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Abstract

We obtain several results of quotient curves of smooth plane curves with

automorphisms. Such automorphisms can be divided into two types (type I and

type II). The quotient curves of smooth plane curves with automorphisms of type

I are extremal curves in the sense of Castelnuovo’s bound. We also show some partial

result on automorphisms of type II and give examples.

1. Introduction and preliminaries

We consider the following problem:

Problem. Let C be a smooth plane curve over C with an automorphism s.
Examine the quotient curve C=hsi.

Previously we completely classified double coverings between smooth plane curves
([HKO, Theorem 2.1]). It is a special case of this problem.

In this article we obtain a concrete description of quotient curves of smooth
plane curves under some assumption on their automorphisms. As a corollary,
we completely determine quotient curves obtained from involutions of smooth
plane curves.

Notation and Conventions
For an irreducible curve C, gðCÞ denotes the geometric genus of its

normalization.
A gr

d is a linear system of degree d and dimension r on a smooth curve. A
1-dimensional linear system is called a pencil. For a smooth curve C, its gonality
is defined as the minimum degree of pencils and denoted by gonðCÞ.
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For a divisor D on a normal projective variety, jDj denotes the complete
linear system associated to D and FjDj is the rational map associated to jDj. For
two divisors D and D 0, D@D 0 denotes that they are linearly equivalent.

For a non-negative integer n, Sn denotes the Hirzebruch surface with index
n. The Picard group of Sn is generated by two divisors Dn and Gn with D2

n ¼ �n,
DnGn ¼ 1 and G2

n ¼ 0, where Dn (resp. Gn) is the minimal section (resp. the class
of fiber) of Sn.

For a real number x, ½x� denotes the greatest integer not greater than x.
We quote a classical result on curves due to Castelnuovo for later use.

Theorem 1.1 (Castelnuovo bound, [ACGH, p. 116]). The maximum of the
geometric genus of a non-degenerate irreducible ðpossibly singularÞ curve of degree
d in Pr is given by

p0ðd; rÞ ¼
m

2

� �
ðr� 1Þ þme;

where m :¼ d � 1

r� 1

� �
and e :¼ d � 1�mðr� 1Þ.

A curve is said to be extremal if the genus attains the maximum. Any
extremal curve is smooth.

2. On automorphisms of type I

Let C be a smooth plane curve of degree db 4. Assume that C has
an automorphism s of order nb 2. Let p : C ! B ¼ C=hsi denote the cyclic
covering induced by s. Note that g2d on C is unique (cf. [S, Proposition 3.13]).
Hence s is extended to an automorphism ~ss of P2. We may assume that ~ss is
given by a ð3; 3Þ diagonal matrix, which is one of the following type:

1

1

h

0
B@

1
CA or

1

hk

h l

0
B@

1
CA;

where h is a primitive n-th root of unity and k, l are coprime integer with
1a k < l < n. In this article we shall say that s is of type I (resp. of type II ) if
~ss is given by a matrix of the former type (resp. the latter type).

Remark 2.1. (1) Any involution (automorphism of order 2) is of type I.
(2) If an automorphism has at least 4 fixed points, then it is of type I.

Equivalently, an automorphism of type II has at most 3 fixed points, since a
matrix of the latter form fixes only 3 points ð1 : 0 : 0Þ, ð0 : 1 : 0Þ and ð0 : 0 : 1Þ.

Our main result is the following theorem.
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Theorem 2.2. Let C be a smooth plane curve of degree db 4 with an
automorphism s of order nb 2. Let p : C ! B ¼ C=hsi denote the cyclic cover-
ing induced by s, f the number of fixed points of s. If s is of type I, then the
following hold:

(1) d1 0 or 1 ðmod nÞ.
(2) The quotient curve B is isomorphic to an extremal curve of degree d in

Pnþ1 and lies on a cone over a rational curve, i.e., the image of Sn under
the morphism j ¼ FjDnþnGnj. Furthermore, the strict transform of B under

j is isomorphic to B and linearly equivalent to
d

n

� �
Dn þ dGn. In partic-

ular, gonðBÞ ¼ d

n

� �
holds.

