
Qulacs: a fast and versatile quantum circuit simulator for

research purpose

Yasunari Suzuki1,2, Yoshiaki Kawase3, Yuya Masumura4, Yuria Hiraga5, Masahiro Nakadai6,

Jiabao Chen7, Ken M. Nakanishi7,8, Kosuke Mitarai3,7,9, Ryosuke Imai7, Shiro Tamiya7,10,

Takahiro Yamamoto7, Tennin Yan7, Toru Kawakubo7, Yuya O. Nakagawa7, Yohei Ibe7,

Youyuan Zhang7,8, Hirotsugu Yamashita11, Hikaru Yoshimura11, Akihiro Hayashi12, and

Keisuke Fujii2,3,9,13

1NTT Computer and Data Science Laboratories, NTT Corporation, Musashino 180-8585, Japan
2JST PRESTO, Kawaguchi, Saitama 332-0012, Japan
3Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
4Graduate School of Information Science and Technology, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
5Graduate School of Information and Science, Nara Institute of Science and Technology, Takayama, Ikoma, Nara 630-0192,

Japan
6Graduate School of Science, Kyoto University, Yoshida-Ushinomiya, Sakyo, Kyoto 606-8302, Japan
7QunaSys Inc., Aqua Hakusan Building 9F, 1-13-7 Hakusan, Bunkyo, Tokyo 113-0001, Japan
8Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
9Center for Quantum Information and Quantum Biology, Institute for Open and Transdisciplinary Research Initiatives, Osaka

University, Japan
10Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
11Individual researcher
12School of Computer Science, Georgia Institute of Technology, Atlanta, GA, 30332, USA
13Center for Emergent Matter Science, RIKEN, Wako Saitama 351-0198, Japan

To explore the possibilities of a near-

term intermediate-scale quantum algo-

rithm and long-term fault-tolerant quan-

tum computing, a fast and versatile quan-

tum circuit simulator is needed. Here,

we introduce Qulacs, a fast simulator for

quantum circuits intended for research

purpose. We show the main concepts of

Qulacs, explain how to use its features via

examples, describe numerical techniques

to speed-up simulation, and demonstrate

its performance with numerical bench-

marks.

Yasunari Suzuki: yasunari.suzuki.gz@hco.ntt.co.jp

Jiabao Chen: qulacs@qunasys.com

Ryosuke Imai: qulacs@qunasys.com

Tennin Yan: qulacs@qunasys.com

Toru Kawakubo: qulacs@qunasys.com

Yuya O. Nakagawa: qulacs@qunasys.com

1 Introduction

Many theoretical groups have explored quantum
computing applications due to the rapid improve-
ments in quantum technologies and huge efforts
of experimental groups to develop quantum com-
puters [1, 2]. Although classical simulation of
quantum circuits is a vital tool to develop quan-
tum computers, the simulation time increases ex-
ponentially with the number of qubits.

The primary reasons for using a classical sim-
ulator are the following: (i) Quantum devices
suffer from much higher error rates. A classical
simulator is necessary to determine the ideal re-
sults for comparison. (ii) In certain cases, not all
necessary values can be directly measured from
experiments such as the full quantum state vec-
tor and marginal probabilities of measurements.
(iii) To analyze the performance of quantum error
correction and noise characterization for an arbi-
trary noise model, noisy quantum circuits must
be simulated. Hence, there are broad demands
on classical simulators for research on quantum

Accepted in Quantum 2021-07-26, click title to verify. Published under CC-BY 4.0. 1

ar
X

iv
:2

01
1.

13
52

4v
4

 [
qu

an
t-

ph
]

 5
 O

ct
 2

02
1

https://quantum-journal.org/?s=Qulacs:%20a%20fast%20and%20versatile%20quantum%20circuit%20simulator%20for%20research%20purpose&reason=title-click
https://quantum-journal.org/?s=Qulacs:%20a%20fast%20and%20versatile%20quantum%20circuit%20simulator%20for%20research%20purpose&reason=title-click
mailto:yasunari.suzuki.gz@hco.ntt.co.jp
mailto:qulacs@qunasys.com
mailto:qulacs@qunasys.com
mailto:qulacs@qunasys.com
mailto:qulacs@qunasys.com
mailto:qulacs@qunasys.com

computing. Although full simulations of quan-
tum circuits are not efficient in the sense of com-
putational complexity theory, it is important to
implement a fast classical simulator as much as
possible.

Here, we introduce a quantum circuit simula-
tor, which is called Qulacs [3]. The main feature
of Qulacs is that it meets many popular demands
in quantum computing research such as evaluat-
ing near-term applications, quantum error correc-
tion, and quantum benchmark methods. In ad-
dition, Qulacs is available on many popular en-
vironments, and is one of the fastest quantum
circuit simulators. Herein we demonstrate the
structure of our library, optimization methods,
and numerical benchmarks for simulating typical
quantum gates and circuits.

This paper consists of the following topics. Sec-
tion. 2 overviews the main features and struc-
ture of Qulacs as well as compares it with exist-
ing libraries. Section. 3 introduces the expected
use of Qulacs. Section. 4 discusses how to write
codes with Qulacs using examples codes. Sec-
tion. 5 introduces further optimization techniques
to speed-up the simulation of quantum circuits.
Section. 6 shows the numerical benchmarks for
Qulacs. Section 7 compares the performance of
Qulacs with that of existing simulators. Finally,
Section. 8 is devoted to summary and discussion.

2 Overview

2.1 Features of Qulacs

Qulacs is designed to accelerate research on quan-
tum computing. Thus, Qulacs prioritizes the fol-
lowing:

Fast simulation of large quantum circuits:

A full simulation of quantum circuits requires a
time that grows exponentially with the number
of qubits. This problem can be mitigated by op-
timizing and parallelizing the simulation codes
for single- or multi-core CPUs and SIMD (Sin-
gle Instruction Multiple Data) units and even
GPUs (Graphics Processing Units), and optimiz-
ing quantum circuits before a simulation. These
techniques can enable a few orders of magnitude
performance improvement compared to naive im-
plementations. Although this is a constant fac-
tor speed-up, the effect on practical research is

tremendous. Qulacs offers optimized and paral-
lelized codes to update a quantum state and eval-
uate probability distributions, observables, and
so on.

Small overhead for simulating small quan-

tum circuits: Often small but noisy quantum
circuits (up to 10 qubits) are simulated many
times rather than simulating a single-shot large
ideal quantum circuit. In this case, the over-
head due to pre- and post-processing for calling
core API functions is not negligible relative to
the overall simulation time. Qulacs is designed
to minimize such overhead by focusing on core
features and avoiding complicated functionalities.

Available on different environments:

While numerical analysis is typically performed
on workstations or high-performance computers,
most software development occurs on laptops
or desktop personal computers. For versatility,
Qulacs provides interfaces for both Python and
C++ languages, while most of the codes of
Qulacs are written in C and C++ languages.
In addition, Qulacs supports several compilers
such as GNU Compiler Collection (GCC) and
Microsoft Visual Studio C++ (MSVC). Qulacs
is tested on several operating systems such as
Linux, Windows, and Mac OS.

Many useful utilities for research: To meet
various demands in quantum computing research,
a simulator should support general quantum op-
erations. Qulacs can create not only common uni-
tary gates and projection measurements, but also
general operations such as completely positive
instruments and adaptive quantum gates condi-
tioned on measurement results.

2.2 Structure of Qulacs

Qulacs consists of three shared libraries. The first
one is a core library written in C language for op-
timized memory management, update functions
of quantum states, and property evaluation of
quantum states. The second library is built on
top of the first library, and is written in C++
language. This allows users to easily create and
control quantum gates and circuits in an object-
oriented way, thereby improving the programma-
bility. Also, at runtime, it adaptively chooses

Accepted in Quantum 2021-07-26, click title to verify. Published under CC-BY 4.0. 2

the best performing implementation of quantum
gates depending on the number of qubits. The
third library explores variational methods with
quantum circuits. This library wraps quantum
gates and circuits so that quantum circuits can
be treated as variational objects.

We expect that users who work on variational
quantum algorithms use Qulacs via the third li-
brary, and the other users access Qulacs via the
second library. Additionally, Qulacs can be used
as a Python library, while there is some over-
head in interfacing between Python and C++.
Figure 1 shows the overview of the structure of
Qulacs. The components of Qulacs and their us-
ages are explained in Sec. 4 with example codes.
Qulacs uses Eigen [4] to treat a sparse matrix
and to manage matrix representations of quan-
tum gates and pybind11 [5] for exporting func-
tions and classes from C++ to python. The fea-
tures introduced in this paper is fully tested with
GoogleTest [6] and pytest [7].

2.3 Simulation methods

There are several approaches to simulate general
quantum circuits with classical computers. The
simplest approach is to update quantum states
represented by state vectors or density matrices
sequentially by applying quantum gates as gen-
eral maps. This method is called Schrödinger’s
method [1]. Qulacs implements this method for
simulating quantum circuits due to its fast and
versatile simulations of quantum circuits com-
pared with the other methods introduced in this
section. A detail of implementation with this
method is described in Sec. 4.

Another method is Feynman’s approach [1, 8,
9], which computes the sum of all Feynman’s
path contributions. This technique greatly de-
creases the memory size requirement, allowing
for the single amplitude of the final quantum
state to be quickly known. While the number
of Feynman’s paths increases exponentially ac-
cording to not only the number of qubits but also
the number of quantum gates, this requirement
can be relaxed by using tensor-network-based ap-
proach. With tensor-network-based simulator,
we can make the simulation time increases ex-
ponentially according to a tree-width of the net-
work [9], which is a characteristic value of graph
representing how a tensor network is close to a
tree graph. However, except special cases where

tree-width is small, such as shallow quantum cir-
cuits with a large number of qubits, a tree-width
becomes equal to the number of qubits. More-
over, the Schrödinger’s method is much faster
than Feynman’s path integral when the number
of qubits is limited and the memory size is suf-
ficient for storing a full state vector. Although
we can also consider Schrödinger-Feynman ap-
proach [1, 10] as a hybrid method, this method is
typically faster than Schrödinger’s method simu-
lating large quantum circuits with a small depth.

If quantum circuits have specific features, then
the simulation time can be reduced. For exam-
ple, if quantum circuits are dominated by Clifford
gates, non-Clifford gates can be treated as a per-
turbation to the simulation. This treatment can
reduce the time for simulation [11, 12]. This con-
dition is satisfied in several situations, e.g., quan-
tum circuits of stabilizer measurements where
non-Clifford errors happens with a very small
probability or fault-tolerant quantum computing
with a limited number of T and TOFFOLI-gates.
However, most of the quantum circuits of typical
quantum algorithms do not satisfy these condi-
tions.

2.4 Relation to the existing libraries

To date, many groups have published a vari-
ety of quantum circuit simulators. Cirq [13],
Qiskit [14], PyQuil [15], and PennyLane [16] are
published by Google, IBM, Rigetti computing,
and Xanadu, respectively. Since these groups
are developers of hardware for quantum com-
puting, these libraries are designed for submit-
ting quantum tasks as a job without thinking
about detailed experimental procedures or se-
tups. Q# [17] by Microsoft focuses on provid-
ing higher levels of abstraction, such as pack-
aged instructions for integer arithmetic or tool-
chains for compilation. To simulate quantum
circuits with a low depth and a large num-
ber of qubits, tensor-network-based simulators
are used [18–20]. However, these are not good
for higher depths or a fewer number of qubits.
For quantum circuit simulations on state-of-the-
art supercomputers, several works have reported
on the performance and optimizations [21–24].
Qiskit-Aer [14], Intel-QS [25, 26], QX Simula-
tor [27, 28], ProjectQ [29], QuEST [30], qsim [31],
Yao [32], QCGPU [33], and Qibo [34] were all de-
veloped with motivations similar to ours. They

Accepted in Quantum 2021-07-26, click title to verify. Published under CC-BY 4.0. 3

Quantum State

Quantum Circuit

Quantum Gates

Front-end C++ classes Optimized low-level functions

CPUs

GPUs

Computing devices

Qulacs

P
yt

h
o
n

 i
n

te
rf

a
c
e
s

C++ user codes

Memory management

Quantum state evaluation

Quantum state manipulation
Basic gate

General quantum maps

CPTP-map

Adaptive op

CP-instrument

Dense matrix Diagonal matrix

Sparse matrix Permutation matrix

Pauli matrix ⋯
Python user codes

Expectation value

Marginal probability

Sampling with Z-basis

Inner product

Observable෨𝑂 = 𝑃∈𝒫𝑛 𝜃𝑃𝑃
𝜓 = 𝜓0𝜓1⋮ 𝜌 = 𝜌00 𝜌01 ⋯𝜌10 ⋱⋮
𝜌 ↦ 𝑈𝜌𝑈† 𝜌 ↦𝑖 𝐾𝑖𝜌𝐾𝑖†

𝑅𝑋 𝜃
𝐻 𝑅𝑍𝑋(𝜙)

depolarize 𝑓 𝑣
Circuit optimization
for fast simulation

Concatenate / drop qubits

Copy / load state

Allocate / deallocate array

⋯
⋯

⋯

Parameter controls and differentiation
for variational algorithms - SIMD

- Multi-threading

Figure 1: The overview of the structure of Qulacs.

focused on optimizing quantum circuit simula-
tions for quantum computing researchers. By
contrast, Qulacs is one of the fastest simulators,
which minimizes overhead even for small simula-
tions, supports general quantum operations such
as completely-positive and trace-preserving maps
and completely-positive instruments, and runs on
various environments. In addition, Qulacs pro-
vides many useful utilities frequently used in re-
search such as calculations of transition ampli-
tudes and reversible Boolean functions.

3 Expected usages of Qulacs

Quantum circuit simulators should be designed
for specific targets. Qulacs is designed to help
researchers of quantum computing. In particular,
we expect the following usages:

3.1 Exploration of near-term applications and

error mitigation techniques

To highlight typical evaluation targets, here we
show two popular directions of near-term appli-
cations. One is optimizing a target function using
variational quantum circuits such as the varia-
tional quantum eigensolver (VQE) [35]. In a typ-
ical scenario, we assume rotation angles of Pauli

gates as variational parameters of a cost func-
tion and optimize them by repeatedly simulating
quantum circuits with a relatively small number
of qubits. The other application is a quantum
simulator [36]. In this approach, large quantum
systems are simulated to explore physics in many-
body quantum systems. In a typical scenario, we
perform a single simulation with quantum circuits
as large as possible. Thus, the size of memory or
allowed time limits the size of quantum circuits.

To date, Qulacs has been used in a few tens
of research papers. For example, Qulacs is
used by papers related to noisy intermediate-
scale quantum (NISQ) applications [37, 37–42]
and fault-tolerant quantum computing [43]. Al-
though Qulacs does not support gate decompo-
sition, which is supported by high-layer libraries,
Qulacs can be used as a faster backend library.
For example, Qulacs can serve as a backend of
Cirq [13] using a library cirq-qulacs [44]. Qulacs
has also been chosen as a fast backend simulator
in several libraries and services such as Penny-
Lane (Xanadu) [16], t|ket> (Cambridge Quan-
tum Computing) [45], Orquestra (Zapata com-
puting) [46], and Tequila [47].

Accepted in Quantum 2021-07-26, click title to verify. Published under CC-BY 4.0. 4

3.2 Performance analysis of quantum error

correction schemes

Another important usage of the simulator for
quantum circuits is performance analysis of
the quantum error correction and fault-tolerant
quantum computing. To construct a quantum
computer large enough for Shor’s algorithm [48,
49], a quantum simulation for quantum many-
body systems [36, 50], or algorithms for linear
systems [51], quantum error correction [52] is nec-
essary to reduce logical error rates to an arbitrar-
ily small value. Many types of quantum error-
correcting codes and schemes have been pro-
posed. However, the number of qubits needed
for a specific application is highly dependent
on the performance of quantum error-correcting
schemes. Consequently, it is difficult to control
the noise properties on real devices and the per-
formance of quantum error correction must be
analyzed with classical simulation in near-term
development. Unfortunately, the time to accu-
rately simulate quantum error-correcting codes
with practical noise models grows exponentially
with the number of qubits. Thus, we need a fast
and accurate simulator of noisy quantum circuits
of quantum error correction.

3.3 Generation of a reference of experimental

data

To characterize and calibrate controls of qubits,
sometimes experimental data must be compared
with the ideal one. For example, several verifi-
cation methods for large quantum devices [1, 53]
require a full simulation of large quantum sys-
tems. While quantum circuits in quantum com-
putational supremacy regime require supercom-
puters for simulations, portable and fast quan-
tum circuit simulators remain useful for generat-
ing small-scale experimental references.

