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Abstract 
Hard disks systems are often considered as prototypes for simple fluids. In a statistical mechanics context, the hard disk 
configuration space is generally quotiented by the action of various symmetry groups. The changes in the topological and 
geometric properties of the configuration spaces effected by such quotient maps are studied for small numbers of disks on 
a square and hexagonal torus. A metric is defined on the configuration space and the various quotient spaces that respects 
the desired symmetries. This is used to construct explicit triangulations of the configuration spaces as �-complexes. Criti-
cal points of the hard disk potential on a configuration space are associated with changes in the topology of the accessible 
part of the configuration space as a function of disk radius, are conjectured to be related to the configurational entropy of 
glassy systems, and could reveal the origins of phase transitions in other systems. The number of critical points and their 
topological and geometric properties are found to depend on the symmetries by which the configuration space is quotiented.

Keywords Configuration spaces · Hard disks · Phase transitions · Topology · Geometry

1 Introduction

The glass transition is a subject of ongoing study in con-
densed matter physics. Since it is related to a slowing down 
of the dynamics and is not accompanied by a change in any 
obvious structural order parameter, it is usually not consid-
ered to be a true thermodynamic phase transition. Recent 
computer simulations [1] suggest that the main difference 
between a glass and a liquid is the number of configurations 
available to the system, or equivalently, the available volume 
of configuration space where the a point in the configuration 
space indicates the positions of all the system’s particles. 
The available volume is often supposed to be proportional to 
the number of local minima of the potential energy surface 
below a specified energy level. An accurate count of these 
minima as a function of the energy level could allow the 
configurational entropy to be used as an order parameter [1], 
with a popular strategy to enumerate potential energy min-
ima previously proposed by Goldstein [2] and formalized by 

Stillinger and Weber [3, 4]. The assumption underlying this 
view of the glass transition is that each local minimum of 
the potential energy surface corresponds to a distinct glassy 
state.

Local minima are specific examples of a larger class of 
points known as critical points, roughly defined as those 
locations where the topology of the level or sublevel sets of 
a generic function on a manifold changes. The number and 
distribution of critical points of the potential energy func-
tion on the configuration space, usually known as the poten-
tial energy surface, has also been implicated in the onset 
of phase transitions; this idea is known in the literature as 
the topological hypothesis [5, 6]. Consider a system of par-
ticles with positions q̄i and potential energy V(q̄1,… , q̄N) . 
Franzosi et al. [7–9] initially claimed that a change in the 
topology of the sublevel sets of the potential energy sur-
face Σ� = V−1((−∞, �]) as a function of the energy � was a 
necessary condition for a phase transition in systems with 
smooth, stable, confining, and short-range interactions (a 
bracket or parenthesis indicates that the endpoint of an inter-
val is or is not included, respectively). Kastner and Mehta 
[10] eventually found a counterexample satisfying all the 
stated conditions, but for which a phase transition occurred 
without a change in topology. They then proposed new cri-
teria stating that a phase transition requires either (i) the 
number of critical points in a narrow potential energy band 
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to grow exponentially faster than the number of particles, 
or (ii) the determinant of the Hessian matrix of the potential 
energy surface to vanish for a significant fraction of the criti-
cal points. It is significant that the topological hypothesis, 
either the original or the revised version, has so far only been 
evaluated for systems that are simple enough to be treated at 
least partly analytically; the machinery to test the hypothesis 
for even, e.g., a simple fluid, does not appear to be available.

As evidence that the topology and geometry of the acces-
sible part of the configuration space should be functions 
of the thermodynamic control variables, consider the one-
dimensional potential energy surface in Fig. 1. This potential 
energy surface contains two basins of attraction separated 
by an energy barrier. The three distinct critical points of V 
are the two minima associated with the basins and the one 
saddle point associated with the barrier. A sublevel set of 
the potential energy surface Σ� refers to the subset of the 
configuration space where the potential energy is less than 
or equal to � , and coincides with the potentially accessible 
region. Observe that Σ� is empty for energies 𝜈 < 𝜈1 , but 
changes for � = �1 to the union of the two points at the min-
ima. The disconnected components in the two basins grow 
for 𝜈1 < 𝜈 < 𝜈3 , remaining separated until � = �3 where the 
saddle point appears and merges the previously disconnected 
components. Finally, the sublevel set grows as a single com-
ponent for 𝜈 > 𝜈3 . Suppose now that a random walker is 
initially positioned in the left basin with the energy � = �2 
as shown in yellow in Fig. 1. Since the sublevel set at this 
energy level consists of two disconnected components, the 
random walker cannot transition to the right basin and can 
only explore the part of the configuration space connected to 
its initial position. Raising the energy to 𝜈 > 𝜈3 discontinu-
ously changes the connectivity of the space and the region 
accessible to the random walker; such discontinuous changes 
to the connectivity of the accessible region are referred to as 
topological changes in the following.

This is the motivation for the topological hypothesis 
associating the topological changes that occur at critical 

points with changes to the accessible part of the configura-
tion space. The specific relationship of the topology to the 
geometry depends not only on the potential energy function 
though, but also on the way that the configuration space is 
constructed. Initially consider fixing a coordinate system to 
identify points in a spatial region X, assigning labels to each 
of n particles in this region, and representing every possible 
configuration of the system by a point in the product space 
Xn . One possible issue with this approach is that assigning 
labels to the particles in two different ways would map a 
single configuration to two different points in the configura-
tion space. The implications of removing this redundancy 
by forgetting the labels can be seen by considering a sys-
tem of two hard disks in the hexagonal torus for which the 
critical points of the hard disk potential are shown in Fig. 2. 
For a disk radius � , the accessible part of the configuration 
space is a connected component where every pair of disk 
centers is separated by at least 2� . The accessible region 
manifestly changes with � , being empty in the limit of large 
disk radius and the configuration space of points in the limit 
of small disk radius. As the disk radius decreases in the 
labeled configuration space on the left, two disconnected 
components initially appear. A system beginning in one of 
these subspaces cannot transition into the other unless the 
disk radius is further decreased, allowing the configuration 
to pass through one of the three saddle points. That is, the 
volume of the accessible region increases discontinuously at 
this disk radius. However, there is only ever one connected 
component in the unlabeled space on the right, making the 
volume of the accessible region a continuous function of 
disk radius. This has significant implications if the configu-
rational entropy is defined as a function of the volume of the 
accessible region, since the configurational entropy would 
then be discontinuous on the left but not on the right.

