semifield1 (see
the discussion after Proposition 2.2). The definition (3.2) is then justified by the
following analog of (2.9).

Proposition 3.3. Under the assumption that FM ∈ Q sf(u1, . . . , un), the compo-
nents of the vector hM appear as the exponents in the tropical evaluation

(3.3) xh1
1 · · ·xhn

n = FM |Trop(x1,...,xn)(x
−1
i

∏
j �=i

x
[−bj,i]+
j ← ui).

Proof. First we give a general lemma following easily from the definition of a tropical
semifield (see (2.8)).

Lemma 3.4. If F (u1, . . . , un) is a Laurent polynomial belonging to Q sf(u1, . . . , un),
then the result of any evaluation of F in a tropical semifield does not change if we
replace F with the sum of the terms (taken with coefficient 1) corresponding to the
vertices of its Newton polytope.

Now suppose that N ∈ Gre(M), i.e., that N is a subrepresentation of M with
dN = e. Then the exponent of xk in the tropical evaluation

(ue1
1 · · ·uen

n )|Trop(x1,...,xn)(x
−1
i

∏
j �=i

x
[−bj,i]+
j ← ui)

can be rewritten as

−ek +
∑
i �=k

[−bk,i]+ei = −ek +
∑
i �=k

[bi,k]+ei = dimNout(k)− dimN(k)

(we used the fact that B is skew-symmetric). Note that

dimNout(k)− dimN(k) ≥ dimβ(N(k))− dimN(k)

= − dim(N(k) ∩ kerβk)

≥ − dimkerβk = hk.

In view of Lemma 3.4, this implies that hk does not exceed the exponent of xk in
the right-hand side of (3.3).

Now take e = −hkek (recall that ek stands for the k-th unit vector in Zn),
and notice that Gre(M) consists of one point N (with N(i) = {0} for i �= k, and
N(k) = kerβk), and that e is obviously a vertex of the Newton polytope of FM .
This implies that the exponent of xk in the right-hand side of (3.3) does not exceed
hk, completing the proof of Proposition 3.3. �

Proposition 3.5. Suppose that Q is a quiver with no oriented cycles and that
M is a general representation of dimension d = (d1, . . . , dn). Then every quiver
Grassmannian Gre(M) is smooth. In particular, this is the case if M is rigid, that
is, Ext1(M,M) = 0.

This proposition follows from the results of Schofield ([18, §3]). For the conve-
nience of the reader we give an outline of the proof.

1It is conceivable that this condition holds for arbitrary quiver representations.
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Proof. If M is a representation with dimension vector d, then we may identify M(i)
with Cdi by choosing a basis in M(i) for all i. Then M is represented as an element

(aM )a∈Q1
∈ Repd(Q) :=

∏
a∈Q1

Kdha×dta .

The group GLd =
∏n

i=1 GLdi
(C) acts on Repd(Q) by base change. This way,

isomorphism classes of d-dimensional representations correspond to GLd-orbits in
Repd(Q). For a dimension vector e = (e1, . . . , en), let

Ze,d ⊆ Repd(Q)×
n∏

i=1

Grei(C
di)

be defined as the set of all (M, (N1, N2, . . . , Nn)) for which aM (Nta) ⊆ Nha for
all a ∈ Q1. We have natural projections p : Ze,d → Repd(Q) and q : Ze,d →∏n

i=1 Grei(C
di). One can show that the projection q makes Ze,d into a vector

bundle over the product of Grassmannians; hence Ze,d is smooth. Now the quiver
Grassmannian Gre(M) is equal to the fiber p−1(M). IfM is a general representation
of dimension d, then the fiber p−1(M) is smooth by the second Bertini Theorem
([20, Chapter II, §6.2, Theorem 2]). �

If Q is a quiver without oriented cycles, and M is indecomposable and rigid,
then all the quiver Grassmannians are smooth by the proposition above. It was
shown in [7, 8],2 that the F -polynomial of M has nonnegative coefficients in this
case. The next two examples show that, in general, the coefficients can be negative,
and the quiver Grassmannian may be singular.

Example 3.6. Consider the quiver Q given by

1
a1,a2,a3,a4 �������� 2

and let M be a general representation of Q of dimension d = (3, 4). The arrows
a1, . . . , a4 act in M as four linear maps C3 → C4 in general position. Choose
e = (1, 3). Since M is in general position, Gre(M) is smooth by the discussion
above. Now the first projection Gre(M) → Gr1(C

3) = P2 identifies Gre(M) with
the projective curve C given by the equation

det(a1(m), a2(m), a3(m), a4(m)) = 0 (m ∈ C3).

Since C is a smooth curve of degree 4, it has genus g = (4 − 1)(4 − 2)/2 = 3 and
Euler characteristic 2− 2g = 2− 2 · 3 = −4 (see [20, Chapter IV, 2.3]). So we have

χ(Gre(M)) = −4.

Example 3.7. Consider the quiver Q given by

1
a

���
��

��
��

3

c

���������
2.

b
��

2It was pointed out in [17] that the proof in [7] contains a gap.
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Let M1,M2,M3 be the indecomposable representations of Q of dimensions (0, 1, 1),
(1, 0, 1), and (1, 1, 0), respectively, and M = M1 ⊕M2 ⊕M3. It is immediate from
the definition (1.6) that

FM1
(u1, u2, u3) = 1 + u3 + u2u3,

FM2
(u1, u2, u3) = 1 + u1 + u1u3,

FM3
(u1, u2, u3) = 1 + u2 + u1u2.

By Proposition 3.2, we have FM = FM1
FM2

FM3
. In particular, the coefficient of

u1u2u3 in FM is 4. Thus, χ(Gr(1,1,1)(M)) = 4.
Geometrically this result can be seen as follows. The variety Gr(1,1,1)(M) is a

subvariety in Gr1(M(1)) × Gr1(M(2)) × Gr1(M(3)) = P1 × P1 × P1. Let P =
(P (1), P (2), P (3)) ∈ P1 × P1 × P1 be given by

P (1) = ker aM = im cM , P (2) = ker bM = im aM , P (3) = ker cM = im bM ;

then Gr(1,1,1)(M) consists of all points N ∈ P1 × P1 × P1 such that N and P have
at least two common components. Thus, Gr(1,1,1)(M) is the union of three copies

of P1 meeting at a single point P . In other words, Gr(1,1,1)(M) is the disjoint union

of three copies of A1 and the single point {P}, so
χ(Gre(N)) = 3χ(A1) + χ({P}) = 3 · 1 + 1 = 4.

Note that Gr(1,1,1)(M) is singular at P .

4. Background on quivers with potentials and their representations

Let Q = (Q0, Q1, h, t) be a quiver (see Introduction). We denote by R the vertex
span of Q, that is, the commutative algebra over C with the basis {ei : i ∈ Q0} and
multiplication given by eiej = δi,jei. The arrow span of Q is the finite-dimensional
R-bimodule A with the C-basis identified with Q1, and the R-bimodule structure
given by

(4.1) Ai,j = eiAej =
⊕
a:j→i

Ca.

The complete path algebra of Q is defined as

R〈〈A〉〉 =
∞∏
d=0

A⊗Rd.

Thus, the elements of R〈〈A〉〉 are (possibly infinite) C-linear combinations of paths
in Q; note that by the convention (4.1) all the paths are traced in the right-to-left
order. We view R〈〈A〉〉 as a topological algebra with respect to the m-adic topology,
where the (two-sided) ideal m ⊂ R〈〈A〉〉 is given by

(4.2) m =

∞∏
d=1

A⊗Rd.

A potential on Q is an element S ∈ mcyc =
⊕

i∈Q0
mi,i, i.e., a possibly infinite

linear combination of cyclic paths in R〈〈A〉〉. We view potentials up to cyclical
equivalence defined as follows: two potentials S and S′ are cyclically equivalent if
S−S′ lies in the closure of the span of all elements of the form a1 · · · ad−a2 · · · ada1,
where a1 · · · ad is a cyclic path.
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For any arrow a ∈ Q1, the cyclic derivative ∂a is the continuous linear map
mcyc → R〈〈A〉〉t(a),h(a) acting on cyclic paths by

(4.3) ∂a(a1 · · · ad) =
∑

p:ap=a

ap+1 · · · ada1 · · · ap−1.

The Jacobian ideal J(S) of a potential S is the closure of the (two-sided) ideal
in R〈〈A〉〉 generated by the elements ∂a(S) for all a ∈ Q1. We call the quotient
R〈〈A〉〉/J(S) the Jacobian algebra of S, and denote it by P(Q,S) or P(A,S).

The cyclic derivatives of a potential S can be expressed in terms of another
important family of elements ∂ba(S) ∈ R〈〈A〉〉 associated with pairs of arrows
a, b ∈ Q1 such that h(a) = t(b). Namely, the definition of a continuous linear map

∂ba : mcyc → R〈〈A〉〉t(a),h(b)

is similar to (4.3): replacing if necessary a potential S with a cyclically equivalent
one, we can assume that no cyclic path occurring in S starts with an arrow a; for
every such cyclic path a1 · · · ad, we set

(4.4) ∂ba(a1 · · · ad) =
∑

ν:aν−1=b,aν=a

aν+1 · · · ada1 · · · aν−2.

An easy check shows that, for any b ∈ Q1, we have

(4.5)
∑

a:h(a)=t(b)

a · ∂ba(S) =
∑

c:t(c)=h(b)

∂cb(S) · c = ∂b(S).

A (decorated) representation of a quiver with potential (Q,S) (QP for short)
is a pair M = (M,V ), where M is a finite-dimensional P(Q,S)-module, and V
is a finite-dimensional R-module. A more concrete description was given in the
introduction (see [9, Section 10]): V is simply a collection (V (i))i∈Q0

of finite-
dimensional vector spaces, while M = (M(i))i∈Q0

is a representation of Q anni-
hilated by mN for N � 0, and by all cyclic derivatives of S. In view of (4.5),
the latter relations are equivalent to (1.12), where the map γk in the triangle (1.8)
is defined as follows: for each a, b ∈ Q1 with h(a) = t(b) = k, the component
γa,b : M(h(b)) → M(t(a)) of γk is given by (1.11). We can also express γk in
matrix form: set

(4.6) {a1, . . . , ar} = {a ∈ Q1 : h(a) = k}, {b1, . . . , bs} = {b ∈ Q1 : t(b) = k},

and let Hk(S) be the r × s matrix whose (p, q) entry is ∂bqap
S; then the action of

γk in M is given by the matrix

(4.7) γk = (Hk(S))M .

In what follows, we refer to a decorated representation M = (M,V ) of a
QP (Q,S) as a QP-representation. The direct sums and indecomposable QP-
representations are defined in a natural way. We say that M is positive if V = {0},
and negative if M = {0}. Thus, indecomposable positive QP-representations are
just indecomposable P(Q,S)-modules, while indecomposable negative QP-represen-
tations are negative simple representations S−

k for k ∈ Q0 defined as follows:

(4.8) S−
k (Q,S) = ({0}, V ), dimV (i) = δi,k.
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As in [9, Definitions 4.2, 10.2], we view the QPs and their representations up
to right-equivalence. Recall that the QPs (Q,S) and (Q,S′) on the same under-
lying quiver Q are right-equivalent if there is an automorphism ϕ of R〈〈A〉〉 (as
an algebra and R-bimodule) such that ϕ(S) is cyclically equivalent to S′. In view
of [9, Proposition 3.7], we then have ϕ(J(S)) = J(S′); therefore, every P(Q,S)-
module M carries a structure of a P(Q,S′)-module (which we denote ϕM) with
the “twisted” action of R〈〈A〉〉 given by

ϕ(u) � m = um (u ∈ R〈〈A〉〉, m ∈ M).