4 Implementation of Qulacs

4.1 Overview

In Qulacs, any state of a quantum system is rep-
resented as a subclass of the QuantumStateBase

class. Thus far, Qulacs supports two represen-
tations of quantum states: state vector and den-
sity matrix. The StateVector class represents
a state vector, while the DensityMatrix class

represents a density matrix. These classes have
some basic utilities as their member functions
such as initialization to a certain quantum state,
computing marginal probabilities, and sampling
measurement results. The QuantumStateBase

class also contains a variable-length integer array
called classical registers, which are used to store
measurement results.

When a quantum state is updated by quan-
tum operations, subclasses of QuantumGateBase

are instantiated and applied to a quantum state.
This class supports not only unitary operations
and projection measurements but also a vari-
ety of operations for general quantum mapping
such as a completely-positive instrument and a
completely-positive trace-preserving map.

To evaluate the expectation values of observ-
ables, there is a class named Observable. We
assume the Observable class is described as a
linear combination of Pauli operators. Thus, the
Observable instance can be constructed directly
or from an output of an external library such as
OpenFermion [54]. Additionally, a Trotterized
quantum circuit can be created from a given ob-
servable.

By default, Qulacs performs a simulation by
allocating and manipulating StateVector on a
CPU. Also, since the use of GPUs can signifi-
cantly outperform a CPU in certain cases, Qulacs
supports GPU execution. This can be done by
using the StateVectorGpu. Once a state vector
is allocated on a GPU, all the computations such
as update and evaluation of state vectors are per-
formed in a GPU unless the state is explicitly
converted into StateVector. Qulacs does not
support allocating a quantum state on multiple
GPUs. One GPU can be selected by supplying
an index if multiple GPUs are installed.

In the discussion below, we explain the case
where quantum states are allocated as state vec-
tors on the main RAM and processed within a
CPU. Although Qulacs can be used as a C++
library, we show examples in the Python lan-
guage for simplicity in the main text. See Ap-
pendix. A for the example codes of the C++ lan-
guage. Here, we show typical examples and their
basic features. Qulacs supports more operations
than those explained here. For a detailed expla-
nation, please see the documentation on the offi-
cial website [3].

Accepted in Quantum 2021-07-26, click title to verify. Published under CC-BY 4.0. 5

4.2 Quantum state

4.2.1 Initialization

In Qulacs, instantiating the StateVector class
allocates a state vector. By default, a state
vector is initialized to zero-state |0〉⊗n. How-
ever, the state can be initialized to other states
such as a computational basis, a state vector of
a given complex array, or a random pure state
with its member functions. The instance of the
StateVector class can create its copy or load
the contents of another StateVector. Listing. 1
shows example codes.

1 import numpy as np

2 from qulacs import StateVector

3

4 # Allocate a state vector

5 num_qubit = 2

6 state = StateVector (num_qubit)

7

8 # Reset to a computational basis

9 ## (0:|00 > , 1:|01 > , 2:|10 > , 3:|11 >)

10 ## Note that the right -most digit

corresponds to

11 ## the 0-th qubit in Qulacs .

12 state. set_computational_basis (index = 2)

13

14 # Create a copy of the state vector

15 sub_state = state.copy ()

16

17 # Load a given list , numpy array ,

18 # or another StateVector

19 state.load(state =[0.5 , 0.5, 0.5, -0.5])

20 state.load(np.ones (4) /2)

21 state.load(sub_state)

22

23 # Prepare a randomized pure quantum

state

24 state. set_Haar_random_state (seed = 42)

Listing 1: An example Python program that initializes
quantum states.

4.2.2 Analysis

Qulacs implements several functions to evaluate
the properties of quantum states. Although the
get_vector functions provide a full state vec-
tor, evaluating the properties with built-in func-
tions is fast. For example, Listing. 2 shows ex-
ample codes to compute a marginal probability,
squared norm, and inner-product of two states.
Note that the sampling functions create a cumu-
lative probability distribution as pre-processing
for the fast sampling, which temporally allocates
an additional 2n-length array.

1 from qulacs import StateVector

2 num_qubit = 3

3 state = StateVector (num_qubit)

4 state. set_Haar_random_state (0)

5

6 # Get the state vector as numpy array

7 vec = state. get_vector ()

8

9 # Get the marginal probability

10 ## The below example obtains prob of

|021 >

11 ## where "2" is a wild card

12 ## matching to both 0 and 1.

13 prob = state. get_marginal_probability (

measured_value =[1, 2, 0])

14

15 # Sampling results of the Z-basis

measurements

16 samples = state. sampling (count =100 , seed

=42)

17

18 # Computing the squared norm

19 squared_norm = state. get_squared_norm ()

20

21 # Computing the inner product of two

quantum states

22 from qulacs .state import inner_product

23 state_bra = StateVector (num_qubit)

24 state_bra . set_Haar_random_state ()

25 state_ket = StateVector (num_qubit)

26 state_ket . set_Haar_random_state ()

27 value = inner_product (state_bra ,

state_ket)

Listing 2: An example Python program that evaluates
the properties of quantum states.

4.2.3 Update

Several member functions of StateVector can be
used for quickly updating a state vector. The
multiply_coef function multiplies a complex
number to each element of a quantum state, while
the multiply_elementwise_function multi-
plies index-dependent coefficients to a state vec-
tor with a function that returns a coefficient ac-
cording to a given index. The add_state func-
tion adds two state vectors. While these op-
erations are not physically achievable, they are
useful for analysis in theoretical studies such
as creating a superposition of two given states
and supplying specific phases to each element
of a state vector. A list of qubits in a state
vector can be concatenated, permutated, or re-
duced with tensor_product, permutate_qubit,
or drop_qubit, respectively. Listing. 3 shows
code examples for multiplication kernels.

1 from qulacs import StateVector

Accepted in Quantum 2021-07-26, click title to verify. Published under CC-BY 4.0. 6

2 from qulacs .state import tensor_product ,

permutate_qubit , drop_qubit

3

4 state = StateVector (2)

5 state. set_Haar_random_state ()

6

7 # Normalize the state vector

8 squared_norm = state. get_squared_norm ()

9 state. normalize (squared_norm)

10

11 # Multiply a complex number to each

element

12 state. multiply_coef (0.5+0.1 j)

13

14 # Perform element -wise multiply

15 def func(index):

16 return (0.5 if index %2 else 0)

17

18 state. multiply_elementwise_function (func

)

19

20 # Perform element -wise addition

21 state. add_state (state)

22

23 # Make a tensor product of states .

24 # The resultant state has 4 qubits

25 sub_state = StateVector (2)

26 state = tensor_product (state , sub_state)

27

28 # Permutate qubit indices from [0 ,1 ,2 ,3]

to [3 ,1 ,2 ,0]

29 state = permutate_qubit (state ,

[3 ,1 ,2 ,0])

30

31 # Drop the 1-st and 2-nd qubits from

state

32 # and project to |0> and |0> subspace .

33 new_state = drop_qubit (state , [1,2],

[0 ,0])

Listing 3: An example Python program that update and
modify quantum states.

4.3 Quantum gates

4.3.1 Gate type

As explained in the overview, quantum gates in-
clude not only typical quantum gates such as
unitary operators and Pauli-Z basis measure-
ments, but also contain all operations that up-
date quantum states. All the classes of quan-
tum gates are defined as a subclass of the
QuantumGateBase class, which has a function
update_quantum_state that acts on derived
classes of QuantumStateBase. In Qulacs, quan-
tum gates in which the action can be written as
|ψ〉 7→ K |ψ〉, where |ψ〉 is a state vector and
K is a certain complex matrix, are called basic
gates. Examples include a Pauli rotation on mul-

tiple qubits, TOFFOLI-gate, and stabilizer pro-
jection to +1 eigenspace. Quantum maps that
are not basic gates such as CPTP-map, projec-
tion measurements, and adaptive operations, are
represented using basic gates. Here, we show sev-
eral popular types of operations which are imple-
mented as basic operations.

4.3.2 Basic gate

A basic gate is an operation that can be repre-
sented by ρ 7→ KρK†. In the case of a pure
state, its action on the state vector is represented
by |ψ〉 7→ K |ψ〉. Note that K is not neces-
sarily unitary. Suppose that this quantum gate
acts on a pure quantum state |ψ〉 and obtain an
updated quantum state |ψ′〉 = K |ψ〉. We de-
note a state vector of the computational basis as
|x〉 =

⊗

i |xi〉 for x ∈ {0, 1}n, a coefficient of the
state vector along with the computational basis
as ψx = 〈x|ψ〉, and a matrix representation of
K as Kx,y = 〈x|K|y〉. Then, a coefficient of the
updated quantum state can be written by

ψ′
x

=
∑

y∈{0,1}n

Kx,yψy. (1)

Typically, quantum gates non-trivially act only
on a few qubits. Suppose that the total number of
qubits is n, the list of qubits on which the quan-
tum gate non-trivially acts is M , and the num-
ber of the target qubits is m. Then, the action of
the quantum gate K can be simplified by using a
2m × 2m complex matrix K̃, which we call a gate
matrix, as follows. We define the following two
lists of n-bit strings:

B(0) = {x ∈ {0, 1}n|∀i ∈ M,xi = 0} (2)

B(1) = {x ∈ {0, 1}n|∀i /∈ M,xi = 0}. (3)

Here, B(0) is a list of n-bit strings where all the
values at indices contained in M are zero, and
B(1) is a list of n-bit strings where all the values
at indices not contained in M are zero. There are
2n−m elements in B(0) and 2m elements in B(1).
An arbitrary n-bit string x can be uniquely de-
composed as x = x

(0) + x
(1) where x

(i) ∈ Bi.
We use this decomposition implicitly in the fol-
lowing discussion. Since the quantum gate only
acts on the target qubits, a transition amplitude
between two computational basis states is zero
if their n-bit strings are different at indices not
contained in the target qubits, and a transition

Accepted in Quantum 2021-07-26, click title to verify. Published under CC-BY 4.0. 7

amplitude is independent of the values at indices
not contained in the target qubit, i.e.,

Kx,y = K
x(0)+x(1),y(0)+y(1)

= K
x(1),y(1)δx(0),y(0) (4)

for an arbitrary x,y ∈ {0, 1}n. Then, Eq. (1) can
be rephrased as

ψ′
x(0)+x(1) =

∑

y(1)∈B(1)

K
x(1),y(1)ψx(0)+y(1) . (5)

We define a bijective function r : B(1) → {0, 1}m

such that (x0, · · · , xn−1) 7→ (xM0 , · · · , xMm−1)
where Mi is the qubit index of the i-th target
qubit, and also define s : {0, 1}m → B(1) as the
inverse of r. Then, a 2m × 2m gate matrix K̃ of
the quantum gate K is defined as

K̃z,w = 〈s(z)|K|s(w)〉 (6)

for z,w ∈ {0, 1}m. With the gate matrix, we can
write Eq. (5) as follows:

ψ′
x(0)+s(z) =

∑

w∈{0,1}m

K̃z,wψx(0)+s(w). (7)

We also define a temporal state vector |ψ̃
x(0)〉 as a

2m-dim complex vector of which the i-th element
is ψ

x(0)+s(bin(i)) where bin(i) represents the m-bit
binary representation of the integer i. Then, we
can simplify Eq. (7) as

|ψ̃′
x(0)〉 = K̃ |ψ̃

x(0)〉 . (8)

Since for all x(0) ∈ B(0), Eq. (8) has to be calcu-
lated, an update function for K consists of 2n−m

matrix-vector multiplications with a gate matrix
K̃ and the temporal state vectors |ψ̃

x(0)〉. List-
ing. 4 shows a naive implementation of update
functions in the Python language, where B0 and
B1 are a list of n-bit integers corresponding to B0

and B1, respectively.

1 import numpy as np

2

3 def func(state_vector , gate_matrix , B0 ,

B1 , m):

4 temp_vector = np.zeros (2**m)

5 for x0 in B0:

6 # Read values from the state vector

7 for ind , x1 in enumerate (B1):

8 temp_vector [ind] = state_vector [x0

+x1]

9 # Perform matrix - vector

multiplication

10 temp_vector = np.dot(gate_matrix ,

temp_vector)

11 # Write values to the state vector

12 for ind , x1 in enumerate (B1):

13 state_vector [x0+x1] = temp_vector [

ind]

Listing 4: An example Python code that naively
implements an update function of a quantum state

Note that in the example code, without loss of
generality, B1 is considered to be arranged so that
the i-th element of B1 is s(bin(i)). In practice,
a time for reading/writing temporal state vectors
(i.e., temp_vector in the example code) from/to
the whole state vector is not negligible. Thus,
the update function essentially performs 2n−m it-
erations of the following three parts: read 2m-
dim complex numbers from a memory, perform
matrix-vector multiplication, and write 2m com-
plex numbers to the memory.

The DenseMatrix function generates a ba-
sic gate K with a gate matrix K̃, and the
RandomUnitary function generates that with a
random unitary matrix sampled from a Haar-
random distribution. Listing. 5 shows quantum
gates instantiated with dense matrices.

1 from qulacs import StateVector

2 from qulacs .gate import DenseMatrix ,

RandomUnitary

3 state = StateVector (10)

4

5 # Update quantum state with given gate

matrix

6 target_list = [1]

7 gate_matrix = [[0, 1],[1, 0]]

8 gate = DenseMatrix (target_list ,

gate_matrix)

9 gate. update_quantum_state (state)

10

11 # Update quantum state with random

unitary

12 ## Matrix is drawn from Haar - random

distribution

13 random_gate = RandomUnitary (target_list)

14 random_gate . update_quantum_state (state)

Listing 5: An example Python program that applies
dense matrix gates to quantum states.

The computation time to apply a quantum gate
is mainly determined by two factors: time for pro-
cessing arithmetic operations to perform a calcu-
lation with complex numbers and time for pro-
cessing memory operations to transfer complex
numbers between the CPU and main RAM; we
call these arithmetic-operation cost and memory-
operation cost, respectively. They are propor-
tional to the number of arithmetic and mem-

Accepted in Quantum 2021-07-26, click title to verify. Published under CC-BY 4.0. 8

ory operations in update functions. The heavier
of the two determines the application time of a
function. The number of arithmetic operations
in each iteration of an update function of dense
matrix gates is O(22m) and that of memory op-
erations is O(2m + 22m), where O is a Landau
notation. Since this iteration is looped for 2n−m

times, the total number of arithmetic and mem-
ory operations are O(2n+m) and O(2n + 2n+m).
In the case of small m, the gate matrix K̃, which
is re-used in all the iterations, is expected to re-
side on cache memory, and the memory-operation
cost for the gate matrix is counted at once. Thus,
the number of memory operation is effectively
O(2n + 22m). Typically, because we consider the
case when m ≪ n, the memory-operation cost is
further approximated as O(2n).

Although any basic gate can be treated as
a dense matrix gate, quantum gates in quan-
tum computing research sometimes have an addi-
tional structure in a gate matrix K̃. By utilizing
this structure, the arithmetic-operation cost, the
memory-operation cost, or both can be decreased.
This motivates us to define specialized subclasses
of dense matrix gates for quantum gates with
structured gate matrices. Here, we show func-
tions for several types of basic gates with a struc-
ture. Note that the relation between arithmetic-
and memory-operation costs and the total com-
putation time is discussed in Sec. 5.

Let Mc be a subset of target qubits and c (0 ≤
c < 2|Mc|) be an integer, where | · | represents
the number of elements in a given set. Any
gate matrix K̃ can be represented in the form

K̃ =
∑2|Mc|−1

x,y=0 |x〉 〈y| ⊗ Lx,y, where the first part
of the tensor product acts on the space of qubits
in Mc, and the latter part acts on the space of
target qubits except for Mc. Suppose a gate ma-
trix K̃ which satisfies Lx,y = 0 if x 6= y and
Lx,x = I if x 6= c. A quantum gate with such
a gate matrix K̃ is called controlled quantum
gates. We can describe a gate matrix of a con-
trolled quantum gate with an integer c and com-
plex matrix Lc,c. Let mc := |Mc| be the num-
ber of control qubits, and mt := m − mc be the
number of qubits on which Lc,c act. Then, this
gate can be applied with arithmetic-operation
costs O(2n−mc+mt) and memory-operation costs
O(2n−mc). In Qulacs, we can specify the
pair of the digit of control index c and corre-
sponding item in Mc with a member function

add_control_qubit.
When a gate matrix has a small number of

non-zero elements, it is called sparse. When K̃
is a sparse matrix, the arithmetic- and memory-
operation costs can be decreased according to the
number of non-zero elements. A quantum gate
with a sparse gate matrix can be generated with
SparseMatrix.

