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and mappings O(F) - O(E), B(F)—+ P(E), P(F)—~ Y(E) and W(F) — ¥(E)
building up this diagram te a commutative cube. The square

GZ‘I(EL/F) = O, (E'[F)
P, (EJF) — P,(E'[F)

is the cokernel of this mapping of commutative squares. It is known that this coker-
nel is again a commutative square. Proposition 7 is proved.

Added in proof. Since March 1978, on the same subject, the author completed: Les
espaces de Banach plats sont ultrgplars, Bulletin de la Société Mathématique de Belgique; Fonctions
& valeurs dans les quotients banachigues, Bulletin de I'Académie Belge, Classe des Sciences; Holo-
morphic functional calculus, Studia Math. vol. 75; and Quasi-Banach algebras, ideals, and holo-
morphic fanctional calculus, ibid., vol. 75, all four at present in publication.
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The multilinear structure of the category ¢B is defined by putting a gB-structure
on the vector space gB(E/F, E'fF'). Multilinear mappings E,/Fy x ... X E/F; -
- E'[F' are defined by induction.

Strict multilinear mappings are specially interesting. These are induced by bound-
ed multilinear. mappings w;: Ey % ... xE — E’ such that w(x,, ..., q)e F" as
soon as one of the x; belongs to the corresponding F;. All gB-multilinear maps
E JFy x ... XE[F, — E'[F' are strict if the E;/F; are standard gB-spaces.

The tensor product which can be defined in ¢B is a right-exact functor as it
should be. It is unfortunately not an extension of the tensor product which is defin-
ed in the category of Banach spaces. If F is the closure of F, EjF is the “Banachiz-
ation™ of E/F. The projective tensor product of two Banach spaces is the Banachiz-
ation of their gB-tensor product.

We are interested in gB-algebras. These are gB-spaces & with a bilinear multi-
plication belonging to g,(&#, &; &). The gB-algebra is strict if its multiplication
is a strict bilinear mapping. It is commutative, or associative if its multiplication is
commutative, or associative. The structure of a gB-subalgebra can be put on the
center of a gB-algebra.

Every gB-algebra is isomorphic with a strict gB-algebra. A strict gB-algebra
is the quotient of a Banach algebra by a two-sided Banach ideal. An associative
gB-algebra is isomorphic with the quotient A/ of an associative Banach algebra
by & Banach ideal. The isomorphic A/o can even be chosen in such a way that
Z(A)e) = (Z(A+ ae)/ac where Z(4/«) and Z(A4) are the centers of Afx and of 4.
Every commutative and associative gB-algebra is isomorphic with the quotient of
a commutative and associative Banach algebra by a Banach ideal.

This paper is a sequel of [2].
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Let E/F and E'/F’ be gB-spaces. Call B*(E[F, E'|F’) the space of bounded linear
mappings E -+ E’ which map Finto F’, and GB°(E/F, E'[F') the space of bounded
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linear maps E - F'. We know that §B = §B"/§B°. The spaces 4B, 3B° become

Banach spaces, when we norm them by

Ity {1 gz = sup {lfu x|l [l yile] Xl < 1, liylle < 1},

1y il z80 = sup {llw, xlle| {Ix]le < 1}.

Derntrion 1. The guotient Banach structure of ¢B(E[F, E'(F’) is given by
the isomorphism of this space with

4B /iB°(E[F, E'[F").

In this way, §B becomes a functor gB* xgB — ¢B. (If K is a category, K*
is the opposite category, functors from K* are contravariant functors from K).

DerINITION 2. Let EjfF; (i=1, ..., k) and E’/F" be Banach quotients. Then
GB(E[Fy, ..., EyfFy; E'[FN = GB(E, [F;, §B; ((EofF, ..., Ey/Fy; E'[F)),

where 4B, = gB.

