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Abstract 

This work reports the results of a perspective workshop held in summer 2021 discussing the 

current status and future needs for multiscale modeling in reaction engineering. This research 

topic is one of the most challenging and likewise most interdisciplinary in the chemical 

engineering community, today. Although it is progressing fast in terms of methods 

development, it is only slowly applied by most reaction engineers. Therefore, this perspective 

is aimed to promote this field and facilitate research and a common understanding. It involves 

the following areas: (1) reactors and cells with surface changes focusing on Density Functional 

Theory and Monte-Carlo simulations; (2) hierarchically-based microkinetic analysis of 

heterogeneous catalytic processes including structure sensitivity, microkinetic mechanism 

development, and parameter estimation; (3) coupling first-principles kinetic models and CFD 

simulations of catalytic reactors covering chemistry acceleration strategies and surrogate 

models; and finally (4) catalyst-reactor-plant systems with details on linking CFD with plant 

simulations, respectively. It therefore highlights recent achievements, challenges, and future 

needs for fueling this urgent research topic in reaction engineering. 
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1 Introduction and Motivation 
Reaction engineering is the scientific discipline dealing with chemical and electrochemical 

reactions to meet various business and technical objectives, e.g., high productivity and 

selectivity, process and product safety, environmentally compatible products, minimization of 

waste generation, minimization of investment, minimization of energy consumption, and 

operability and control.1 In today’s global business environment, these objectives are typically 

included in a framework for chemical product design.2 One essential part of this framework is 

the product design model, which comprises model parameter constraints, economic, properties, 

process, and product performance models, respectively, as well as objective functions with a 

multitude of constraints.3 For simultaneous process-product design, the multiscale approach 

provides opportunities to consider phenomena on different time and length scales of the reaction 

system basically from the electron level up to the plant level. Figure 1 shows schematically all 

involved levels for chemical and electrochemical reaction engineering. Inside a reactor, a 

multitude of different physical and chemical processes occur simultaneously on various time 

and length scales interacting with each other. The basic idea of multiscale modeling is the 

computation of information at one scale and passing it to the other scale without losing much 

of the information. This linkage or coupling between scales is challenging in terms of reducing 

degrees of freedom (abstraction) and in terms of efficient computing (implementation). In 

recent years, several comprehensive overviews were published about specific aspects of this 

rather broad topic, such as e.g., multiscale modeling in computational heterogeneous catalysis,4 

focusing on metal-catalyzed reactions,5 material-function relationships in heterogeneous 

catalysis,6 or computational materials science and process engineering.7 For a more general 

view of multiscale modeling covering also generic multiscale computing, the reader is referred 

to a collection of articles elsewhere.8 
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Since the development of multiscale modeling methods is progressing rapidly and its 

application is likewise feasible for very different fields, we limit this specific perspective to 

reaction engineering for chemical and electrochemical applications. In such devices, reactants 

are converted to (by-)products on a solid interface, i.e., heterogeneous (electro-)chemical 

reactors. The active sites of the catalyst are typically dispersed on a porous structure, e.g., 

porous washcoat, catalyst pellet, or electrode, where the gas or liquid phase species has to be 

transported to or away. Consequently, the intrinsic reaction kinetics is affected by transport 

phenomena, which can be very different depending on the reactor/cell configuration and 

operation conditions. The final goal of multiscale modeling in reaction engineering is to 

describe real reactive systems under industrially relevant reaction conditions. In this 

manuscript, we briefly introduce the atomic scale aspects, which only recently entered reaction 

engineering. Most of the well-known concepts of the process simulation/systems engineering 

scales are not addressed in detail. The basis of this manuscript was developed during an online 

workshop held in summer 2021. Four main topic areas are discussed thoroughly: (1) reactors 

and cells with surface changes focusing on Density Functional Theory and Monte-Carlo 

simulations; (2) hierarchically-based microkinetic analysis of heterogeneous catalytic processes 

including structure sensitivity, microkinetic mechanism development, and parameter 

estimation; (3) coupling first-principles kinetic models and CFD simulations of catalytic 

reactors covering chemistry acceleration strategies and surrogate models; and finally (4) 

catalyst-reactor-plant systems with details on linking CFD with plant simulations, respectively. 

The general aim of this perspective is to promote this field and facilitate research as well as 

application by providing a common understanding between different communities and different 

applications. 

 

 
Figure 1: Typical time and length scales in reaction engineering problems. Adapted partly from Ref.2  
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2 Multiscale Modeling in Reaction Engineering 
 

2.1 Reactors and cells with surface changes 

Solid/liquid and solid/gas interfaces are ubiquitous in heterogeneous (electro-)chemical 

systems. Far from being inert, these interfaces host various physical and chemical 

transformations. They can trigger the precipitation of species and catalyze reactions, which in 

turn, can affect their structure and chemical compositions. These transformations can be 

described at different scales ranging from the scale of chemical bonds to that of the solid of 

interest (shape, crystal structure, …) and can even influence the operation of the whole (electro-

)chemical reactor. Here, we discuss the different theories that can be used to model such systems 

and how the different scales are coupled. 

 

2.1.1 Modeling changes at the atomistic scale with DFT 

The atomistic scale is the smallest scale at which one can describe how the surface of a material 

chemically changes upon given conditions. Albeit not perfect, Density Functional Theory 

(DFT), which explicitly treats electrons and how they bind atoms together, has become very 

popular to accurately describe the transformations interfaces may undergo. One approach, 

usually referred to as ‘static DFT’, consists in building representative surface models and 

relaxing their geometric structure until they reach an energy minimum. Because finite 

temperature effects are not considered during the optimization, these calculations are, in 

principle, only representative of conditions at 0 K. For uncorrelated systems, i.e., solids and 

gases, thermal effects can be recovered, from 0 K calculations, using tools of statistical 

mechanics, such as partition functions. This approach has been applied to predict metal/oxide 

phase diagrams under varying oxygen atmosphere9 or electric potential10. There is also 

literature regarding the determination of kinetic parameters for surface restructuration.11 One 

success story is the decade-long step-by-step development of a theory-based model for γ-Al2O3 