Another special case is a diagonal matrix,
which is a matrix with non-zero elements only in
the diagonal elements. In this case, arithmetic-
and memory-operation costs become O(2n).
These costs are independent of the number of tar-
get qubits m. In this case, DiagonalMatrix can
be used for generating diagonal matrix gates.

An action of reversible Boolean functions in
classical computing can always be represented as
a permutation matrix, which is a matrix where
there is a single unity element in each row and
column. ReversibleBoolean creates a unitary
operation with a permutation matrix by supply-
ing a function that returns the index of a column
with a unity element from the index of a given
row. This function is applicable not only for re-
versible circuits but also for creating and anni-
hilating operators as a product of a permutation
matrix and a diagonal matrix. Its arithmetic-
and memory-operation costs are O(2n) and are
also independent of the number of target qubits
m.

A set of m-qubit Pauli matrices is defined as a
tensor product of Pauli matrices {I,X, Y, Z}⊗m,
where

I =

(

1 0
0 1

)

, X =

(

0 1
1 0

)

,

Y =

(

0 −i
i 0

)

, Z =

(

1 0
0 −1

)

. (9)

A Pauli gate is a gate in which the gate matrix is a
Pauli matrix. By assigning numbers {0, 1, 2, 3} to
Pauli matrices {I,X, Y, Z}, respectively, a Pauli
matrix can be represented with a sequence of in-
tegers {0, 1, 2, 3}m. The Pauli function generates
a basic gate with a Pauli matrix represented by
a sequence of assigned integers. Its arithmetic-
and memory-operation costs are O(2n) and are
independent of m.

Since a set of m-qubit Pauli matrices is a ba-
sis of 2m × 2m matrices, any 2m × 2m matrix
can be represented as a linear combination of
m-qubit Pauli matrices. Furthermore, any self-

Accepted in Quantum 2021-07-26, click title to verify. Published under CC-BY 4.0. 9

adjoint matrix can be represented as a linear com-
bination of m-qubit Pauli matrices with real co-
efficients. Therefore, any unitary gate matrix can
be represented in the form K̃ = exp(i

∑

P θPP),
where θP is a real coefficient. Suppose a quan-
tum gate such that θP = 0 if P 6= Q, where Q
is a certain Pauli matrix. Such a quantum gate
is called a Pauli rotation gate. PauliRotation

can be used for generating a Pauli rotation gate
with a description of Pauli matrix Q and rotation
angle θQ. Its arithmetic- and memory-operation
costs are also O(2n). Note that quantum gates
with multiple non-zero rotation angles, which are
vital for simulating the dynamics of quantum sys-
tems under a given Hamiltonian, can be gener-
ated with DenseMatrix function with an explicit
matrix representation of exp(i

∑

P θPP) or gen-
erated as a Trotterized quantum circuit with ob-
servable. For the latter, see Sec. 4.5. Listing. 6
shows examples. Qulacs has several other spe-
cializations for basic gates, which are detailed in
the online manuals [3].

1 import numpy as np

2 from scipy. sparse import csr_matrix

3 from qulacs import StateVector

4 from qulacs .gate import DenseMatrix ,

SparseMatrix , DiagonalMatrix , Pauli ,

PauliRotation , ReversibleBoolean

5 state = StateVector (10)

6

7 # Update a quantum state with a

controlled dense matrix gate

8 target_list = [1]

9 gate_matrix = [[0, 1],[1, 0]]

10 control_gate = DenseMatrix (target_list ,

gate_matrix)

11 ## Act when the 2-nd qubit is |0>

12 control_gate . add_control_qubit (2, 0)

13 ## Act when the 3-rd qubit is |1>

14 control_gate . add_control_qubit (3, 1)

15 control_gate . update_quantum_state (state)

16

17 # Update a quantum state with a sparse

matrix gate

18 target_list = [2, 1]

19 sparse_matrix = csr_matrix (

20 ([1 ,1] , ([0 ,3] , [0 ,3])),

21 shape =(4 ,4) , dtype= complex)

22 sparse_gate = SparseMatrix (target_list ,

sparse_matrix)

23 sparse_gate . update_quantum_state (state)

24

25 # update a quantum state with a diagonal

matrix gate

26 target_list = [3, 5]

27 diagonal_element = [1, -1, -1, 1]

28 diagonal_gate = DiagonalMatrix (

target_list , diagonal_element)

29 diagonal_gate . update_quantum_state (state

)

30

31 # Update a quantum state with a

permutation matrix gate

32 def basis_to_basis (index , dim):

33 return (index +3)%dim

34

35 target_list = [0, 3, 4]

36 rev_gate = ReversibleBoolean (target_list

, basis_to_basis)

37 rev_gate . update_quantum_state (state)

38

39 # Update a quantum state with Pauli gate

40 target_list = [1 ,2]

41 pauli_ids = [3 ,2]

42 pauli_gate = Pauli(target_list ,

pauli_ids)

43 pauli_gate . update_quantum_state (state)

44

45 # Update a quantum state with a Pauli

rotation gate

46 target_list = [1 ,2]

47 pauli_ids = [3 ,2]

48 rotation_angle = np.pi/5

49 rot_gate = PauliRotation (target_list ,

pauli_ids , rotation_angle)

50 rot_gate . update_quantum_state (state)

Listing 6: An example Python program that applies
several basic gates to quantum states.

4.3.3 Quantum map

Quantum maps are a general operation, which
includes all the quantum maps that cannot be
represented as basic gates such as measurement,
noisy operation, and feedback operation.

The most general form of physical operations
without measurements is a completely-positive
trace-preserving (CPTP) [55]. According to the
operator-sum representation, this map can be
represented as ρ 7→ ∑

iKiρK
†
i , where ρ is the den-

sity matrix and Ki is called the Kraus operator.
The map must satisfy the condition

∑

iK
†
iKi =

I. In Qulacs, a list of basic gates, which represent
the action of Kraus operators {Ki}, is required to
create a CPTP-map. When a density matrix is
used as a representation of quantum states, ρ is
mapped to

∑

iKiρK
†
i . On the other hand, when

a state vector is used as a representation of quan-
tum states, the i-th Kraus operator is chosen with
probability pi = |Ki |ψ〉 |2. Then, the state vector

is mapped to
Ki |ψ〉
√
pi

. Suppose that the number

of Kraus operators is k and each Kraus opera-
tor acts on m-qubits, then in the worst case, the

Accepted in Quantum 2021-07-26, click title to verify. Published under CC-BY 4.0. 10

arithmetic- and memory-operation costs become
O(2n+mk). The CPTP-map can be created with
a CPTP function.

One of the most general representations of all
physically achievable operations, including mea-
surements, is the completely-positive (CP) in-
strument. In Qulacs, this operation is the same
as a CPTP-map except that the index of the
chosen Kraus operator is stored in the classical
register of QuantumStateBase and can be used
later. This map can be generated with a func-
tion Instrument. The arithmetic- and memory-
operation costs are the same as CPTP-map.

A CPTP-map is called unital when it maps a
maximally mixed state to itself. A unital CPTP-
map can be represented as a probabilistic applica-
tion of unitary operations (i.e., for all i, Ki has a
form Ki =

√
piUi, where pi is a real value and Ui

is unitary). Unlike a CPTP-map, the arithmetic-
and memory-operation costs of unital maps de-
crease to O(2n+m). The costs become indepen-
dent of the number of Kraus operators since the
probability distribution for sampling a Kraus op-
erator is independent of the input state and can
be given in advance. A unital CPTP-map can
generated with Probabilistic function.

An adaptive map is one that acts on the quan-
tum states only when a given classical condition
is satisfied. This map requires a Boolean func-
tion that determines an output according to the
classical registers. Then, a map is applied only
when the returned value of the Boolean function
is True. This map is useful for treating feedback
and feedforward operations such as the heralded
operation, readout initialization, measurement-
based quantum computation, and look-up ta-
ble decoder for quantum error correction. This
gate can be generated with a function named
Adaptive. Its arithmetic- and memory-operation
costs are dependent on a given gate and the prob-
ability that the given condition is satisfied.

Listing. 7 shows the example codes of these gen-
eral maps. There are several other forms of gen-
eral gates in Qulacs for a specific research pur-
pose. See the online manual [3] for details.

1 from qulacs import StateVector

2 from qulacs .gate import X, Y, Z, P0 , P1

3 from qulacs .gate import Instrument , CPTP

, Probabilistic , Adaptive

4

5 state = StateVector (3)

6 gate_list = [X(0) , Y(0) , Z(0)]

7

8

9 # Update a quantum state with a CPTP map

10 gate_list = [P0 (0) , P1 (0)]

11 cptp_gate = CPTP(gate_list)

12 cptp_gate . update_quantum_state (state)

13

14 # Update a quantum state with a CP

instrument

15 classical_register = 0

16 gate_list = [P0 (0) , P1 (0)]

17 inst_gate = Instrument (gate_list ,

classical_register)

18 inst_gate . update_quantum_state (state)

19

20 # Get and set values in the classical

register

21 value = state. get_classical_value (

classical_register)

22 state. set_classical_value (

classical_register , 1-value)

23

24 # Update a quantum state with a unital

gate

25 gate_list = [X(0) , Y(0) , Z(0)]

26 prob_list = [0.2 , 0.3, 0.1]

27 prob_gate = Probabilistic (prob_list ,

gate_list)

28 prob_gate . update_quantum_state (state)

29

30 # Update a quantum state with an

adaptive gate

31 def func(classical_register_list):

32 return classical_register_list [0] ==

0

33

34 gate = X(0)

35 adap_gate = Adaptive (gate , condition =

func)

36 adap_gate . update_quantum_state (state)

Listing 7: An example Python program that applies
general quantum maps to quantum states.

4.3.4 Named gate

Since quantum gates with several specific gate
matrices and Kraus operators are frequently used
in quantum computing research, functions to
generate these gates are defined. TABLE.1
lists these named gates. Although some of
these function calls are simply redirected to
the definition as quantum maps, the following
gates are redirected optimized update functions:
X,Y,Z,H,CNOT,SWAP,CZ. Thus, when these quan-
tum gates are used, they should be instantiated
using these functions.

Accepted in Quantum 2021-07-26, click title to verify. Published under CC-BY 4.0. 11

Category Name Description

Single-qubit gate X Pauli-X gate

Y Pauli-Y gate

Z Pauli-Z gate

sqrtX π/4 rotation of Pauli-X gate

sqrtXdag −π/4 rotation of Pauli-X gate

sqrtY π/4 rotation of Pauli-Y gate

sqrtYdag −π/4 rotation of Pauli-Y gate

S π/4 rotation of Pauli-Z gate

Sdag −π/4 rotation of Pauli-Z gate

T π/8 rotation of Pauli-Z gate

Tdag −π/8 rotation of Pauli-Z gate

H Hadamard gate

Two-qubit gate CNOT Controlled-NOT gate

CZ Controlled-Z gate

SWAP SWAP gate

Three-qubit gate TOFFOLI TOFFOLI gate

FREDKIN FREDKIN gate

Single-qubit RX Pauli-X rotation: exp(iθX/2)

rotation gate RY Pauli-Y rotation: exp(iθY/2)

RZ Pauli-Z rotation: exp(iθZ/2)

U1 Rotate phase of LO (Local oscillator)

U2 Rotate phase of LO with single π/2-pulse

U3 Rotate phase of LO with two π/2-pulses

Projection and P0 Projection matrix to |0〉 state

measurement P1 Projection matrix to |1〉 state

Measurement Single qubit measurement with Z-basis

Noise BitFlipNoise Probabilistic Pauli-X operation

DephasingNoise Probabilistic Pauli-Z operation

DepolarizingNoise Single-qubit uniform depolarizing noise

TwoQubitDepolarizingNoise Two-qubit uniform depolarizing noise

AmplitudeDampingNoise Single-qubit amplitude damping noise

Table 1: Partial listing of named gates in Qulacs. These are all defined in the qulacs.gate module. Several gates
have optimized functions, while others are alias to quantum gates. For the definition of U1, U2, and U3, see the
reference of IBMQ [56]

4.4 Quantum circuit

In Qulacs, a quantum circuit is represented
as a simple array of quantum gates. The
QuantumCircuit class instantiates quantum cir-
cuits. The add_gate function inserts a quan-
tum gate to a circuit with a given position.
If a position is not given, the gate is ap-
pended to the last of a quantum circuit. The
remove_gate function removes a quantum gate
at a given position. By calling a member function

update_quantum_state, all the contained quan-
tum gates are applied to a given state sequen-
tially.

When users need to treat paramet-
ric quantum gates and circuits, the
ParametricQuantumCircuit class should
be used, which provides functions to treat
parameters in quantum circuits. By adding
ParametricRX, ParametricRY, ParametricRZ,
and PrametricPauliRotation gates with the
add_parametric_gate function, their rota-

Accepted in Quantum 2021-07-26, click title to verify. Published under CC-BY 4.0. 12

tion angles can be set and varied with the
get_parameter and set_parameter functions.
Listing. 8 shows some examples.

1 from qulacs import StateVector ,

QuantumCircuit ,

ParametricQuantumCircuit

2 from qulacs .gate import DenseMatrix , H,

CNOT

3 from qulacs .gate import ParametricRX ,

ParametricRY , ParametricPauliRotation

4

5 # Create a quantum circuit and add

quantum gates

6 n = 5

7 circuit = QuantumCircuit (n)

8 circuit . add_gate (DenseMatrix ([1] ,

[[0 ,1] ,[1 ,0]]))

9 for index in range(n):

10 circuit . add_gate (H(index))

11

12 # Insert quantum gates into a given

position

13 position = 1

14 circuit . add_gate (CNOT (2 ,3) , position)

15

16 # Remove a quantum gate at a position

17 position = 0

18 circuit . remove_gate (position)

19

20 # Compute the depth of the quantum

circuit

21 depth = circuit . calculate_depth ()

22

23 # Get the number of quantum gates

24 gate_count = circuit . get_gate_count ()

25

26 # Get a copy of the quantum gate at a

position

27 position = 0

28 gate = circuit . get_gate (position)

29

30 # Update a state vector with the quantum

circuit

31 state = StateVector (n)

32 circuit . update_quantum_state (state)

33

34 # Create parametric quantum circuit

35 par_circuit = ParametricQuantumCircuit (n

)

36 par_circuit . add_parametric_gate (

ParametricRX (0, 0.1))

37 par_circuit . add_parametric_gate (

ParametricRY (1, 0.1))

38 par_circuit . add_parametric_gate (

ParametricPauliRotation ([0 ,1] , [1 ,1],

0.1))

39

40 # Get the number of parameters in the

quantum circuit

41 par_count = par_circuit .

get_parameter_count ()

42

43 # Get and set a parameter at a position

44 index = 0

45 angle = 0.2

46 value = par_circuit . get_parameter (index)

47 par_circuit . set_parameter (index , angle)

48

49 # Get the position of a parametric gate

from the index of a parameter

50 position = par_circuit .

get_parametric_gate_position (index)

Listing 8: An example Python program that generates
quantum circuits and parametric ones.

4.5 Observable

In quantum physics, physical values are obtained as an expectation value of a self-adjoint operator
named observable. In Qulacs, any observable O is represented as a linear combination of Pauli ma-
trices with real coefficients, i.e., O =

∑

P αPP where αP ∈ R. A Pauli term in observable αPP is
constructed with the PauliOperator class. An observable is generated with the Observable class.
The add_operator function adds a Pauli term to an observable. Then, the get_expectation_value

function computes the expectation value of an observable according to a given quantum state, and the
get_transition_amplitude function computes the transition amplitude of an observable according
to two quantum states.

A Hamiltonian is an observable for the energy of a quantum system, and a unitary operator for time
evolution is described as an exponential of the Hamiltonian operator with an imaginary coefficient.
The add_observable_rotation_gate function adds a set of quantum gates for simulating the time
evolution under a given Hamiltonian, which is generated with the Trotter decomposition, to a quantum
circuit.

Expectation values or transition amplitudes of Hamiltonian of molecules are frequently studied
in the field of NISQ applications [41, 57, 58]. They are usually represented as a linear combi-
nation of products of fermionic operators. They can be converted to an observable with Pauli

Accepted in Quantum 2021-07-26, click title to verify. Published under CC-BY 4.0. 13

operators using the Jordan-Wigner transformation [59] or the Bravyi-Kitaev transformation [60],
which are implemented in OpenFermion [54]. The format of OpenFermion is loaded with the
create_quantum_operator_from_openfermion_text function, which allows the output of Open-
Fermion to be interpreted as a format of Qulacs. The GeneralQuantumOperator class can be used to
generate observables that are not self-adjoint. Listing. 9 shows example codes for treating observables
and evaluating expectation values.