More generally, redundant points in the configuration 
space are introduced by one or more symmetry groups acting 
on a given configuration of disks. The redundancies can be 

Fig. 1  The sublevel sets of the potential energy surface Σ� consist 
of two disconnected components for energy levels 𝜈1 < 𝜈 < 𝜈3 . The 
topology of the sublevel set changes at � = �3 where the two discon-
nected components merge

Fig. 2  The critical points of the translation-invariant configuration 
spaces of two hard disks on a hexagonal torus (labeled on the left, 
unlabeled on the right). The configurations where the disks have three 
connections are minima of the hard disk potential, and those with two 
connections are saddle points
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removed by mapping the set of points in the base configura-
tion space that are related by the specified symmetry group 
to a single point in a new space, known as the quotient space, 
that preserves sensible notions of configuration similarity. 
Whereas a point in the base configuration space specifies a 
configuration of disks, a point in the quotient space instead 
specifies a class of equivalent configurations from the stand-
point of the specified symmetry group. The map from the 
base configuration space to the quotient space is known as 
a quotient map, and this process is often referred to as quo-
tienting the base configuration space by the specified sym-
metry group. The standard approach in the literature seems 
to be to quotient the configuration space by all possible sym-
metries, e.g., the homogeneity of space encourages the use 
of center of mass coordinates in classical mechanics [11]. 
However, the example in Fig. 2 suggests that quotienting by 
such symmetries could affect the geometry and topology 
of the configuration space in unexpected ways. One of the 
purposes of this paper is to begin the exploration of what 
these effects could be.

The hard disk system is often considered to be a proto-
type for simple fluids [12]. It is governed by the hard disk 
potential, defined to be infinite if any pair of disks over-
laps and zero otherwise, and was first studied by Alder 
and Wainwright [13] almost sixty years ago. A number of 
studies suggest that the hard disk system undergoes at least 
one phase transition with varying packing fraction � of the 
disks. A solid characterized by long-range translational and 
orientational order is observed when 𝜂 > 0.72 , whereas a 
liquid characterized by the absence of any long-range order 
is observed when 𝜂 < 0.70 [14, 15]. The behavior in the 
0.70 < 𝜂 < 0.72 interval is a subject of ongoing controversy. 
This was initially believed to be a two-phase region exhibit-
ing large fluctuations in density, generally considered as a 
sign of a first-order phase transition. Halperin, Nelson [16] 
and Young [17] instead suggested that the transition could be 
of Kosterlitz–Thouless type, implying the existence of a hex-
atic phase in this interval. Conflicting results continue to be 
reported in the literature about the order of the transition and 
the phases involved. Marx et al. [14, 15] reported a single 
step first order phase transition, whereas Bernard and Krauth 
[18] and Engel et al. [19] reported a two step phase transition 
with a first order liquid-hexatic transition and a second order 
solid-hexatic transition. Given this controversy, an approach 
that could identify the onset of a phase transition from more 
fundamental considerations than a discontinuous change in 
an order parameter could resolve the question of what hap-
pens in the 0.70 < 𝜂 < 0.72 interval, and would likely be 
useful in a broader thermodynamic context as well. While 
we do not claim to complete such an undertaking here, the 
necessary machinery is developed and a case study suggests 
that such an approach would in principle be possible.

Configuration spaces of hard disks have been studied 
before [20, 21]. Ritchey [22] specifically studied the con-
figuration spaces of hard disks on the hexagonal torus. They 
precisely defined the critical points and the associated criti-
cal indices on the configuration space of hard disks in the 
context of Morse theory (further explained in Sects. 2 and 
3), and considered the equivalence classes of critical points 
generated by translations, permutations and discrete lattice 
symmetries. A high density of critical points around the 
packing fraction of the solid-liquid transition indicated a 
rapidly-changing topology of the potential energy surface 
there. This is suggestive of the idea underlying the topologi-
cal hypothesis, i.e., that a signature of two-dimensional hard 
disk melting should be visible in the distribution of critical 
points of the potential energy surface. One area that they 
did not extensively explore is the effect that quotienting the 
configuration space by the symmetry groups that they identi-
fied has on the number and distribution of the critical points.

As far as the authors know, explicit triangulations of the 
configuration spaces of hard disks, quotiented by symmetry 
groups or otherwise, have not been generated before. One 
of our purposes is to establish that this can be accomplished 
using topological data analysis techniques, and to show that 
the resulting triangulation allows study of the topological 
and geometric properties of the configuration spaces. The 
approach is demonstrated for the comparatively simple but 
nontrivial cases of two hard disks on the square and hexago-
nal toruses. While these should not be expected to resolve 
what happens in the 0.70 < 𝜂 < 0.72 interval of the hard 
disk system in the thermodynamic limit, the insights gained 
from these simpler systems are envisioned as part of a larger 
effort to develop a more precise formulation of the topologi-
cal hypothesis, and eventually to evaluate whether such a 
hypothesis holds in practice.