(bulk and then surface) accounting for the changes it undergoes under steam conditions: surface 

hydroxylation and reorganization of the surface Al network.12 These models have been key to 

the understanding of the surface chemistry of this oxide, which is used as a support and a 

catalyst in industrial processes. However, when dealing with flexible or dynamical systems, 

such as electrolytes where the dynamics of ions affects that of the solvent molecules, thermal 

effects cannot be treated as a correction to ‘static DFT’ calculations as they more drastically 

influence the structure. In this case, DFT must be coupled with Molecular Dynamics to capture 

the motion of atoms.13 As most surface modifications are, even slightly, activated, the so-called 

Ab Initio Molecular Dynamics (AIMD) simulations must be accelerated to make these 

transformations happen during the simulation. One first way to accelerate AIMD is to bias the 

simulations using a known constraint (thermodynamic integration or umbrella sampling) or add 

a known bias potential to help the system cross barriers. For instance, biased AIMD simulations 

have been used to determine the pKAs of surface hydroxyl,14 crucial to understanding how pH 

can alter the surface of a material, and to elucidate the early steps of the chemical weathering 

of γ-Al2O3, which is associated with the formation of a boehmite layer, in liquid water.15 One 

other approach is to use DFT data to train a machine-learning model, which would be able to 

perform simulations, without biases, but in a considerably faster way. Kozinsky and co-workers 

recently reported 2μs-long simulations for the study of the alloying mechanism of a Pd island 
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on an Ag slab using such an approach (Figure 2a).11 All in all, DFT is good at capturing the 

energetics of chemical reactions that can induce surface modifications of a solid. The main 

limitation is that it is borne to study a small portion of the entire system (~nm2) and to assess 

the energetics of a few elementary steps leading to surface transformation. Statistical mechanics 

and transition state theory may translate microscopic data into reliable macroscopic properties. 

However, this approach is limited to ideal systems. 

 

2.1.2 Monte-Carlo simulations of representative structures 

One way forward is to select representative structures and run statistical simulations that can 

describe larger interfaces and extend the reachable time scale. Monte-Carlo simulations are one 

example of such an approach. Using a stochastic algorithm, they can sample a large number of 

configurations, the energetics of which can be assessed from a DFT-parametrized Cluster 

Expansion (CE) Hamiltonian. For example, such simulations have been used to investigate how 

adsorbates can affect the aggregation of single atoms to clusters at the surface of Single-Atom-

Alloys16 or the segregation of metals in intermetallics (Figure 2b). Albeit extremely insightful, 

Monte Carlo simulations can only help identify the most stable phases under given conditions. 

To get insights into the time evolutions of surface transformation, we need to move to Kinetic 

Monte Carlo (KMC) simulations, where the transition rate from one state to another is not given 

by its exothermicity but rather its kinetic rate constant. 

 

KMC models can be set up in different dimensions. In 2D models, the lattice can either 

represent a smooth surface9,17,18 or the area above the surface.19–22 2D+1 models allow for the 

diffusion of species on a two-dimensional surface lattice and further enable the accumulation 

of species in a third dimension. They have been used to study the formation of surface films 

such as solid electrolyte interphases at carbon electrodes in Li-ion batteries.23 Eventually, 3D 

models describe the diffusion and interaction of species in all three dimensions. These models 

have been used to study crystallization reactions in chemical systems,24 layer growth in 

electrochemical systems,25 and dealloying processes of alloy catalysts.26 

 

 
Figure 2: Examples of multi-scale modeling simulations for the investigation of interface modifications. (a) Snapshots of the 

molecular dynamic simulation performed with the Gaussian process machine learning force field trained on DFT data. The 

simulation shows the alloying mechanism of a Pd island deposited on Ag.11 (b) Monte Carlo simulation parameterized with 

DFT data via a Cluster Expansion Hamiltonian. The simulations identify the alloy surface composition as a function of the 
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oxygen coverage. (c) Experimentally parameterized Kinetic Monte Carlo - continuum simulation on a 2D+1 lattice reveals the 

formation of a 20 nm thick solid electrolyte interphase (SEI) consisting of three solid products on graphite electrodes of Li-ion 

batteries.27 

 

One major challenge when setting up a KMC model for surface changes is the adequate 

selection of the processes that will be included and the parameterization of the related transition 

rates. The required energy barriers can either be obtained experimentally or by ab initio 

calculations. In the latter case, the lateral interactions between species (intermediates or inert 

species) can be taken into account so simulations can adapt to experimental conditions.28 In the 

past, the ab initio parameterization technique was used to study very different systems: the 

dissolution of NaCl crystals at the NaCl-water interface,29 the bistability of Pd/PdO under CO 

oxidation conditions,9 the formation of coke precursors on metal surfaces,18 the diffusion of Li 

ions into the positive LixCoO2-electrode,30 and the solid electrolyte interphase formation on Li-

metal electrodes.31 However, since the environmental conditions may change during the 

simulation and since ab initio calculations are never perfectly accurate, errors can propagate to 

larger scales. To prevent this, a stronger coupling between KMC and ab initio approaches would 

be required in the future to correct the energy barriers during the runtime of the simulation. This 

demands efforts to tackle the computational cost of such an approach and to standardize 

coupling procedures. 

 

2.1.3 Coupling KMC with continuum models 

To investigate the interplay between heterogeneous surface changes and the operation of full-

scale (electro-)chemical reactors, a direct coupling of KMC simulations with continuum models 

can be a suitable approach. This was, for instance, applied to study the growth of a protective 

solid electrolyte interphase on graphite anodes in Li-ion batteries (Figure 2c) for different 

battery operating conditions27,32,33 or to study the Kraft pulping process.21,34 However, it is 

important to notice that the integration of the microscopic and macroscopic scales is not 

straightforward. First, there might be significant time scale disparities between different 

phenomena. For example, the interphase formation reactions in Li-ion batteries can take place 

in the nano- to microsecond range while the charging process of the battery, which changes 

local reaction conditions, may take minutes up to hours. Second, the stochastic fluctuations of 

the KMC model must be handled during the coupling process, to obtain reliable input 

parameters for the macroscopic model. Therefore, it is a key challenge to carefully choose a 

coupling mechanism that allows high-fidelity while keeping the computational cost as low as 

possible. In this regard, several approaches have been analyzed by Röder et al.35 For alternatives 

to the direct coupling of KMC and continuum scale, e.g. by surrogate models, see chapter 2.3. 