4B, is a functor (3B*)* x3B — §B. We observe that this functor is symmetric
in E,jF,, ..., E;/F,, ie. that permutation of the arguments induce functor iso-
morphisms. As a matter of fact

PROPOSITION 1. §B, is naturally isomorphic with §BL /B, where §BL(E [F, ...

s Ex[Fy; E'[F") is the space of bounded multilinear mappings E, x ... xEx - F',
while GB(EL[Fy, ..., E/Fy; E'[F'Yis the space of bounded multilinear mappings u, :
rEyx ... XEy — B such that uy(x,, ..., x )& F' as soon as one of the x; is in
the corresponding F;. Both B and GB} is equipped with a normt which makes it a Ba-

nach subspace of the space of bounded multilinear mappings E, x ... xE, —+ E'.
We can let '
ety flzmo = sup {lls Gy - xr] [l < 13,
lezgllzm = suP{““L(xJ- coes X [ms [[02 (1 ---syk)HF'l
[Ixills, < 15 11ylls € 1, one of the ||pjlls; < 1}

‘We want to define a gB-structure on gB(E/F, E'[/F’). A quoticnt Banach struc-
ture is defined on a vector space X by an isomorphism ¢: X —+ U/V where U/V
is a Banach quotient. Two such isomorphisms ¢;: X — U;[V; define the same ¢B-
structure if @, o g3t Up/V, — U, /¥y is an isomorphism. of the category ¢B.

Let E/F and E'/F’ be Banach quotients. Let s: E,/F, — E[F, s': E1[F —
— E'(F' be isomorphisms of the category qB (e.g. pseudo-isomorphisms). Assume
that E,/F; is standard. The linear mapping u — s~* o %0 s is a linear bijection

Ey[FY).

The space 4B is a Banach quotient, this bijection defines a Banach quotient siruc-
ture on gB(E[F, E'[F).

9B(E(F, E'[F') — qB(E, [Fy, E{/F}) = §B(E./F,,
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PROFOSITION 2. This structure does not depend on the choice of the isomorphisms
s, 8 (with E,[F; standard).

The fact that the gB-structure defined on qB(E/F, E'{F") does not depend on
the choice of s: E;/F, - E/F is easy. We assume that B, /F, is standard. Let E,/F,
be a new standard Banach quotient and ¢: E,/F, — E/F be a pseudo-isomorphism.
set™*: E,/F, » E/F, is a strict isomorphism, since it is an isomorphism of the
category ¢B and both E,/F, and E,/F, are standard. The mapping u — uo 5o -2,
GB(E,/Fy, E1/F)—~ qB(Ez [F2, E{[F1) is therefore a strict isomorphism, hence an
isomorphism.

The proof that this gB-structure does not depend on the choice of s': E{/F| —
- E'[F’ is alittle bit trickier becanse we do not assume that E}/F; is standard. Let
t': E3/F3 — E’[F'be a new isomorphism. The mapping u - t’ o 5 » 1 is a bijection
GB(E\|Fy, E1/F1) = B(E,[F,, E;/F;). We must show that it is a morphism.

The isomorphism t' e s'~*: E{/F; -+ E,/F; can be factored #' os'~1 = 7o ¢~1
where o is a pseudo-isomorphism U/V — E;fF;, and v is a strict morphism. The
mapping ¢ — o o v is a strict morphism and a bijection §B(E, /F,, U[V) - GB(E,[F,,
E1/F}). This mapping is therefore an isomorphism of the category ¢B. Its inverse,
the mapping # — ¢! o is a morphism. So is the composition u— e lon
=t o8 1oun. .

DEFINITION 3. The quotient Banach structure of qB(E(F, E'[F") is the quotient
Banach structure described in Proposition 2.

DeFmNiTION 4. We define by induction

_ gB((EF, E'IF") = 4B(EIF, E[F"),
4B (E\/Fy, ..., E4/F,; E'[F"y = gB(E,|F., qBy..1(E2/F2, ...,
Elements of this space are gB-multilinear maps E,/Fy X ... XE /R — E’/F’.