(3) f ¼ d ðif d1 0 ðmod nÞÞ
d þ 1 ðif d1 1 ðmod nÞÞ:

�
Conversely, let n and d be positive integers with nb 2 and d1 0 or 1 ðmod nÞ. If
B is a smooth curve as in ð2Þ, then there exists a smooth plane curve C with an
automorphism s of order n of type I that induces a cyclic covering p : C ! B.

Proof. We have the following commutative diagram:

C H���! P2

p

???y
???y~pp

B H���! S;

where S ¼ P2=h~ssi. This surface S is naturally identified with a weighted pro-
jective space Pð1; 1; nÞ. Then ~pp : P2 ! S is given by ~ppððX : Y : ZÞÞ ¼ ðX ;Y ;ZnÞ,
where ðX : Y : ZÞ is a homogeneous coordinate of P2. We identify S with its
image in Pnþ1 under the embedding

S ¼ Pð1; 1; nÞ ,! Pnþ1ð½s; t; u� 7! ðsn : sn�1t : � � � : tn : uÞÞ;

where ½s; t; u� is the equivalence class of ðs; t; uÞ A A3. Then S is a cone over
a rational normal curve with the vertex Q0 ¼ ð0 : 0 : � � � : 0 : 1Þ. It is the image
of Sn under the morphism j ¼ FjDnþnGnj. Let P0 ¼ ð0 : 0 : 1Þ be the unique point
of the fiber of Q0 under ~pp, c the blow-up of P2 at P0. Then we obtain the
following commutative diagram:

C H���! P2  ���c
S1

p

???y
???y~pp

???y$

B H���! S  ���
j

Sn:

We identify C (resp. B) with its strict transform under c (resp. j). Note that
$�Dn ¼ nD1, $�Gn @G1. Suppose that B is linearly equivalent to aDn þ bGn.
Then C ¼ $�B@ naD1 þ bG1. On the other hand, we have
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C@
ðd � 1ÞD1 þ dG1 ðif C passes through P0 ¼ ð0 : 0 : 1ÞÞ;
dD1 þ dG1 ðif C does not pass through P0 ¼ ð0 : 0 : 1ÞÞ:

�

It follows that d1 0 or 1 ðmod nÞ, a ¼ d

n

� �
and b ¼ d. Thus we have

B@
d

n

� �
Dn þ dGn. In particular deg B ¼ BðDn þ nGnÞ ¼ d. Next we check that

BHPnþ1 is extremal. First we assume that d1 1 ðmod nÞ, i.e., d ¼ neþ 1 for
some e A N. Then

p0ðd; nþ 1Þ ¼ e

2

� �
n ¼ 1

2
neðe� 1Þ:

On the other hand, we have

KSn
@�2Dn � ðnþ 2ÞGn; B@ eDn þ dGn;

where KSn
is the canonical divisor of Sn. Using the adjunction formula we have

2gðBÞ � 2 ¼ BðBþ KSn
Þ ¼ ðeDn þ dGnÞððe� 2ÞDn þ ðd � n� 2ÞGnÞ
¼ ðe� 2Þ þ eðd � n� 2Þ
¼ eðd � n� 1Þ � 2;

which implies that

gðBÞ ¼ 1

2
eðd � n� 1Þ ¼ 1

2
neðe� 1Þ ¼ p0ðd; nþ 1Þ:

Thus B is extremal. The proof is similar when d1 0 ðmod nÞ.
Finally, we show the assertion for f . Let P1;P2; . . . ;Pf be the fixed points

of s, R the ramification divisor of p. Then clearly Rb ðn� 1Þ
P f

i¼1 Pi. On the
other hand, if P is a ramification point of p, then P is fixed under s j for some
1a j < n. Hence P is fixed under s, since s is given by a matrix