 

Many research groups have developed their own KMC software, which they have made 

publicly available. To name a few, KMCLib provides an on-lattice KMC code that is 

specifically designed for bulk and surface diffusion processes in complex systems;36 NASCAM 

is particularly well-suited for the study of species deposition on substrates;37 and Zacros 

provides a very flexible graph-theoretical KMC algorithm to model surface reactions at the 

solid/gas interface.38,39 On-lattice codes use a fixed lattice to map coordinates or adsorption 

sites. But a fixed lattice of adsorption sites can be limiting, especially when the experimental 

conditions can induce changes of the material’s surface (e.g., oxidations, chemical weathering) 
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and a reorganization of the network of adsorption/diffusion sites. Another limitation is that each 

software is used for a set of applications and the input files, which are typically large to cover 

all the possible configurations and elementary events to model, cannot be generated in an 

automated and software-non-specific way. To make KMC more accessible in the future, it 

would therefore be essential to have unified tools that are system- and software-independent. A 

standardized user interface or API would allow researchers to set up new models more easily 

and efficiently and narrow the gap between atomic and macroscopic techniques. 

 

 

2.2 Hierarchically-based microkinetic analysis of heterogeneous catalytic 

processes 

Applying molecular simulation methods in heterogeneous catalysis is crucial for the rational 

understanding of catalysts’ functionality with an atomistic level of detail.5,6 The inclusion of 

such techniques in the multiscale analysis of catalytic systems faces three main challenges: (i) 

complexity and dynamic nature of catalyst,40 (ii) complexity of reaction mechanisms, 6,41,42, and 

(iii) complication and computational cost of energetic parameter estimation.43 These challenges 

must be addressed by an efficient multiscale modeling framework44 schematically illustrated in 

Figure 3. 

 
Figure 3: Schematic illustration of the hierarchical-based multiscale modeling approach for catalytic surface reactions. 

2.2.1 Catalyst structure and active site 

Estimating kinetic and thermodynamic parameters for microkinetics via the application of first-

principles electronic structure methods intrinsically requires the knowledge of the catalyst 

structure in reaction conditions. The surface atoms of heterogeneous catalysts are arranged in 

diverse geometric configurations, providing numerous active site motifs. Supported catalyst 

nanoparticles expose different crystal facets, kinks, corners, and edges to the reaction 



 8 

environment, which establish different interactions with reaction intermediates and transition 

states, yielding specific catalytic activities.45 Besides, catalytic particles are dynamic systems 

and change their size, shape, and composition according to the local chemical environment 

inside the reactor, as reviewed in chapter 2.1. The local environment and thus the particles  

dynamically evolve with the proceeding of the reaction.40,46 Consequently, the amount of the 

different types of active sites changes during reaction, which translates into a change in the 

activity of the catalyst. The complex and dynamic nature of catalyst materials in reaction 

conditions introduces a “material gap”45 in the modeling of catalytic reactions based on first-

principles since extended surface model systems are usually employed due to computational 

cost. Modeling of the catalyst structure under reaction conditions is needed to overcome this 

“material” gap. In this view, ab initio thermodynamics and Wulff construction can be applied 

for the description of catalyst nanoparticles under reaction conditions,47,48 allowing to reveal 

the “nature” of the active sites, i.e., the configurations of the atoms at the catalyst surface, which 

potentially give a contribution to the overall reaction rate. The presence of multiple 

configurations can be also modelled by coupling density functional theory (DFT) calculations 

with Boltzmann statistics to describe ensembles of nanoparticles obtaining different 

morphologies under reaction conditions.49 Other methodologies for the modeling of catalyst 

materials include molecular dynamics and Monte Carlo techniques,50 see also chapter 2.1. 

These methods must be advanced to cope with the challenge of simulation of multi-metallic 

and metastable nanoparticles. Then, the study of the catalytic activity by simulation of the 

reaction paths on the available sites can unravel the “identity” of the dominant active sites of 

the catalyst, i.e., the sites that give a relevant contribution to the macroscopic reaction.51 Several 

studies in the literature investigate the structure-sensitivity of reactions by comparing 

mechanisms on multiple active sites (e.g., different crystal facets) to identify the ones that 

provide the highest turnover frequency (TOF). A step forward is provided by the methodology 

of structure-dependent microkinetic modeling,51 in which both TOF and abundance of the 

active sites are accounted for by the concerted simulation of catalyst structure and reaction 

kinetics at the catalyst surfaces. The representation of the active sites, however, is limited by 

the approximations introduced in models chosen for the analyses. Important aspects that are 

currently only partially investigated include the characterization of the active sites at the 

catalyst-support interface, the evaluation of how the sites distribution changes with the particle 

size (producing experimentally observed particle-size effects), and the analysis of the kinetics 

of the morphological evolution of the catalysts under reaction conditions. Further studies must 

concentrate on the analysis of such important aspects to provide a comprehensive description 

of the dynamic nature of the active sites. 

 

2.2.2 Mikrokinetic mechanism development and parameter estimation 

Reaction mechanisms in heterogeneous catalysis can have thousands of possible reaction 

intermediates and elementary steps,6,42,52 even when involving only small molecules, e.g., steam 

reforming of methane53 or CO2 methanation.54 Therefore, constructing the mechanism by hand 

is a daunting and error-prone task because a researcher needs to rely on his/her chemical 

intuition to predict species and pathways instead of selecting only the kinetically relevant steps. 