Now a QP-representation M′ = (M ′, V ′) of (Q,S′) is right-equivalent to a QP-
representation M = (M,V ) of (Q,S) if M ′ is isomorphic to ϕM as a P(Q,S′)-
module, and V ′ is isomorphic to V as an R-module.

Let ϕ be an automorphism of R〈〈A〉〉 as above. Fix a vertex k ∈ Q0, and use
the notation in (4.6). We would like to express the matrix Hk(ϕ(S)) in terms of
Hk(S). As shown in the proof of Lemma 5.3 in [9], we have

(4.9)
(
ϕ(a1) ϕ(a2) · · · ϕ(ar)

)
=

(
a1 a2 · · · ar

)
(C0 + C1),

where:

• C0 is an invertible r × r matrix with entries in C such that its (p, q)-entry
is 0 unless t(ap) = t(aq);

• C1 is an r × r matrix whose (p, q)-entry belongs to mt(ap),t(aq).

Similarly, we have

(4.10)

⎛⎜⎜⎜⎝
ϕ(b1)
ϕ(b2)

...
ϕ(bs)

⎞⎟⎟⎟⎠ = (D0 +D1)

⎛⎜⎜⎜⎝
b1
b2
...
bs

⎞⎟⎟⎟⎠ ,

where:

• D0 is an invertible s× s matrix with entries in C such that its (p, q)-entry
is 0 unless h(bp) = h(bq);

• D1 is an s× s matrix whose (p, q)-entry belongs to mh(bp),h(bq).

Note that both matrices C0+C1 and D0+D1 are invertible, and their inverses are
of the same form.

In the above notation, we claim that

all entries of the matrix(4.11)

Hk(ϕ(S))− (C0 + C1)ϕ(Hk(S)) (D0 +D1) belong to J(ϕ(S))

(here the matrix ϕ(Hk(S)) is obtained by applying ϕ to each entry of Hk(S)). As
a consequence, for the representation M ′ = ϕM as above, the corresponding map
γ′
k is given by

(4.12) γ′
k = (C0 + C1)M ′ ◦ γk ◦ (D0 +D1)M ′ ,

where (C0+C1)M ′ (resp. (D0+D1)M ′) is an R-bimodule automorphism of Min(k)
(resp. of Mout(k)). Note that (4.12) is the equality (10.16) in [9], while (4.11) is
implicit in the proof of this equality.

We now recall one of the main technical results of [9], the Splitting Theorem
([9, Theorem 4.6]). Let Q be a quiver without loops (but possibly having oriented
2-cycles). We say that a QP (Q,S) is trivial if S is a linear combination of cyclic
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2-paths, and J(S) = m; in other words (see [9, Proposition 4.4]), the set of arrows
Q1 consists of 2N distinct arrows a1, b1, . . . , aN , bN such that each aνbν is a cyclic
2-path, and there is an R-bimodule automorphism ϕ of the arrow span A such that
ϕ(S) is cyclically equivalent to a1b1 + · · · + aNbN . We say that a QP (Q,S) is
reduced if S ∈ m3 (note that Q is still allowed to have oriented 2-cycles). Now the
Splitting Theorem asserts that

(4.13) any QP (Q,S) is right-equivalent to the direct sum of a
reduced QP (Q,S)red and a trivial QP (Q,S)triv, each
of which is determined by (Q,S) up to right-equivlence.

We refer to (Q,S)red as the reduced part of (Q,S). The operation of taking
the reduced part naturally extends to representations. Namely, if M = (M,V ) is a
representation of (Q,S), then Mred is obtained by transforming M into a represen-
tation (ϕM,V ) of (Q,S)red⊕(Q,S)triv with the help of a right-equivalence in (4.13),
and then restricting the resulting representation to (Q,S)red (see [9, Definition 10.4]
for more details). By [9, Proposition 10.5], the reduction of representations is well-
defined on the level of right-equivalence classes.

Now everything is in place for introducing our main tool – mutations of reduced
QPs and their representations. Let (Q,S) be a reduced QP and let k ∈ Q0 be a
vertex such that Q has no oriented 2-cycles through k. Following [9], we define

the mutation (Q,S) = μk(Q,S) at k as the reduced part (Q̃, S̃)red, where the

“premutation” (Q̃, S̃) = μ̃k(Q,S) is defined as follows. First, the quiver Q̃ is
obtained from Q by the following two-step procedure:

Step 1. For every pair of arrows a, b ∈ Q1 with h(a) = k = t(b), create a “com-
posite” arrow [ba] with h([ba]) = h(b) and t([ba]) = t(a).

Step 2. Reverse all arrows at k; that is, replace each arrow a with h(a) = k (resp.
each arrow b with t(b) = k) by an arrow a	 with t(a	) = k and h(a	) = t(a)
(resp. b	 with h(b	) = k and t(b	) = h(b)).

Second, the potential S̃ on Q̃ is obtained from S as follows: replacing S if necessary
with a cyclically equivalent potential, we can assume that no cyclic path occurring
in S starts and ends at k; then we set

(4.14) S̃ = [S] + Δ,

where

(4.15) Δ =
∑

a,b∈Q1: h(a)=t(b)=k

[ba]a	b	,

and [S] is obtained by substituting [aνaν+1] for each factor aνaν+1 with t(aν) =
h(aν+1) = k of any cyclic path a1 · · · ad occurring in the expansion of S. As
shown in [9, Theorem 5.2], the right-equivalence class of μ̃k(Q,S) is determined
by the right-equivalence class of (Q,S); hence by (4.13), the same is true for
μk(Q,S) = (μ̃k(Q,S))red. Furthermore, by [9, Theorem 5.7], the mutation μk

acts as an involution on the set of right-equivalence classes of reduced QPs; that is,
μ2
k(Q,S) is right-equivalent to (Q,S).
Now let M = (M,V ) be a QP-representation of a reduced QP (Q,S). Fix

a vertex k and let (Q̃, S̃) = μ̃k(Q,S) and (Q,S) = μk(Q,S) = (Q̃, S̃)red. We
define the mutated QP-representation M = μk(M) of (Q,S) as the reduced part
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of the QP-representation M̃ = μ̃k(M) = (M,V ) of (Q̃, S̃) given by the following
construction (see [9, Section 10]).

First, we set

(4.16) M(i) = M(i), V (i) = V (i) (i �= k),

and define the spaces M(k) and V (k) by

(4.17) M(k) =
ker γk
im βk

⊕ im γk ⊕
kerαk

im γk
⊕ V (k), V (k) =

kerβk

kerβk ∩ im αk

(see (1.8)). For every arrow c of Q̃, the corresponding linear map cM : M(t(c)) →
M(h(c)) is defined as follows.

We set cM = cM for every arrow c not incident to k, and [ba]M = bMaM for all
arrows a and b in Q with h(a) = k = t(b). It remains to define the linear maps

αk : M in(k) = Mout(k) → M(k), βk : M(k) → Mout(k) = Min(k)

in the counterpart of the triangle (1.8) for the representation M̃. We use the
following notational convention: whenever we have a pair U1 ⊆ U2 of vector spaces,
denote by ι : U1 → U2 the inclusion map, and by π : U2 → U2/U1 the natural
projection. We now introduce the following splitting data:

Choose a linear map ρ : Mout(k) → ker γk such that ρι = idker γk
.(4.18)

Choose a linear map σ : kerαk/ im γk → kerαk such that
πσ = idkerαk/ im γk

.
(4.19)

Then we define:

(4.20) αk =

⎛⎜⎜⎝
−πρ
−γk
0
0

⎞⎟⎟⎠ , βk =
(
0 ι ισ 0

)
.

As shown in [9, Propositions 10.7, 10.9, 10.10], the above construction makes

μ̃k(M) = (M,V ) a QP-representation of (Q̃, S̃), whose isomorphism class does not
depend on the choice of the splitting data (4.18)–(4.19), and whose right-equivalence
class is determined by the right-equivalence class of M. Furthermore, we have

(4.21) γk = βkαk

and

kerαk = im βk, im αk =
ker γk
im βk

⊕ im γk ⊕ {0} ⊕ {0},(4.22)

kerβk =
ker γk
im βk

⊕ {0} ⊕ {0} ⊕ V (k), im βk = kerαk

(see [9, (10.25), (10.26)]).
Since, by the definition, the representation μk(M) of (Q,S) is the reduced part

of M̃ = μ̃k(M) = (M,V ), the right-equivalence class of μk(M) is determined by
the right-equivalence class of M. Furthermore, in view of [9, Theorem 10.13], the
mutation μk of QP-representations is an involution:

(4.23) for every QP-representation M of a reduced QP (Q,S),
the QP-representation μ2

k(M) is right-equivalent to M.
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Since by construction, the mutations send direct sums of QP-representations to the
direct sums, (4.23) implies that (cf. [9, Corollary 10.14])

(4.24) any mutation μk sends indecomposable QP-represen-
tations of reduced QPs to indecomposable ones.

Now suppose that the quiver Q has no oriented 2-cycles, i.e., that it is of the
form Q(B) for some skew-symmetric integer matrix B (see (1.4)). Then the mu-
tated QP μk(Q,S) = (Q,S) is well-defined for any vertex k and any potential S
on Q. However, the quiver Q may acquire some oriented 2-cycle, say involving ver-
tices i and j, which would make mutations μi and μj undefined for the QP (Q,S).
Following [9, Definition 7.2], we say that a QP (Q,S) is nondegenerate if this does
not happen, and moreover if any finite sequence of mutations μk�

· · ·μk1
can be

applied to (Q,S) without creating oriented 2-cycles along the way. According to
this definition, the class of nondegenerate QPs is stable under all mutations. Fur-
thermore, according to [9, Proposition 7.1], mutations of nondegenerate QPs are
compatible with matrix mutations: if μk(Q(B), S) = (Q,S), then Q = Q(μk(B))
with μk(B) given by (1.1).

Finally we note that every quiver Q(B) has a potential S such that (Q(B), S) is a
nondegenerate QP. More precisely, in view of [9, Corollary 7.4], the nondegeneracy
of (Q(B), S) is guaranteed by the nonvanishing at S of countably many nonzero
polynomial functions on the space of potentials on Q(B) (taken up to cyclical
equivalence).

5. QP-interpretation of g-vectors and F -polynomials

We retain all the notation and conventions of the preceding sections. To a QP-
representation M = (M,V ) we associate the g-vector gM = (g1, . . . , gn) ∈ Zn

given by (1.13), and the F -polynomial FM = FM given by (1.6) (in particular, if
M is negative, then FM = 1). Note that gM = gM′ and FM = FM′ if M and
M′ are right-equivalent (for the F -polynomial, this is immediate from (1.6); for the
g-vector, this is a consequence of (4.12)). Note also that

(5.1) gM⊕M′ = gM + gM′

for any QP-representations M and M′ of the same QP.
Let B be a skew-symmetric integer n× n matrix, t0, t ∈ Tn, and � ∈ {1, . . . , n}.

Let Q = Q(B) and let S be a potential on Q such that (Q,S) is a nondegenerate QP.