1 from qulacs import Observable , PauliOperator , StateVector , QuantumCircuit

2 from qulacs . quantum_operator import create_quantum_operator_from_openfermion_text

3

4 # Construct a Pauli operator

5 coef = 2.0

6 Pauli_string = "X 0 X 1 Y 2 Z 4"

7 pauli = PauliOperator (Pauli_string , coef)

8

9 # Create an observable acting on n qubits

10 n = 5

11 observable = Observable (n)

12 # Add a Pauli operator to the observable

13 observable . add_operator (pauli)

14 # or directly add it with coef and str

15 observable . add_operator (0.5 , "Y 1 Z 4")

16

17 # Get the number of terms in the observable

18 term_count = observable . get_term_count ()

19

20 # Get the number of qubit on which the observable acts

21 qubit_count = observable . get_qubit_count ()

22

23 # Get a specific term as PauliOperator

24 index = 1

25 pauli = observable . get_term (index)

26

27 # Calculate the expectation value <a|H|a>

28 state = StateVector (n)

29 state. set_Haar_random_state (0)

30 expect = observable . get_expectation_value (state)

31

32 # Calculate the transition amplitude <a|H|b>

33 bra = StateVector (n)

34 bra. set_Haar_random_state (1)

35 trans_amp = observable . get_transition_amplitude (bra , state)

36

37 # Create a quantum circuit to simulate

38 # the time evolution by a given observable

39 # Observable is Trotterized with given slice count.

40 circuit = QuantumCircuit (n)

41 angle = 0.1

42 t_slice = 100

43 circuit . add_observable_rotation_gate (obs , angle , t_slice)

44 circuit . update_quantum_state (state)

45

46 # Load an observable from OpenFermion text

47 open_fermion_text = """

48 (-0.8126100000000005+0 j) [] +

49 (0.04532175+0 j) [X0 Z1 X2] +

50 (0.04532175+0 j) [X0 Z1 X2 Z3] +

51 (0.04532175+0 j) [Y0 Z1 Y2] +

52 (0.04532175+0 j) [Y0 Z1 Y2 Z3] +

53 (0.17120100000000002+0 j) [Z0] +

54 (0.17120100000000002+0 j) [Z0 Z1] +

55 (0.165868+0 j) [Z0 Z1 Z2] +

56 (0.165868+0 j) [Z0 Z1 Z2 Z3] +

Accepted in Quantum 2021-07-26, click title to verify. Published under CC-BY 4.0. 14

57 (0.12054625+0 j) [Z0 Z2] +

58 (0.12054625+0 j) [Z0 Z2 Z3] +

59 (0.16862325+0 j) [Z1] +

60 (-0.22279649999999998+0 j) [Z1 Z2 Z3] +

61 (0.17434925+0 j) [Z1 Z3] +

62 (-0.22279649999999998+0 j) [Z2]

63 """

64 obs_of = create_quantum_operator_from_openfermion_text (open_fermion_text)

Listing 9: An example Python program that generates and evaluates observables.

5 Optimizations

In this section, we discuss possible performance
bottlenecks in quantum simulation, and discuss
several optimization techniques for different com-
puting devices.

5.1 Background

Since an application of a quantum gate is a large
number of simple iterations, a time for circuit
simulation can be roughly estimated as the sum
of constant-time overheads for invoking functions
and times for processing arithmetic and memory
operations. Several factors such as an overhead
to call C++ function via python interfaces, func-
tions with parallelization, and GPU kernels in-
cur additional overheads in computation. These
additional overheads are quantitatively discussed
later in Sec. 6. The times for processing arith-
metic and memory operations are determined by
the number of operations divided by throughput.
For the time for arithmetic operations, the num-
ber of operations that can be processed in a unit
second is vital, which is known as floating-point
operations per second (FLOPS). To process com-
plex numbers in the CPU, we need to load com-
plex numbers representing quantum states from
the CPU cache or main RAM to the CPU reg-
isters. The size of data per unit time that we
can transfer between a memory and processor is
called the bandwidth of the memory. Let the time
for the additional overheads be Tover, the number
of arithmetic operations be Ncom, the number of
memory operations be Nmem, the FLOPS of CPU
be VFLOPS, and the memory bandwidth, i.e., the
number of complex numbers which we can trans-
fer, be VBW. Tover is determined by a design of
a library, Nmem and Ncom are determined by a
quantum gate to apply, and VFLOPS and VBW are
determined by a computing device. Then, an ap-
proximate total time for applying a quantum gate

Tgate is lower bounded as

Tgate ≥ Tover + max(Ncom/VFLOPS, Nmem/VBW)
(10)

when computation and memory operations do not
block each other. While actual processing is not
necessarily simplified to this equation, estimation
with this equation works well when we develop a
quantum circuit simulator.

To develop a quantum circuit simulator satis-
fying the demands shown in Sec. 3, we can find
several basic directions from this equation. In the
case of a small number of qubits, Tover becomes
a dominant factor. Thus, the pre- and post-
processing for applying quantum gates should be
minimized. In Qulacs, every core function is de-
signed to minimize overheads. When the number
of qubits n increases, values of Ncom/VFLOPS and
Nmem/VBW grow exponentially to n, and they
become larger than the overhead Tover. In this
region, the values Ncom/VFLOPS and Nmem/VBW

should be minimized. If there are two ways to
update quantum states, and if one has smaller
Ncom and Nmem than the other, the first one
should be chosen to minimize Tgate. To this
end, Qulacs provides several specialized update
functions that utilize the structure of gate ma-
trices as introduced in Sec. 4. In this section,
we show four additional techniques to minimize
Tgate when Ncom/VFLOPS and Nmem/VBW are
dominant: SIMD Optimization, multi-threading
with OpenMP, quantum circuit optimization, and
GPU acceleration.

5.2 SIMD optimization

Recent processors support SIMD (single-
instruction, multiple data) instructions, which
can apply the same operation to multiple data
simultaneously. Qulacs utilizes instructions
named Intel AVX2 [61], in which up to 256-bit

Accepted in Quantum 2021-07-26, click title to verify. Published under CC-BY 4.0. 15

data can be processed simultaneously. When
a quantum state is represented as an array of
double-precision real values, we can load, store,
and process four real values (i.e. two complex
numbers) simultaneously. Thus, the use of AVX2
can reduce the number of instructions Ncom by a
factor of four at most. In Qulacs, several update
functions are optimized with AVX2 instructions
by hand. When Qulacs is being installed, the
installer checks if a system supports such a
feature. If it is supported, the library is built
with AVX2 instructions enabled.

Here, we discuss our SIMD optimization tech-
niques using dense matrix gates. However, it is
worth noting that our techniques are applicable
to the other quantum gates. The naive imple-
mentation of dense matrix gates is shown in List-
ing. 4. We implemented two SIMD versions of the
B1-loop. When all the indices of the target qubits
are large, it is not possible to SIMDize it as it is
because the state vector elements required in one
iteration of the B0-loop are scattered across non-
contiguous memory locations. However, since the
value of the adjacent memory location is always
loaded in the next iteration, we unroll the B0-
loop according to the number of target qubits to
enable AVX2’s SIMD load/store operations. On
the other hand, when there is a target qubit with
a small index, we can SIMDize it without such
an unrolling because the required state vector el-
ements are already adjacent. Note that the over-
head of enumerating B0 and B1 is not negligible
when the number of target qubits m is small. We
reduce the cost of the enumeration of B0 and B1

as follows: Instead of listing all the items in B0

beforehand, the i-th element of B0 is computed
from the index i in each iteration using bit-wise
operation techniques. In contrast, the list of B1 is
computed before the B0-loop since the size of B1

is typically small. This implementation is useful
for parallelizing iterations with multi-threading
by OpenMP, which is explained in the Sec. 5.3.
When a gate matrix has a structure and basic
gates other than a dense matrix can be utilized,
an updated state vector can be calculated without
matrix-vector multiplication, and thus a different
optimization is applied.

5.3 Multi-threading with OpenMP

Since recent CPUs contain multiple processing
cores, executing iterations in update and eval-

uation functions in parallel can increase the ef-
fective instruction throughput VFLOPS. The use
of multiple cores is effective particularly when
FLOPS is a performance bottleneck (compute-
bound), and each core has a certain amount of
workload. Qulacs parallelizes the execution of
update functions using OpenMP directives [62].
The number of threads used in these func-
tions can be controlled with environment vari-
able OMP_NUM_THREADS. The naive implementa-
tion shown in Listing. 4 consists of two loops:
B0-loop and B1-loop. In Qulacs, the B0-loop is
parallelized to maximize the amount of workload
for each core and to minimize the overhead in-
curred by multi-threading. Specifically, the par-
allelized loop iterates over [0..2n−m − 1] and the
iteration space is chunked into T chunks, where
T is the number of threads. In the loop body, the
i-th element of B0 is computed on-the-fly from
the loop index, which enables the even distribu-
tion of workload across threads. In contrast, the
list of B1 is created before executing the parallel
loop. While the data of B1 is accessed from ev-
ery thread, its overhead is expected to be not so
high because B1 is not updated during the loop
and its size |B1| = 2m is typically small enough
to store within CPU registers or caches. A buffer
for a temporal state vector (temp_vector in List-
ing. 4) is a thread-local array that can be read
and written by each thread independently. Thus,
a buffer space for T × 2m data is allocated be-
fore the B0-loop, so that each 2m block can be
used by a corresponding thread, and is deallo-
cated at the end of the parallel loop. Note that
when n and m are small, the amount of workload
for each thread becomes small. In that case, the
overhead due to multi-threading becomes larger
than the speed-up by multi-threading. Therefore,
Qulacs automatically disables multi-threading if
the number of qubits n is smaller than a thresh-
old value even when OMP_NUM_THREADS is set to
2 or more. This threshold value is empirically
determined according to the number of m and a
type of basic gates.

5.4 Circuit optimization

When the SIMD and multi-threading with
OpenMP are enabled, a time for processing arith-
metic operations Ncom/VFLOPS becomes smaller
than that for processing memory operations
Nmem/VBW, and a computing time Tgate is de-

Accepted in Quantum 2021-07-26, click title to verify. Published under CC-BY 4.0. 16

voted to transferring data between the main
RAM or CPU cache and the CPU. Circuit opti-
mization is a technique to trade Nmem and Ncom,
i.e., we can reduce Nmem by sacrificing Ncom with
a circuit optimization technique. For simplicity,
we suppose the case when we are given a quan-
tum circuit that consists only of dense matrix
gates. As we discussed in Sec. 4, the number of
arithmetic operations for a dense matrix gate act-
ing on a set of qubits M increases as 2n+|M | and
that of memory operations as 2n. We suppose a
situation where we need to apply two successive
dense matrix gates which act on a set of qubits
M1 and M2, where |M2| ≤ |M1| ≪ n. Here, we
can merge these two quantum gates to a single
quantum gate and apply it to a quantum state
instead of applying two gates one by one. Then,
the number of arithmetic operations changes from
2n+|M1| + 2n+|M2| to 2n+|M1∪M2|, and the num-
ber of memory operations changes from 2n+1 to
2n. Note that while there is a cost for comput-
ing a gate matrix of a merged quantum gate,
the complexity for computing the gate matrix is
at most O(23|M1∪M2|), which is negligible com-
pared with the cost for applying quantum gates
to quantum states when |M1 ∪ M2| ≪ n. Thus,
we can halve the number of memory operations
by multiplying that of arithmetic operations by
2|M1∪M2|−|M1|. This means whenM2 is a subset of
M1, we can decrease the number of memory oper-
ations with a negligible penalty. Even if there is a
penalty, we should perform merge operations un-
til Nmem/VBW is balanced to Ncom/VFLOPS. The
optimal size of merged quantum gates is relevant
to a value of VBW divided by VFLOPS, which is
called a BF ratio. Although the BF ratio varies
depending on a chosen CPU and memory and
the best strategy is dependent on the structure
of given quantum circuits, it is typically optimal
to merge quantum gates until every quantum gate
acts on at most two qubits in the case of random
quantum circuits.

To minimize the time for simulating quantum
circuits with this technique, Qulacs provides the
gate.merge function to create a merged quantum
gate from two basic gates. The merge_all func-
tion of QuantumCircuitOptimizer class merges
all the basic quantum gates in a given quantum
circuit to a single gate. While Qulacs expects that
this kind of optimization should be performed by
the user according to the tasks, Qulacs provides

two strategies to quickly merge several quantum
gates in quantum circuits: light and heavy opti-
mizations. The light optimization finds a pair of
gates such that they are neighboring and target
qubits of one gate is a subset of the other with
a greedy algorithm and merge it. As discussed,
such a pair of gates can be merged without any
penalty. By contrast, the heavy optimization
merges two quantum gates when the following
conditions are satisfied; two gates can be moved
to neighboring positions by repetitively swap the
commutative quantum gates, and the number of
target qubits of the merged quantum gate is not
larger than the given block size. While the heavy
optimization can decrease the number of quan-
tum gates compared to the light optimization, it
consumes a longer time for optimization. When
we measure a time for optimization as a part of
the simulation time, overall performance bene-
fits from the heavy optimization varies depending
on the structure of quantum circuits and com-
puting devices. Note that every quantum gate
keeps the information about commutable Pauli-
basis for each qubit index. For example, a CNOT
gate can commute with the Pauli-Z basis at the
controlled qubit and with the Pauli-X basis at
the target qubit. By utilizing this information,
the heavy optimization can check whether two
quantum gates can commute or not quickly. Note
that several quantum gates such as CPTP-maps
and parametric quantum gates cannot be merged
in the optimization process. Listing. 10 shows ex-
ample codes for circuit optimization.

1 from qulacs import StateVector ,

QuantumCircuit

2 from qulacs .gate import RandomUnitary ,

CNOT , merge

3 from qulacs . circuit import

QuantumCircuitOptimizer

4 n = 4

5 gate1 = RandomUnitary ([0 ,1])

6 gate2 = RandomUnitary ([2 ,1])

7

8 # Create a merged gate

9 merged_gate = merge(gate1 , gate2)

10

11

12 # Create an example circuit

13 layer_count = 5

14 circuit = QuantumCircuit (n)

15 for layer_index in range (layer_count):

16 for index in range(n):

17 circuit . add_gate (RandomUnitary ([

index]))

18 for index in range(layer_index %2, n-1,

Accepted in Quantum 2021-07-26, click title to verify. Published under CC-BY 4.0. 17

2):

19 circuit . add_gate (CNOT(index , index

+1))

20

21 for index in range(n):

22 circuit . add_gate (RandomUnitary ([index

]))

23

24 # Optimize the quantum circuit

25 optimizer = QuantumCircuitOptimizer ()

26 ## Merge all the gates to a single

unitary

27 whole_unitary = optimizer . merge_all (

circuit)

28 ## Light optimization

29 circuit_opt1 = circuit .copy ()

30 optimizer . optimize_light (circuit_opt1)

31 ## Heavy optimization

32 circuit_opt2 = circuit .copy ()

33 optimizer . optimize (circuit_opt2 ,

block_size =3)

Listing 10: An example Python program that performs
circuit optimization.

5.5 GPU acceleration

A GPU is a computing device that has a higher
memory bandwidth than a CPU, and it also has
higher peak performance than a CPU since a
GPU has a large number of processing cores.
Therefore, it is possible that a quantum simula-
tion on a GPU is significantly faster than that on
a CPU in certain cases. Also, since a GPU has
several types of memories with different perfor-
mance characteristics, it is important to consider
how to access and where to place state vectors
and gate matrices for achieving the performance
close to the peak FLOPS. Here, we discuss op-
timization techniques for NVIDIA GPUs, How-
ever, our techniques should apply to other GPUs
such as AMD GPUs. In NVIDIA GPUs, there
are six types of memories in a GPU: registers,
shared memory, local memory, constant memory,
texture memory, and global memory. Qulacs uses
registers, shared memory, constant memory, and
global memory for calculation. The global mem-
ory has the largest capacity but has the highest
latency and lowest bandwidth in the memories.
By contrast, the registers can be accessed with
the lowest latency in the memories but their ca-
pacity is limited. The shared memory is a mem-
ory that is shared by and synchronized among
threads in a block. This memory has a larger
capacity than the registers and has higher band-
width and lower latency than the global mem-

ory. The constant memory is a memory that is
read-only for GPU kernels and writable from a
CPU host. Since memory accesses to the con-
stant memory are cached, we can use the con-
stant memory as a read-only memory of which
the bandwidth and latency are almost the same
as those of the registers and the capacity is larger
than the registers. In our implementation, a
whole state vector is allocated in the global mem-
ory since the size of the other memories is typi-
cally not sufficient for storing the state vector. In
each iteration, a gate matrix, which consists of
4m complex numbers, and a temporal state vec-
tor, which consists of 2m complex numbers of the
whole state vector (i.e., a variable temp_vector

in Listing. 4), should be temporally stored in a
high-bandwidth memory to minimize the time for
memory operations. To this end, in Qulacs, mem-
ories used for storing a gate matrix and a tempo-
ral state vector is chosen according to the number
of target qubits. The memory used for storing a
temporal state vector is chosen as follows: When
the number of target qubits is no more than four,
we expect that a temporal state vector is fetched
from the global memory to registers and arith-
metic operations are performed in each thread.
When the number of target qubits is between five
to eleven, a temporal state vector is loaded to the
shared memory since it must be synchronized in
the block. Otherwise, a temporal state vector
is allocated on the global memory, and matrix-
vector multiplication is performed with that. The
memory used for storing a gate matrix is chosen
as follows: If the number of the target qubits is
no more than three, it tends to be placed in regis-
ters by the compiler by giving elements of the gate
matrix as arguments of the function call. When
the number of target qubits is four or five, we
use constant memory since a gate matrix is com-
mon and constant for all the threads. When the
number of qubits is six or more, gate matrices are
stored in the global memory.