This adds computational overhead and bias to the mechanism that can result in missing 

pathways and wrong conclusions. A sophisticated and rate-based network exploration can be 

processed however with automated mechanism generation tools55–58 or machine learning (ML) 
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frameworks.42,52,59 One example is RMG (reaction mechanism generator),56 initially developed 

for combustion processes, which has been successfully used for heterogeneously catalyzed 

systems.54,60–62 Only simple terrace facets of pure metals are considered for automated 

mechanism generation now, which certainly needs to be improved to account for multifaceted 

crystals, complex catalysts (e.g. multi-metallic, oxides, zeolites) and catalyst/support 

interactions.63 However, these are also challenges for manual mechanism development. It is 

further necessary to directly include uncertainty propagation into the mechanism generation 

procedures to account for enthalpic and entropic uncertainties.54,59  

 

The evaluation of all the parameters of detailed reaction mechanisms from first-principles is 

not possible due to the size of the networks, especially when different active sites and catalyst 

compositions are considered. Therefore, (semi) empirical methods are applied, which can be 

categorized into physics-based and phenomenological correlation. The physics-based 

correlations like d-band center theory,64 linear scaling,65 Brønsted-Evans-Polanyi relations,66 or 

the unity bond index-quadratic exponential potential method67 are developed based on the 

common physics behind the targeting surface processes. However, these methods are not 

always universal.68 An inaccurate empirical or semi-empirical method can lead to a 

misinterpretation of key elementary steps and, consequently, slow down the iteration of model 

refinements. Protocols to assess the accuracy of an empirical method are demanded to facilitate 

the selection of proper methods. New correlations are also required to accurately describe 

complex active site motifs such as coked or oxidized surfaces or phenomena like coverage 

effects. The construction of these correlations requests a more thorough understanding of 

physical essentials of those phenomena. The second category are phenomenology-based 

methods. These methods do not require the descriptor linking to the fundamental physics of the 

targeting reactions. Instead, they map the targeting parameters to the input parameter through a 

“black box” via usage of ML.69 Available approaches are compressed sensing methods,70 

gaussian process regression, and graph neural networks.71 The development of ML methods in 

catalysis is also accompanied by the release of open-source databases of DFT-calculated data, 

which are stimulating the scientific community to produce increasingly more accurate models. 

However, up to now, ML models have been applied mainly to calculate binding energies for 

catalyst screening. The extension to the modeling of kinetic parameters and the inclusion of the 

catalyst materials’ whole complexity represents an important step toward the efficient 

estimation of parameters needed for microkinetic modeling. A proper combination of physics-

based correlations and phenomenology-based may further improve the applicability and 

accuracy. 

 

2.2.3 Hierarchical multiscale modelling 

Software tools for mean-field models are already well established,5,6 but these must be revisited 

to handle the increasing complexity and stiffness of the microkinetics. KMC simulations 

capture the effect of the surface diffusion kinetics and local concentration of reaction 

intermediates, but their high computational cost calls for the development of techniques for 

their speed-up.72 A further challenge is the thermodynamically consistent implementation of 

coverage effects on kinetics and thermodynamics, as well as the multifaceted nature of real 

catalysts. Identifying important reaction pathways has been mostly done via local sensitivity 

analyses, especially with the degree of rate control concept.73,74 In these methods, it is necessary 
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to correctly quantify the correlation among the parameters since this significantly affects the 

outcome.75 However, especially with regard to the uncertainty in DFT-based energetic 

parameters, there is currently a lack of global sensitivity methods even though they provide 

useful insights into the mechanism.54 Further, the uncertainty in the microkinetic model 

parameters has to be propagated to the results to avoid over-interpretation.76 It is still 

computationally demanding to include the microkinetics into multiscale simulation frameworks 

on the reactor scale, like CFD models. An advance in the usage of ML tools to build surrogate 

models that will enable a speed-up of the simulation is necessary to bridge this gap. New 

methods for microkinetic modeling need to be developed to describe the effect of 

electromagnetic fields such as plasma- and photocatalysis.77–80 In contrast, microkinetic 

modeling has only begun to be used more frequently for electrocatalytic systems.81,82 While the 

complex effects of potential on the energetic parameters are already considered, there are still 

difficult obstacles to overcome, such as modeling of the electrode-electrolyte interface and 

solvent effects.83,84 The use of detailed microkinetic models for reactor scale simulations with 

e.g. CFD codes is still computationally demanding. Hierarchical microkinetic modeling can be 

used to derive physically sound global rate expressions for computationally efficient reactor 

simulations.53 Another option is the usage of ML tools to build surrogate microkinetic models 

that will enable a speed-up of the simulation and allow to bridge this gap.85 

 

The proposed advancements of the hierarchical-based multiscale modeling approach provide 

new opportunities to improve our understanding of the complexity of heterogeneous catalysis 

at the atomic level. In the years to come, it will be possible to screen for catalyst materials using 

structure-dependent multiscale models instead of simplified microkinetics for single crystal 

facets. Moreover, with the exploitation of parameter estimation methods, mechanisms can be 

automatically generated on the fly for all catalytic materials. This procedure will help to identify 

catalytic materials and intensify reactors for crucial processes for this century, such as the 

production of synthetic fuels, abatement of pollutions, and the catalytic upcycling of plastic 

waste just to name a few.  

 

 

2.3 Coupling first-principles kinetic models and CFD simulations of catalytic 

reactors 

Catalytic reactors are generally characterized by complex interactions of various physical and 

chemical processes ranging from the reactor’s macro-scale to the active site’s micro-scale (see 

Figure 4a-e). An ideal multi-scale model should be (i) general with respect to the studied system 

and process conditions, (ii) accurate, (iii) strongly linked to the fundamental mechanisms of all 

the occurring phenomena (i.e., explainable), and (iv) computationally feasible, as shown in 

Figure 4f. However, such a model is not attainable and a trade-off between the multi-scale 

model resolution and computational costs is required. Such a trade-off should be made based 

on the model primary application, e.g., improving fundamental understanding, parametric 

studies and optimization, or system control and monitoring. 
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Figure 4: (a)-(e) Different scales in multi-scale modeling in reactor engineering.  The scales of interest in the present section 

are (c)-(e). (f) General trade-off to be considered in multi-scale CFD modeling. 