1

1

h

0
B@

1
CA;

where h is a primitive n-th root of unity. Thus we have R ¼ ðn� 1Þ
P f

i¼1 Pi.
First we assume that d ¼ neþ 1 again. By using the Riemann-Hurwitz

formula, we obtain that

ðn� 1Þ f ¼ 2gðCÞ � 2� nð2gðBÞ � 2Þ ¼ dðd � 3Þ � nfeðd � n� 1Þ � 2g
¼ ðneþ 1Þðne� 2Þ � nfneðe� 1Þ � 2g
¼ ðn� 1Þðneþ 2Þ;

which implies that f ¼ neþ 2 ¼ d þ 1. Similarly we obtain that f ¼ d if
d1 0 ðmod nÞ.
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Conversely, let n and d be positive integers with nb 2 and d1 0 or
1 ðmod nÞ, B a smooth curve as in (2) in the theorem. First we assume that
d1 1 ðmod nÞ, i.e., d ¼ neþ 1 for some integer e. Then B is linearly equivalent
to eDn þ dGn on Sn.

Note that the linear system jDn þ nGnj on Sn is ðnþ 1Þ-dimensional and

BðDn þ nGnÞ ¼ ðeDn þ dGnÞðDn þ nGnÞ ¼ d:

Hence jðDn þ nGnÞjBj is an ðnþ 1Þ-dimensional linear system on B of degree d.

We denote it by gnþ1
d . There exists a point P in B such that gnþ1

d ¼ jng1e þ Pj,
where g1e ¼ jGnjBj. Let D ¼

Pe
i¼1 Qi be an e¤ective divisor in g1e with Qi 0Qj

for i0 j, x a meromorphic function on B whose polar divisor is D. Since the
gnþ1
d is very ample, there exists a meromorphic function y on B with polar divisor

nDþ P such that x and y generate the function field of B. Moreover, we may
assume that xðPÞ ¼ 0 and the supports of zero divisors of x and y are disjoint.
These assumptions are not essential but technical.

Let C : B! P1 ¼ CU fyg be a projection defined by Cððx; yÞÞ ¼ x. Then,
yðxÞ is an e-valued meromorphic function of x except for the ramification points
of C. Hence we have

Ye
i¼1
ðy� yiðxÞÞ ¼ 0;

where y1ðxÞ; y2ðxÞ; . . . ; yeðxÞ are the branches of yðxÞ. Then B has a plane
model defined by an equation of the following form:

ye þ a1ðxÞye�1 þ � � � þ ajðxÞye�j þ � � � þ aeðxÞ ¼ 0:

where ajðxÞ ð1a ja eÞ is a rational function of x.
Since C�1ðyÞ ¼ fQ1;Q2; . . . ;Qeg, Qi is not a ramification point of C,

whence we can take t ¼ x�1 as a local coordinate of B at Qi. We may assume
that yiðxÞ is the branch of y at Qi. Noting that yiðxÞ has a pole of order n at
Qi, we have

yiðxÞ ¼ ci0t
�n þ ci1t

�ðn�1Þ � � � ¼ ci0x
n þ ci1x

ðn�1Þ � � � ðci0 0 0Þ

in a neighborhood of Qi. Since ajðxÞ is a symmetric polynomial of the yiðxÞ’s,
aeðxÞ has a pole of order ne ¼ d � 1 at x ¼y and ajðxÞ ð1a ja e� 1Þ has a
pole of order at most jn at x ¼y.

Let n be the order of meromorphic function x at P (1a na e). Then we
can take a local coordinate s of B at P with sn ¼ x. Let y1; . . . ; yn be the
branches of y at P. Since y has a simple pole at P, we have

yiðsÞ ¼ c 0i s
�1 þ � � � ðc 0i ¼ � i�1c 01 0 0 ð� ¼ e2p

ffiffiffiffiffi
�1
p

=nÞÞ:
Hence

y1ðxÞ � � � ynðxÞ ¼ c 01 � � � c 0ns�n þ � � � ¼ c 01 � � � c 0nx�1 þ � � � :
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By the choice of y, yjðxÞjx¼0 0 0;y for j ¼ nþ 1; . . . ; e, whence we have

y1ðxÞ � � � yeðxÞ ¼ c 00x�1 þ � � � ðc 000 0Þ

near x ¼ 0. Therefore, aeðxÞ has a simple pole at x ¼ 0. Similarly, ajðxÞ
ð1a ja e� 1Þ has a pole of order at most 1 at x ¼ 0.