More specifically, this article is concerned with using 
explicit triangulations of the configuration space to study 
the action of quotient maps induced by symmetry groups 
on the number and distribution of critical points of the hard 
disk potential. Constructing explicit triangulations of the 
configuration space and the various quotient spaces is not 
trivial even for two disks, and is sufficient to identify many 
of the same concerns that will likely arise for more compli-
cated systems. Three quotient spaces of the base configura-
tion space are considered. The first quotients out only the 
translational symmetry. The second adds the permutation 
symmetry of the disk labels and the inversion. The third adds 
the discrete symmetries of the lattice implied by the bound-
ary conditions. Distance functions that respect the topology 
of the spaces and appropriately identify symmetry-related 
points are proposed, and are essential to the study of these 
spaces. Explicit triangulations are constructed using the �
-complex [23], and the isometric feature mapping (ISO-
MAP) algorithm [24] is used for dimensionality reduction.
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Section 2 defines the configuration spaces of n disks of 
radius � using the tautological function. Section 3 briefly 
introduces concepts from classical Morse theory that are rel-
evant to the discussion of critical points. Section 4 provides 
unambiguous definition of the symmetry groups considered 
here, and proposes closely-related distance functions on the 
base configuration space and all of the quotient spaces. Sec-
tion 5 defines a procedure to map a hard disk configuration 
into a space with coordinates that are invariant to the desired 
symmetry groups. Finally, Sect. 6 presents and discusses the 
explicit triangulations of the quotient spaces as a function of 
disk radius.

2  Tautological function

The configuration space of n points on a torus T2 is the product 
space of n toruses, or

Λ(n) will often be called the base configuration space in the 
following since all the other spaces in this work are derived 
from it. Figure 3 shows the square and hexagonal toruses 
used in this study; periodic boundary conditions are imposed 
by identifying opposite edges of both domains. Two domains 
are studied to help separate the specific and general phenom-
ena that can occur when quotienting a configuration space by 
the action of a symmetry group. Any numerical study of the 
topological hypothesis for the hard disk system will require 
a choice of domain, and it will be necessary to distinguish 
what are consequences of that choice and what are inherent 
features of the thermodynamic system.

The tautological function � ∶ Λ(n) → R is defined as

Λ(n) = {� = (x̄1,… , x̄n) | x̄i ∈ T2}.

𝜏 = min
1 ≤ i < j ≤ n

rij

where rij is half the geodesic distance between the centers 
of disks i and j. Intuitively, � is the maximum radius that 
the disks could have without any pair of disks overlapping, 
given the positions of the disk centers. Observe that the con-
figuration space

of n hard disks of radius � is the superlevel set of � , or the 
set of all configurations that could accommodate disks of 
radius at least �.

3  Morse theory

Morse theory [25, 26] relates the topology of a manifold M 
to the critical points of a generic smooth function f defined 
on that manifold. A critical point is defined as a point 
where the gradient ∇f  vanishes, and is associated with a 
critical index equal to the number of negative eigenvalues 
of the Hessian matrix there. Intuitively, the critical index 
is the number of independent ways that one could move to 
decrease the value of f to second order. It is remarkable that 
while the choice of the function f is nearly arbitrary, the 
topological information gained by examining the critical 
points of f is a property of the manifold and is therefore 
independent of that choice.

Let Ma = {x ∈ M | f (x) < a} denote a sublevel set of M. 
The fundamental theorem of Morse theory states that the 
topology of Ma and Mb are the same if the interval [a, b] 
doesn’t contain a critical point. If it instead contains an 
index-p critical point, then the topology of Ma and Mb differ 
in a way that is equivalent to attaching a p-handle to Ma ; an 
m-dimensional p-handle is defined as a contractible smooth 
manifold Dp × Dm−p where Dp is the p-dimensional disk. For 
example, a 0-handle and a 2-handle in two dimensions are 
both two dimensional disks D0 × D2 and D2 × D0 (though 
they are attached in different ways), whereas a 1-handle is a 
rectangle D1 × D1.

Equation 1 represents the configuration space of hard 
disks Γ(n, �) by means of the superlevel sets of � . This 
should allow a Morse-type theory to be used with the the 
critical points of � to identify changes in the configuration 
space topology. The difficulty with this approach is that � is 
not a smooth function, and in fact is not differentiable wher-
ever the minimum disk separation is realized by more than 
one pair of disks. Our approach to handling this is explained 
elsewhere [22], but briefly, � is replaced by a smooth func-
tion E =

∑
i<j exp[−w(rij − 𝜌)] that converges to the hard 

disk potential in the w → ∞ limit. Moreover, there is a 
strictly monotone transformation of E that converges to � 
in the same limit, suggesting that the critical points of � 

(1)Γ(n, �) = �−1([�,∞))

Fig. 3  A torus is obtained by identifying the opposite edges of a 
square (left) or a hexagon (right). These can be lifted to tilings of the 
plane, with the fundamental cells containing the origin and the peri-
odic images shown in faint outline. The center to center distance of 
neighboring cells is always one
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be identified with the limiting critical points of E. It is for 
this reason that the critical points of the hard disk potential 
energy surface and the critical points of � discussed in this 
paper both effectively refer to the critical points of the dif-
ferentiable function E in the w → ∞ limit.

Practically, the critical points of E for any finite w can be 
found by searching for the minima of the scalar function |∇E|2 
using, e.g., the conjugate gradient algorithm. Initializing the 
algorithm with random configurations samples critical points 
with a weight that depends on the construction of E. The 
sampled critical points are grouped into equivalence classes 

containing configurations related by symmetry operations. 
Representatives of the equivalence classes found after millions 
of initializations for n = 2 disks are shown in Fig. 4. Ritchey 
[22] suggests that every critical configuration is reproduced 
infinitely many times by rigid translations (usually handled 
by fixing one of the disks at the origin), n! times by permuting 
the disk labels, and some number of times related to the order 
of the plane tiling’s symmetry group.

4  Distance

The study of the configuration space geometry requires the 
definition of a suitable distance function. Depending on 
whether the space considered is the base configuration space 
or a quotient space, the distance could be defined between hard 
disk configurations or equivalence classes of configurations for 
given symmetry groups. For instance, the distance between 
two configurations that differ only by a translation should be 
nonzero in the base configuration space, but zero in the base 
configuration space modulo translations where they belong to 
the same equivalence class.