 

The observed macro-scale reactor functionality is usually strongly dependent on the scale-to-

scale interactions.86,87 Thus, understanding not only the mechanisms relevant to each scale, but 

also the mutual interactions between the scales is of utmost importance to create more efficient 

chemical technologies. To achieve this, it is necessary to adopt a first-principle approach at 

each scale based on the fundamental governing equations, e.g., microkinetic modeling based 

on electronic structure theory calculations and Navier–Stokes equations at the macroscale. The 

macro-scales ranging from the reactor down to the pellet scale (see Figure 4a-d) are governed 

by the transport phenomena and can be described, according to the first-principles approach, by 

the means of the CFD. However, in heterogeneous reacting systems, the governing equations 

are influenced by the source terms either in the volume or at the boundaries stemming from the 

micro- and meso-scale chemical interactions (see Figure 4e).88–91 Ideally, the problem should 

be tackled by a seamless and full coupling across all the scales, from the reactor to the electrons, 

by an intimate connection of Direct Numerical Simulation (DNS) at the macro-scales, detailed 

microkinetic models or KMC simulations at the meso scale and electronic structure calculation 

at the microscale.85,87 Unfortunately, the simultaneous and coupled solution of the characteristic 

equations at each scale is and, for a foreseeable future, will be, far from computationally feasible 

due to the required bridging of phenomena spanning on a broad range of different time and 

length scales. However, depending on the required level of accuracy, it is possible to couple 

continuum models with detailed description of the surface reactivity. For instance, Maestri et 

al. coupled detailed microkinetic models with 1D reactor model for describing the catalytic 

partial oxidation of methane.92 Deutchmann and coworkers coupled detailed microkinetic 

models with 2D and 3D models for the analysis of structured reactors.86,93,94 Wehinger and 

coworkers coupled 3D CFD simulations of packed-bed reactors with detailed microkinetic 

models.89,95,96 Röder et al. achieved a complete coupling even with KMC simulations in the 

context of Li-ion batteries35, as discussed in chapter 2.1.3. The coupling of first principles based 

reactivity in CFD calculation is, however, even more complex and requires specific 

methodology to be achieve. In this view, the most severe bottleneck preventing computationally 

efficient first-principles-based multi-scale modelling of heterogeneous reactors is the coupling 
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between CFD and first-principles kinetic models itself,97 i.e., bridging the scales (c), (d) and (e) 

as shown in Figure 4. 

 

2.3.1 Coupling strategies with CFD and speed-up techniques 

An accurate coupling of microkinetics and CFD is essential to improve the understanding of 

the interactions between surface reactivity and fluid flow. Coupling the different scales get 

computational manageable by solving the equations for the first principle microkinetics and the 

fluid flow separately and transferring the required information between the scales. Different 

strategies for this information transfer can be considered. 

In case of microkinetic models, the analytical expression of the elementary rates allows for their 

direct inclusion into the reactor models.98–100 Consequently, the relevant computational burden 

can be alleviated by considering on-the-fly methodologies like in-situ Adaptive Tabulation 

(ISAT),101–103 Cell Agglomeration,104–107 dynamic adaptive chemistry,108,109 and the Reaction-

Diffusion Manifold (REDIM) reduced kinetic model.110,111 Collectively, these methods are 

often termed chemical acceleration and were developed primarily in the combustion 

community.112 KMC simulations can be included in CFD by an effective decoupling between 

the scales due to the overwhelming computational cost of the single calculation. Doing so, it is 

assumed that the catalyst surface instantaneously adapts and relaxes to a new steady-state 

catalytic activity when new local fluid phase conditions are experienced. This enables to the 

adoption of pre-computed production rates properly tabulated to reproduce the chemical 

behavior of the system.113 The possibility to employ pre-calculated rate data properly tabulated 

paves the way for a new paradigm for the coupling which is the adoption of surrogate models 

of the first-principles detailed kinetic model, which has been applied first for combustion of 

fuels.114,115 Currently, the construction of suitable surrogates for chemistry models in CFD 

simulations is one of the most active research areas in multi-scale modelling in reaction 

engineering. Thus, the complete next section is devoted to its description and discussion of 

potential research perspectives. 

2.3.2 Surrogate models and future research directions 

Replacing the first principles chemistry model by a suitable surrogate can significantly reduce 

the computational cost. However, the quality of the surrogate model becomes a critical factor 

in this case, as it significantly affects the accuracy of the overall multi-scale simulation. The 

derivation of simplified kinetic models such as the macroscopic and power-law kinetics from 

microkinetic models can be considered an attempt of the generation of surrogate models and it 

has been widely employed in the past.88 Recently, the breakthroughs in Machine learning (ML), 

a subset of Artificial Intelligence (AI), proved to be extremely promising in developing efficient 

surrogates of the detailed chemistry. Due to their nonlinear and non-parametric structures, such 

models can retain detailed information of lower-scale system dynamics and can be applied 

across different systems.52,85 One way such ML techniques can be used is to surrogate the entire 

chemistry time-integration step.116 In such an approach, the ML model learns the direct 

mapping between the meso-scale inputs (such as current local chemical composition, operating 

conditions) and the final states of the meso-scale processes (Figure 4d). This eliminates the 

need to compute the time-evolution of the meso-scale chemistry and significantly accelerating 

the computational runs. Another approach that has gained recent attention is to use ML models 
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such as Artificial Neural Networks117, Gaussian Process modeling118, and Random Forests119 

to surrogate the source terms like the net reaction rate. This approach is particularly beneficial 

for systems with detailed/large microkinetics or KMC models. Therefore, the ML techniques 

can both be used to surrogate the chemical step as well as approximating directly the source 

terms like the net reaction rate85,119. 

 

However, the application of ML techniques in the multi-scale modeling of heterogeneous 

catalysis is still in a nascent stage and further research is needed on several fronts. One of the 

primary challenges associated with ML is that the quality of such black box model predictions 

is heavily dependent on the quality of the training data.120 Therefore, to efficiently train ML 

models, high quality training data needs to be generated from lower-scale first-principles 

simulations. Even for highly accurate first-principles simulations, some modeling discrepancies 

will be present based on the modeling assumptions influencing the results and propagate across 

the scale affecting the accuracy of the entire process.121 Another challenge in building accurate 

ML models as surrogates is the amount of training data needed to learn the true internal 

dynamics.122 Since the training data is primarily generated through computational runs of 

lower-scale physics, generating a sufficiently large data set for model learning can be 

computationally unfeasible. Moreover, in physical systems the underlying dynamics is often 

nonlinear and space filling sampling methods may be insufficient for model learning.123 Recent 

advances in the paradigm of physics-guided machine learning techniques can prove useful in 

this regard, as in such methods the exploration space for data-point selection is not only based 

on statistical sampling techniques, but also constrained by the physical governing equations of 

the system.85,124 

 

Applying machine learning in system design also suffers from the lack of physical or chemical 

relationships, due to the black box form of such models. However, for multi-scale simulations, 

understanding the underlying relationship and coupling of inter-scale phenomena is equally 

important as the prediction accuracy. Traditional ML models such as neural networks and 

ensemble models are limited in this sense and a shift is needed to more sophisticated symbolic 

AI techniques.125,126 Such techniques are capable of revealing the internal governing equations 

of the system, thereby increasing the explainability of the model predictions. As surrogate 

models replace the first-principles kinetics, care should be taken to estimate the modeling 

uncertainties that may arise as a result of the lower-scale information transformation, averaging 

and coarse-graining.127 Therefore, surrogate modeling should go hand-in-hand with rigorous 

uncertainty quantification techniques, an emerging research area in general, almost completely 

unexplored with respect to the multi-scale modeling in reaction engineering. 