The main result of this section is a construction of a QP-representation M = MB;t0
�;t

of (Q,S) such that gM = gB;t0
�;t and FM = FB;t0

�;t , where the g-vectors gB;t0
�;t and

F -polynomials FB;t0
�;t were introduced in Section 2.

The family of QP-representationsMB;t0
�;t is uniquely determined by the properties

(1.15) and (1.16). More explicitly, let

t0
k1 t1

k2 · · · kp tp = t

be the (unique) path joining t0 and t in Tn. We set

(Q(t), S(t)) = μkp
· · ·μk1

(Q,S),

which is well-defined because (Q,S) is nondegenerate. Let S−
� (Q(t), S(t)) be the

negative simple representation of (Q(t), S(t)) at a vertex � (see (4.8)). Then we
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have

(5.2) MB;t0
�;t = μk1

· · ·μkp
(S−

� (Q(t), S(t)));

in view of (4.23), replacing MB;t0
�;t if necessary by a right-equivalent representation,

we can assume that it is a QP-representation of (Q,S).

Theorem 5.1. We have

(5.3) gB;t0
�;t = gM, FB;t0

�;t = FM,

where M = MB;t0
�;t .

Proof. We deduce Theorem 5.1 from the following key lemma.

Lemma 5.2. Let M = (M,V ) be an arbitrary QP-representation of a nondegen-
erate QP (Q(B), S), let M = (M,V ) = μk(M) for some k ∈ Q(B)0, and suppose
that the Y -seed (y′, B1) in Q sf(y1, . . . , yn) is obtained from (y, B) by the mutation
at k. Let hk (resp. h′

k) be the k-th component of the vector hM (resp. hM ) given
by (3.2). Then the g-vector gM = (g1, . . . , gn) satisfies (2.12) and is related to the
g-vector gM = (g′1, . . . , g

′
n) via (2.11). Furthermore, the F -polynomials FM and

FM are related by

(5.4) (yk + 1)hkFM(y1, . . . , yn) = (y′k + 1)h
′
kFM(y′1, . . . , y

′
n) .

Before proving Lemma 5.2, we first show how it implies Theorem 5.1. Let M =

(M,V ) = MB;t0
�;t . We prove (5.3) together with the equality

(5.5) hM = hB;t0
�;t

(see (2.9)) by induction on the distance between t0 and t in the tree Tn. The basis

of induction is the case t = t0. By (1.15), we have MB;t0
�;t0

= S−
� (Q(B), S). The fact

that the g-vector and F -polynomial of this QP-representation agree with (2.1) and
(2.4) is immediate from the definitions, while both sides of (5.5) are equal to 0.

Now assume that (5.3) and (5.5) are satisfied for some � and t, and that t0
k t1

in Tn. In view of (1.16), the QP-representation M = (M,V ) in Lemma 5.2 is equal

to MB′;t1
�;t , where B′ = μk(B). To finish the proof, it suffices to show that

(1) gM = gB1;t1
�;t ;

(2) FM = FB1;t1
�;t ;

(3) hM = hB1;t1
�;t .

To prove (1), it suffices to observe that, by Lemma 5.2, the vector gM is obtained

from gM by the same rule (2.11) that expresses gB1;t1
�;t in terms of gB;t0

�;t . Then,

since by Lemma 5.2 the numbers h′
k, hk and gk are related by (2.12), we conclude

that h′
k is the k-th component of the vector hB1;t1

�;t . Next, using the latter claim, and

comparing (5.4) with the relation (2.13) in Proposition 2.4, we obtain the proof of
(2). Finally, to prove (3) it is enough to apply Proposition 3.3 to the representation
M (note that in view of (2), the polynomial FM is a subtraction-free rational
expression, which makes Proposition 3.3 applicable).

It remains to prove Lemma 5.2, which we accomplish in several steps.
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Step 1. We start by proving that the numbers h′
k, hk and gk in Lemma 5.2 are

related by (2.12), which we rewrite as

−h′
k = gk − hk.

Remembering (3.2) and (1.13), we can rewrite this equality as

dim kerβk = dimker γk−dimM(k)+dimV (k)+dimkerβk = dim
( ker γk
im βk

⊕V (k)
)
,

which is immediate from (4.22).

Step 2. Our next target is the identity (5.4). Suppose that N = (N(1), . . . , N(n))
∈
∏n

i=1 Grei(M(i)), and let Nin(k) and Nout(k) be the corresponding subspaces of
Min(k) and Mout(k), respectively. The condition that N ∈ Gre(M) can be stated
as the combination of the following two conditions:

(5.6) cM (N(j)) ⊆ N(i) for any arrow c : j → i not incident to k in Q(B),

(5.7) αk(Nin(k)) ⊆ N(k) ⊆ β−1
k (Nout(k)).

Now let e′ = (ei)i �=k denote the integer vector obtained from e by forgetting the
component ek. For every such vector e′ and every pair of nonnegative integers r ≤ s,
we denote by Ze′;r,s(M) the variety of tuples (N(i))i �=k satisfying the inclusions

(5.6) and αk(Nin(k)) ⊆ β−1
k (Nout(k)), and such that dimN(i) = ei for i �= k, and

dimαk(Nin(k)) = r, dim β−1
k (Nout(k)) = s.

Let Z̃e;r,s(M) denote the subset of Gre(M) consisting of all N = (N(1), . . . , N(n))
such that the tuple obtained from N by forgetting N(k) belongs to Ze′;r,s(M).

Then Gre(M) is the disjoint union of the subsets Z̃e;r,s(M) over all pairs (r, s), and

in view of (5.7), each Z̃e;r,s(M) is the fiber bundle over Ze′;r,s(M) with the fiber

Grek−r(C
s−r). Since χ(Grek−r(C

s−r)) =
(
s−r
ek−r

)
, it follows that

χ(Gre(M)) =
∑
r,s

(
s− r

ek − r

)
χ(Ze′;r,s(M)).

Substituting this expression into (1.6) and performing the summation with respect
to ek, we obtain

(5.8) FM(y1, . . . , yn) =
∑
e′,r,s

χ(Ze′;r,s(M))yrk(yk + 1)s−r
n∏

i �=k

yeii .

The proof of (5.4) is based on the following observation:

(5.9) Ze′;r,s(M) = Ze′;r,s(M),

where r and s are given by

(5.10) r =
∑
i

[bi,k]+ei − hk − s, s =
∑
i

[−bi,k]+ei − h′
k − r.

In view of the symmetry between M and M, to prove (5.9), it is enough to show
that every (N(i))i �=k ∈ Ze′;r,s(M) belongs to Ze′;r,s(M).

First of all, we need to show that βkαk(Nout(k)) ⊆ Nin(k), that is, the counter-
part for M of the inclusion αk(Nin(k)) ⊆ β−1

k (Nout(k)). As an immediate conse-

quence of (4.20), we get βkαk = −γk. In view of (1.11), each of the components
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of the map γk is a linear combination of compositions of maps of the kind cM
or bMaM (where a, b, c ∈ Q1 are such that h(a) = t(b) = k, and c is not inci-
dent to k); thus, the defining conditions (5.6) and (5.7) imply the desired inclusion
γk(Nout(k)) ⊆ Nin(k).

To conclude the proof of (5.9), it remains to show that

(5.11) dimαk(Nout(k)) = r, dimβ
−1

k (Nin(k)) = s.

To show the first equality, recall from (4.22) that kerαk = im βk, implying that

dimαk(Nout(k)) = dimNout(k)/(Nout(k) ∩ im βk)

=
∑
i

[bi,k]+ei − dim(Nout(k) ∩ im βk).

Using the exact sequence

0 → kerβk → β−1
k (Nout(k)) → Nout(k) ∩ im βk → 0,

we conclude that

dim(Nout(k) ∩ im βk) = dim β−1
k (Nout(k))− dimkerβk = s+ hk,

implying the first equality in (5.11). The second equality can be shown by similar
arguments but also follows from the first one applied to M instead of M.

The rest of the proof of (5.4) is straightforward: use (5.8) and (5.9) for rewriting
its right-hand side in the form

(y′k + 1)h
′
kFM(y′1, . . . , y

′
n) = (y′k + 1)h

′
k

∑
e′,r,s

χ(Ze′;r,s(M))(y′k)
r(y′k + 1)s−r

∏
i �=k

(y′i)
ei ,

then substitute for y′1, . . . , y
′
n (resp. for r and s) the expressions given by (2.10)

(resp. by (5.10)), simplify the resulting expression, and use (5.8) again to see that
it is equal to the left-hand side of (5.4).

Step 3. To finish the proof of Lemma 5.2, it remains to show that the vectors gM
and gM′ are related by (2.11). As shown in Step 1, we have gk = hk−h′

k, implying
the equality g′k = −gk.

Now let i �= k. Using (1.13), (3.2), and the fact that the matrix B is skew-
symmetric, we can rewrite the desired second equality in (2.11) as

dimker γi − [bk,i]+ dimkerβk = dimker γi − [bi,k]+ dimkerβk.

Interchanging M and M if necessary, we see that it suffices to prove the following:

(5.12) if bk,i ≥ 0, then dimker γi = dimker γi − bk,i dim kerβk.

We first show that (5.12) holds if we replace the map γi : Mout(i) → M in(i)

with its counterpart γ̃i : M̃out(i) → M̃in(i) for the representation M̃ = μ̃k(M). We
decompose the space Mout(i) as

Mout(i) = M(k)bk,i ⊕M ′
out(i),

where the first summand corresponds to the bk,i arrows from i to k. Accordingly,
we have

M̃out(i) = Mout(k)
bk,i ⊕M ′

out(i), M̃in(i) = M(k)bk,i ⊕Min(i).
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Tracing the definitions, we see that the maps γi : M(k)bk,i ⊕M ′
out(i) → Min(i) and

γ̃i : Mout(k)
bk,i ⊕M ′

out(i) → M(k)bk,i ⊕Min(i) can be written in the block-matrix
form as

γi =
(
ψ ◦ βbk,i

k η
)
, γ̃i =

(
α
bk,i

k 0
ψ η

)
for some linear maps ψ and η, where β

bk,i

k and α
bk,i

k stand for the direct (diagonal)

sums of bk,i copies of the maps βk : M(k) → Mout(k) and αk : Mout(k) → M(k).
Using the equality kerαk = im βk (4.22), it is easy to see that there is an exact
sequence

0 → (kerβk)
bk,i ⊕ {0} → ker γi → ker γ̃i → 0,

where the map ker γi → ker γ̃i sends a pair (u, v) ∈ ker γi ⊆ M(k)bk,i ⊕M ′
out(i) to

(β
bk,i

k u, v). We conclude that

dim ker γ̃i = dimker γi − bk,i dimkerβk.

To complete the proof of (5.12), it remains to show that

(5.13) dim ker γ̃i = dimker γi.

In view of (4.12), dim ker γ̃i does not change if we replace (Q̃, S̃) with a right-

equivalent QP. Thus, in proving (5.13), we can assume that (Q̃, S̃) = (Q,S) ⊕
(Q′, S′), where (Q′, S′) is a trivial QP. In accordance with this decomposition, we

can decompose the spaces M̃in(i) and M̃out(i) as

M̃in(i) = M in(i)⊕ M̃ ′
in(i), M̃out(i) = Mout(i)⊕ M̃ ′

out(i),

where the spaces M̃ ′
in(i) and M̃ ′

out(i) correspond to the arrows from Q′. Thus, γ̃i
has the following block-matrix form:

γ̃i =

(
γi 0
0 ι

)
,

where ι is a vector space isomorphism M̃ ′
out(i) → M̃ ′

in(i). This implies (5.13), which
completes the proofs of Lemma 5.2 and Theorem 5.1. �

Theorem 5.1 yields a formula for cluster variables in the coefficient-free cluster
algebra (that is, the one with the coefficient semifield P = {1}).