One natural notion of distance assigns to two configura-
tions on the base configuration space of points �, � ∈ Λ(n) a 
distance equal to the sum of the disk displacements required 
to transform one into the other, or

where ‖p̄i − q̄i‖ is the geodesic distance between the two posi-
tions of the ith disk. Figure 5 shows these displacements for 
two configurations sampled uniformly at random on the base 
configuration spaces for the square and hexagonal toruses. 
Here, dΛ is the sum of the lengths of the vectors pointing 

(2)dΛ(�, �) =

n�

i=1

‖p̄i − q̄i‖

Fig. 4  Representatives of the equivalence classes of critical points for 
two disks on the square and hexagonal toruses. The bottom (top) row 
corresponds to index-0 (index-1) critical points. The disk radius is 
reported below each configuration

Fig. 5  Distances between two configurations in the square and hexagonal toruses. The two configurations are indicated by filled and empty cir-
cles, and colors indicate the labeling of the disks. Table 1 lists the symmetry groups used to construct the quotient spaces



 O. B. Ericok, J. K. Mason 

1 3

76 Page 6 of 15

from one disk to the other. Observe that dΛ is sensitive to 
symmetry operations in the sense that applying translations, 
permutations or lattice symmetries to one of the configura-
tions changes dΛ . That said, dΛ satisfies the requirements of a 
metric (identity of indiscernibles, symmetry, and the triangle 
inequality) with proofs provided in App. A.

The configuration space of points Λ equipped with the 
metric dΛ therefore constitutes a metric space (Λ, dΛ) . 
Given a metric space and an equivalence relation ∼ (usu-
ally deriving from a symmetry group), there is a natural 
induced metric dΛ∕∼ on the quotient space Λ∕∼ [27]. When 
the equivalence relation additionally derives from a group 
of isometries S , then the metric dΛ∕S on the quotient space 
Λ∕S can be written as

where inf(⋅) indicates the infimum. Along with Eq. 2, this 
provides metrics on all the quotient spaces considered below.

Let T  , P , I  and L respectively be the sets of rigid 
translations, permutations of the disk labels, inversion 
about the origin, and symmetries of the tiling of the plane. 
Formally, a configuration � is a translation of � by t̄ if 
q̄i = p̄i + t̄ where, e.g., q̄i are the coordinates of the ith 
disk. Given a permutation � ∈ P , � is a permutation of � 
if q̄i = p̄𝜋(i) for all i. A configuration � is the inverse of � if 
q̄i = −p̄i for all i. Finally, for any symmetry element L ∈ L 
with representation ̄̄L , a configuration � is a symmetric 
copy of � if q̄i = ̄̄Lp̄i for all i. The operations belonging to 
all of these groups are isometric as is required to use Eq. 3.

There are three quotient spaces considered in the work, 
all derived from the base configuration space of points 
Λ . The first Λ∕T  quotients out translation symmetries 
induced by the periodic boundary conditions and the 
homogeneity of space, and is conceptually derived by fix-
ing the first disk at the origin. The second Λ∕{T ∪ P ∪ I} 
also quotients out the inversion about the origin and per-
mutations of the disk labels. The third Λ∕{T ∪ P ∪ I ∪ L} 
also quotients out the discrete symmetries induced by the 
choice of the domain geometry. For simplicity of notation, 
Tab. 1 indicates the use of the symbols Si to represent the 

(3)dΛ∕S(�,�) = inf
S ∈ S

{dΛ[�, S(�)]}

symmetry groups by which the base configuration space Λ 
is quotiented. Table 1 also shows the distances between the 
configurations shown in Fig. 5 in the base configuration 
space and in the three quotient space considered.

Practically, the distances dΛ∕S are computed by fixing the 
first configuration and generating all copies of the second 
configuration that only differ by the action of the discrete 
symmetry elements S∝T  . Finding the rigid translation 
T ∈ T  that minimizes dΛ{�, T[S(�)]} for S ∈ S∝T  is a 
global optimization problem that is handled by the Tabu 
search algorithm [28, 29]. dΛ∕S is reported as the minimum 
of these distances for all S ∈ S∝T .

The left column of Fig. 5 and the first row of Tab. 1 show 
the distance between configurations in the base configuration 
space Λ . The distance in Λ∕S1 is the infimum of dΛ over all 
rigid translations of one configuration with respect to the other, 
including those that translate the disks across the edge of the 
fundamental cell. The distance in Λ∕S2 is additionally mini-
mized over permutations of the disk labels (indicated by the 
uniform disk color) and inversion about the origin. The distance 
in Λ∕S3 is additionally minimized over the symmetries of the 
tiling, i.e., the symmetries of the square and hexagon. Observe 
that the distance between two configurations cannot increase 
(and generally decreases) as more symmetries are included.

5  Descriptors

As stated previously, the configuration space in Eq. 1 con-
tains redundant information. Specifically, every configura-
tion is equivalent to multiple other configurations related by 
the symmetry operations discussed by Ritchey [22]. Quo-
tienting the space by these symmetry operations not only 
removes the redundancy, but usually gives a quotient space 
that is much smaller than the base configuration space. That 
said, the quotient maps are such that it is often not clear 
how to explicitly parameterize the quotient spaces, though 
this would certainly facilitate the construction of an explicit 
triangulation. This section describes our procedure to do so.