Elements of §B(E,/F,, .., Ei/F; E’{F') are strict multilinear maps. Note that
all gB-multilinear maps are strict if the Banach quotients E;/F; are standard.

Ey /Py E'/F'))-‘

PROPOSITION 3. The mapping (u,v) — v o u belongs to
gB, (4B(E[F, E'[F"), 4B(E'[F', E"[F"); qB(E[F, E" [F"}).

This is clearly the case when E/F, and E’/F’ are standard. But all Banach quo-
tients are isomorphic to standard ones.

2

We must now discuss the tensor products of Banach quotients, Their existence is
not difficult to prove.

ProOPOSITION 4, Let E,/F, and E,|F, be Banach quotients. It is possible to find
a Banach quotients E,[F,®, E,[F, and an element

® €qBy(EfFy, E;JF3; By [F1®,E,[F;)
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in such a way that every u € qB,(E,(F,, E,/F,; E[F) factors in a unique way y
=1, 0 Q with
uy €qB(E:[F,®4E»[F,; E[F).

Construction of the tensor product of standard quotients will be sufficient. Let
E, = L(X;), E,=1,(X;) and consider the quotients Ei/Fy, E;/F,. Every gB-bi-
linear mapping u: E,/F; x E,[F, — E[F is strict, is induced by a bilinear mapping
E, x E; ~ E, whose restrictions to E1 xFy and to Fy x E, have their images in F.
The bilinear mappmg extends to E1®E2 The spaces E; and E, havmg the a.pprox1-
matlou property, E1®j.'?z and Fy ®}E‘2 are Banach subspaces of E1®E2 Scis E1®F1+
+FQE,.

Let U= E\QE,, V= E,@F+F&E,, and let

E,[F1®,Es/F, = UJV.

The tensor product mapping £, xE; — EléEz induces a (strict) bilinear mapping
E,|Fy X E,jF, — UfV. We shall call this bilinear mapping ®. The extension to
E,@E; of abilinear mapping E, x B, — Einducingu: E, [F, x E,/F, — E/Finduces
a morphism u,: U/ — E[F. Clearly, u is the composition of @ and of »,. And u;
is the only morphism U/V — E/F having this property.

PROPOSITION 5. If A is free, the functor A[0®, is exact. In general, E\[F,®,
is a right-exact functor.

The right-exactness of the tensor product follows from. general categorxcal
principles. The statement: 4 — B~ C — 0 is exact, i.e. C is the cokernel of the
mapping A -+ B means that a mapping B — U factors through the mapping B—+ C
if and only if its composition with the mapping 4 — B is zero, and the factorization
is unique. This again is equivalent with the statement: the sequence 0 — gB(C, U) —
— qB(B, U} — ¢B(4, U) is exact for all U.

Lét now 4 — B C— 0 be exact, and let D be any object of the category
gB. The sequence

0> gB(C, 4B(D, U))-*qB(B qB(D, U)) - qB(A aB(D, U))
is exact, hence also
. 0> ¢B(C®,D,U) - ¢B(BO,D, U) » 4B(CS®,D, U)
and 4®,D— B®,D -+ CQ®,D — 0 is exact.

Let now A = L;(X) be a free object. To prove that the functor AQ, is exact

we shall use the fact that

LONOQ,EF = L/(X, E[F) = 1L,(X, E)/L,(X,F)

if 1,(X, E} is the Banach space of p: X — E such that ||g|| = 3. ||e(®)]l < <.
This is verified by looking at the construction of the tensor product (proof of Prop-
osition 4) when E/F is standard. If u: EfF — E'{F’' is a strict morphism induced
by ui: £ - EY, the napping ¢ — u#; o ¢ induces a strict morphism /,(X, E/F) —~
- 1,(X, E'[F"). We may call /,(X, ») this morplusm If u is a pseudo-isomorphism,
L(X, u) is'a pseudo-isomorphism.
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This allows us to interpret /,(X, ) as a functor gB — gB. This functor agrees
with 7, (X)/0®, when the objects E/F, E'/F’ are standard and the morphisms z: E/F —
— E'/F' are strict. It agrees therefore with ,(X)®, whatever the objects and what-
ever the morphisms we consider.