Corollary 5.3. Suppose that FB;t0
�;t �= 1; hence the QP-representation M = MB;t0

�;t

is positive (that is, M = (M, 0)). Let x�;t be the corresponding cluster variable in
the coefficient-free cluster algebra. Then x�;t is given by the formula

(5.14) x�;t =
n∏

i=1

x−di
i

∑
e

χ(Gre(M))
n∏

i=1

x
− rk γi+

∑
j([bi,j ]+ej+[−bi,j ]+(dj−ej))

i ,

where di = dimM(i).

Proof. It suffices to rewrite (1.13) as

gi = dimMout(i)− rk γi − dimM(i) =
∑
j

[−bi,j ]+dj − rk γi − di ,

and apply (2.14) and (2.15). �
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Remark 5.4. If the quiver Q(B) has no oriented cycles, then S = 0; hence γi = 0
for all i. In this case (5.14) specializes to the Caldero-Chapoton formula for cluster
variables (see [6]) obtained in this generality in [7, Theorem 3].

Recall that the denominator vector of a cluster variable z with respect to the
initial cluster (x1, . . . , xn) is the integer vector (d1(z), . . . , dn(z)) such that

z =
P (x1, . . . , xn)

x
d1(z)
1 · · ·xdn(z)

n

,

where P is a polynomial not divisible by any xi. Conjecture 7.17 in [12] claims
that if z does not belong to the initial cluster, then the denominator vector of z is
equal to the multidegree of the corresponding F -polynomial. By Proposition 3.1
and Theorem 5.1, this conjecture is equivalent to the equality

(5.15) di(x�;t) = di = dimM(i)

(in the notation of Corollary 5.3). It was shown in [7], in the case where Q(B)
has no oriented cycles, that (5.14) implies (5.15). A direct proof of this was given
in [15, Theorem 10]. In full generality, (5.15) was disproved by a counterexample in
[13] (based on the ideas in [4]). Using Theorem 5.1, we obtain the following partial
result.

Corollary 5.5. In the notation of Corollary 5.3, we have the inequality

(5.16) di(x�;t) ≤ di .

Furthermore, a necessary condition for the equality in (5.16) is the existence of a
quiver subrepresentation N of M such that

(5.17) ker γi ⊆ Nout(i), γi(Nout(i)) = Nin(i) .

Proof. In view of (5.14), we have

(5.18) di − di(x�;t) = min
e

(− rk γi +
∑
j

([bi,j ]+ej + [−bi,j ]+(dj − ej))) ,

where the minimum is over all dimension vectors e such that χ(Gre(M)) �= 0. In
particular, Gre(M) must be nonempty; i.e., M must have a subrepresentation N
with ei = dimN(i) for all i. In terms of N , we have∑

j

[bi,j ]+ej = dimNin(i),
∑
j

[−bi,j ]+(dj − ej) = dimMout(i)− dimNout(i) .

Therefore,

− rk γi +
∑
j

([bi,j ]+ej + [−bi,j ]+(dj − ej))

= − rk γi + dimMout(i) + dimNin(i)− dimNout(i)

= dimker γi + dimNin(i)− dimNout(i)

= dim
ker γi

ker γi ∩Nout(i)
+ dim

Nin(i)

γi(Nout(i))
,

making clear both assertions in question. �

Remark 5.6. A counterpart of Corollary 5.5 in the context of 2-Calabi-Yau cate-
gories was obtained in [13, Proposition 5.8].
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We conclude this section by applying the above results for an explicit construc-
tion of a special class of QP-representations corresponding to cluster variables. Let
T be a subset of vertices of Q = Q(B) such that the induced subgraph on T is
a tree; in particular, bi,j ∈ {0,±1} for i, j ∈ T , so inside T there are no multiple
arrows. Without loss of generality, we can assume that T = [1, �] ⊆ [1, n] = Q0,
and that each i ∈ T is a leaf of the subtree of T on vertices [i, �]; in other words,
for each i ∈ [1, �− 1] there is a a unique j ∈ [i+ 1, �] connected by an edge with i.
Let M = MT be a Q-representation such that M(i) = C for i ∈ T , M(i) = 0 for
i /∈ T , and aM : M(t(a)) → M(h(a)) is an isomorphism whenever h(a) and t(a)
belong to T . The condition that T is a tree implies that M is a P(Q,S)-module for
any potential S (since every cyclic derivative ∂aS is a linear combination of paths
from h(a) to t(a), and every such path acts as 0 in M).

Proposition 5.7. Let t0
1 t1

2 · · · � t� = t be a path in Tn. Then

(5.19) MB;t0
�;t = (MT , 0) .

Proof. We need to show that the sequence of mutations μ� ◦ · · · ◦ μ1 takes the QP-
representation (MT , 0) to the negative simple representation S−

� (see (1.15)). For
� = 1, the representation MT is just the (positive) simple module S�; using (4.17),
we see that the mutation μ� turns it into S−

� . For � > 1, again using (4.17), we see
that the mutation μ1 turns MT into MT ′ , where the tree T ′ is obtained from T by
removing the leaf 1. The proof is finished by induction on �. �

Corollary 5.8. In the situation of Proposition 5.7, the F -polynomial FB;t0
�;t is given

as follows:

(5.20) FB;t0
�;t (u1, . . . , un) =

∑
Z

∏
i∈Z

ui ,

where Z runs over all subsets of T = [1, �] with the property that if j ∈ Z, then i ∈ Z
for every arrow j → i in T . Furthermore, the denominator vector of the cluster
variable x�;t is the indicator vector of [1, �] (that is, di(x�;t) = 1 for i ∈ [1, �], and
di(x�;t) = 0 for i ∈ [�+ 1, n]).

Proof. By Theorem 5.1 and Proposition 5.7, we have FB;t0
�;t = FMT

. The equality

(5.20) is then immediate from the definition (1.6): clearly, the quiver Grassmannian
Gre(MT ) consists of one point if e is the indicator vector of a subset Z as in (5.20);
otherwise Gre(MT ) = ∅.

Turning to the denominator vector, in view of Corollary 5.5, it is enough to show
that di(x�;t) = 1 for i ∈ T . Fix a vertex i ∈ T , and let Z be the subset of all vertices
j ∈ T that can be reached from i by a directed path in T . Let N =

⊕
j∈Z MT (j).

Then N is a quiver subrepresentation of MT . The fact that T is a tree implies
easily that N satisfies (5.17) (indeed, we have γi = 0, Nout(i) = Mout(i), and
Nin(i) = 0). Furthermore, N is the only element in its quiver Grassmannian, which
makes (5.17) not only necessary but also a sufficient condition for the equality
di(x�;t) = di(M) = 1. �

Remark 5.9. The computation of the g-vector of MT is more involved, since the
map γi is not necessarily 0 if i /∈ T . However, γi = 0 for i ∈ T ; hence for i ∈ T the

component gi of g
B;t0
�;t is equal to |{j ∈ T : i → j}| − 1.
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6. Mutations preserve homomorphisms modulo confined ones

Let M = (M,V ) and N = (N,W ) be QP-representations of a reduced QP
(Q,S). We fix a vertex k ∈ Q0 and assume that Q has no oriented 2-cycles
through k. Thus, the mutated QP (Q,S) = μk(Q,S) is well-defined, as well as
its QP-representations M = (M,V ) = μk(M) and N = (N,W ) = μk(N ).

We abbreviate

M(k̂) =
⊕
i �=k

M(i)

and say that a homomorphism ϕ ∈ HomQ(M,N) is confined to k if ϕ(m) = 0 for

m ∈ M(k̂). Denote the space of such homomorphisms by Hom
[k]
Q (M,N). Restrict-

ing ϕ to M(k) yields a vector space isomorphism

(6.1) Hom
[k]
Q (M,N) = HomC(coker αk;M , kerβk;N ).

The goal of this section is to prove the following proposition. It was already
established in [3, Theorem 7.1] but the present proof seems to be much simpler.

Proposition 6.1. The mutation μk induces an isomorphism

HomQ(M,N)/Hom
[k]
Q (M,N) = HomQ(M,N)/Hom

[k]

Q
(M,N).

Proof. We can view a P(Q,S)-module M as a module over the subalgebra

P(Q,S)k̂,k̂ =
⊕
i,j �=k

P(Q,S)i,j .

Clearly, M(k̂) is a P(Q,S)k̂,k̂-submodule of M , and so we have the restriction map

ρ : HomQ(M,N) → HomP(Q,S)k̂,k̂
(M(k̂), N(k̂)). Denote

HomQ(k̂)(M,N) ={ϕ ∈ HomP(Q,S)k̂,k̂
(M(k̂), N(k̂)) :

ϕ(kerαk;M ) ⊆ kerαk;N , ϕ(im βk;M ) ⊆ im βk;N}.

As an easy consequence of the definitions, we have

ker ρ = Hom
[k]
Q (M,N), im ρ = HomQ(k̂)(M,N).

Thus, ρ induces an isomorphism

(6.2) HomQ(M,N)/Hom
[k]
Q (M,N) = HomQ(k̂)(M,N).

Now recall from [9, Proposition 6.1, Corollary 6.6] that the mutation μk induces
an isomorphism between P(Q,S)k̂,k̂ and P(Q,S)k̂,k̂. This isomorphism is explicitly

described in the proof of Proposition 6.1 in [9]: it preserves all arrows not incident
to k, and it sends each product ba (for a an incoming, and b an outgoing arrow at k)
to the “composite arrow” [ba]. Identifying P(Q,S)k̂,k̂ and P(Q,S)k̂,k̂ with the help

of this isomorphism, and recalling the definition of M in Section 4, we see that the

P(Q,S)k̂,k̂-module structure on M(k̂) becomes identical to the P(Q,S)k̂,k̂-module

structure on M(k̂). Furthermore, by (4.22), we have kerαk = im βk, im βk =

kerαk. Therefore, the subspace HomQ(k̂)(M,N) ⊆ HomP(Q,S)k̂,k̂
(M(k̂), N(k̂)) gets

identified with HomQ(k̂)(M,N). This completes the proof of Proposition 6.1. �
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The isomorphism in Proposition 6.1 can be viewed as functorial in the following
way. Let C(Q,S) be the category whose objects are QP-representations of a QP
(Q,S), and the morphisms are given by

HomC(Q,S)((M,V ), (N,W )) = HomQ(M,N)⊕HomR(V,W ).

For a vertex k ∈ Q0, let C[k̂](Q,S) be the quotient category of C(Q,S) with the
same objects and the morphisms given by

HomC[k̂](Q,S)((M,V ), (N,W )) =
HomC(Q,S)((M,V ), (N,W ))

Hom
[k]
Q (M,N)⊕HomR(V,W )

.

Proposition 6.2. The mutation μk induces an equivalence of categories

μk : C[k̂](Q,S) → C[k̂](Q,S).

Proof. In view of (6.2), we have

HomC[k̂](Q,S)((M,V ), (N,W )) = HomQ(k̂)(M,N).