Recall that the base configuration space for two points is 
the product space T2 × T2 . Fixing the first point at the origin 
effectively quotients the space by the translation group, mak-
ing Λ∕S1 equivalent to T2 . This is explicitly parameterized 
starting with a rectangular region with edge lengths a and 
b centered at the origin in the plane. The torus formed by 
identifying opposite edges of the rectangle has major radius 
R = a∕2� and minor radius r = b∕2� . The coordinates of 
this torus in R3 are given by

x� = (R + r cos �) cos�

y� = (R + r cos �) sin�

z� = r sin �

Table 1  Isometric symmetry groups applied to the configuration 
space, and the corresponding distances between the configurations in 
Fig. 5. T  , P , I  and L are the groups of translations, permutations, the 
inversion, and symmetries of the tiling

Space Symmetries d
Square

Λ∕S
d
Hexagon

Λ∕S

Λ - 0.9048 0.5376
Λ∕S1 T 0.4396 0.4739
Λ∕S2 T ∪ P ∪ I 0.2780 0.2048
Λ∕S3 T ∪ P ∪ I ∪ L 0.1687 0.0704
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where � = (a∕2 − x)∕R and � = (b∕2 − y)∕r . This is used 
for the visualizations of Λ∕S1 below.

All other quotient spaces are initially embedded in an 
infinite-dimensional space resembling the space of Fourier 
coefficients, and a numerical approach is used to estimate the 
minimum number of descriptors necessary to maintain the 
embedding. Given a configuration of n points (disk centers), 
a distribution f is defined as a sum of Dirac-delta distri-
butions 𝛿(āj) located at the points āj in the a1a2-coordinate 
system in Fig. 3. This distribution is expanded in a Fourier 
series, or

where ck̄ are the complex coefficients of the expansion and 
k̄ = [p, q] for integers p and q. The infinite set of ck̄ can be 
calculated using the orthogonality of the complex exponen-
tials as

The ck̄ respect the periodicity of the lattice and are invariant 
to permutations of the disk labels due to the commutative 
property of the summation in Eq. 4. It can be shown that 
translating a configuration (by adding an offset to the āj ) 
only changes the phase of the coefficients. This means that 
the moduli of the coefficients, or

where ∗ denotes the complex conjugate, are a set of real-val-
ued descriptors that are invariant to disk label permutations 
and rigid translations. Observe that the descriptors zk̄ also 
respect inversion symmetry. An illustration of the procedure 
above is provided in Fig. 15 in App. B. Numerical experi-
ments indicate that the rank of the Jacobian of the map from 
the āj to the zk̄ is generically 2(n − 1) , suggesting that some 
number of these descriptors could be sufficient to construct 
an embedding of Λ∕S2.

Constructing an embedding of Λ∕S3 further requires the 
descriptors to be invariant to the symmetries of the plane 
tiling. This is done explicitly by averaging the resulting 
descriptors, or

where zL
k̄
 are the descriptors zk̄ of the configuration L� , i.e., 

a copy of � acted upon by the symmetry operation L ∈ L , 
and O(⋅) is the order of a group.

Appendix B provides a proof that not all of these descrip-
tors are independent. The invariance of the zk̄ to the inversion 

(4)f (ā) =

n∑

j=1

𝛿(āj) =
∑

k̄

ck̄ exp (2𝜋ik̄ ⋅ ā)

(5)ck̄ =

n∑

j=1

exp (−2𝜋ik̄ ⋅ āj).

(6)zk̄ =
√

c∗
k̄
ck̄

(7)ẑk̄ =
1

O(L)

∑

L∈L

zL
k̄

implies that the descriptors for indices k̄ and −k̄ of a given 
configuration are the same for both the square and the hex-
agonal domains. The invariance of the ẑk̄ to the symmetries 
of the plane tiling results in more complicated relationships 
that are fully described in App. B. The set of independent 
descriptors closest to the origin in reciprocal space is always 
used in the analysis below.

The maps into the infinite-dimensional spaces of descrip-
tors are conjectured to be injective, i.e., to contain all infor-
mation about the original configuration up to the desired 
symmetries. Since the number of disks is finite, it is likely 
that a finite number of dimensions (descriptors) is sufficient 
for this purpose though. The challenge then is to find the 
minimum number of descriptors necessary to maintain a 
proper embedding. The strategy proposed here is to order 
the descriptors by distance from the origin in reciprocal 
space, sequentially remove any dependent descriptors, and 
numerically search for self-intersections of the image space 
as a function of the number of descriptors retained after 
truncation.

Figure 6 illustrates the idea underlying the search for 
self-intersections. The full circle on the left represents the 
base configuration space, with points related by a symmetry 
operation in the same color. Quotienting by the symmetry 
group (folding the top half of the circle onto the bottom 
half) gives the quotient space represented by the half circle 
in the middle. On the right are possible images of the map 
of the quotient space into the truncated descriptor space. 
The number of descriptors could be sufficient for the image 
to be an embedding, as represented on the top right. The 
image could be self-intersecting if the number of descrip-
tors is not sufficient though, as indicated by the region in the 

Fig. 6  An illustration of the self-intersection search. The full circle 
on the left represents the base configuration space, with points related 
by a symmetry operation in the same color. The middle half-circle 
represents the space quotiented by the symmetry group, and on the 
right are possible images of the map into a truncated descriptor space. 
One of these preserves the embedding, but the one that self-intersects 
(indicated by the red dotted circle) does not. The self-intersection is 
identified by considering the diameter of the preimage of a neighbor-
hood around the intersection
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red dashed circle. The search for self intersections therefore 
involves sampling neighborhoods of radius rd in the descrip-
tor space and examining the preimages of these neighbor-
hoods. If the radius rc of the preimage scales with rd for all 
such neighborhoods, then the map into the descriptor space 
is likely an embedding. If rc appears to be independent of rd 
for any neighborhood, then this is likely due to rc measuring 
the distance between distinct neighborhoods in the preimage.