 

Finally, despite the large impact that is expected by surrogate models, methodologies that 

effectively combine surrogate models and full coupling can be suitable to further mitigate the 

computational cost without penalization on the accuracy. For instance, zonal approaches can be 

considered. They have been proposed in cold fluid dynamics as detached eddy simulations, 

which switches between Reynolds averaging and large eddy simulation to resolve turbulence.128 

A reactive zonal approach is deemed to distinguish simulation areas (zones) where a direct 

coupling to first-principles kinetic models is necessary, and zones where a description via 



 14 

simpler surrogated kinetic models is sufficiently accurate. However, finding reasonable criteria 

for the definition of the zones requires further research. 

 

2.4 Catalyst-reactor-plant systems 

Especially for technically relevant systems, such as catalytic fixed-bed or structured reactors, it 

is necessary to bridge scales from the catalyst particle/pellet over the reactor to the plant scale, 

as shown in Figure 5. The purpose for such technical systems is not necessarily a most detailed 

simulation of the given system; the describing model should rather be as simple as possible, but 

as exact as necessary. For optimization purposes, further model reduction is often required to 

account for numerical feasibility, while the validity range of a model must still be complied. 

Therefore, an adequate degree of abstraction is required, while addressing equal basic 

assumptions and uncertainty levels on each of the bridged model scales. The three levels of 

reaction engineering modeling and simulation discussed hereafter are (i) particle, (ii) reactor, 

and (iii) plant scale, respectively. 

 

 
Figure 5:Multiscale modeling of catalyst-reactor-plant systems. Full arrows represent the current state of the art and are still 

subject of ongoing research. Dashed or blank arrows address hot or future research topics, e.g., including resolved catalyst 

pellet pores in PRCFD simulation, further coupled with reactor simulation at industrial scale. Partly adopted from.88,129 

 

2.4.1 Particle-scale simulations 

In most cases, powder materials, which are often used for lab-scale intrinsic reaction kinetics 

acquisition, are not used in industrial scale catalytic reactors, as the pressure drop in the catalyst 

bed would be too high. Consequently, catalyst pellets with a size of at least a few millimeters, 

or structured packings are applied, typically in reactor tubes of length of a few meters and a 

diameter >20 mm. Concentration and temperatures gradients inside these pellets are present, 

which affect the overall performance of the system, due to complex interplay of reaction 

kinetics with mass and energy transport phenomena. 

 

The quickly growing field of (particle-resolved) computational fluid dynamics (PRCFD) will 

play a major role towards understanding the interaction of these phenomena.90 PRCFD allows 
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for detailed simulations of flow within complex geometries. Coupled with microkinetic models, 

a non-intrusive, invaluable tool is given to investigate heterogeneous (fluid-solid) reaction 

systems and understand the underlying complexities. Today, PRCFD can be considered state-

of-the-art, as technical issues are widely addressed. Although, drawbacks still arise from limited 

computational power, which hinder the full-scale simulation of industrial scale fixed beds with 

thousands of pellets, besides that the numerical generation of such large packed beds is 

challenging. Especially for random beds of non-spherical particles – e.g., hollow cylinders are 

often used in industry – the most challenging part is the volumetric mesh generation of contact 

areas of particles among each other and of particles and reactor wall, that strongly influences 

the heat transport in the system.130–133 Combined with the development of powerful 3D imaging 

techniques, such as X-Ray tomography and electron tomography, PRCFD will enable going 

beyond conventional engineering approaches. As an example, Koči and coworkers investigated 

the detailed reaction-transport in gasoline catalytic filters, where several portions of the material 

were investigated to extract average properties of the system (e.g., porosity, pore diameter), 

correlate these to the macroscopic features (e.g., permeability) of the support and use the latter 

to estimate the catalyst effectiveness more accurately.129,134–136 

 

Nevertheless, as pore diameters in catalyst materials can span several orders of magnitude, from 

nanometers to micrometers, resolving every single pore in an entire fixed-bed reactor is 

computationally out of reach in the near future. Therefore, the conventional modelling 

approach, which treats the catalyst moldings as a homogeneous medium with effective/lumped 

parameters for reaction and transport phenomena, will continue to be developed, e.g., for 

application in reactor optimization and control.137,138 A pertinent example is the literature of 

multi-component mass transport models in porous media. The Dusty Gas Model,139 the Binary 

Friction Model,140 the Capillary Interpolation Model,141 the Modified Binary Friction Model,142 

and the Adaptive Binary Friction Model143 were each designed as an improvement of their 

predecessor. One possible research direction will be the inclusion of network effects, such as 

pore size, length, and connectivity distributions, as it was done for the Dusty Gas Model144 as 

well as anisotropic catalyst pellet properties, which can be of significance as shown more 

recently.145 Compared to mass transport models, heat transport models for porous media are 

scarcer in literature, which is most likely due to the large number of possible structures in solids 

and absence of experimental data to validate these models. In this context, the development of 

spatially distributed probing techniques will give rise to new possibilities for generating 

experimental data for model validation.146 The future application of these techniques in other 

reactors of recent interest is expected, such as lab-scale reactors like Temkin147 and single pellet 

string reactors,148 respectively. 