It follows from the proof of Proposition 6.1 that the mutation at k gives rise to a

functor from C[k̂](Q,S) to C[k̂](Q,S). The fact that this functor is an equivalence of
categories is a consequence of the following basic result in category theory (see [19,
Proposition 16.3.2]).

Proposition 6.3. Let C and C be categories, and suppose F : C → C is a functor
with the following properties:

(1) For every object M of C there is an object M of C such that F(M) is
isomorphic to M.

(2) For any pair of objects M,N of C, the functor F induces a bijection

HomC(M,N ) ∼= HomC(FM,FN ).

Then F is an equivalence of categories; i.e., there exists a functor G : C → C such
that the composition functors G◦F and F◦G are naturally equivalent to the identity
functors of C and C, respectively. �
Remark 6.4. The proof of Proposition 6.3 is based on a strong version of the axiom
of choice (see [19, §3.1, Remark 16.3.3]): for any class of sets and any equivalence
relation on this class we can choose a representative in every class.

7. The E-invariant

Let M = (M,V ) and N = (N,W ) be QP-representations of the same nonde-
generate QP (Q,S). We abbreviate

(7.1) 〈M,N〉 = dimHomQ(M,N)

and

(7.2) di(M) = di(M) = dimM(i), d−i (M) = dimV (i),

so that the components of the g-vector gM = (g1, . . . , gn) are given by

(7.3) gi = gi(M) = dimker γi;M − di(M) + d−i (M).

We now define the integer function

(7.4) Einj(M,N ) = 〈M,N〉+
n∑

i=1

di(M)gi(N )
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and its symmetrized version

(7.5) Esym(M,N ) = Einj(M,N ) + Einj(N ,M).

In view of (1.17), the E-invariant of a QP-representation is given by

(7.6) E(M) = Einj(M,M) =
Esym(M,M)

2
.

Now let μk(M) = M = (M,V ) and μk(N ) = N = (N,W ) be QP-representa-
tions (of the QP (Q,S) = μk(Q,S)) obtained from M and N by the mutation at
a vertex k.

Theorem 7.1. We have

(7.7) Einj(M,N )− Einj(M,N ) = hk(M)hk(N)− hk(M)hk(N).

In particular, Esym(M,N ) and E(M) are invariant under QP-mutations; i.e.,

Esym(μk(M), μk(N )) = Esym(M,N ), E(μk(M)) = E(M)

for any vertex k.

Proof. Our starting point is the equality

(7.8) 〈M,N〉+ dim(coker αk;M ) · hk(N) = 〈M,N〉+ dim(coker αk;M ) · hK(N) ,

obtained by combining Proposition 6.1 with (6.1) (and recalling the notation (3.2)).
We claim that dim(coker αk;M ) and dim(coker αk;M ) are given by

(7.9) dim(coker αk;M ) = hk(M) + dk(M) + dk(M)−
∑
i

[−bi,k]+di(M)

and

(7.10) dim(coker αk;M ) = hk(M) + dk(M) + dk(M)−
∑
i

[bi,k]+di(M) .

Note that (7.10) follows from (7.9) by interchanging M with M , so it is enough to
prove (7.9). Using the equality kerαk;M = im βk;M in (4.22), we obtain

dim(coker αk;M ) = dk(M)− rk αk;M

= dk(M)− dimMin(k) + dim(kerαk;M )

= dk(M)−
∑
i

[−bi,k]+di(M) + rk βk;M

= dk(M)−
∑
i

[−bi,k]+di(M) + dk(M)− dim(kerβk;M ) ,

which implies (7.9) in view of (3.2).
Using (7.9) and (7.10), we can rewrite (7.8) as follows:

〈M,N〉 − 〈M,N〉 = dim(coker αk;M ) · hk(N)− dim(coker αk;M ) · hK(N)

= (hk(M) + dk(M) + dk(M)−
∑
i

[−bi,k]+di(M)) · hK(N)

− (hk(M) + dk(M) + dk(M)−
∑
i

[bi,k]+di(M)) · hK(N) .
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In view of Lemma 5.2, we have hk(N) = hk(N)−gk(N ), which allows us to rewrite
(7.8) further as

〈M,N〉 − 〈M,N〉 − (hk(M)hk(N)− hk(M)hk(N))(7.11)

= (
∑
i

bi,kdi(M)) · hk(N) + (dk(M) + dk(M)−
∑
i

[bi,k]+di(M)) · gk(N ) .

Comparing (7.11) with the desired equality (7.7), we see that it remains to show
that the right-hand side of (7.11) is equal to∑

i

(di(M)gi(N )− di(M)gi(N )).

Using the equality di(M) = di(M) for i �= k, and the assertion (proved in Lemma
5.2) that the transformation gN �→ gN is given by (2.11), we obtain∑

i

(di(M)gi(N )− di(M)gi(N ))

= (dk(M) + dk(M)) · gk(N ) +
∑
i �=k

di(M)(bi,khk(N)− [bi,k]+gk(N ))

= (
∑
i

bi,kdi(M)) · hk(N) + (dk(M) + dk(M)−
∑
i

[bi,k]+di(M)) · gk(N ) ,

finishing the proof of Theorem 7.1. �

Corollary 7.2. If M is obtained by a sequence of mutations from a negative QP-
representation ({0}, V ), then E(M) = 0. In particular, this is the case for any

representation MB;t0
�;t given by (5.2).

Proof. By the definition (1.17), we have E(({0}, V )) = 0; hence E(M) = 0 as
well. �

We conclude this section by one more invariance property of E(M). For a quiver
Q = (Q0, Q1, h, t), we denote by Qop the opposite quiver (Q0, Q1, t, h) obtained
from Q by reversing all arrows. To distinguish the arrows of Qop from those of
Q, we denote by aop the arrow of Qop corresponding to an arrow a of Q. The
correspondence a �→ aop extends to an anti-isomorphism u �→ uop of completed
path algebras R〈〈A〉〉 → R〈〈Aop〉〉 (identical on the vertex span R). In particular,
every QP (Q,S) gives rise to the opposite QP (Qop, Sop). By the definition (4.3)
of a cyclic derivative, we have ∂aopSop = (∂aS)

op for any arrow a of Q. Thus,
J(Sop) = (J(S))op. This implies that every QP-representation M = (M,V ) of
(Q,S) gives rise to a QP-representation M	 = (M	, V ) of (Qop, Sop) obtained
from M by replacing each space M(k) with its dual M(k)	, and setting (aop)M� =
(aM )	 for any arrow a of Q.

Proposition 7.3. We have E(M	) = E(M) for any QP-representation M.

Proof. Using the notation in (7.2) and (7.3), we can express gi(M) as

(7.12) gi(M) = dimMout(i)− rk γi;M − di(M) + d−i (M),
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and E(M) as

E(M) = 〈M,M〉+
n∑

i=1

di(M)(d−i (M)− rk γi;M − di(M))(7.13)

+
∑
a∈Q1

dh(a)(M)dt(a)(M) .

It remains to observe that passing from M to M	 does not change any of the terms
in (7.13) (since HomQop(M	,M	) is isomorphic to HomQ(M,M), and γi;M� =
(γi;M )	). �

8. Lower bounds for the E-invariant

Fix a QP-representation M = (M,V ) of a reduced QP (Q,S). The goal of this
section is to prove the lower bound (1.18) for E(M). Using the notation in (7.2),
we can state the result as follows (since M is fixed, we allow ourselves to skip
references to it in most of the formulas below).

Theorem 8.1. The E-invariant of a QP-representation satisfies

(8.1) E(M) ≥
∑
i∈Q0

(dim(kerβi) · dim(ker γi/ imβi) + di(M) · d−i (M)).

Proof. The desired lower bound for E(M) follows from another one:

(8.2) E(M) ≥
∑
i∈Q0

(dim(coker αi) · dim(kerαi/ im γi) + di(M) · d−i (M));

indeed, to deduce (8.1) from (8.2) it suffices to apply the latter bound to the dual
QP-representation M	 and use Proposition 7.3.

Substituting into (8.2) the expression (7.13) for E(M), regrouping the terms
and simplifying, we can rewrite it as follows:

〈M,M〉+
∑
a∈Q1

dh(a)(M) · dt(a)(M)(8.3)

−
∑
i∈Q0

(di(M)2 + dim(coker αi) · dim(kerαi)) ≥
∑
i∈Q0

rk γi · rkαi.

We abbreviate
U =

⊕
i∈Q0

HomC(Min(i),M(i))

and define the subspaces U1 ⊆ U2 in U by

U1 = {(ψi : Min(i) → M(i))i∈Q0
: im ψi ⊆ im αi for all i},(8.4)

U2 = {(ψi : Min(i) → M(i))i∈Q0
: ψi(kerαi) ⊆ im αi for all i}.

Now we can state the key lemma.

Lemma 8.2. There exist two linear maps

HomR(M,M)
Φ �� U

Ψ ��
⊕

b∈Q1
HomC(M(h(b)),M(t(b)))

satisfying the following conditions:

(1) kerΦ = HomQ(M,M);
(2) im Φ ⊆ U2;
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(3) im Φ ⊆ kerΨ;
(4) dimΨ(U1) ≥

∑
i∈Q0

rk γi · rk αi.

Before proving Lemma 8.2, we show that it implies (8.3). By the definition of
U2, we have

dimU2 = dimU −
∑
i∈Q0

dim(coker αi) · dim(kerαi)

=
∑
a∈Q1

dh(a)(M) · dt(a)(M)−
∑
i∈Q0

dim(coker αi) · dim(kerαi).

Note also that

HomR(M,M) =
⊕
i∈Q0

EndC(M(i)).

By (1), we have

rk Φ = dim(HomR(M,M))− dim(kerΦ) =
∑
i∈Q0

di(M)2 − 〈M,M〉.

In view of (2), the left-hand side of (8.3) is equal to dim(U2/ im Φ). Now we use
(3) and (4) to conclude that

dim(U2/ im Φ) ≥ dim(U2/(U2 ∩ kerΨ)) = dim(Ψ(U2))

≥ dim(Ψ(U1)) ≥
∑
i∈Q0

rk γi · rk αi,

finishing the proof of (8.3).
To complete the proof of Theorem 8.1 it remains to prove Lemma 8.2. We define

the map Φ by setting, for ξ ∈ HomR(M,M),

(8.5) Φ(ξ) = (ηi : Min(i) → M(i))i∈Q0
∈ U, ηi = ξαi − αiξ.

Properties (1) and (2) from Lemma 8.2 are immediate from this definition.
The definition of Ψ requires some preparation. First of all, we identify the space

U with
⊕

a∈Q1
HomC(M(t(a)),M(h(a))), so view Ψ as a linear map

Ψ :
⊕
a∈Q1

HomC(M(t(a)),M(h(a))) →
⊕
b∈Q1

HomC(M(h(b)),M(t(b))) .