To show that /,(X,-) is an exact functor, it is sufficient to prove that it maps
a short exact sequence onto a short exact sequence. And this is the case. Remember
that every short exact sequence of ¢ has the form

0— E/F - Eff - E[FF -0
(modulo an isomorphism). It is clear that the image sequence is exact.

3

Something must be said about the projective tensor product of two Banach spaces,
and the tensor product of these spaces in the category gB. We shall systematicaily
identify a Banach space E and the quotient £f0. A Banach quotient E/F is “iso-
morphic with a Banach space” when F is a closed subspace of E.

DErINITION 5, The Banachization of a Banach quotient EJF is the Banach space
EJF where Fis the closure of F in the Banach space E. We call 5(E/F) this Banachiz-
ation. The morphism E/F — EfF induced by the identity E - E is the canomcal
mapping.

The following is trivial.

PROPOSITION 6. Every morphism u: E[F - X of a Banach quotient E|F into
a Banach space X factors in a unique way u = u, o o where o: E[F — b(E/F) is the
canonical mapping and uy: K(E|F)— X is a bounded linear mapping of Banach spaces.

The next proposition is a corollary of this triviality.

PROPOSITION 7. The projective tensor product of two Banach spaces Ei and
E, is the Banachization of their tensor product in the cdtegory 4B.

Life would be very nice indeed if the gB-tensor product of two Banach spacas
were isomorphic to a Banach space. This is unfortunately not the case in general,
as was shown by G. Nogl [1]. Nogl shows that this property is related to the flatness
of 2 Banach space.

DEFINITION 6. A Banach quotient E/F is flat if the functor E/F®, is an exact
functor.

ProPOSITION 8. A flat Banach space U has the approximation property. Let
U be a Banach space with the approximation property. The following properties
are equivalent

() U is flar,

(i) U®,,E is a Banach space whenever E is a separable Banach space,

(iii) U®F is a closed subspace of U®I1 whenever F is a closed subspace of 1,

(iv) UQF is a closed subspace of U &1, (M) whenever M is a set,and F is a closed
subspace of 1,(M),

(V) U®,E is a Banach space whenever E is-a Banach space.
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The implication (iv) = (v) = (i) = (ii) = (iii) are either given by Noél (loc.
cit.) or very soft analytic results. Implication (iif) = (iv) is not difficult once the
reader realizes that the problem is fundamentally countable. A complete proof of
Proposition 8 will be published elsewhere.

PROPOSITION 9. An infinite-dimensional reflexive Banach space is not flat.

This is essentially Proposition 9.6 of G. No&l (loc. cit.) once an obvious misprint
has been corrected.

It appears (private conversation with Nogl) that /,®,/; is not a Banach space.
The result seems likely, but I do not find the result in No&l’s published results, In
any case, we can associate a Banach space F to every infinite-dimensional, reflexive
Banach space with the approximation property E, in such a way that EQ, F is not
a Banach space.

4

DEFINITION 7. A quotient Banach algebra (&,+) is a quotient Banach space
& on which a multiplication is defined by an element of gB,(«#, & ; ). The quo-
tient Banach algebra is strict if its multiplication belongs to §B,(s#, & ; ).

The left regular representation a — (x — ax) and the left regular representation
a = (x = xa) are elements, m’, m" respectively of qB(.szl ,qB(st, o).

DermrTIoN 8. The quotient Banach algebra (of,-) is associative if its multi-
plication is an associative operation. It is commutative if its multiplication is 2 com-
mutative operation. The center of an associative quotient Banach algebra is
Ker(m" —m') where m' is the left regular representation and m’’ is the right regular
representation. )

We note that the center of a gB-algebra is a gB-subspace and a subalgebra ...
it is the center of the algebra (of,-).