Practically, the procedure begins by sampling N configu-
rations uniformly at random in the base configuration space. 
For each of these configurations, the first nd descriptors 
that are invariant to the desired symmetries are computed. 
Small neighborhoods of radius rd are then defined about the 
images of each configuration in the descriptor space; sup-
pose that Nn images of other configurations lie within a par-
ticular neighborhood. The distances as defined in Sect. 4 are 
computed between these Nn configurations and the central 
configuration, and are used to estimate the radius rc of the 
preimage in the quotient space. If rc goes to zero as rd goes to 
zero for every neighborhood in the image, then the quotient 
space is likely embedded in the descriptor space. If not, then 
the image of the quotient space is likely self-intersecting as 
shown in Fig. 6, nd is increased by one, and the process is 
repeated. Figure 7 shows the results of this analysis for the 
quotient space Λ∕S2 and nd = 2… 6 . It clearly shows that 
the mean and standard deviations of rc go to zero as rd goes 
to zero for nd ≥ 4 , but not for nd ≤ 3 . We conclude that four 
descriptors are sufficient to embed the quotient space Λ∕S2.

6  Configuration spaces

The map of the quotient space into the descriptor space can 
be viewed as a coordinate transformation, and the Jacobian 
matrix of the transformation can be found. The rank of this 
matrix gives the dimension of the resultant manifold at the 
point of evaluation [30]. Repeated sampling of the Jacobian 
matrix for the quotient space Λ∕S2 and n = 2 disks suggests 

that the rank is generically two and that the image in the 
descriptor space is locally a 2-manifold. However, Fig. 7 
suggests that at least four descriptors are required for the 
image in the descriptor space to be an embedding. Vari-
ous dimensionality-reduction techniques can be used to try 
to reduce this further, enough to be able to visualize the 
space; the ISOMAP algorithm [24] is used here. Intuitively, 
this algorithm attempts to find a lower-dimensional embed-
ding that preserves the geodesic distances of the points in 
k-nearest neighbor graphs.

Sampling hard disk configurations uniformly at random 
in the base configuration space and then computing the 
appropriate descriptors gives a point cloud embedded in the 
truncated descriptor space. The study of the topological and 
geometric properties of the quotient space would be signifi-
cantly simpler with a simplicial complex instead of a point 
cloud though. While there are a variety of simplicial com-
plexes used in the literature on statistical topology (e.g., the 
Vietoris–Rips [31] and Cech [32] complexes), this work uses 
the �-complex [23] which is a subcomplex of the Delaunay 
triangulation [33]. Formally, let P be a set of points in Rd 
and Δk be a k-simplex where 0 ≤ k ≤ d . Let r and c be the 
radius and the center of the circumsphere of Δk , respectively. 
Given the Delaunay triangulation DT(P) of P ⊂ Rd , the �
-complex C�(P) of P is a simplicial subcomplex of DT(P) 
such that a simplex Δk ∈ DT(P) is in C�(P) if (i) r < 𝛼 and 
the r-ball located at c is empty, or (ii) Δk is a face of another 
simplex in C�(P).

A persistent question with �-complexes is the appropriate 
value of � . Our intention is to find a value such that the �
-complex in the truncated descriptor space is a reasonable 
approximation of the quotient space. The heuristic used here 
involves a length scale analysis of the edges in the complex 
as a function of � . Let � and � respectively be the mean 
and standard deviation of the edge lengths. For very small � 
values, the �-complex contains only 0-simplices and a few 
1-simplices and � and � are very small. For large � values, 
the �-complex approaches the full Delaunay triangulation, 
simplices that connect distant points are included, and � and 
� are large. For intermediate � values, there is presumably 
a plateau with intermediate values of � and � where the 
geometry of the complex is relatively stable (though this 
depends on the density of the sampled points). Any � within 
this plateau should be a reasonable value. An alternative 
would be to calculate the persistent homology as a function 
of � [34], but this would probably not provide significantly 
different values from the simpler length scale analysis used 
here. Figure 8 shows the result of this length scale analysis 
for the quotient space Λ∕S1 , and suggests that � = 0.025 is 
a reasonable value.

A lower bound on � is estimated as follows. Given np 
points in d dimensions, the Delaunay triangulation contains 
O(n

d∕2
p ) simplices [35]. This study always samples np = 104 

Fig. 7  The inverse analysis for nd = 2… 6 with different rd values. 
The mean and standard deviation of rc approach zero as rd decreases 
for nd ≥ 4 , suggesting that nd = 4 is sufficient to embed the quotient 
space Λ∕S2
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points, giving nt ≈ 106 tetrahedra in the full Delaunay tri-
angulation of a 2-manifold embedded in R3 . Assuming 
that the volume of the convex hull of Λ∕S1 for two disks 
is covered by uniform equilateral tetrahedra would give 
�e = 21∕6(6V∕nt)

1∕3 for the tetrahedral edge length where V 
is the manifold’s volume. Since the space for Λ∕S1 is con-
structed using the rectangle [0, 1] × [0, 2] , the lower bound is 
�e = 0.0111 . As seen in Fig. 8, this estimate is conservative.

6.1  Adding translation invariance

The base configuration space Λ with the function � is not 
amenable to Morse theory since the critical points of � are 
not isolated; in fact, every critical point is related by a rigid 
translation to an entire critical submanifold. Partly for this 
reason the usual practice is to quotient out the rigid transla-
tions by, e.g., fixing the position of the first disk. This appar-
ently innocuous operation can have the unexpected effect of 
identifying points related by a permutation of the disk labels 
though. For example, consider the index-0 critical point in 
the top row of Fig. 9. Translating the disks diagonally by the 
translation vector t̄ = [0.5, 0.5] is equivalent to exchanging 
the disk labels, but is identified with the critical point on 
the left in the quotient space Λ∕S1 . Likewise, translating 
the index-1 critical point in the middle row to the right by 
t̄ = [0.5, 0] is equivalent to exchanging the disk labels. That 
is, the submanifold that is contracted to a point when quo-
tienting out by rigid translations can contain multiple points 
related by permutation symmetries. This implies that not 
all the equivalence classes of points related by permutation 

symmetries in Λ∕S1 contain n! elements, despite this being 
widely assumed (perhaps because each of these equivalence 
classes does contain n! elements in Λ ). Moreover, changing 
the domain of an integral from Λ∕S1 to Λ∕S2 is not gener-
ally as simple as dividing by a factor of 2n! (the factor of 2 
for the inversion and n! for the permutation group), despite 
this being standard practice in statistical mechanics [36, 37].