Now recall from [9, (3.2)] that each arrow a ∈ Q1 gives rise to a continuous linear
map

Δa : R〈〈A〉〉 → R〈〈A〉〉 ⊗̂ R〈〈A〉〉 ,
such that for every path a1 · · · ad we have

(8.6) Δa(a1 · · · ad) =
∑

p:ap=a

a1 · · · ap−1 ⊗ ap+1 · · · ad ;

here we use the notation

R〈〈A〉〉 ⊗̂ R〈〈A〉〉 =
∏
i,j≥0

(A⊗Ri ⊗A⊗Rj) ,

and the convention that if a1 = a (resp. ad = a), then the corresponding term in
(8.6) is eh(a)⊗a2 · · · ad (resp. a1 · · · ad−1⊗ et(a)). In particular, for every a, b ∈ Q1,
we have

Δa(∂bS) ∈ R〈〈A〉〉t(b),h(a) ⊗̂ R〈〈A〉〉t(a),h(b) ;
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accordingly, we express Δa(∂bS) as

(8.7) Δa(∂bS) =
∑
ν

u
(ν)
b,a ⊗ v

(ν)
a,b (u

(ν)
b,a ∈ R〈〈A〉〉t(b),h(a), v

(ν)
a,b ∈ R〈〈A〉〉t(a),h(b)) .

Now we define the component Ψb,a : HomC(M(t(a)),M(h(a))) → HomC(M(h(b)),
M(t(b))) of Ψ by setting

(8.8) Ψb,a(ηa) =
∑
ν

(u
(ν)
b,a)M ◦ ηa ◦ (v(ν)a,b )M .

We postpone the proof of property (3) in Lemma 8.2, that is, of the equality
Ψ ◦ Φ = 0, until Section 10; see Corollary 10.2 and Remark 10.3 below.

It remains to check property (4). We start with the following observation, which
is a direct consequence of the definitions: for every pair of arrows a and b, we have

(8.9) Δa∂bS ≡ et(b) ⊗ δh(a),t(b)∂baS mod m⊗̂R〈〈A〉〉 .
In view of (1.11) and (8.8), it follows that, for every ηa ∈ HomC(M(t(a)),M(h(a))),
the morphism Ψb,a(ηa) − δh(a),t(b)ηa ◦ γa,b ∈ HomC(M(h(b)),M(t(b))) is a linear
combination of morphisms of the form uM ◦ ηa ◦ vM with u ∈ m, v ∈ R〈〈A〉〉.

Since m acts nilpotently on M , we have a descending filtration of R-modules:

M ⊃ mM ⊃ · · · ⊃ m
�M = 0 .

For p = 0, . . . , �− 1, choose an R-submodule M (p) in M such that

mpM = M (p) ⊕mp+1M .

For s ∈ C	, define λ(s) ∈ EndR(M) as the R-module automorphism of M acting
on each M (p) as multiplication by sp. This definition makes it clear that

(8.10) lim
s→0

λ(s) ◦ uM ◦ λ(s)−1 = 0

for each u ∈ m.
Now for each s ∈ C	, define the linear map

Ψ(s) = (Ψ
(s)
b,a) : U =

⊕
a

HomC(M(t(a)),M(h(a))) →
⊕
b

HomC(M(h(b)),M(t(b)))

by setting

Ψ
(s)
b,a(ηa) = λ(s) ◦Ψb,a(λ(s)

−1 ◦ ηa).
Since Ψ(s) is obtained from Ψ by composing it with invertible linear maps on both
sides, we have rankΨ(s) = rankΨ for all s ∈ C	, and more generally, dimΨ(s)(U ′) =
dimΨ(U ′) for any subspace U ′ ⊆ U invariant under the automorphism (ηa) �→
(λ(s)−1 ◦ ηa). Note that the subspace U1 ⊆ U given by (8.4) satisfies this condi-
tion; indeed, under the identification of U with

⊕
a HomC(M(t(a)),M(h(a))), U1

identifies with
⊕

a HomC(M(t(a)),mM(h(a))).

Now consider the linear map Ψ(0) = lims→0 Ψ
(s). Since under the continuous

deformation the rank of a linear map depends semi-continuously on the deformation
parameter, we conclude that

dimΨ(U1) ≥ dimΨ(0)(U1);

to finish the proof of property (4) in Lemma 8.2, it suffices to show that

(8.11) dimΨ(0)(U1) =
∑
i

rk γi · rkαi .
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In view of (8.10), each component Ψ
(0)
b,a of Ψ(0) acts by

Ψ
(0)
b,a(ηa) = δh(a),t(b)ηa ◦ γa,b.

Using natural identifications⊕
a

HomC(M(t(a)),M(h(a))) =
⊕
i

HomC(Min(i),M(i)) ,⊕
b

HomC(M(h(b)),M(t(b))) =
⊕
i

HomC(Mout(i),M(i)) ,

the operator Ψ(0) translates into the direct sum of operators

Ψ
(0)
i : HomC(Min(i),M(i)) → HomC(Mout(i),M(i))

acting by

Ψ
(0)
i (ηi) = ηi ◦ γi .

This description makes (8.11) clear, finishing the proofs of Lemma 8.2 and Theo-
rem 8.1. �

The following corollary is immediate from (8.1).

Corollary 8.3. Suppose M = (M,V ) is a QP-representation such that E(M) = 0.
Then for every vertex k we have:

(1) either M(k) = {0} or V (k) = {0};
(2) either kerβk = {0} or imβk = ker γk.

Since E(M) is invariant under mutations, Corollary 8.3 implies that if E(M) =
0, then every QP-representation obtained from M by a sequence of mutations
satisfies the properties (1) and (2). The following example shows that the converse
is not true.

Let Q be the Kronecker quiver

1
a,b ���� 2 .

For every positive integer n, let Mn = (Mn, {0}) be the indecomposable positive
QP-representation of (Q, 0) such that Mn(1) = Mn(2) = Cn, and the linear maps
aMn

and bMn
from Mn(1) to Mn(2) are as follows: aMn

= I is the identity map,
while bMn

= J is the nilpotent Jordan n-block. Recalling (1.13), we see that the
g-vector of Mn is equal to (n,−n). Also HomQ(Mn,Mn) is naturally isomorphic
to the centralizer of J in End(Cn); hence we have 〈Mn,Mn〉 = n. Recalling (7.4),
we get

E(Mn) = 〈Mn,Mn〉+ d1(Mn)g1(Mn) + d2(Mn)g2(Mn) = n+ n2 − n2 = n .

On the other hand, it is easy to see that Mn as well as all representations obtained
from it by mutations, satisfy properties (1) and (2) in Corollary 8.3 (in fact, every
representation obtained from Mn by mutations is either right-equivalent to Mn,
or differs from it just by interchanging vertices 1 and 2).
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9. Applications to cluster algebras

Proof of Theorem 1.7. We fix t0, t ∈ Tn, a skew-symmetric integer n×n matrix B,
and a nondegenerate potential S on the quiver Q = Q(B). Recall that in Theo-

rem 5.1 the g-vector gB;t0
�;t and the F -polynomial FB;t0

�;t from the theory of cluster
algebras are interpreted as the g-vector gM and the F -polynomial FM associated

with the QP-representation M = MB;t0
�;t of (Q,S) given by (5.2).

Conjectures 1.1 and 1.2 are immediate from this interpretation; see Proposi-
tion 3.1.

Our next target is Conjecture 1.6. Comparing the desired formula (1.3) with
(2.11), we see that it is enough to prove the equality

(9.1) min(0, gk) = hk ,

where gk and hk are given by (7.3) and (3.2), respectively. Substituting these
expressions into (9.1) and adding dimkerβk to both sides, we arrive at the equality

(9.2) min(dim(kerβk), dim(ker γk/ im βk) + d−k (M)) = 0 .

To finish the proof, it remains to observe that, in view of Corollary 7.2, the QP-
representation M satisfies properties (1) and (2) in Corollary 8.3, and that (9.2)
clearly holds for any representation with these properties.

Now we are ready to prove Conjecture 1.3. The key observation is that the above

argument proves the equality (9.1) not only for each representation MB;t0
�;t but also

for the direct sum

M = MB;t0
1;t ⊕ · · · ⊕MB;t0

n;t

(since M satisfies the assumption in Corollary 7.2). In view of Lemma 5.2, we have
gk = hk − h′

k, where h′
k = − dimkerβk is the k-th component of the vector hM for

the QP-representation M = μk(M). Thus, (9.1) is equivalent to

(9.3) max(hk, h
′
k) = 0 .

Suppose that hk = 0, that is, kerβk = 0. Then the same property holds for each

direct summand M� = MB;t0
�;t , implying that

gk(M�) = −hk(M�) ≥ 0

for all � = 1, . . . , n. This shows that the k-th coordinates of the vectors gB;t0
1;t , . . . ,

gB;t0
n;t are nonnegative. If h′

k = 0, then the same argument shows that the k-th
coordinates of all these vectors are nonpositive, finishing the proof of Conjecture 1.3.

As for Conjecture 1.4, it is an easy consequence of the already proven Conjec-
tures 1.6 and 1.3 combined with the following observation already made in [12,
Remark 7.14]:

(9.4) if g1, . . . ,gn are sign-coherent vectors forming a Z-basis
in Zn, then the transformation (1.3) sends them to a Z-
basis in Zn.

Indeed, to show that the vectors gB;t0
1;t , . . . ,gB;t0

n;t form a Z-basis of Zn, proceed by
induction on the distance between t0 and t in Tn. The basic step t = t0 is clear
from (2.1), and the inductive step follows from (9.4).

To finish the proof of Theorem 1.7, it remains to prove Conjecture 1.5.
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Lemma 9.1. For a QP-representation M = (M,V ), the following conditions are
equivalent:

(1) M is negative, i.e., M = {0}.
(2) E(M) = 0, and the g-vector gM = (g1, . . . , gn) is nonnegative.

Under these conditions, we have dimV (i) = gi for all i, so M is uniquely deter-
mined by its g-vector.

Proof. The only nontrivial statement is the implication (2) =⇒ (1). We have al-
ready established that the equality E(M) = 0 implies (9.1), so if gM is nonnegative,
then hk = 0 for all k. Thus we have kerβk = 0 for all k. It remains to observe that
the latter condition cannot hold for a nonzero nilpotent quiver representation M .
Indeed, if m�−1M �= 0, and m�M = 0 for some � ≥ 1, then 0 �= m�−1M ⊆

⊕
k kerβk,

finishing the proof. �

Lemma 9.2. Let M and M′ be QP-representations of the same nondegenerate
QP, and suppose that M′ is mutation-equivalent to a negative representation. The
following conditions are equivalent:

(1) M is right-equivalent to M′.
(2) E(M) = 0, and gM = gM′ .

Proof. Again only the implication (2) =⇒ (1) needs a proof. Since E(M) =
E(M′) = 0, the already established formula (1.3) shows that the g-vectors remain
the same under applying to M and M′ the same sequence of mutations. Since mu-
tations also preserve right-equivalence, in proving that (2) =⇒ (1) we may assume
that M′ is negative, in which case the statement follows from Lemma 9.1. �

Under the assumptions of Conjecture 1.5, consider the QP-representations

M =
⊕
i∈I

(MB;t0
i;t )ai , M′ =

⊕
i∈I′

(MB;t0
i;t′ )a

′
i .

In view of (5.1), we have

gM =
∑
i∈I

aig
B;t0
i;t =

∑
i∈I′

aig
B;t0
i;t′ = gM′ .