A state vector can be allocated on a GPU with
the StateVectorGpu class. When the computing
node has multiple GPUs, the index of GPU to al-
locate state vectors can be identified with the sec-
ond argument of the constructor function. Once a
state vector is allocated on a GPU, every process-
ing on it is performed with the selected GPU un-
less a state vector is converted to StateVector.
Hence, multiple tasks can be simulated with mul-

Accepted in Quantum 2021-07-26, click title to verify. Published under CC-BY 4.0. 18

tiple GPUs simultaneously. Listing. 9 shows ex-
ample codes for GPU computing.

1 from qulacs import StateVectorGpu ,

StateVector

2 from qulacs .gate import H, CNOT

3

4 # Create a state vector within the 0-th

GPU.

5 n = 10

6 gpu_id = 0

7 state = StateVectorGpu (n, gpu_id)

8

9 # Apply Hadamard and CNOT gates to

StateVector on GPU

10 H(0). update_quantum_state (state)

11 CNOT (0 ,1). update_quantum_state (state)

12

13 # Load the state vector on GPU to main

RAM

14 state_cpu = StateVector (n)

15 state_cpu .load(state)

16

17 # Get the state vector as numpy array

18 numpy_array = state. get_vector ()

Listing 11: An example Python program that creates
and manipulates quantum states within a GPU.

6 Numerical performance

Here, we compare the simulation times for sev-
eral computing tasks with Qulacs using vari-
ous types of settings. For the benchmark, we
use Qulacs 0.2.0 with Python 3.8.5 on Ubuntu
20.04.1 LTS. Qulacs is is compiled with GNU
Compiler Collection (GCC) 9.3.0 and with the
options: -O2 -mtune=native -march=native

-mfpmath=both. Benchmarks are conducted us-
ing a workstation with two CPUs and a processor
name of Intel(R) Xeon(R) Platinum 8276 CPU
@ 2.20 GHz, which has 28 physical cores. Thus,
there are 56 physical cores in total. The cache
size of each CPU is 39,424 KB. GPU benchmarks
are performed with NVIDIA Tesla V100 SXM2
32GB, where the driver version is 440.100 and
the CUDA version is 10.2. Since CUDA 10.2 is
not compatible with GCC 9.3.0, binaries for GPU
benchmarks are compiled with GCC 8.4.0. The
following benchmarks are performed with Python
unless specified otherwise. To evaluate the execu-
tion times of Python functions, we use pytest [7]
with the default settings and use the minimum
execution time for several runs. For C++ func-
tions, we measure time with the std::chrono li-
brary. We repeat functions until the sum of times

is 1 second or a function is executed 103 times.
Then we take use average time for the benchmark.

6.1 Performance of basic gates

First, we compare the times for applying basic
gates via Python interfaces. Figure 2 shows the
time to apply gates as a function of the number
of total qubits. The post-fix of legends such as
Q1 represents the number of target qubits. Note
that the time of the sparse matrix gate depends
on the number of non-zero elements. We choose a
matrix such that the top leftmost element is unity
and the others are zero. All computational times
grow exponentially with the number of qubits.
When the number of qubits is small, the times for
applying each quantum gate converge to a certain
value, which is because of the overhead for calling
C++ functions from Python. This overhead is
evaluated in Sec. 6.3.

The times for dense matrix gates also grow ac-
cording to the number of target qubits m. Note
that the times for m = 1, 2 are much faster than
those for m ≥ 3. This is because specific op-
timization is performed for dense matrix gates
with m = 1, 2. They show almost the same
values since the bottleneck in their simulation
times is not due to arithmetic-operation costs but
memory-operation costs, which are independent
of the number of target qubits.

As expected, the times for diagonal matrix
gates, Pauli rotation gates, and Permutation
gates are independent of the number of target
qubits m. Note that the time for diagonal matrix
gate with m = 1 is much faster than the other m
since specific optimization is performed for diago-
nal matrix gates with m = 1. Thus, diagonal ma-
trix gates should be used instead of dense matrix
gates when the number of target qubits is large.
Note that the times for permutation gates are
much slower because a given reversible Boolean
function is a Python function and its execution
time has a large overhead compared with a func-
tion written in C++ language. Using the Qulacs
as a C++ library should enhance the performance
of permutation gates.

For sparse gates, the simulation time decreases
according to the number of gates, as expected.
Although the computational costs of controlled
gates (i.e., Pauli-X, CNOT, TOFFOLI, and CC-
CNOT where CCCNOT is a bit-flip gate con-
trolled by three qubits) should decrease as the

Accepted in Quantum 2021-07-26, click title to verify. Published under CC-BY 4.0. 19

5 10 15 20 25
of qubits

10 6

10 5

10 4

10 3

10 2

10 1

100

101

Ti
m

e
[s

ec
]

X
CNOT
TOFFOLI
CCCNOT
DenseMatrix1Q
DenseMatrix2Q
DenseMatrix3Q
DenseMatrix4Q
DiagonalMatrix1Q
DiagonalMatrix2Q
DiagonalMatrix3Q
DiagonalMatrix4Q
SparseMatrix1Q
SparseMatrix2Q
SparseMatrix3Q
SparseMatrix4Q
Permutation1Q
Permutation2Q
Permutation3Q
Permutation4Q
PauliRotation1Q
PauliRotation2Q
PauliRotation3Q
PauliRotation4Q

Figure 2: Times for applying basic gates are plotted as a function of the total number of qubits.
The post-fix such as 1Q represents the number of target qubits. CCCNOT means a Pauli-X
gate controlled by three qubits.

5 10 15 20 25
of qubits

10 6

10 5

10 4

10 3

10 2

10 1

100

Ti
m

e
[s

ec
]

DenseMatrix1Q
CPTP1Q
Instrument1Q
Probabilistic1Q

Figure 3: Times for applying general quantum maps are plotted as a function of the total number
of qubits.

number of control qubits increases, they do not
show a clear scaling. This is because Pauli-X and
CNOT gates have SIMD optimized functions and
because the bottleneck of their computing times
is due to the memory-operation cost rather than
the arithmetic-operation cost. Note that there
are jumps at 17 and 22 qubits in the plots of con-
trolled gates. This is because the memory size
of the state vector exceeds the cache size, which
causes discontinuous changes of the bandwidth
for memory operations.

6.2 Performance of general quantum maps

Next, we compare the simulation times for dense
matrix gates with general single-qubit quantum
maps: CPTP-map, instrument, and probabilistic
gates. We choose a quantum map such that one
of two dense matrix gates is chosen with a prob-
ability of 0.5 as a benchmark target of a CPTP-
map and probabilistic gates. We also choose the
Z-basis measurement as that of an instrument.
Figure 3 shows the benchmark results. The prob-
abilistic map has a similar performance to the
dense matrix gate since it only requires overhead
to randomly draw a gate whose probability is
known in advance. On the other hand, CPTP-

Accepted in Quantum 2021-07-26, click title to verify. Published under CC-BY 4.0. 20

map and instrument are about 10 times slower.
This is because they must not only calculate the
probabilities of the Kraus operators but also al-
locate and release a temporal buffer to compute
them.

6.3 Overhead due to a function call from

Python

While Qulacs is written in C++ language, its
functions can be called from Python. However,
there is an overhead for calling a C++ function
from Python. In the case of small quantum cir-
cuits, this overhead is not negligible. To eval-
uate this overhead, we compare the times for
Qulacs with the Python interfaces to those for
Qulacs without the Python interfaces. Figure 4
shows the results. Although we made efforts to
minimize the overhead due to Python interfaces,
Qulacs still consumes about 0.3 µs to call C++
functions from Python. This overhead is not neg-
ligible when the number of qubits is below 10.
Thus, using Qulacs as a C++ library should in-
crease the speed up to about seven times when
the number of qubits is small.

6.4 Speed-up by SIMD, OpenMP, and GPU

We then evaluate performance improvement us-
ing the SIMD optimization, multi-threading with
OpenMP, and GPU acceleration. We test
the following settings: single-thread without
SIMD, single-thread with SIMD, multi-thread
with SIMD, and computing on a single GPU. Fig-
ure 5 shows the times for applying dense matrix
gates with several numbers of target qubits. The
SIMD variants are always faster than the exe-
cution times without SIMD optimization. The
OpenMP variant shows better performance when
the number of qubits is greater than about 14
for m = 1, 2 and about 10 for m = 3, 4. Note
that since multi-threading increases the overhead,
and this overhead is not negligible in the case of
a small number of qubits, Qulacs automatically
uses the function without OpenMP in such cases.
This is because the times for the OpenMP variant
changes at a certain point. The GPU variants sig-
nificantly improve the computing time when the
number of qubits is large, but it requires about
10 µs overhead.

6.5 Parallelization efficiency

We discuss the parallelization efficiency of multi-
threading with OpenMP. Figure 6 shows the ex-
ecution time relative to the execution time of
single-thread run with its standard error. We de-
note this ratio as parallelization efficiency, which
becomes equal to the number of threads in the
case of the linear speed-up. This ideal line is
plotted as black lines in the figure. Since the over-
head of parallelization becomes dominant when n
is small, Qulacs automatically disables the multi-
threading when n is smaller than about 13. Thus,
we performed benchmark from n = 15 to n = 25.
While we show the case of two-qubit gates, its
behavior is almost the same as the case of single-
qubit gates. Note that this evaluation is per-
formed on the two CPUs workstation, each of
which has 28 physical core, resulting in 56 phys-
ical cores in total. We vary the number of avail-
able threads from 1 to 56 with OMP_NUM_THREADS.

When the number of qubits is n = 15, the
parallelization efficiency saturates around thread
number t = 10, and then decreases as the number
of threads increases due to the overhead of par-
allelization. As the number of qubits increases,
the granularity of the arithmetic and memory
operations becomes coarser, and the paralleliza-
tion efficiency improves gradually. Then, the per-
formance trend drastically changes at n = 22,
where the performance improves beyond the lin-
ear speed-up. This can be explained with the size
of cache and state vector; Our benchmark ma-
chine has two CPUs and each CPU has 40 MB
L3 cache, and the size of the state vector is
67 MB at n = 22, respectively. Thus, this is
an exceptional situation where the whole state
vector can reside in the L3 cache when we use
two or more threads, assuming thread N goes
to CPU N%2 (OMP_PLACES=socket). Thus, in
this situation, the effective bandwidth is super-
linearly increased compared to the single-thread
case. While the amount of speed-up depends on
the index of quantum gates, we always observed
super-linear speed-up at n = 22 due to this rea-
son. To validate this explanation, we also per-
formed the evaluation with OMP_PLACES=cores;

OMP_PROC_BIND=close. These environment vari-
ables force CPUs to use a single CPU until the
number of threads is below the number of physi-
cal cores per CPU, and use two CPUs the number

Accepted in Quantum 2021-07-26, click title to verify. Published under CC-BY 4.0. 21

5 10 15 20 25
of qubits

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Ti
m

e
[s

ec
]

Python DenseMatrix1Q
Python DenseMatrix2Q
Python DenseMatrix3Q
Python DenseMatrix4Q
CPP DenseMatrix1Q
CPP DenseMatrix2Q
CPP DenseMatrix3Q
CPP DenseMatrix4Q

Figure 4: Times of function calls for applying dense matrix gates via python and C++ are
compared.

5 10 15 20 25
of qubits

10 6

10 5

10 4

10 3

10 2

10 1

100

Ti
m

e
[s

ec
]

SingleThread NoSIMD DenseMatrix1Q
SingleThread NoSIMD DenseMatrix2Q
SingleThread NoSIMD DenseMatrix3Q
SingleThread NoSIMD DenseMatrix4Q
SingleThread SIMD DenseMatrix1Q
SingleThread SIMD DenseMatrix2Q
SingleThread SIMD DenseMatrix3Q
SingleThread SIMD DenseMatrix4Q
MultiThread SIMD DenseMatrix1Q
MultiThread SIMD DenseMatrix2Q
MultiThread SIMD DenseMatrix3Q
MultiThread SIMD DenseMatrix4Q
GPU DenseMatrix1Q
GPU DenseMatrix2Q
GPU DenseMatrix3Q
GPU DenseMatrix4Q

Figure 5: Times for applying dense matrix gates with several optimization settings are plotted
as a function of the total number of qubits.

of threads exceeds it. Figure 7 shows the perfor-
mance with these options. We see that there is no
improvement beyond the linear speed-up with a
single CPU, and the performance drastically im-
proves from t > 28, which allows using the two
CPUs. This behavior agrees with our explana-
tion.

When the number of qubits becomes larger
than n = 22, the parallelization efficiency quickly
reduces again. This is because the whole state
vector cannot be stored in the cache in this re-
gion, and communication between the main RAM
and CPUs is required. This reduces the effective
bandwidth and the memory operation costs be-
come dominant in the execution time. Since the
multi-threading improves mainly the arithmetic

operation costs, the advantage of parallelization
becomes small.

6.6 Circuit optimization

We evaluate the performance of two circuit opti-
mization strategies. Here, we choose the following
random quantum circuits for the benchmark. An
n-qubit random quantum circuit consists of n lay-
ers. In each layer, three random rotations (RZ, RX,
RZ) act on each qubit, and controlled-Z gates are
applied to each neighboring qubit. Whether the
starting index of the controlled-Z gates is even or
odd depends on the index of the layer. Finally,
three random rotations act on each qubit. List-
ing. 12 shows the source code to generate random

Accepted in Quantum 2021-07-26, click title to verify. Published under CC-BY 4.0. 22

0 10 20 30 40 50
of threads

0

10

20

30

40

50

60

70

Pa
ra

lle
liz

at
io

n
ef

fic
ie

nc
y

(ra
tio

 to
 si

ng
le

 th
re

ad
)

linear speedup
DenseMatrix2Q n=15
DenseMatrix2Q n=16
DenseMatrix2Q n=17
DenseMatrix2Q n=18
DenseMatrix2Q n=19
DenseMatrix2Q n=20
DenseMatrix2Q n=21
DenseMatrix2Q n=22
DenseMatrix2Q n=23
DenseMatrix2Q n=24
DenseMatrix2Q n=25

Figure 6: Times for applying dense matrix gates with several numbers of gates are plotted as a
function of the total number of threads.

0 10 20 30 40 50
of threads

0

10

20

30

40

50

60

Pa
ra

lle
liz

at
io

n
ef

fic
ie

nc
y

(ra
tio

 to
 si

ng
le

 th
re

ad
)

linear speedup
DenseMatrix2Q n=15
DenseMatrix2Q n=16
DenseMatrix2Q n=17
DenseMatrix2Q n=18
DenseMatrix2Q n=19
DenseMatrix2Q n=20
DenseMatrix2Q n=21
DenseMatrix2Q n=22
DenseMatrix2Q n=23
DenseMatrix2Q n=24
DenseMatrix2Q n=25

Figure 7: Times for applying dense matrix gates with several numbers of gates are plotted as a
function of the total number of threads, where the setting of thread affinity is changed.

circuits.

1 import numpy as np

2 from qulacs import QuantumCircuit

3 from qulacs .gate import RX , RZ , CZ

4 def generate_random_circuit (nqubits : int

, depth: int) -> QuantumCircuit :

5 qc = QuantumCircuit (nqubits)

6 for layer_count in range(depth +1):

7 for index in range (nqubits):

8 angle1 = np. random .rand ()*np.pi*2

9 angle2 = np. random .rand ()*np.pi*2

10 angle3 = np. random .rand ()*np.pi*2

11 qc. add_gate (RZ(index , angle1))

12 qc. add_gate (RX(index , angle2))

13 qc. add_gate (RZ(index , angle3))

14 if layer_count == depth:

15 break

16 for index in range (layer_conut %2,

nqubits -1, 2):

17 qc. add_gate (CZ(index , index +1))

18 return qc

Listing 12: An Python program that generates random
quantum circuits for our benchmark.