DeFmNITION 9. A gB-algebra morphism (,') — (o;,+) is a linear mapping
which is a morphism both for the gB-space and for the algebra structure.

PropOSITION 10. Every quotient Banach algebra is isomorphic to a strict
quotient Banach algebra. A strict quotiemt Banach algebra is isomorphic to the
quotient of a Banach algebra by a Banach ideal.

Every quotient Banach space is isomorphic to a standard one. An algebra
structure on & standard space is strict.

Let of = EfF and me a'?q',(.gl,'.d; o). Then m is induced by m;: EXxE— E
where m, is a continuous bilinear mapping. And F is a Banach subspace of E, ny
maps ExXF and FxE into F, hence F is a Banach ideal of E.

Of course, if 4 is a Banach algebra, if « is a Banach ideal, multiplication is
a bilinear mapping 4 x4 — 4 which induces an element of 67,(d/e, Afa; A/2),
ie. Afa is a strict. quotient Banach algebra, ’
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It may be worth saying explicitly that a Banach ideal « of a Banach algebra 4
is an ideal on which a Banach space norm exists which is stronger than the norm
induced by that of A. This norm is an ideal norm on &, i.e. if « is a left ideal, multi-
plication (@, x) — @- x is a continuous bilinear mapping 4 X« ~ o

Let Ay /oy and Ap/o; be two strict quotient Banach algebras, let z: 4, fa; —
— A,fu, be a strict morphism of quotient Banach spaces, induced by u,: 4, — A,.

ProposITION 11. u is a strict morphism of quotient Bamach algebras iff u, is
a homomorphism of A, inte A, modulo a,, i.ec. iff

s (xp)—uy (X, ()) € et
for all x,ye A.

This is obvious, The regular representation allows us now to prove

PROPOSITION 12. An associative gB-algebra is isomorphic fo the quotient of an
associative Banach algebra by a two-sided Banach ideal.

We assume that the given algebra A/« is a standard quotient Banach space.
The multiplicative structure of A/« is induced by a Banach algebra structure on A.
The fact that 4/« is associative means that 4 is an associative modulo «, i.e. that
the associator mapping

(x, ¥, 2) = x(yz)— (xy)z
maps 4 x4 x 4 into a. Of course, this is a bounded trilinear mapping of 4 x4 x 4
into « (apply the closed graph and Banach-Steinhaus theorems).

A; will be the algebra of linear transformations of A@C which leave B0
invariant, with the norm

11ty ], = sup {llus2llagses s ¥l ll2lame < 1, 13l < 1}
and «, will be the space of bounded linear mappings 4®C —+ «, with the norm

[1t3 /], == sup {llueszllel llzliape < 1}-
Clearly, 4, is an associative Banach algebra, «, is a two-sided ideal in 4,.

We map ¢: 4 — A4,, mapping ae A onto the mapping x®! —+ (ax+1a)B0,
ADC — ABC. This is clearly an injective mapping, and on 4, the norms [|aj|.
and ||pal|,, are equivalent.

The mapping ¢: 4 — 4, is also a homomorphism of 4 into 4, med «,. This
is a direct consequence of the fact that the multiplication in A is associative modulo a.
We have ,

{p(ab)—pa - gb)(xD1) = (ab)x—a(bx)DO.
The linear mapping @(ab)— ga- ¢b belongs to «;.

Clearly, ¢ maps « into o;. Let @ € . Then pa maps x@f & AGC onto ax+
+1ta € . And the only ¢lements of 4 which are mapped by g into «, are the elements
of o. If ga € &y, then ga(0Pl) =aea

Let then @A+ oy = A4,, put on 4, the norm

[lx}} = inf {/lallo+1iblls,| * = pa-+b}
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then A, is a Banach subalgebra of 4, (up to norm-equivalence), ¢, is a Banach
jdeal of Ay, and @: 4 — 4, induces an isomorphism /o~ d,fe,.