Also we have E(M) = E(M′) = 0 since both M and M′ are mutation-equivalent
to negative QP-representations. By Lemma 9.2, M is right-equivalent to M′.
Because of the uniqueness of the decomposition into indecomposables, there exists

a bijection σ : I → I ′ such that MB;t0
i;t is right-equivalent to MB;t0

σ(i);t′ , and ai = a′σ(i)
for i ∈ I. Thus we have

gB;t0
i;t = gB;t0

σ(i);t′ , FB;t0
i;t = FB;t0

σ(i);t′

for all i ∈ I, finishing the proofs of Conjecture 1.5 and of Theorem 1.7. �

10. Homological interpretation of the E-invariant

Throughout this section we fix a quiver Q without oriented 2-cycles and a
QP (Q,S). Let M = (M,V ) and N = (N,W ) be two QP-representations of
(Q,S). Our aim is to associate to M and N a vector space E inj(M,N ) such
that dim E inj(M,N ) = Einj(M,N ), the integer function defined in (7.4). It will
be more convenient for us to work with the “twisted” function Eproj(M,N ) =
Einj(N 	,M	), where M	 and N 	 are QP-representations of the opposite QP
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(Qop, Sop) constructed before Proposition 7.3. Clearly, we have 〈N	,M	〉 =
〈M,N〉, implying

(10.1) Eproj(M,N ) = 〈M,N〉+
∑
k∈Q0

gk(M	)dk(N).

We turn to the construction of a vector space Eproj(M,N ) such that

(10.2) dim Eproj(M,N ) = Eproj(M,N ).

Let P(Q,S) be the Jacobian algebra of (Q,S) (see Section 2). In the rest of the
section we assume that

(10.3) the potential S belongs to the path algebra R〈A〉, and
the two-sided ideal J0 in R〈A〉 generated by all cyclic
derivatives ∂aS contains some power mN .

(Recall that in our general setup, S belongs to the completed path algebra R〈〈A〉〉,
and the Jacobian ideal J of S is the closure of J0 in R〈〈A〉〉.) Under this assumption,
the Jacobian algebra P(Q,S) = R〈〈A〉〉/J is identified with R〈A〉/J0, and it is
finite-dimensional. In this situation, all the P(Q,S)-modules considered below will
be finite-dimensional as well.

For every vertex k ∈ Q0 let Pk denote the indecomposable projective P(Q,S)-
module corresponding to k. Recall that Pk is given by

(10.4) Pk =
⊕
i∈Q0

P(Q,S)i,k,

where the double Q0-grading on P(Q,S) comes from the R-bimodule structure (see
Section 4). In particular, each Pk is finite-dimensional in view of (10.3).

To every (finite-dimensional) P(Q,S)-module M , we associate the sequence of
P(Q,S)-module homomorphisms
(10.5)⊕
b∈Q1

(Pt(b) ⊗M(h(b)))
ψ→

⊕
a∈Q1

(Ph(a) ⊗M(t(a)))
ϕ→

⊕
k∈Q0

(Pk ⊗M(k))
ev→ M → 0

defined as follows. The P(Q,S)-module homomorphisms ev and ϕ are given by

(10.6) ev(p⊗m) = pm (p ∈ Pk, m ∈ M(k))

and

(10.7) ϕ(p⊗m) = pa⊗m− p⊗ aM (m) (p ∈ Ph(a), m ∈ M(t(a))),

while the component ψa,b : Pt(b) ⊗M(h(b)) → Ph(a) ⊗M(t(a)) of ψ is given by (in
the notation of (8.7) and (8.8))

(10.8) ψa,b(p⊗m) =
∑
ν

pu
(ν)
b,a ⊗ (v

(ν)
a,b )M ·m .

Proposition 10.1. The sequence (10.5) is exact.

Proof. As pointed out by the referee, this proposition follows from the results of [5].
For the convenience of the reader we present some details (also kindly provided by
the referee). To make our notation closer to that of [5], in the following argument
we denote the Jacobian algebra R〈A〉/J0 by Λ and rename J0 into I.
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The ring Λ is a bimodule over itself. If we splice the exact sequence [5, (1.4)] for
n = 0 and n = 1 together, we get a bimodule resolution of Λ as follows:

(10.9) Λ⊗ I

Im+mI
⊗ Λ

d2 �� Λ⊗A⊗ Λ
d1 �� Λ⊗ Λ

d0 �� Λ �� 0.

Here the tensor products are over R, and we have identified A with m/m2. Note that
I/(Im+mI) is spanned by all partial derivatives of the potential. The differentials
d2 and d1 are given after (1.3) in [5]. Define

μ : R〈A〉 → R〈A〉 ⊗A⊗R〈A〉

by μ(a1a2 · · · as) =
∑s

i=1 a1 · · · ai−1 ⊗ ai ⊗ ai+1 · · · as (this map is denoted by Δ in
[5]). Then d2 sends the residue class of an element 1 ⊗ u⊗ 1 to μ(u). The partial
derivative ∂ξ was defined for ξ ∈ A	 in [9, (3.1)]. By identifying A with A	 using a
basis of arrows, we have defined ∂b for an arrow b ∈ A. We have a surjection

(10.10) A	 → I

Im+mI

defined by ξ �→ ∂ξS + Im+mI. We can replace the module on the left in (10.9) by
Λ⊗A	 ⊗ Λ using (10.10). Therefore, we have an exact sequence:

(10.11) Λ⊗A	 ⊗ Λ �� Λ⊗A⊗ Λ �� Λ⊗ Λ �� Λ �� 0.

If we apply the functor •⊗ΛM to (10.11), we obtain (10.5). Note that the sequence
remains exact after applying the functor, because (10.11) splits as a sequence of
right Λ-modules.

�

Corollary 10.2. The maps Φ and Ψ given by (8.5) and (8.8) satisfy the condition
Ψ ◦ Φ = 0.

Proof. Note that, for every P(Q,S)-module M , a vector space U , and a vertex
k ∈ Q0, there is a natural isomorphism

(10.12) HomC(U,M(k)) → HomP(Q,S)(Pk ⊗ U,M)

sending σ ∈ HomC(U,M(k)) to the composed morphism

Pk ⊗ U
id⊗σ−→ Pk ⊗M(k)

ev→ M .

An easy check shows that the maps Φ and Ψ are obtained from the maps ϕ and ψ
given by (10.7) and (10.8) by applying the contravariant functor HomP(Q,S)(−,M)
and using the isomorphism in (10.12). So the statement in question follows from
the exactness of (10.5). �

Remark 10.3. Corollary 10.2 is still true without the assumption (10.3). In the more
general case, the modules Pi may be infinite-dimensional, but the composition ϕ◦ψ
is still equal to 0 in (10.5).

The sequence (10.5) produces a presentation of the P(Q,S)-module M , which
can be rewritten as

(10.13)
⊕
k∈Q0

(Pk ⊗Min(k))
ϕ→

⊕
k∈Q0

(Pk ⊗M(k))
ev→ M → 0,
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where with some abuse of notation we use the same symbol ϕ for the leftmost map:
this map is now given by

(10.14) ϕ(p⊗m) =
∑

h(a)=k

(pa⊗ prt(a) m)− p⊗ αk(m) (p ∈ Pk, m ∈ Min(k))

(here prt(a) stands for the projection Min(k) =
⊕

h(a)=k M(t(a)) → M(t(a))).

We claim that the presentation (10.13) can be truncated as follows. For every
k ∈ Q0, choose subspaces U ′

k, U
′′
k ⊆ Min(k) and M (0)(k) ⊆ M(k) such that

(10.15)

ker(αk) = im(γk)⊕ U ′
k, Min(k) = ker(αk)⊕ U ′′

k , M(k) = M (0)(k)⊕ im(αk),

and consider the projective P(Q,S)-modules

P ′ =
⊕
k∈Q0

(Pk ⊗ ker(αk)), P ′′ =
⊕
k∈Q0

(Pk ⊗ U ′′
k ),(10.16)

P (1) =
⊕
k∈Q0

(Pk ⊗ U ′
k), P (0) =

⊕
k∈Q0

(Pk ⊗M (0)(k)).

Proposition 10.4.

(1) For every p′ ∈ P ′, there exists a unique p′′ ∈ P ′′ such that ϕ(p′−p′′) ∈ P (0).
The map ϕ : P ′ → P (0) given by ϕ(p′) = ϕ(p′ − p′′) is a P(Q,S)-module
homomorphism.

(2) The restrictions of ϕ to P (1) and of ev to P (0) make the sequence

(10.17) P (1) ϕ→ P (0) ev→ M → 0

exact, thus giving a presentation of M .
(3) The presentation (10.17) is minimal; that is, the map ϕ : P (1) → P (0)

induces an isomorphism P (1)/mP (1) → im(ϕ)/m im(ϕ), where m is the
maximal ideal in P(Q,S).

Before proving Proposition 10.4, we use it to construct the space Eproj(M,N )
(for any QP-representations M = (M,V ) and N = (N,W ) of (Q,S)) satisfying
(10.2). Note that the P(Q,S)-module homomorphism ϕ : P (1) → P (0) in Proposi-
tion 10.4 induces a C-linear map

ϕ	 : HomP(Q,S)(P
(0), N) → HomP(Q,S)(P

(1), N).

We now define the space Eproj(M,N) as the cokernel of ϕ	, that is, from an exact
sequence

(10.18) HomP(Q,S)(P
(0), N)

ϕ�

→ HomP(Q,S)(P
(1), N) → Eproj(M,N) → 0 .

Finally, we set

(10.19) Eproj(M,N ) = Eproj(M,N)⊕HomR(V,N) .

Theorem 10.5. The space Eproj(M,N ) satisfies (10.2); i.e., its dimension is given
by (10.1).

Proof. Using the presentation (10.17), we include (10.18) into a longer exact se-
quence

0 → HomP(Q,S)(M,N) → HomP(Q,S)(P
(0)(M), N)(10.20)

→ HomP(Q,S)(P
(1)(M), N) → Eproj(M,N) → 0 .
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Computing the dimensions of the terms in (10.20), we get

dim Eproj(M,N)

= 〈M,N〉 − dimHomP(Q,S)(P
(0)(M), N) + dimHomP(Q,S)(P

(1)(M), N)

= 〈M,N〉 −
∑
k∈Q0

dim coker(αk;M ) · dk(N) +
∑
k∈Q0

dim
ker(αk;M )

im(γk;M )
· dk(N)

= 〈M,N〉+
∑
k∈Q0

(dimMin(k)− dk(M) + rk(γk;M )) · dk(N)

= 〈M,N〉+
∑
k∈Q0

(gk(M	)− d−k (M)) · dk(N)

(for the last equality, see (7.12)). Note that in view of (10.12), HomP(Q,S)(Pk, N)
is naturally isomorphic to N(k); hence dimHomP(Q,S)(Pk, N) = dk(N).

To finish the proof of (10.2), it remains to note that

HomR(V,N) =
⊕
k∈Q0

HomC(V (k), N(k)),

implying

dimHomR(V,N) =
∑
k∈Q0

d−k (M)dk(N).

Thus,

dim Eproj(M,N ) = dim Eproj(M,N) +
∑
k∈Q0

d−k (M)dk(N)

= 〈M,N〉+
∑
k∈Q0

gk(M	)dk(N) = Eproj(M,N )

by (10.1). �

Proof of Proposition 10.4. We start by showing that the map ev : P (0) → M is
surjective. This is a special case of the following lemma.

Lemma 10.6. Suppose η : K → L is a surjection of finite-dimensional P(Q,S)-
modules. Suppose that K = K ′ ⊕K ′′ is the direct sum of two submodules, and that
η(K ′′) ⊆ mL. Then η(K ′) = L.