 

2.4.2 Industrial reactor-scale simulations 

Industrial reactors are characterized by a scale in the range of 0.1-10 m in both axial and radial 

direction. These systems can be distinguished in fixed bed reactors (i.e., pellets or structured 

supports are not moving with the flow) or moving bed reactors (i.e., fluid flow and solid flow 

coexist), reactants and products can be present in a single or in different phases and finally 

systems can be adiabatic or can exchange energy with the environment (i.e., multi-tubular 

externally heated/cooled reactors). In the following, the focus is on two-phase fluid-solid 
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applications, while it can be extended to three-phase gas-liquid-solid application, e.g., trickle 

bed reactors, where also particle wetting should be assessed.149 

 

The change of the representative scale required to move from particle scale to industrial reactor 

scale requires the use of different mathematical approaches to maintain a sufficiently ‘low’ 

computational cost. In the early 1970’s, continuum reactor models with resolution in 1D or 2D, 

considering temporal evolution of the system and considering kinetics with different orders of 

complexity were already proposed.150 In the basic 1D models the different phases are either 

treated as a single, pseudo-homogeneous continuum or as two heterogeneous phases and are 

based on a multitude of engineering closure correlations.151 To account for radial gradients, 

two-dimensional models were developed. These models may also include mass transport 

limitations and non-isothermal conditions in catalyst pellets.  

 

Recent advances in computer science have led to possible improvements in these approaches. 

On the one hand, detailed PRCFD and CFD simulations of different structured supports can be 

used, as already discussed in chapter 2.4.1, to provide a one-to-one comparison with the 

experimental data. Moreover, PRCFD can be used as cost-efficient studies for investigations of 

novel reactor concepts for process intensification.95,152,153 On the other hand, rigorous CFD 

simulations are at the basis of the hierarchical approach. These simulations can be used as well 

to perform in-silico experiments: diverse parameters and process conditions can be finely 

adjusted towards the derivation of descriptive, physically driven correlations, describing the 

transport properties that can be included in conventional reactor models.154,106,96,155 Thus, 

PRCFD is a reliable means to assess engineering correlations for estimation of transport 

properties (i.e., pressure drop, heat and mass transfer coefficients), to bridge the gap between 

the scales towards (industrial) reactor and process simulations. 

 

In order to reduce the computational burden of PRCFD simulations, some authors proposed a 

hybrid modeling approach to be promising: areas in the reactor of steep temperature or 

concentration gradients, e.g., hot spots, are modeled by PRCFD, whereas the remainder is 

covered by a porous medium models. Meinicke et al. introduced a hybrid scale CFD approach, 

first of all to suppress entrance effects to the fully resolved simulation zone of perfused solid 

sponges (this corresponds to the particle scale).156 The main purpose is to guarantee reasonable 

boundary conditions for the rigorously simulated zone, while it is surrounded by the embedding 

zone, handled with an effective porous medium approach (macro scale). Elegantly, to avoid 

artificial jumps at the interface between those zones, a transition zone was introduced.156 A 

similar approach should be developed and applied for catalytic fixed-bed or structured reactors. 

 

Nevertheless, even though effective medium models are computationally much less expensive 

than PRCFD, they might still be too extensive for answering recent questions at the reactor 

scale. e.g., the design of reactors, which can be operated dynamically depending on the given 

reactant load, which is a focus of research in the context of Power-to-X applications. This adds 

an additional level of complexity to the reactor design.157,158 For such cases, computationally 

efficient models with discontinuity are necessary. Machine learning tools can be applied for 

such cases for reducing the model complexity at reactor scale, see also the discussion on 

modelling at the plant scale below. For example, a neural network can be trained to calculate 
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the catalyst effectiveness factor depending on the present and past process conditions, based on 

experimental data or simulation results. Nevertheless, the full potential of machine learning 

tools has not yet been explored in depth. Schweidtmann et al. identify six key challenges for 

upcoming research work in this respect.159 Therefore, another approach is dedicated to tailored 

model reduction approaches, which are based on approximate solutions of the underlying mass 

and energy balance equations. So far, most of the literature approaches deal with the steady-

state problem, but advances for dynamic scenarios160 are necessary for future considerations. 

 

Considering reactor-scale simulations for fluidized beds, the tracking of single particles in the 

system and their evolution in time and space is computationally demanding. Therefore, to 

enable industrial scale simulations of fluidized bed reactors, approaches to reduce 

computational costs are required. One option is the coarse grain model,161 where different 

particles are grouped in virtual grains with bigger size that are then solved considering possible 

interactions and real motion of the particles. Contrarily, the Euler-Euler approach models the 

solid phase as a homogeneous phase and effective transport properties of the solid are 

considered, for which the energy and mass balances are solved while accounting for the 

interplay between the different phases. In particular, continuity at the boundary between gas 

and average solid phases are imposed. This approach has been successfully adopted to analyze 

reactors with intra-phase mass and heat transfer resistances including microkinetics 

descriptions.91,162 Especially, the coarse grain model seems promising for future reactive 

fluidized beds including multi-scale modeling considerations. 

 

Finally, other relevant approaches have been introduced in the last years to introduce effects of 

non-idealities and statistical variations in idealized reactor simulations, that can have a strong 

impact on local and overall properties of the system. As an example, Freund and coworkers 

studied the effect of a statistical variation of the activity of the catalyst bed on local temperatures 

inside the reactor. For an exothermic reaction, with respect to the ideal case (i.e., averagely 

distributed catalyst), nonideal dilution may lead to temperature deviations in the range of ± 10 

°C, which are considered significant with respect to reactor design under safe operation.163 

PRCFD could give even more detailed insights into diluted fixed-bed reactors, where active 

and inert particles are spatially resolved. Another aspect to be considered in multi-tubular 

reactor models is the multiplicity of possible operating conditions inside the single tubes and 

non-idealities. In multi-tubular reactors, in fact, pellet distribution cannot be equal, and also the 

cooling/heating tubes.164 Additionally, the integration of catalyst deactivation (a phenomenon 

that typically takes place on a long-time scale) in model-based reactor design and optimization 

has recently been shown,165 where possible strategies for operations with deactivating catalysts 

were compared. Consequently, very different requirements are formulated for industrial 

reactor-scale simulations: computationally efficient models, transient formulation, flexible 

consideration or omittance of phenomena based on pre-defined criteria. 