We simulate these circuits by enabling SIMD op-
timizations and disabling OpenMP. We choose
a block size of two for the heavy optimizations.
Figure 8 shows the simulation times for these cir-
cuits, where the solid and dashed lines exclude
and include the circuit optimization time, respec-
tively. When the circuit optimization time is ig-
nored, the performance of the heavy optimization
is slightly better than that of the light optimiza-
tion. However, when the optimization time is in-
cluded in the computing time, there is no advan-

Accepted in Quantum 2021-07-26, click title to verify. Published under CC-BY 4.0. 23

4 6 8 10 12 14 16 18 20
of qubits

10 6

10 5

10 4

10 3

10 2

10 1

100

Ti
m

e
[s

ec
]

No Optimization
Light Optimization (+opt_time)
Light Optimization
Heavy Optimization (+ opt time)
Heavy Optimization

Figure 8: Times for simulating random quantum circuits are plotted with several strategies of
quantum circuit optimization. "+ opt time" in legend represents that its plot includes a time for
circuit optimization.

4 6 8 10 12 14 16 18 20
of qubits

10 5

10 4

10 3

10 2

10 1

Ti
m

e
[s

ec
]

No Optimization
Light Optimization (+opt_time)
Light Optimization
Heavy Optimization (+ opt time)
Heavy Optimization

Figure 9: Times for simulating random quantum circuits dominated by commutative gates are
plotted with several strategies of quantum circuit optimization.

tage in the heavy optimization. Thus, the light
optimization (or no optimization) is more suit-
able in cases when a merged circuit is used only
a few times.

Since the heavy optimization looks for pairs
of quantum gates that can be merged consider-
ing commutation relations of gates, it is effec-
tive when there are many commutative gates in
quantum circuits. When the three rotations (RZ,
RX, RZ) are replaced with a single rotation RZ, all
gates in quantum circuits become commutative in
the Z-basis. In such a case, quantum circuits can
be compressed to a constant depth by considering
commutation relations. Figure 9 shows the simu-
lation times for these circuits. As expected, the

heavy optimization is effective in this case even if
the optimization time is taken into account.

7 Comparison with existing simulators

In this section, we compare the performance of
Qulacs with that of existing libraries under the
settings of single-thread, multi-thread, and with
GPU acceleration. We create a benchmark frame-
work based on Ref. [63], of which the benchmark
codes are reviewed by contributors of each li-
brary. This repository chooses the following ran-
dom quantum circuits for the benchmark: Sup-
pose we generate n-qubit random circuits. A

Accepted in Quantum 2021-07-26, click title to verify. Published under CC-BY 4.0. 24

layer with random RZ, RX, RZ rotations on each
qubit is named a rotation layer. A layer with
CNOT gates acting on the i-th qubit as a target
qubit and (i + 1 mod n)-th qubit as a control
qubit for (0 ≤ i < n) is named a CNOT layer. In
a random circuit, a rotation layer and a CNOT
layer are alternately repeated ten times, and a
rotation layer follows it. Note that the first RZ

rotations for all the qubits in the first rotation
layer and the last RZ rotations in the last rotation
layer are eliminated since they are meaningless if
a quantum state is prepared in |0〉⊗n and mea-
sured in the Pauli-Z basis. See Refs. [63, 64] for
source codes for circuit generation. The bench-
marks with CPU are performed with a worksta-
tion with two CPUs and a processor name of In-
tel(R) Xeon(R) CPU E5-2687W v4 @ 3.00GHz on
CentOS 7.2.1511. This workstation has 24 phys-
ical cores in total. The benchmarks with GPU
are performed with two CPUs and a processor
name of Intel(R) Xeon(R) Silver 4108 CPU @
1.80 GHz and with Tesla V100 PCIe 32GB on
CentOS 7.7.1908. The benchmarks are performed
with double precision, i.e., each complex number
is represented with 128 bits. Qulacs is compiled
with the same options as those used in Sec. 6.
Versions of quantum circuit simulators and re-
lated libraries for CPU and GPU benchmarks are
listed in Table. 2 and Table. 3, respectively. All
the simulators are installed with the latest stable
versions as of November 2020. In benchmarks, a
time for simulating a circuit to obtain the final
state vector is evaluated, and a time for creating
quantum circuits is not included. If an evaluated
simulator offers the option of enabling circuit op-
timizations, we plot times both with and without
quantum circuit optimization to discuss the ad-
vantage of acceleration by circuit optimization.
Our benchmark codes can be found at Ref. [64].

While we carefully make the comparison fair,
it is non-trivial to compare all the libraries in the
exactly same conditions since they are developed
with different purposes and designs. To clarify
benchmark settings, here we describe several
notes on how we install or evaluate simulators.
Qiskit [14] is a large software development kit,
and Qiskit Aer is a component of Qiskit that im-
plements fast simulation of quantum circuits. We
used a backend named StatevectorSimulator

for the benchmark since it is expected to be the
fastest for simulating typical random circuits

Library Version

GCC 9.2.0

Python 3.7.9

Julia 1.5.2

NumPy 1.19.2

MKL 2020.2

TensoFlow 2.3.1

Intel-QS [25, 26] see main text

ProjectQ [29] 0.5.1

PyQuEST-cffi [30] 3.2.3.1

Qibo [34] 0.1.2

Qiskit [14] 0.23.1

Qiskit Aer [14] 0.7.1

Qiskit Terra [14] 0.16.1

Qulacs 0.2.0

qxelarator [27] 0.3.0

Yao [32] 0.6.3

Table 2: A list of libraries and versions for CPU bench-
mark

among the implemented simulators. In the
default setting, we need to compile quantum
circuits with qiskit.compiler.transpile and
qiskit.compiler.assemble to create a job
to call a core function of Qiskit Aer. A core
function of Qiskit Aer is executed by submitting
the compiled job to a thread pool. However,
the overheads for these processes are sometimes
longer than the time for simulation itself when
the number of qubits is small. Thus, we elim-
inate the times for these processes from the
benchmark and directly evaluate an execution
time of a core function. Qiskit Aer performs
circuit optimization similar to our technique,
which is called gate fusion in Qiskit Aer. In the
following discussion for Qiskit, we plot execution
times with and without gate fusion, which can
be switched via flag enable_fusion. We note
that execution times of qiskit.execute are
longer than plotted ones. Intel-QS [25], which
is also known as qHiPSTER, is a C++ library
that has two official repositories in GitHub. In
the benchmark, actively maintained one [65]
is used. In this repository, Intel-QS does not
have stable release, so we installed the latest
master branch of which the latest commit hash is
b625e1fb09c5aa3c146cb7129a2a29cdb6ff186a.
Intel-QS is compiled with GCC and with SIMD

Accepted in Quantum 2021-07-26, click title to verify. Published under CC-BY 4.0. 25

Library Version

GCC 7.3.0

Python 3.7.9

Julia 1.5.2

NumPy 1.19.2

MKL 2020.2

NVIDIA driver 440.33.01

CUDA 10.2

Qiskit [14] 0.23.1

Qiskit Aer [14] 0.7.1

Qiskit Aer GPU [14] 0.7.1

Qiskit Terra [14] 0.16.1

Qulacs 0.2.0

Yao [32] 0.6.3

Table 3: A list of libraries and versions for GPU bench-
mark

optimization, i.e., compiled with the options
CXX=g++ and IqsNative=ON. While Intel-QS
is a C++ library, we use Intel-QS via python
interface for a fair comparison. QuEST [30]
is a C++ library of which the python inter-
faces are provided by another project named
PyQuEST-cffi. While QuEST itself provides
acceleration by parallelization and GPU, we skip
the benchmark of QuEST with multi-thread and
GPU acceleration since we cannot enable them
via the python interfaces. ProjectQ [29] raises
errors to users when there is no measurement in
circuits, which may cause an additional overhead
in benchmarks. While we expect this overhead
is constant, we note that an execution time
of ProjectQ may be faster than plotted when
quantum circuits have measurements. Qibo [34]
is a library that supports GPU acceleration using
TensorFlow, and we expect its performance de-
pends on that of TensorFlow. However, since the
latest TensorFlow is not compatible with CUDA
10.2, we skip the GPU benchmark of Qibo. In
addition, since we installed TensorFlow with pip

commands, TensorFlow does not support AVX2
extension. Thus, the performance of Qibo in the
CPU benchmark would be a few times faster
than plotted ones by installing TensorFlow from
the source. QX Simulator [27] is used with its
python interface named qxelerator, which accepts
a file with QASM-format [56] strings as an input,
we generate a benchmark circuit, convert it to a
QASM string, save it as a file, load it with qxel-

erator, and evaluated a time for simulation, i.e.,
a time for executing qxelerator.QX.execute

function. Since QCGPU and qsim only support
simulation with single precision, we did not
perform the benchmarks for them. For all the
benchmark libraries, their execution times may
vary depending on the structure of quantum
circuits for benchmarks, library versions, compil-
ers, the status of the CPU and GPU, simulation
environment, etc. In particular, while execution
times for single-thread simulation are stable,
those for multi-thread and GPU fluctuate by
a few percent each time we run a benchmark
script. Thus, it should be noted that a few
percent difference in multi-thread and GPU
benchmarks are meaningless. It should be also
noted that several libraries among the above such
as Intel-QS, QuEST, QX Simulator, and Pro-
jectQ support quantum circuit simulation with
distributed computing and are not necessarily
optimized for the single-node performance.

First, we perform benchmarking with a sin-
gle thread simulation with CPU. Figure 10 shows
the results. For Qulacs and Qiskit, the perfor-
mance of them with and without circuit optimiza-
tion is plotted as a bold line and broken line, re-
spectively. Qulacs without optimization is faster
than that with optimization when the number of
qubits is small. On the other hand, Qulacs with
optimization becomes faster than Qulacs without
optimization when the number of qubits is greater
than 7 since the time for circuit optimization
becomes negligible compared to the simulation
time. As far as we know, Qiskit with optimization
and Yao utilize the structure of quantum circuits
to improve the performance, and thus their per-
formance overcomes that of Qulacs without cir-
cuit optimization. Since Qiskit without optimiza-
tion is slower than Qulacs without optimization
but they are comparable with optimization, we
guess circuit optimization by Qiskit is more time-
consuming but near-optimal than that by Qulacs.

Second, we perform benchmarking with multi-
thread computing. Figure 11 shows the results.
Due to a small overhead of Qulacs, its execution
time is the fastest when the number of qubits
is small. When the number of qubits becomes
large, several libraries without circuit optimiza-
tion achieve almost the same performance. When
multi-threading is enabled, an execution time is
determined by memory operations rather than

Accepted in Quantum 2021-07-26, click title to verify. Published under CC-BY 4.0. 26

5 10 15 20 25
of qubits

10 5

10 4

10 3

10 2

10 1

100

101

102

Ti
m

e
[s

ec
]

Qulacs
Qulacs with opt
Yao
Qiskit
Qiskit with opt
ProjectQ
PyQuEST-cffi
Qibo
Intel-QS
qxelerator

Figure 10: Times for simulating random quantum circuits with a single thread using several
libraries.

5 10 15 20 25
of qubits

10 5

10 4

10 3

10 2

10 1

100

101

Ti
m

e
[s

ec
]

Qulacs
Qulacs with opt
Qiskit
Qiskit with opt
ProjectQ
Qibo
Intel-QS
qxelerator

Figure 11: Times for simulating random quantum circuits with parallelization using several
libraries.

arithmetic operations. Since the number of mem-
ory operations is almost independent of the de-
tail of implementation, it is natural that times
of several libraries converge to a certain value.
When we compare the performance of libraries
with circuit optimization, Qulacs with optimiza-
tion shows better performance than that with-
out optimization above 9 qubits. Since Qiskit
is expected to perform near-optimal circuit opti-
mization, Qiskit shows better performance than
Qulacs when the number of qubits is larger than
21. Note that there is a small bump around 14
qubits in the plot of Qiskit, which happens be-
cause Qiskit enables multi-thread when the num-
ber of qubits is more than 14 qubits in the default
setting, thus the times of Qiskit around 14 qubits

can be slightly faster by optimization of settings.

Finally, we perform the benchmark with GPU
acceleration. Figure 12 shows the results. In the
GPU benchmarking, Qulacs is also one of the
fastest libraries. In the GPU simulation, the over-
head due to circuit optimization becomes neg-
ligible since there is a larger overhead due to
GPU function calls. Therefore, the performance
of Qulacs with circuit optimization is always bet-
ter than that without circuit optimization. Since
times for circuit optimization is negligible, we can
further improve the performance of Qulacs by uti-
lizing the heavy optimization. As far as we tried,
the heavy optimization with the block size of four
is optimal. The performance with the heavy op-
timization is plotted in the figure with the leg-

Accepted in Quantum 2021-07-26, click title to verify. Published under CC-BY 4.0. 27

5 10 15 20 25
of qubits

10 3

10 2

10 1

100

Ti
m

e
[s

ec
]

Qulacs
Qulacs with opt
Qulacs with heavy opt
Yao
Qiskit
Qiskit with opt

Figure 12: Times for simulating random quantum circuits with GPU acceleration using several
libraries.

end "Qulacs with heavy opt". The performance
of Qulacs with the heavy optimization overcomes
that with the light optimization above 19 qubits.
Note that the time for Qulacs with the heavy op-
timization at n = 4 is significantly faster than
the other number of qubits. This is because a
circuit is merged to a single quantum gate by an
optimizer and a GPU function is called at once.

In conclusion, Qulacs is one of the fastest sim-
ulators among existing libraries in several regions
that are vital for researches. In particular, Qulacs
shows significant speed-up when the number of
qubits is small, which is essential for exploring
the possibilities of quantum computing.

8 Conclusion and Outlook

Here, we introduced Qulacs, which is a fast and
versatile simulator. First, we showed the ba-
sic concept and intended usages of Qulacs. Sec-
ond, we explained the library structure and pro-
vided several examples. We optimized the up-
date functions of Qulacs according to the prop-
erties of gate matrices. We then utilized addi-
tional optimization techniques such as SIMD op-
timization, multi-threading with OpenMP, GPU
acceleration, and circuit optimization for numeri-
cal speed-up. We also showed concrete simulation
times for several quantum gates and evaluated
speed-up by optimization techniques. Finally, we
compared the performance of Qulacs with that of
the existing libraries. With the benchmarks, we

showed our simulator has advantages in several
scenarios. Although Qulacs focuses on support-
ing fundamental operations, we can use Qulacs to
explore simulations with many layers using it as a
backend of other libraries, for example, Cirq [13]
and OpenFermion [54].

When quantum circuits are constructed only
with efficiently simulatable quantum gates such
as Clifford gates [66, 67] or matchgates [68–70],
these circuits are efficiently simulated via special-
ized algorithms. We plan to implement these al-
gorithms and support faster simulations of quan-
tum circuits in the future.

Acknowledgment

Yasunari Suzuki, Yoshiaki Kawase, Yuria Hiraga,
Yuya Masumura, Masahiro Nakadai, and Keisuke
Fujii are the core contributors of Qulacs. Ten-
nin Yan, Yohei Ibe, Toru Kawakubo, Hirotsugu
Yamashita, Hikari Yoshimura, Jiabao Chen, and
Youyuan Zhang have made significant efforts to
maintain manuals, repositories, and web sites.
Ken M. Nakanishi, Kosuke Mitarai, Yuya O.
Nakagawa, Shiro Tamiya, Takahiro Yamamoto,
Ryosuke Imai, and Akihiro Hayashi provided
many essential comments and directions for im-
proving the performance and usability of Qulacs.

Yasunari Suzuki would like to thank Tyson
Jones for the fruitful discussion on parallel and
distributed computing, Xiu-Zhe Luo for the vital
comments on vectorization, and Shinya Morino

Accepted in Quantum 2021-07-26, click title to verify. Published under CC-BY 4.0. 28

for the advice on GPU acceleration. We would
also like to thank all the contributors and users
of Qulacs for supporting this project.

This work is supported by PRESTO, JST,
Grant No. JPMJPR1916; ERATO, JST, Grant
No. JPMJER1601; MEXT Q-LEAP Grant
No. JPMXS0120319794, JPMXS0118068682, and
JPMXS0120319794.