5

We now want to investigate the center of an associative quotient Banach algebra.
Proposition 12 shows that it is sufficient to consider the case where & is the quo-
tient of an associative Banach algebra 4 by a two-sided Banach ideal o. Let 4/«
be such a quotient.
The center of Aja is cleatly Z,(A4)/« where
ZJA) = {ac Al YxeAdiax—xaca}
with the norm ]
llallz cay = |la}| 4+sup {llax—qu,,l [|xlia < 1}-
This contains Z(4)+ &, if Z(4) is the center of 4, but can obviously be larger than
Z(A)+ o .
PROPOSITION 13. An associative qB-algebra is isomorphic with A, f«, where A,
is an associative Banach algebra, w, is a two-sided Banach ideal, and
Z,(4)) = Z(4d))+ay.
‘We shall assume, as we may, that the given algebra has the form A where 4
is an associative Banach algebra, where « is a Banach ideal of 4, and that
labll4 < liallalibllas
llaxlls < ltallall*llas
(1xally < llaflallxls
For each a e Z,(4), we adjoin an indeterminate z, to 4 and consider the poly-
nomial algebra A[{z,}] in alt these indeterminates. We define the norm of a mono-
mial by
_ ) Huza. v Zgll = (k+1)”u”4”‘11||za(43 Hak”z,(A)-
Clearly, if m = uz, ... 2y and m' = 'z,; ... z,; are two monomials
Hm-m’|| < [imlf - [lm}]
because k+k&'+1 < (k4+ 1D (K +1).
A polynomial can be decomposed in a unique way as a sum of monomials.
The norm of a polynomial is the sum of the norms of its terms. The polynomial
algebra becomes in this way a mormed algebra, 4, is the completion of 4.

To define a linear mapping ¢: 4, — 4, we shall use a total order < on Z.(4)
and let

P(uz, .. Zy) = udy ... G ’

if @, < ... < @&. The linear mapping thus defined on ‘the set of monomials has
clearly a bounded linear extension. &/, — .
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Let m = vz ... %, and n = 0Zy, ... z; be two monomials, Then
@(m)o(n) = ua, ... a.b, ... b

while

@(mn) = uvey ... ¢y,
where (¢, ..-, ¢es1) is the sequence (ay, ..., 4, by, ..., b)), Tearranged in increasing
order.

We observe that
p(mn)—@(m)p(n)
is a sum of at most k(I+1) terms, each of which is a product of k+ /41 factors,
k+Iamongtheeclementsu, a,, ..., &,9, by, ..., by, the remaining one being a commu-
tator @p—ova; or a;b;—bya;. :
We use the estimates
Hoa,—a0ll < {lollallaif |z,
Haibj_bjai“ < ”al”A“bj”Zm(A) < “al”Za(A)”bj”Zg(.{)
and obtain
llgp(m - )~ @Om)p(m)]lx
< k(l"‘l)Hu”A”aleu(m Hak”Za;(A)”vHAIIbll]zu(A) ”blﬂz,u)
< ml] Jinil,-

This estimate shows that the mapping (m, n) = @(m- n)—p(m)e() extends
to a bounded linear mapping 4, x4; — &, i.e. that ¢ is a homomorphism 4, —»
- Amoda. Let o = ¢ 'a, @ induces a pseudo-isomorphism for the structures
of quotient Banach spaces Ay/x, — Afa. It induces therefore alse an isomorphism
for the structure of quotient Banach algebra (because g: 4; — A is a homomorphism
modulo o).

A, /e, has the announced property. Every equivalence class of its center contains
an indeterminate z,. The indeterminate is in the center of 4, .

ProPOSITION 14. A commutative and associative quotient Banach algebra is iso-
morphic to the quotient of a commutative and associative Banach algebra by a Banach
ideal,

Let Aja be the given quotient Banach algebra. We may assume that 4 is asso-
ciative and that Z (4) = Z(A)+a. But A/ is commutative, Z,(4) = 4.

The inclusion map Z(A4) — 4 induces an isomorphism Z(4)/Z(A)na —+ A/x
and Z(4) is commmtative.
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