Proof. Choose the direct complement L(0) to mL in L. Then L(0) generates L as a
P(Q,S)-module. Indeed, we have

L = mL+ L(0) = m
2L+mL(0) + L(0) = · · · = m

N+1L+m
NL(0) + · · ·+ L(0)

for each N ≥ 0; choosing N big enough so that mN+1L = {0}, we see that L =
P(Q,S)L(0). This argument also shows that mL = mL(0).

Since η is a homomorphism of P(Q,S)-modules, to prove that η(K ′) = L, it
suffices to show that L(0) ⊆ η(K ′). Using the surjectivity of η : K → L and the
inclusion η(K ′′) ⊆ mL(0), we get

L(0) ⊆ η(K ′) +mL(0) ⊆ η(K ′) +mη(K ′) +m
2L(0) ⊆ · · ·

⊆ η(K ′) +mη(K ′) + · · ·+m
Nη(K ′) +m

N+1L(0) = η(K ′) +m
N+1L(0)

for each N ≥ 0, implying as above that L(0) ⊆ η(K ′). �
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Now the fact that ev(P (0)) = M follows by applying Lemma 10.6 to the map
ev :

⊕
k∈Q0

(Pk ⊗M(k)) → M in place of η : K → L, and to the submodules K ′

and K ′′ given by

(10.21) K ′ = P (0), K ′′ =
⊕
k∈Q0

(Pk ⊗ im(αk)).

Continuing the proof of Proposition 10.4, we adopt the notation in (10.16) and
(10.21), thus viewing ϕ as a homomorphism of P(Q,S)-modules P ′⊕P ′′ → K ′⊕K ′′.
We write ϕ as ϕ(1) + ϕ(0) in accordance with the decomposition in (10.14). The
following properties are immediate from (10.14):

ϕ(0)|P ′ = 0, while the restriction of ϕ(0) to P ′′ is an
isomorphism between P ′′ and K ′′;

(10.22)

im(ϕ(1)) ⊆ m(K ′ ⊕K ′′).(10.23)

We claim that these properties imply the following:

K ′′ ⊆ mK ′ + ϕ(P ′′);(10.24)

K ′ ∩ ϕ(P ′′) = {0};(10.25)

the restriction of ϕ to P ′′ is injective.(10.26)

Note that these facts imply Part (1) of Proposition 10.4. Indeed, by (10.24) and
(10.25), we have

(10.27) K ′ ⊕K ′′ = K ′ ⊕ ϕ(P ′′).

This allows us to define the map ϕ : P ′ → K ′ = P (0) as the composition pr1 ◦ϕ,
where pr1 is the projection of K ′ ⊕ K ′′ onto K ′ along ϕ(P ′′). Using (10.26), we
see that ϕ is exactly the map in Part (1) of Proposition 10.4 (the fact that ϕ is a
P(Q,S)-module homomorphism is obvious since so are ϕ and pr1).

To prove (10.24), we use (10.22) and (10.23) to get

K ′′ = ϕ(0)(P ′′) ⊆ ϕ(1)(P ′′) + ϕ(P ′′) ⊆ mK ′ + ϕ(P ′′) +mK ′′

⊆ mK ′ + ϕ(P ′′) +m(mK ′ + ϕ(P ′′) +mK ′′) ⊆ mK ′ + ϕ(P ′′) +m
2K ′′.

Iterating, we see that K ′′ ⊆ mK ′ + ϕ(P ′′) + mNK ′′ for all N ≥ 1, implying the
desired inclusion (10.24).

To prove (10.25) and (10.26), suppose that ϕ(p′′) = k′ for some k′ ∈ K ′ and
p′′ ∈ P ′′. Using (10.22) and (10.23), we see that

k′ − ϕ(0)(p′′) = ϕ(1)(p′′) ∈ m(K ′ ⊕K ′′),

implying that k′ ∈ mK ′ and ϕ(0)(p′′) ∈ mK ′′. Once again applying (10.22), we
conclude that p′′ ∈ mP ′′. Iterating this argument, we conclude that k′ ∈ mNK ′

and p′′ ∈ mNP ′′ for all N ≥ 1; hence k′ = p′′ = 0, implying both (10.25) and
(10.26).

Turning to the proof of Part 2 of Proposition 10.4, we first show that the sequence

(10.28) P ′ ϕ→ K ′ ev→ M → 0

is exact. The surjectivity of ev : K ′ → M is already proved above, so (using the
exactness of (10.13)) it remains to show that ϕ(P ′) = ϕ(P ′ ⊕ P ′′)∩K ′; but this is
immediate from the definition of ϕ.
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To prove Part 2, it remains to show that the restriction of the map ϕ : P ′ → K ′

to the submodule P (1) ⊆ P ′ has the same image as ϕ. Note that P ′ = P (1) ⊕ P ′
1,

where

P ′
1 =

⊕
k∈Q0

(Pk ⊗ im(γk)).

By Lemma 10.6, it is enough to show that

(10.29) ϕ(P ′
1) ⊆ mϕ(P ′).

It follows easily from (10.27) that

mϕ(P ′) = m(ϕ(P ′ ⊕ P ′′) ∩K ′) = mϕ(P ′ ⊕ P ′′) ∩K ′

and also that

ϕ(P ′) = ϕ(1)(P ′) ⊆ m(K ′ ⊕K ′′) = mK ′ ⊕mϕ(P ′′),

implying the inclusion ϕ(P ′
1) ⊆ ϕ(P ′

1 ⊕ mP ′′). We see that the desired inclusion
(10.29) is a consequence of the following:

(10.30) ϕ(P ′
1) ⊆ mϕ(P ′ ⊕ P ′′).

To prove (10.30), it suffices to show that ϕ(ek⊗γk(m)) ∈ mϕ(P ′⊕P ′′) for every
m ∈ M(h(b)), where b is an arrow with t(b) = k. But this follows from the exactness
of the sequence (10.5) (more precisely, from the fact that im(ψ) ⊆ ker(ϕ)), since in
view of (8.9) we have

(10.31) ek ⊗ γk(m) ≡ ψ(ek ⊗m) mod m(P ′ ⊕ P ′′) .

This concludes the proof of Part 2 of Proposition 10.4.
To prove Part 3, note that (10.31) implies the inclusion

ker(ϕ) = im(ψ) ⊆ P ′
1 +m(P ′ ⊕ P ′′).

Now suppose that p ∈ P (1) is such that ϕ(p) ∈ ϕ(mP (1)). Remembering the
definition of ϕ, we conclude that

p ∈ mP (1) + P ′′ + ker(ϕ) ⊆ mP (1) ⊕ P ′
1 ⊕ P ′′.

Therefore, p ∈ mP (1), finishing the proof of Proposition 10.4. �

Remark 10.7. The presentation (10.17) is minimal by part (3) of Proposition 10.4.
Minimal presentations are unique up to isomorphism. One can show that, up to an
isomorphism, the presentation (10.17) does not depend on the choice of splitting
subspaces in (10.15).

Remark 10.8. To emphasize the dependence of indecomposable projective modules
Pk (for k ∈ Q0) on the underlying QP (Q,S), we will denote them by Pk = Pk(Q,S).
The indecomposable injective P(Q,S)-modules Ik = Ik(Q,S) can be defined by
going to the opposite QP:

(10.32) Ik(Q,S) = (Pk(Q
op, Sop))	.

By this definition, there is a duality between projective and injective P(Q,S)-
modules: every exact sequence involving the modules Pk gives rise to the exact
sequence (with the arrows reversed) involving the Ik. In particular, the presentation
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(10.17) gives rise to a “co-presentation”

0 → M →
⊕
k∈Q0

(Ik ⊗ ker(βk)
	) →

⊕
k∈Q0

(Ik ⊗ U	
k ),

where Uk is a direct complement of im(βk) in ker(γk).

Recall that Eproj(M,N) is defined in (10.18). We also define E inj(M,N) =
Eproj(N	,M	).

Corollary 10.9. We have the following isomorphisms:

Eproj(M,N) = HomP(Q,S)(N, τ (M))	,(10.33)

E inj(M,N) = HomP(Q,S)(τ
−1(N),M)	,(10.34)

where τ is the Auslander-Reiten translation functor (see, e.g., [1, Section IV.2]).

Proof. For this proof we will rely on the book [1]. We should point out that the
authors of [1] use the convention that all modules are right modules unless stated
otherwise, where we assume modules to be left modules by default. Let ν be the
Nakayama functor (see [1, Section III, Definition 2.8]) from P(Q,S)-modules to
P(Q,S)-modules defined by

ν(M) = HomP(Q,S)(M,P(Q,S))	.

This functor has the property that

ν(Pk) = Ik

for every vertex k. In particular, we have an isomorphism

(10.35) HomP(Q,S)(P,M) = HomP(Q,S)(M, ν(P ))	

for every projective module P (see [1, Lemma 2.1]). Consider the minimal presen-
tation (10.17). It follows from [1, Section IV, Proposition 2.4] that the sequence

(10.36) 0 → τ (M) → ν(P (1)) → ν(P (0))

is exact. If we apply HomP(Q,S)(N, ·)	 to (10.36), then it follows from (10.35) that
(10.37)

HomP(Q,S)(P
(0), N) → HomP(Q,S)(P

(1), N) → HomP(Q,S)(N, τ (M))	 → 0

is exact. It follows from (10.20) that Eproj(M,N) = HomP(Q,S)(N, τ (M))	.

We have τ (N	) = τ−1(N)	. So it follows that

E inj(M,N) = Eproj(N	,M	) = HomP(Q,S)op(M
	, τ (N	))	

= HomP(Q,S)op(M
	, τ−1(N)	)	 = HomP(Q,S)(τ

−1(N),M)	.

�

Remark 10.10. Auslander-Reiten duality states that Ext1P(Q,S)(M,N) is isomor-

phic to HomP(Q,S)(M,N)	, where HomP(Q,S)(M,N) is equal to HomP(Q,S)(M,N)
modulo the morphisms that factor through injective modules (see [1, IV.2, Theo-
rem 2.13]). We may view Ext1P(Q,S)(M,N) as a subspace of Eproj(M,N). If M has

projective dimension ≤ 1, then we have equality by [1, IV.2, Corollary 2.14]. Sim-
ilarly, Ext1P(Q,S)(M,N) can be viewed as a subspace of E inj(M,N), with equality
when N has injective dimension ≤ 1.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



790 HARM DERKSEN, JERZY WEYMAN, AND ANDREI ZELEVINSKY

Acknowledgement

The authors are grateful to Grzegorz Bobiński for providing useful references
and to an anonymous referee for several helpful suggestions.

References
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[2] A. Biálynicki-Birula, On fixed point schemes of actions of multiplicative and additive groups,
Topology 12 (1973), 99-103. MR0313261 (47:1816)

[3] A. Buan, O. Iyama, I. Reiten, D. Smith, Mutation of cluster-tilting objects and potentials,
arXiv:0804.3813, to appear in Compositio Math.

[4] A. Buan, R. Marsh, I. Reiten, Denominators of cluster variables, J. London Math. Soc. (2)
79 (2009), no. 3, 589–611. MR2506688

[5] M. Butler, A. King, Minimal resolutions of algebras, J. Algebra 212 (1999), no.1, 323-362.
MR1670674 (2000f:16013)

[6] P. Caldero, F. Chapoton, Cluster algebras as Hall algebras of quiver representations, Com-
ment. Math. Helv. 81 (2006), no. 3, 595–616. MR2250855 (2008b:16015)

[7] P. Caldero, B. Keller, From triangulated categories to cluster algebras II, Annales Sci. de
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