Since yiðxÞ has no pole in C� f0g, xajðxÞ is a polynomial of x with
deg xaeðxÞ ¼ d and deg xajðxÞa jnþ 1 ð1a ja e� 1Þ, respectively. Further-
more, we may assume that aeðxÞ has no multiple root (after replacing y to y� c
for a suitable c A C if necessary).

Let C be the plane curve defined by

yd�1 þ a1ðxÞyd�1�n þ � � � þ ajðxÞyd�1�jn þ � � � þ aeðxÞ ¼ 0:

Then, C has an automorphism s : ðx; yÞ 7! ðx; hyÞ, where h is a primitive n-th
root of unity and s induces a cyclic covering p : C ! B ððx; yÞ 7! ðx; ynÞÞ. Let
x1; x2; . . . ; xd be the zeros of xaeðxÞ. Then, the points ðx; yÞ ¼ ðx1; 0Þ; ðx2; 0Þ; . . . ;
ðxd ; 0Þ are fixed points of s. Substituting x ¼ X=Z, y ¼ Y=Z to the above
equation, we have

X Y d�1 þ Zna1
X

Z

� �
Y d�1�n þ � � � þ Zd�1ae

X

Z

� �� �
¼ 0;

Thus, the point ðX ;Y ;ZÞ ¼ ð0; 1; 0Þ is a smooth point of C, whence it is a fixed
point of s. Thus, the number of fixed points of p is at least d þ 1. Since gðBÞ ¼
1

2n
ðd � 1Þðd � n� 1Þ, using the Riemann-Hurwitz formula, we have

2gðCÞ � 2b nð2gðBÞ � 2Þ þ ðn� 1Þðd þ 1Þ
¼ ðd � 1Þðd � n� 1Þ � 2nþ ðn� 1Þðd þ 1Þ

¼ d 2 � 3d:

On the other hand, since C is a plane curve of degree d, gðCÞa 1
2 ðd � 1Þðd � 2Þ.

It follows that gðCÞ ¼ 1
2 ðd � 1Þðd � 2Þ, i.e., C is a smooth plane curve of degree

d.
In case d1 0 ðmod nÞ, we can prove the existence of a desired smooth plane

curve in a similar way and it is easier than the above case. r

In particular, we can completely determine quotient curves obtained from
involutions of smooth plane curves, since any involution is of type I. Thus
Theorem 2.2 is an improvement of our previous work [HKO].

3. On automorphisms of prime order of type II

In this section we show a partial result on automorphisms of type II and give
several examples.
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Proposition 3.1. Let C be a smooth plane curve of degree db 4, s an
automorphism of prime order pb 3 of type II and f the number of fixed points
of s. Then one of the following holds:

(1) f ¼ 0 and d1 0 ðmod pÞ.
(2) f ¼ 2 and d1 1 or 2 ðmod pÞ.
(3) f ¼ 3, d 2 � 3d þ 31 0 ðmod pÞ and p1 1 ðmod 6Þ or p ¼ 3.

In particular, we obtain some restriction on the order of automorphisms of
smooth plane curves from the above proposition and Theorem 2.2.

Corollary 3.2. If a smooth plane curve of degree db 4 has an auto-
morphism of prime order p with p21 ðmod 6Þ, then d1 0; 1 or 2 ðmod pÞ holds.