A C++ example codes

To show Qulacs can be used as a C++ library
in almost the same way as Python, we show the
example codes of Qulacs in the C++ language.
Listing. 13 shows an example procedure to cre-
ate, modify, update, and release quantum states
using quantum gates. This program outputs a
message shown in Listing. 14. As you can see,
the names and design of API are almost the same
as the python library, and we can use Qulacs as
a C++ library with small difference, e.g., com-
plex matrices are supplied using Eigen instead of
NumPy, users have a responsibility to release al-
located state vector, and so on. For more detailed
examples, see the online manual of Qulacs [3].

1 # include <vector >

2 # include <complex >

3 # include <Eigen/Core >

4 # include <cppsim /state.hpp >

5 # include <cppsim / gate_matrix .hpp >

6 # include <cppsim / gate_factory .hpp >

7

8 int main (){

9 unsigned int num_qubit = 2;

10

11 // create state vector

12 QuantumState * state = new QuantumState

(num_qubit);

13 state -> set_computational_basis (2);

14 QuantumState * sub_state = state ->copy

();

15

16 std :: vector <std :: complex <double >>

values = {0.5 , 0.5, 0.5, -0.5};

17 state ->load(values);

18 state ->load(sub_state);

19 state -> set_Haar_random_state (42);

20

21 Eigen :: MatrixXcd gate_matrix (4 ,4);

22 gate_matrix <<

23 1, 0, 0, 0,

24 0, 1, 0, 0,

25 0, 0, 0, 1,

26 0, 0, 1, 0;

27 QuantumGateBase * dense_gate = gate ::

DenseMatrix ({0, 1}, gate_matrix);

28 dense_gate -> update_quantum_state (state

);

29

30 QuantumGateBase * swap_gate = gate ::

SWAP (0 ,1);

31 swap_gate -> update_quantum_state (state)

;

32 std :: cout << dense_gate << std :: endl;

33 std :: cout << swap_gate << std :: endl;

34 std :: cout << state << std :: endl;

35

36 delete dense_gate ;

37 delete swap_gate ;

38 delete state;

39 delete sub_state ;

40 }

Listing 13: An example C++ program that initializes
quantum states.

1 *** gate info ***

2 * gate name : DenseMatrix

3 * target :

4 0 : commute

5 1 : commute

6 * control :

7 * Pauli : no

8 * Clifford : no

9 * Gaussian : no

10 * Parametric : no

11 * Diagonal : no

12 * Matrix

13 (1 ,0) (0 ,0) (0 ,0) (0 ,0)

14 (0 ,0) (1 ,0) (0 ,0) (0 ,0)

15 (0 ,0) (0 ,0) (0 ,0) (1 ,0)

16 (0 ,0) (0 ,0) (1 ,0) (0 ,0)

17

18 *** gate info ***

19 * gate name : SWAP

20 * target :

21 0 : commute

22 1 : commute

23 * control :

24 * Pauli : no

25 * Clifford : yes

26 * Gaussian : no

27 * Parametric : no

28 * Diagonal : no

29

30 *** Quantum State ***

31 * Qubit Count : 2

32 * Dimension : 4

33 * State vector :

34 (0.343453 ,0.418285)

35 (-0.287486 , -0.663243)

36 (0.309688 , -0.266554)

37 (-0.0511105 , -0.122348)

Listing 14: An output message of the program shown in
Listing. 13

Accepted in Quantum 2021-07-26, click title to verify. Published under CC-BY 4.0. 29

References

[1] Frank Arute, Kunal Arya, Ryan Bab-
bush, Dave Bacon, Joseph C Bardin, Rami
Barends, Rupak Biswas, Sergio Boixo, Fer-
nando GSL Brandao, David A Buell, et al.
Quantum supremacy using a programmable
superconducting processor. Nature, 574
(7779):505–510, 2019. DOI: 10.1038/s41586-
019-1666-5.

[2] Laird Egan, Dripto M Debroy, Crystal
Noel, Andrew Risinger, Daiwei Zhu, De-
bopriyo Biswas, Michael Newman, Muyuan
Li, Kenneth R Brown, Marko Cetina,
et al. Fault-tolerant operation of a quan-
tum error-correction code. arXiv preprint
arXiv:2009.11482, 2020.

[3] Qulacs website. https://github.com/

qulacs/qulacs, 2018.
[4] Gaël Guennebaud, Benoît Jacob, et al. Eigen

v3. http://eigen.tuxfamily.org, 2010.
[5] Wenzel Jakob, Jason Rhinelander, and Dean

Moldovan. pybind11 – seamless operabil-
ity between c++11 and python. https:

//github.com/pybind/pybind11, 2017.
[6] GoogleTest. https://github.com/google/

googletest, 2019.
[7] Holger Krekel, Bruno Oliveira, Ronny

Pfannschmidt, Floris Bruynooghe, Brianna
Laugher, and Florian Bruhin. pytest
x.y. https://github.com/pytest-dev/

pytest, 2004.
[8] Sergio Boixo, Sergei V Isakov, Vadim N

Smelyanskiy, and Hartmut Neven. Simula-
tion of low-depth quantum circuits as com-
plex undirected graphical models. arXiv
preprint arXiv:1712.05384, 2017.

[9] Igor L Markov and Yaoyun Shi. Simu-
lating quantum computation by contract-
ing tensor networks. SIAM Journal on
Computing, 38(3):963–981, 2008. DOI:
10.1137/050644756. URL https://doi.

org/10.1137/050644756.
[10] Igor L Markov, Aneeqa Fatima, Sergei V

Isakov, and Sergio Boixo. Quantum
supremacy is both closer and farther than it
appears. arXiv preprint arXiv:1807.10749,
2018.

[11] Sergey Bravyi and David Gosset. Im-
proved classical simulation of quantum
circuits dominated by clifford gates. Phys.
Rev. Lett., 116:250501, Jun 2016. DOI:

10.1103/PhysRevLett.116.250501. URL
https://link.aps.org/doi/10.1103/

PhysRevLett.116.250501.

[12] Sergey Bravyi, Dan Browne, Padraic Calpin,
Earl Campbell, David Gosset, and Mark
Howard. Simulation of quantum cir-
cuits by low-rank stabilizer decompositions.
Quantum, 3:181, September 2019. ISSN
2521-327X. DOI: 10.22331/q-2019-09-02-
181. URL https://doi.org/10.22331/

q-2019-09-02-181.

[13] Quantum AI team and collaborators. Cirq,
October 2020. URL https://doi.org/10.

5281/zenodo.4062499.

[14] Héctor Abraham et al. Qiskit: An open-
source framework for quantum computing,
2019. URL https://doi.org/10.5281/

zenodo.2562110.

[15] Robert S Smith, Michael J Curtis, and
William J Zeng. A practical quantum in-
struction set architecture. arXiv preprint
arXiv:1608.03355, 2016.

[16] Ville Bergholm, Josh Izaac, Maria Schuld,
Christian Gogolin, Carsten Blank, Keri
McKiernan, and Nathan Killoran. Pen-
nylane: Automatic differentiation of hy-
brid quantum-classical computations. arXiv
preprint arXiv:1811.04968, 2018.

[17] Krysta Svore, Alan Geller, Matthias Troyer,
John Azariah, Christopher Granade, Bet-
tina Heim, Vadym Kliuchnikov, Mariia
Mykhailova, Andres Paz, and Martin Roet-
teler. Q#: Enabling scalable quantum
computing and development with a high-
level dsl. RWDSL2018, New York, NY,
USA, 2018. Association for Computing Ma-
chinery. ISBN 9781450363556. DOI:
10.1145/3183895.3183901. URL https://

doi.org/10.1145/3183895.3183901.

[18] Benjamin Villalonga, Sergio Boixo, Bron
Nelson, Christopher Henze, Eleanor Rief-
fel, Rupak Biswas, and Salvatore Mandrà.
A flexible high-performance simulator for
verifying and benchmarking quantum cir-
cuits implemented on real hardware. npj
Quantum Information, 5(1):86, Oct 2019.
ISSN 2056-6387. DOI: 10.1038/s41534-019-
0196-1. URL https://doi.org/10.1038/

s41534-019-0196-1.

[19] Chase Roberts, Ashley Milsted, Martin
Ganahl, Adam Zalcman, Bruce Fontaine, Yi-

Accepted in Quantum 2021-07-26, click title to verify. Published under CC-BY 4.0. 30

https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://github.com/qulacs/qulacs
https://github.com/qulacs/qulacs
http://eigen.tuxfamily.org
https://github.com/pybind/pybind11
https://github.com/pybind/pybind11
https://github.com/google/googletest
https://github.com/google/googletest
https://github.com/pytest-dev/pytest
https://github.com/pytest-dev/pytest
https://doi.org/10.1137/050644756
https://doi.org/10.1137/050644756
https://doi.org/10.1137/050644756
https://doi.org/10.1137/050644756
https://doi.org/10.1103/PhysRevLett.116.250501
https://doi.org/10.1103/PhysRevLett.116.250501
https://link.aps.org/doi/10.1103/PhysRevLett.116.250501
https://link.aps.org/doi/10.1103/PhysRevLett.116.250501
https://doi.org/10.22331/q-2019-09-02-181
https://doi.org/10.22331/q-2019-09-02-181
https://doi.org/10.22331/q-2019-09-02-181
https://doi.org/10.22331/q-2019-09-02-181
https://doi.org/10.5281/zenodo.4062499
https://doi.org/10.5281/zenodo.4062499
https://doi.org/10.5281/zenodo.2562110
https://doi.org/10.5281/zenodo.2562110
https://doi.org/10.1145/3183895.3183901
https://doi.org/10.1145/3183895.3183901
https://doi.org/10.1145/3183895.3183901
https://doi.org/10.1145/3183895.3183901
https://doi.org/10.1038/s41534-019-0196-1
https://doi.org/10.1038/s41534-019-0196-1
https://doi.org/10.1038/s41534-019-0196-1
https://doi.org/10.1038/s41534-019-0196-1

jian Zou, Jack Hidary, Guifre Vidal, and Ste-
fan Leichenauer. Tensornetwork: A library
for physics and machine learning. arXiv
preprint arXiv:1905.01330, 2019.

[20] Matthew Fishman, Steven R White, and
E Miles Stoudenmire. The ITensor Software
Library for Tensor Network Calculations.
arXiv preprint arXiv:2007.14822, 2020.

[21] Benjamin Villalonga, Dmitry Lyakh, Ser-
gio Boixo, Hartmut Neven, Travis S Hum-
ble, Rupak Biswas, Eleanor G Rieffel, Alan
Ho, and Salvatore Mandrà. Establishing
the quantum supremacy frontier with a
281 pflop/s simulation. Quantum Science
and Technology, 5(3):034003, 2020. DOI:
10.1088/2058-9565/ab7eeb. URL https://

doi.org/10.1088/2058-9565/ab7eeb.

[22] Koen De Raedt, Kristel Michielsen,
Hans De Raedt, Binh Trieu, Guido
Arnold, Marcus Richter, Th Lippert,
Hiroshi Watanabe, and Nobuyasu Ito.
Massively parallel quantum computer
simulator. Computer Physics Commu-
nications, 176(2):121–136, 2007. DOI:
10.1016/j.cpc.2006.08.007. URL https:

//doi.org/10.1016/j.cpc.2006.08.007.

[23] Hans De Raedt, Fengping Jin, Dennis
Willsch, Madita Willsch, Naoki Yosh-
ioka, Nobuyasu Ito, Shengjun Yuan, and
Kristel Michielsen. Massively paral-
lel quantum computer simulator, eleven
years later. Computer Physics Com-
munications, 237:47–61, 2019. DOI:
10.1016/j.cpc.2018.11.005. URL https://

doi.org/10.1016/j.cpc.2018.11.005.

[24] Thomas Häner and Damian S Steiger. 0.5
petabyte simulation of a 45-qubit quan-
tum circuit. In Proceedings of the In-
ternational Conference for High Perfor-
mance Computing, Networking, Storage
and Analysis, pages 1–10, 2017. DOI:
10.1145/3126908.3126947. URL https://

doi.org/10.1145/3126908.3126947.

[25] Gian Giacomo Guerreschi, Justin
Hogaboam, Fabio Baruffa, and Nico-
las PD Sawaya. Intel Quantum Simulator:
A cloud-ready high-performance simulator
of quantum circuits. Quantum Science
and Technology, 5(3):034007, 2020. DOI:
10.1088/2058-9565/ab8505. URL https:

//doi.org/10.1088/2058-9565/ab8505.

[26] Mikhail Smelyanskiy, Nicolas PD Sawaya,
and Alán Aspuru-Guzik. qHiPSTER:
The quantum high performance soft-
ware testing environment. arXiv preprint
arXiv:1601.07195, 2016.

[27] Nader Khammassi, Imran Ashraf, Xiang Fu,
Carmen G Almudever, and Koen Bertels.
QX: A high-performance quantum computer
simulation platform. In Design, Automation
& Test in Europe Conference & Exhibition
(DATE), 2017, pages 464–469. IEEE, 2017.
DOI: 10.23919/DATE.2017.7927034. URL
https://doi.org/10.23919/DATE.2017.

7927034.

[28] Nader Khammassi, Imran Ashraf, J v
Someren, Razvan Nane, AM Krol, M Adri-
aan Rol, L Lao, Koen Bertels, and Carmen G
Almudever. OpenQL: A portable quantum
programming framework for quantum accel-
erators. arXiv preprint arXiv:2005.13283,
2020.

[29] Damian S Steiger, Thomas Häner, and
Matthias Troyer. ProjectQ: an open source
software framework for quantum comput-
ing. Quantum, 2:49, 2018. DOI: 10.22331/q-
2018-01-31-49. URL https://doi.org/10.

22331/q-2018-01-31-49.

[30] Tyson Jones, Anna Brown, Ian Bush,
and Simon C Benjamin. QuEST and
High Performance Simulation of Quan-
tum Computers. Scientific reports, 9(1):
1–11, 2019. DOI: 10.1038/s41598-019-
47174-9. URL https://doi.org/10.1038/

s41598-019-47174-9.

[31] Quantum AI team and collaborators. qsim,
September 2020. URL https://doi.org/

10.5281/zenodo.4023103.

[32] Xiu-Zhe Luo, Jin-Guo Liu, Pan Zhang,
and Lei Wang. Yao.jl: Extensible, Effi-
cient Framework for Quantum Algorithm
Design. Quantum, 4:341, October 2020.
ISSN 2521-327X. DOI: 10.22331/q-2020-10-
11-341. URL https://doi.org/10.22331/

q-2020-10-11-341.

[33] Adam Kelly. Simulating quantum com-
puters using OpenCL. arXiv preprint
arXiv:1805.00988, 2018.

[34] Stavros Efthymiou, Sergi Ramos-Calderer,
Carlos Bravo-Prieto, Adrián Pérez-Salinas,
Diego García-Martín, Artur Garcia-Saez,
José Ignacio Latorre, and Stefano Carrazza.

Accepted in Quantum 2021-07-26, click title to verify. Published under CC-BY 4.0. 31

https://doi.org/10.1088/2058-9565/ab7eeb
https://doi.org/10.1088/2058-9565/ab7eeb
https://doi.org/10.1088/2058-9565/ab7eeb
https://doi.org/10.1088/2058-9565/ab7eeb
https://doi.org/10.1016/j.cpc.2006.08.007
https://doi.org/10.1016/j.cpc.2006.08.007
https://doi.org/10.1016/j.cpc.2006.08.007
https://doi.org/10.1016/j.cpc.2006.08.007
https://doi.org/10.1016/j.cpc.2018.11.005
https://doi.org/10.1016/j.cpc.2018.11.005
https://doi.org/10.1016/j.cpc.2018.11.005
https://doi.org/10.1016/j.cpc.2018.11.005
https://doi.org/10.1145/3126908.3126947
https://doi.org/10.1145/3126908.3126947
https://doi.org/10.1145/3126908.3126947
https://doi.org/10.1145/3126908.3126947
https://doi.org/10.1088/2058-9565/ab8505
https://doi.org/10.1088/2058-9565/ab8505
https://doi.org/10.1088/2058-9565/ab8505
https://doi.org/10.1088/2058-9565/ab8505
https://doi.org/10.23919/DATE.2017.7927034
https://doi.org/10.23919/DATE.2017.7927034
https://doi.org/10.23919/DATE.2017.7927034
https://doi.org/10.22331/q-2018-01-31-49
https://doi.org/10.22331/q-2018-01-31-49
https://doi.org/10.22331/q-2018-01-31-49
https://doi.org/10.22331/q-2018-01-31-49
https://doi.org/10.1038/s41598-019-47174-9
https://doi.org/10.1038/s41598-019-47174-9
https://doi.org/10.1038/s41598-019-47174-9
https://doi.org/10.1038/s41598-019-47174-9
https://doi.org/10.5281/zenodo.4023103
https://doi.org/10.5281/zenodo.4023103
https://doi.org/10.22331/q-2020-10-11-341
https://doi.org/10.22331/q-2020-10-11-341
https://doi.org/10.22331/q-2020-10-11-341
https://doi.org/10.22331/q-2020-10-11-341

Qibo: a framework for quantum simulation
with hardware acceleration. arXiv preprint
arXiv:2009.01845, 2020. DOI: 10.5281/zen-
odo.3997194. URL https://doi.org/10.