 

2.4.3 Plant-scale simulations 

Including detailed industrial reactor models in process scale simulations is challenging as the 

computational cost of the reactor block should remain limited. Therefore, a small number of 

contributions incorporating industrial reactor models in a process simulator (e.g., Aspen Plus) 

include user-defined 1D reactor models.166,167 Thereby, the model detail goes beyond built-in 
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power law or LHHW type kinetics in ideal and isothermal reactors and beyond intrinsic kinetics 

as mass and heat transfer on the particle scale are accounted for. Yet, 2D or PRCFD simulations 

remain computationally too expensive, despite the continuous increase in availability of 

computational power. Another, less detailed and physically meaningful approach for process 

simulation is the use of response surface models (RSM), which are constructed from lab-scale 

experiments or data available in the open literature.168,169 To achieve an optimal balance 

between model accuracy and computational cost, such RSM models are, however, relevant. The 

data to train the model can be envisaged to be obtained from PRCFD simulations, or 2D 

simulations if the former would still be too computationally expensive. A simulation design, 

i.e., the equivalent to a design of experiments, can then be developed and the corresponding 

simulations can be run with the very detailed model, as demonstrated during the optimization 

of the oxidative coupling of methane.170 After development of the multiparametric equations 

constituting the RSM model, some validation simulations could be performed with the detailed 

PRCFD model to finally verify the accuracy of the reduced model. Upon successful validation, 

the RSM model can be then used for the coupling with a process simulator. Along similar lines, 

machine learning techniques, such as artificial neural networks, can be applied to obtain 

mathematically inexpensive models. While these are black box models and interpretation 

thereof is dangerous171, such tools are envisaged to be useful on the process scale, as the need 

for fundamental information on the reactor level during process simulation is limited. Most 

important is to retain the accuracy on the model simulations, as e.g., successfully demonstrated 

for the Fischer-Tropsch synthesis using a ML model trained using data generated from a 

microkinetic model.172 Interpretability techniques have been used to demonstrate that the trends 

predicted as a function of the operating variables is indeed present in the ML model, albeit that 

no fundamental relationship can be formulated. Nevertheless, as ML model simulated outlet 

values closely correspond to the ones simulated with detailed models, ML models can be 

envisaged as a potential tool for upscaling purposes. The reasoning followed for the reactor can 

also be expanded to other unit operations and coupled to multi-objective evolutionary 

algorithms for optimal equipment sizing.173 This implies that for each unit operation multiple 

(sets of) equipment modules are iteratively evaluated, aiming at the development of a process 

with a low minimal capacity, high maximal capacity and low capital investment for maximal 

process flexibility. The set of equipment modules is thereby treated as a genetic strain, which 

is subject to single-point crossover (of two parent sets) and/or mutation. The offspring are 

simulated in Aspen Plus and added to the module set if they converge properly. The sequence 

is repeated until a stopping criterion is achieved, e.g., no successful offsprings are generated in 

an iteration. In order to obtain reliable lumped models on the plant-scale simulations, physical 

and chemical constraints174 should be incorporated, and the data used should follow the FAIR 

principles, i.e., findable, accessible, interoperable, reusable.175 

 

3 Conclusions 
Multiscale modeling in reaction engineering is highly important and powerful. It is surely one 

of the most challenging and likewise most interdisciplinary research topics in the chemical 

engineering community, today. Although it is progressing fast in terms of methods 

development, it is only slowly applied by most reaction engineers. Based on the discussion 

given above, we summarize the main trends and fields of actions as follows: 



 19 

 

• Surface changes in reactors and cells, whether due to aging or dynamic operation, are gaining 

increasing attention. Understanding and controlling their inherent multiscale nature in reactors 

requires coupling of molecular surface models on different levels with continuum models. 

Attention needs to be given to implement realistic, local conditions in DFT or AIMD models 

for parameterization of KMC; here, stronger coupling of the scales seems promising. Further, 

bidirectional, direct coupling of KMC and continuum scale simulations have been shown to 

reach the scales from ns to hours, and nm to cm. Methods to reduce complexity and 

computational cost are welcome.  

• Three main challenges are connected with hierarchically-based microkinetic analysis of 

heterogeneous catalytic processes: the complexity of the material and the reaction mechanism 

as well as the parameter estimation. 

• Coupling CFD with detailed reaction mechanisms is especially computational demanding. 

Although several acceleration methods already exist, speed-up factors are typically below 100. 

Therefore, surrogate models, especially those derived with ML, are very promising. 

• Multiscale modeling of catalyst-reactor-plant systems should be based on PRCFD. Huge 

progress has been achieved in the last decade. However, the description of the transport 

phenomena considering the complex porous structures coupled with heterogeneous reaction 

inside porous catalyst particles is still not well elaborated. Since PRCFD simulations are 

computationally demanding, process and plant level models can only consider a portion of 

information from the PRCFD level. Recent applications, especially for optimization purposes, 

make use of ML to develop surrogate models on the plant level. 

• For coupling purposes between scales, surrogate models based on ML techniques seem to be 

very promising and have only begun to be applied. Similar research questions address 

appropriate training sets, incorporation of physical laws in the surrogate model, as well as 

transferability between codes. 

• In addition, FAIR principles are needed for scientific data stewardship and management in 

reaction engineering in order to facilitate model development across the disciplines and scales. 

• Uncertainties at all scales should be quantified thoroughly, since their propagation could lead to 

severe errors at larger scales. As uncertainty quantification is computationally costly, use of 

efficient methods is crucial. 

• Many research groups have developed their specific code for a subset of applications. This leads 

to difficulties for incorporation of this code into existing or new ones. Hence, it is indispensable 

to have unified tools that are operating-system- and software-independent. Standardized 

graphical user interfaces (GUI) or application programming interfaces (API) would allow 

researchers to set up new models more quickly and efficiently and narrow the gap between 

scales. 

 

This perspective paper is meant to promote the field of multiscale modeling in reaction 

engineering and facilitate research and a common understanding. While much of the 

highlighted research needs address theoretical aspects, especially for coupling between 

different scales, it must be emphasized that also experimental insights are very much needed on 

the corresponding scales.40 To achieve the above mentioned ambitious future goals, scientists 

from different research communities, like data science, mathematics, chemistry, chemical 

engineering, and physics, have to work collaboratively. Therefore, we invite researchers to join 

our mission and discuss methodologies and concrete applications in the community. 
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