Proof of Proposition 3.1. Let p : C ! B ¼ C=hsi be the cyclic covering
induced by s, R the ramification divisor of p and ~ss the automorphism of P2 such
that ~ssjC ¼ s. Then ~ss is given by a matrix

1

hk

h l

0
B@

1
CA;

where h is a primitive p-th root of unity, k and l are coprime integers with
1a k < l < p. Hence 0a f a 3 (see Remark 2.1) and deg R ¼ ðp� 1Þ f . By
using the Riemann-Hurwitz formula, we have

dðd � 3Þ ¼ 2gðCÞ � 2 ¼ pð2gðBÞ � 2Þ þ ðp� 1Þ f :

It follows that

dðd � 3Þ þ f 1 0 ðmod pÞ:(*)

First we exclude the case where f ¼ 1 by reduction to absurdity. Suppose
that f ¼ 1. We may assume that ð1 : 0 : 0Þ is the unique fixed point of s. Note
that the line l : x ¼ 0 is invariant under ~ss. Hence it cuts out an e¤ective divisor
D on C of degree d that is invariant under s. Then D is the sum of divisors of
the form

Pp
i¼1 s

iðPÞ. Thus p divides d, since the line l does not pass through
ð1 : 0 : 0Þ. It contradicts the equation (*).

Next suppose that f ¼ 0. Then we obtain that d1 0 ðmod pÞ similarly.
If f ¼ 2 then ðd � 1Þðd � 2Þ1 0 ðmod pÞ by (*), which implies the conclusion.

Finally suppose that f ¼ 3. Then d 2 � 3d þ 31 0 ðmod pÞ holds by (*).
Assume that pb 5 and put a :¼ d � 2. Then, by Fermat’s little theorem, it is
easy to show that d 2 � 3d þ 3 ¼ a2 þ aþ 11 0 ðmod pÞ has a solution if and
only if p1 1 ðmod 6Þ. r

In the end we show the existence of curves in each case of Proposition 3.1 by
several examples.
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Example 3.3. For each condition in Proposition 3.1, there exists a smooth
plane curve with an automorphism of type II satisfying the condition.

(1) f ¼ 0, d1 0 ðmod pÞ. The Fermat curve xd þ yd þ zd ¼ 0 of degree d
has an automorphism s induced by the matrix

1

h

h2

0
B@

1
CA ðh is a primitive p-th root of unity with pjdÞ:

This automorphism s has no fixed point.
(2) f ¼ 2, d1 1 ðmod pÞ. The smooth plane curve defined by the equation

xd þ xyd�1 þ xzd�1 þ y2zd�2 ¼ 0

has an automorphism s induced by the matrix

1

h

h2

0
B@

1
CA ðh is a primitive p-th root of unity with d1 1 ðmod pÞÞ:

Then s fixes two points ð0 : 1 : 0Þ and ð0 : 0 : 1Þ.
(3) f ¼ 2, d1 2 ðmod pÞ. The smooth plane curve defined by the equation

xd�1zþ xzd�1 þ yd ¼ 0

has an automorphism s induced by the matrix

1

h

h2

0
B@

1
CA ðh is a primitive p-th root of unity with d1 2 ðmod pÞÞ:

Then s fixes two points ð1 : 0 : 0Þ and ð0 : 0 : 1Þ.
(4) f ¼ 3, d 2 � 3d þ 31 0 ðmod pÞ and p1 1 ðmod 6Þ. Then the smooth

plane curve defined by the equation

xd�1yþ yd�1zþ zd�1x ¼ 0

has an automorphism s induced by the matrix

1

h

hk

0
B@

1
CA;

where h is a primitive p-th root of unity and k is a positive integer such that
d1 2� k ðmod pÞ. Then s fixes three points ð1 : 0 : 0Þ, ð0 : 1 : 0Þ and ð0 : 0 : 1Þ.
For example, if d ¼ 4 and p ¼ 7, then we can take k ¼ 5 and the curve defined
above is the Klein quartic x3yþ y3zþ z3x ¼ 0. It is well-known that this curve
has an automorphism of order 7, since its automorphism group has order 168.
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