5281/zenodo.3997194.

[35] Alberto Peruzzo, Jarrod McClean, Peter
Shadbolt, Man-Hong Yung, Xiao-Qi Zhou,
Peter J Love, Alán Aspuru-Guzik, and
Jeremy L O’brien. A variational eigenvalue
solver on a photonic quantum processor. Na-
ture communications, 5:4213, 2014. DOI:
10.1038/ncomms5213. URL https://doi.

org/10.1038/ncomms5213.

[36] Seth Lloyd. Universal quantum simu-
lators. Science, pages 1073–1078, 1996.
DOI: 10.1126/science.273.5278.1073. URL
https://doi.org/10.1126/science.273.

5278.1073.

[37] Suguru Endo, Iori Kurata, and Yuya O
Nakagawa. Calculation of the green’s
function on near-term quantum comput-
ers. Physical Review Research, 2(3):
033281, 2020. DOI: 10.1103/PhysRevRe-
search.2.033281. URL https://doi.org/

10.1103/PhysRevResearch.2.033281.

[38] Kosuke Mitarai, Yuya O Nakagawa, and
Wataru Mizukami. Theory of analytical en-
ergy derivatives for the variational quantum
eigensolver. Physical Review Research, 2(1):
013129, 2020. DOI: 10.1103/PhysRevRe-
search.2.013129. URL https://doi.org/

10.1103/PhysRevResearch.2.013129.

[39] Kosuke Mitarai, Tennin Yan, and Keisuke
Fujii. Generalization of the output of a
variational quantum eigensolver by param-
eter interpolation with a low-depth ansatz.
Phys. Rev. Applied, 11:044087, Apr 2019.
DOI: 10.1103/PhysRevApplied.11.044087.
URL https://link.aps.org/doi/10.

1103/PhysRevApplied.11.044087.

[40] Yuta Matsuzawa and Yuki Kurashige.
Jastrow-type decomposition in quantum
chemistry for low-depth quantum circuits.
Journal of Chemical Theory and Com-
putation, 16(2):944–952, 2020. DOI:
10.1021/acs.jctc.9b00963. URL https://

doi.org/10.1021/acs.jctc.9b00963.

[41] Hiroki Kawai and Yuya O. Nakagawa.
Predicting excited states from ground state
wavefunction by supervised quantum ma-
chine learning. Machine Learning: Science

and Technology, 1(4):045027, oct 2020.
DOI: 10.1088/2632-2153/aba183. URL
https://doi.org/10.1088%2F2632-2153%

2Faba183.

[42] Jakob Kottmann, Mario Krenn, Thi Ha
Kyaw, Sumner Alperin-Lea, and Alán
Aspuru-Guzik. Quantum computer-aided
design of quantum optics hardware. Quan-
tum Science and Technology, 2021. DOI:
10.1088/2058-9565/abfc94. URL https://

doi.org/10.1088/2058-9565/abfc94.

[43] Yasunari Suzuki, Suguru Endo, and Yuuki
Tokunaga. Quantum error mitigation for
fault-tolerant quantum computing. arXiv
preprint arXiv:2010.03887, 2020.

[44] Cirq-Qulacs. https://github.com/

qulacs/cirq-qulacs, 2019.

[45] Seyon Sivarajah, Silas Dilkes, Alexander
Cowtan, Will Simmons, Alec Edgington, and
Ross Duncan. t|ket〉: A retargetable com-
piler for NISQ devices. Quantum Science
and Technology, 2020. DOI: 10.1088/2058-
9565/ab8e92. URL https://doi.org/10.

1088/2058-9565/ab8e92.

[46] Orquestra. https://orquestra.io/, 2020.

[47] Jakob S. Kottmann and Sumner Alperin-
Lea, Teresa Tamayo-Mendoza, Alba
Cervera-Lierta, Cyrille Lavigne, Tzu-Ching
Yen, Vladyslav Verteletskyi, Abhinav
Anand, Matthias Degroote, Maha Kesebi,
and Alán Aspuru-Guzik. tequila: A
generalized development library for novel
quantum algorithms. https://github.

com/aspuru-guzik-group/tequila, 2020.

[48] Peter W Shor. Polynomial-time algo-
rithms for prime factorization and dis-
crete logarithms on a quantum computer.
SIAM review, 41(2):303–332, 1999. DOI:
10.1137/S0097539795293172. URL https:

//doi.org/10.1137/S0097539795293172.

[49] Craig Gidney and Martin Ekerå. How to
factor 2048 bit rsa integers in 8 hours us-
ing 20 million noisy qubits. Quantum, 5:
433, 2021. DOI: 10.22331/q-2021-04-15-
433. URL https://doi.org/10.22331/

q-2021-04-15-433.

[50] Ian D Kivlichan, Craig Gidney, Dominic W
Berry, Nathan Wiebe, Jarrod McClean, Wei
Sun, Zhang Jiang, Nicholas Rubin, Austin
Fowler, Alán Aspuru-Guzik, et al. Im-
proved fault-tolerant quantum simulation

Accepted in Quantum 2021-07-26, click title to verify. Published under CC-BY 4.0. 32

https://doi.org/10.5281/zenodo.3997194
https://doi.org/10.5281/zenodo.3997194
https://doi.org/10.5281/zenodo.3997194
https://doi.org/10.5281/zenodo.3997194
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1103/PhysRevResearch.2.033281
https://doi.org/10.1103/PhysRevResearch.2.033281
https://doi.org/10.1103/PhysRevResearch.2.033281
https://doi.org/10.1103/PhysRevResearch.2.033281
https://doi.org/10.1103/PhysRevResearch.2.013129
https://doi.org/10.1103/PhysRevResearch.2.013129
https://doi.org/10.1103/PhysRevResearch.2.013129
https://doi.org/10.1103/PhysRevResearch.2.013129
https://doi.org/10.1103/PhysRevApplied.11.044087
https://link.aps.org/doi/10.1103/PhysRevApplied.11.044087
https://link.aps.org/doi/10.1103/PhysRevApplied.11.044087
https://doi.org/10.1021/acs.jctc.9b00963
https://doi.org/10.1021/acs.jctc.9b00963
https://doi.org/10.1021/acs.jctc.9b00963
https://doi.org/10.1021/acs.jctc.9b00963
https://doi.org/10.1088/2632-2153/aba183
https://doi.org/10.1088%2F2632-2153%2Faba183
https://doi.org/10.1088%2F2632-2153%2Faba183
https://doi.org/10.1088/2058-9565/abfc94
https://doi.org/10.1088/2058-9565/abfc94
https://doi.org/10.1088/2058-9565/abfc94
https://doi.org/10.1088/2058-9565/abfc94
https://github.com/qulacs/cirq-qulacs
https://github.com/qulacs/cirq-qulacs
https://doi.org/10.1088/2058-9565/ab8e92
https://doi.org/10.1088/2058-9565/ab8e92
https://doi.org/10.1088/2058-9565/ab8e92
https://doi.org/10.1088/2058-9565/ab8e92
https://orquestra.io/
https://github.com/aspuru-guzik-group/tequila
https://github.com/aspuru-guzik-group/tequila
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.22331/q-2021-04-15-433
https://doi.org/10.22331/q-2021-04-15-433
https://doi.org/10.22331/q-2021-04-15-433
https://doi.org/10.22331/q-2021-04-15-433

of condensed-phase correlated electrons via
trotterization. Quantum, 4:296, 2020. DOI:
10.22331/q-2020-07-16-296. URL https://

doi.org/10.22331/q-2020-07-16-296.

[51] Aram W Harrow, Avinatan Hassidim, and
Seth Lloyd. Quantum algorithm for linear
systems of equations. Physical review letters,
103(15):150502, 2009. DOI: 10.1103/Phys-
RevLett.103.150502. URL https://doi.

org/10.1103/PhysRevLett.103.150502.

[52] Austin G Fowler, Matteo Mariantoni,
John M Martinis, and Andrew N Cleland.
Surface codes: Towards practical large-scale
quantum computation. Physical Review A,
86(3):032324, 2012. DOI: 10.1103/Phys-
RevA.86.032324. URL https://link.aps.

org/doi/10.1103/PhysRevA.86.032324.

[53] Sergio Boixo, Sergei V Isakov, Vadim N
Smelyanskiy, Ryan Babbush, Nan Ding,
Zhang Jiang, Michael J Bremner, John M
Martinis, and Hartmut Neven. Char-
acterizing quantum supremacy in near-
term devices. Nature Physics, 14(6):
595–600, 2018. DOI: 10.1038/s41567-018-
0124-x. URL https://doi.org/10.1038/

s41567-018-0124-x.

[54] Jarrod McClean, Nicholas Rubin, Kevin
Sung, Ian David Kivlichan, Xavier Bonet-
Monroig, Yudong Cao, Chengyu Dai,
Eric Schuyler Fried, Craig Gidney, Bren-
dan Gimby, et al. OpenFermion: the
electronic structure package for quan-
tum computers. Quantum Science and
Technology, 2020. DOI: 10.1088/2058-
9565/ab8ebc. URL https://doi.org/10.

1088/2058-9565/ab8ebc.

[55] Michael A. Nielsen and Isaac L. Chuang.
Quantum Computation and Quantum Infor-
mation: 10th Anniversary Edition. Cam-
bridge University Press, 2010. DOI:
10.1017/CBO9780511976667. URL https:

//doi.org/10.1017/CBO9780511976667.

[56] Andrew W Cross, Lev S Bishop, John A
Smolin, and Jay M Gambetta. Open quan-
tum assembly language. arXiv preprint
arXiv:1707.03429, 2017.

[57] Shiro Tamiya and Yuya O Nakagawa. Cal-
culating nonadiabatic couplings and Berry’s
phase by variational quantum eigensolvers.
arXiv preprint arXiv:2003.01706, 2020.
DOI: 10.1103/PhysRevResearch.3.023244.

URL https://doi.org/10.1103/

PhysRevResearch.3.023244.

[58] Yohei Ibe, Yuya O Nakagawa, Takahiro
Yamamoto, Kosuke Mitarai, Qi Gao, and
Takao Kobayashi. Calculating transition
amplitudes by variational quantum eigen-
solvers. arXiv preprint arXiv:2002.11724,
2020.

[59] Pascual Jordan and Eugene P Wigner.
About the pauli exclusion princi-
ple. Z. Phys, 47(631):14–75, 1928.
DOI: 10.1007/BF01331938. URL
https://doi.org/10.1007/BF01331938.

[60] Sergey B Bravyi and Alexei Yu Kitaev.
Fermionic quantum computation. Annals
of Physics, 298(1):210–226, 2002. DOI:
10.1006/aphy.2002.6254. URL https://

doi.org/10.1006/aphy.2002.6254.

[61] Intel Intrinsics Guide. https://software.

intel.com/sites/landingpage/

IntrinsicsGuide/, 2020.

[62] OpenMP Specifications. https://www.

openmp.org/specifications/, 2020.

[63] quantum-benchmarks. https://github.

com/Roger-luo/quantum-benchmarks,
2020.

[64] Benchmark codes of this paper will be up-
loaded to. https://github.com/qulacs/

benchmark-qulacs, 2020.

[65] Intel-QS repository . https://github.com/

iqusoft/intel-qs, 2020.

[66] Daniel Gottesman. The heisenberg represen-
tation of quantum computers. arXiv preprint
quant-ph/9807006, 1998.

[67] Scott Aaronson and Daniel Gottesman.
Improved simulation of stabilizer circuits.
Physical Review A, 70(5):052328, 2004. DOI:
10.1103/PhysRevA.70.052328. URL https:

//10.1103/PhysRevA.70.052328.

[68] Leslie G Valiant. Quantum circuits that
can be simulated classically in polyno-
mial time. SIAM Journal on Com-
puting, 31(4):1229–1254, 2002. DOI:
10.1137/S0097539700377025. URL https:

//doi.org/10.1137/S0097539700377025.

[69] Barbara M Terhal and David P DiVincenzo.
Classical simulation of noninteracting-
fermion quantum circuits. Physical Review
A, 65(3):032325, 2002. DOI: 10.1103/Phys-
RevA.65.032325. URL https://doi.org/

10.1103/PhysRevA.65.032325.

Accepted in Quantum 2021-07-26, click title to verify. Published under CC-BY 4.0. 33

https://doi.org/10.22331/q-2020-07-16-296
https://doi.org/10.22331/q-2020-07-16-296
https://doi.org/10.22331/q-2020-07-16-296
https://doi.org/10.22331/q-2020-07-16-296
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1103/PhysRevA.86.032324
https://link.aps.org/doi/10.1103/PhysRevA.86.032324
https://link.aps.org/doi/10.1103/PhysRevA.86.032324
https://doi.org/10.1038/s41567-018-0124-x
https://doi.org/10.1038/s41567-018-0124-x
https://doi.org/10.1038/s41567-018-0124-x
https://doi.org/10.1038/s41567-018-0124-x
https://doi.org/10.1088/2058-9565/ab8ebc
https://doi.org/10.1088/2058-9565/ab8ebc
https://doi.org/10.1088/2058-9565/ab8ebc
https://doi.org/10.1088/2058-9565/ab8ebc
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1103/PhysRevResearch.3.023244
https://doi.org/10.1103/PhysRevResearch.3.023244
https://doi.org/10.1103/PhysRevResearch.3.023244
https://doi.org/10.1007/BF01331938
https://doi.org/10.1007/BF01331938
https://doi.org/10.1006/aphy.2002.6254
https://doi.org/10.1006/aphy.2002.6254
https://doi.org/10.1006/aphy.2002.6254
https://doi.org/10.1006/aphy.2002.6254
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://www.openmp.org/specifications/
https://www.openmp.org/specifications/
https://github.com/Roger-luo/quantum-benchmarks
https://github.com/Roger-luo/quantum-benchmarks
https://github.com/qulacs/benchmark-qulacs
https://github.com/qulacs/benchmark-qulacs
https://github.com/iqusoft/intel-qs
https://github.com/iqusoft/intel-qs
https://doi.org/10.1103/PhysRevA.70.052328
https://doi.org/10.1103/PhysRevA.70.052328
https://10.1103/PhysRevA.70.052328
https://10.1103/PhysRevA.70.052328
https://doi.org/10.1137/S0097539700377025
https://doi.org/10.1137/S0097539700377025
https://doi.org/10.1137/S0097539700377025
https://doi.org/10.1137/S0097539700377025
https://doi.org/10.1103/PhysRevA.65.032325
https://doi.org/10.1103/PhysRevA.65.032325
https://doi.org/10.1103/PhysRevA.65.032325
https://doi.org/10.1103/PhysRevA.65.032325

[70] Emanuel Knill. Fermionic linear optics
and matchgates. arXiv preprint quant-
ph/0108033, 2001.

Accepted in Quantum 2021-07-26, click title to verify. Published under CC-BY 4.0. 34

	1 Introduction
	2 Overview
	2.1 Features of Qulacs
	2.2 Structure of Qulacs
	2.3 Simulation methods
	2.4 Relation to the existing libraries

	3 Expected usages of Qulacs
	3.1 Exploration of near-term applications and error mitigation techniques
	3.2 Performance analysis of quantum error correction schemes
	3.3 Generation of a reference of experimental data

	4 Implementation of Qulacs
	4.1 Overview
	4.2 Quantum state
	4.2.1 Initialization
	4.2.2 Analysis
	4.2.3 Update

	4.3 Quantum gates
	4.3.1 Gate type
	4.3.2 Basic gate
	4.3.3 Quantum map
	4.3.4 Named gate

	4.4 Quantum circuit
	4.5 Observable

	5 Optimizations
	5.1 Background
	5.2 SIMD optimization
	5.3 Multi-threading with OpenMP
	5.4 Circuit optimization
	5.5 GPU acceleration

	6 Numerical performance
	6.1 Performance of basic gates
	6.2 Performance of general quantum maps
	6.3 Overhead due to a function call from Python
	6.4 Speed-up by SIMD, OpenMP, and GPU
	6.5 Parallelization efficiency
	6.6 Circuit optimization

	7 Comparison with existing simulators
	8 Conclusion and Outlook
	 Acknowledgment
	A C++ example codes
	 References