Figure  10 shows the translation-invariant configura-
tion space (or quotient space Γ(2, �)∕S1 ) of two disks as a 
function of � for the square torus (top) and hexagonal torus 
(bottom) as obtained from the �-complex of 10 000 points. 
Note that the square torus is constructed by extending the 
square to a rectangle and identifying opposite edges, but 
this does not affect the topological properties of the space. 
When 𝜌 > 0.25 , the space Γ(2, �)∕S1 is comprised of a single 
0-handle whereas that of the hexagonal torus is comprised 
of two 0-handles. This difference should be expected on 
the basis of Fig. 9 since the two index-0 critical points of 
the hexagonal torus are not related by a rigid translation. 
When � = 0.25 , two and three 1-handles are connected for 
the square and the hexagonal toruses, respectively. Observe 
that the 1-handles provide connections between previously 
distant regions of the space. For 𝜌 < 0.25 , the space contin-
ues to grow and eventually closes in the � → 0 limit. That 
is, the configuration with � = 0 acts like an index-2 critical 
point, even though it is not strictly within the space.

Figure 10 further confirms that some critical points are 
related by both translation and permutation symmetries, 
since the numbers of index-0 and index-1 critical points are, 
e.g., 1 and 2 instead of the 2 and 4 expected for the square 
torus on the basis of the symmetry group orders. Finally, the 

Fig. 8  The length scale analysis for Λ∕S1 for the square torus. � and 
� denote the mean and standard deviation of the edge lengths of the 
�-complex. The black-dotted line shows the lower bound estimate 
�e , whereas the red-dashed line shows the � value actually used 
to construct the �-complex. �-complexes for increasing � values 
{0.0001, 0.025, 0.5} are shown at the bottom

Fig. 9  Critical points can be related by both translational and permu-
tation symmetries. This happens for both critical points of the square, 
but only for the index-1 critical point of the hexagon
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topology of Λ∕S1 is that of a torus for both the square and 
the hexagon, as expected.

6.2  Adding permutation and inversion invariance

The descriptors zk̄ defined in Sect. 5 are by construction 
invariant to rigid translations, inversions about the origin, 
and permutations of disk labels. One way to construct the 
quotient space Λ∕S2 is then to use the zk̄ as coordinates. 
Figure 7 suggests that four of these are sufficient for a 
proper embedding of Λ∕S2 . The ISOMAP algorithm is 
used to reduce the dimension further by one, allowing 
visualization of the quotient space, but requires a distance 
function to do so. The top rows of Figs. 11 and 12 use the 
Euclidean distance using the corresponding descriptors, 
whereas the bottom rows use the distance defined in Eq. 3. 
This allows two versions of the quotient space Γ(2, �)∕S2 to 
be constructed for both the square and hexagonal toruses; 
it is significant that the two versions are topologically 
identical, though the one using Eq. 3 better preserves 
the expected quotient space symmetries; analogous to 
the truncation of a Fourier series, the use of a distance 
based on a finite number of descriptors likely introduces 

distortions. Regardless, Γ(2, �)∕S2 starts with the index-0 
critical points and grows without topological change until 
� = 0.25 when the index-1 critical points appear. Unlike 
for Γ(2, �)∕S1 , these critical points don’t appear as handles, 
but as singular points.

That critical points of the base configuration space do 
not behave in the same way in the quotient spaces should 
be emphasized; the index-1 critical points in Fig. 4 do 
appear in the Γ(2, �)∕S2 , but without any change in the 
topology. Instead, the critical points correspond to the 
appearance of sharp corners such that Γ(2, 0.25)∕S2 can-
not be described as a smooth manifold with boundary, 
but rather is a Whitney stratified space. Finally, that the 
critical points do not connect distant regions of the space 
significantly affects certain geometric properties, e.g., 
the diameter of the space as measured by the diffusion 
distance [38]. As � is further decreased, the spaces con-
tinue to grow and eventually close up, indicating that the 
topology of the quotient space Λ∕S2 is that of a sphere 
rather than a torus. That all of these changes occurred 
when merely quotienting out by permutations of the disk 
labels suggests that the ideas motivating the Topological 
Hypothesis need to be explored with great care.

Fig. 10  The evolution of the translation invariant configuration space, or the quotient space Γ(2, �)∕S1 , for the square torus (top) and for the hex-
agonal torus (bottom) with � = {0.28, 0.26, 0.25, 0.21, 0.17, 0.12} . The locations of the critical points in this space are indicated by arrows

Fig. 11  The evolution of the translation, permutation and inver-
sion invariant configuration space, or the quotient space 
Γ(2, �)∕S2 , for the square torus constructed with the standard 

Euclidean distance (top) and the distance in Eq.  3 (bottom) with 
� = {0.28, 0.26, 0.25, 0.21, 0.17, 0.12} . The locations of the critical 
points are indicated by arrows
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6.3  Adding lattice invariance

The descriptors ẑk̄ defined in Sect. 5 are additionally invariant to 
the symmetries of the plane tiling, and are used as coordinates 
for the embedding of the quotient space Λ∕S3 . As before, dimen-
sionality reduction is performed with the ISOMAP algorithm. 
The top rows of Fig. 13 and Fig. 14 use the Euclidean distance 

among the descriptors, whereas the bottom rows use the distance 
defined in Eq. 3. The two versions of Γ(2, �)∕S3 are topologi-
cally identical as before. That said, the one using Eq. 3 better pre-
serves the expected quotient space symmetries, with the geomet-
ric distortions introduced by using the Euclidean distance in the 
descriptor space much more pronounced than those in Fig. 11 and 
Fig. 12. Specifically, the version of Γ(2, �)∕S3 constructed with 

Fig. 12  The evolution of the translation, permutation and inver-
sion invariant configuration space, or the quotient space Γ(2, �)∕S2 , 
for the hexagonal torus constructed with the standard Euclid-

ean distance (top) and the distance in Eq.  3 (bottom) with 
� = {0.28, 0.26, 0.25, 0.21, 0.17, 0.12} . The locations of the critical 
points are indicated by arrows

Fig. 13  The evolution of the translation, permutation, inversion 
and lattice symmetry invariant configuration space, or the quotient 
space Γ(2, �)∕S3 , for the square torus constructed with the standard 

Euclidean distance (top) and with the distance in Eq. 3 (bottom) with 
� = {0.28, 0.26, 0.25, 0.21, 0.17, 0.12} . The locations of the critical 
points are indicated by arrows

Fig. 14  The evolution of the translation, permutation, inversion and 
lattice symmetry invariant configuration space, or the quotient space 
Γ(2, �)∕S3 , for the hexagonal torus constructed with the standard 

Euclidean distance (top) and with the distance in Eq. 3 (bottom) with 
� = {0.28, 0.26, 0.25, 0.21, 0.17, 0.12} . The locations of the critical 
points are indicated by arrows
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the Euclidean distance incorrectly collapses the region for small 
� to a 1-manifold. Further examination suggests that the quotient 
spaces constructed with Eq. 3 are the smallest symmetric regions 
of their corresponding domains; the bottom row of Fig. 13 is 1/8 
of the square torus, whereas that of Fig. 14 is 1/12 of the hexago-
nal torus. The corresponding fundamental cells can be obtained 
by reflecting the quotient spaces along an edge passing through 
the � = 0 point and applying the appropriate rotations.

Observe that the topology of the quotient space is completely 
changed by quotienting out the symmetries of the plane tiling. 
The index-0 critical point doesn’t correspond to a 0-handle any-
more, but to a single point, and the index-1 critical points are all 
identified by the symmetry operations. The � = 0 point appears 
as a single point as well, rather than as a 2-handle as in the other 
quotient spaces considered here. Finally, Λ∕S3 has a boundary 
and is topologically equivalent to a disk, in contrast to Λ∕S2 hav-
ing the topology of a sphere and Λ∕S1 that of a torus.

7  Conclusion

The configuration space is essential to the statistical mechan-
ics of glass transitions and phase transitions, and a more 
thorough understanding of the configuration space could 
shed light on these phenomena. Specifically, the distribu-
tion of critical points of the potential energy surface could 
constrain the differentiability of the configurational entropy, 
and thereby regulate the onset of a phase transition. In an 
effort to simplify the analysis, the base configuration space 
is often quotiented by various symmetries, e.g., rigid trans-
lations and permutations of particle labels. An approach to 
explicitly triangulate these quotient spaces is established in 
this work, using techniques from topological data analysis. 
Descriptors invariant to the desired symmetry groups are 
proposed, allowing the various quotient spaces to be param-
eterized. Two distance functions are provided, one induced 
by the quotient map and the other the Euclidean distance in 
the descriptor space. These allow the construction of explicit 
triangulations of the quotient spaces as �-complexes, and 
thereby offer new approaches to studying the hard disk sys-
tem. Specifically, the topological and geometric properties 
of the spaces can be directly evaluated as functions of disk 
radius. Some of the machinery developed is expected to be 
useful in other contexts as well, e.g., the proposed distance 
functions could be used to analyze the similarity of hard 
disk configurations generated by Monte Carlo simulations.

The procedure to triangulate the configuration space is 
developed and applied to the simple but nontrivial cases of 
two hard disks in the square and hexagonal toruses. The first 
finding is that the use of a square or hexagonal torus does 
not substantially affect the topology of the quotient spaces 
except for the number of critical points of the tautological 
function � ; the overall properties of the spaces are otherwise 

similar. The second finding is that the number and behavior 
of the critical points depends on the construction of the quo-
tient space. For example, some of the index-1 critical points 
are identified with one another when the base configuration 
space is quotiented by rigid translations. The third finding 
is that the topology and the geometry of the quotient spaces 
change dramatically as additional symmetries are quotiented 
out. For example, the superlevel sets of � can no longer be 
described as manifolds with boundaries, and instead need to 
be described as stratified spaces. The � = 0 configuration, 
which is not identified as a critical point in the context of 
classical Morse theory, consistently behaves as an index-2 
critical point that closes the space.

Even though this work considers only a pair of hard disks, 
extending and applying the techniques to the configuration 
spaces of more hard disks should be conceptually straight-
forward. The main obstacle is likely to be that the compu-
tational complexity of the distance defined in Eq. 3 grows 
as n! (the order of the permutation group). Another future 
direction could be to use the stratified Morse theory of Gore-
sky and MacPherson [39] to more thoroughly analyze the 
effects of the quotients maps on the topology of the spaces.

Appendix A Proof that d3 is a metric

This section proves that the distance function in Eq. 2 is 
a metric. Let x̄ be a column vector in R2 and ̄̄P be a pro-
jection matrix whose rows contain the unit vectors of the 
square or hexagonal domain as in Fig. 3. By convention, the 
fundamental cell is defined as the set of points x̄ such that 
wj ∈ [−0.5, 0.5) for all j and w̄ = ̄̄Px̄ . Let �, �, � ∈ Λ(n) be 
three distinct configurations in the following.

First, the proposed distance function satisfies the identity 
of indiscernibles, or dΛ(�, �) = 0 ⟺ � = �.

Proof That � = � ⟹ dΛ(�,�) = 0 is true by inspection. For 
the other direction, observe that dΛ(�, �) = 0 implies that 
‖p̄i − q̄i‖ = 0 for all i. Consider the ith disk, and drop the 
index in the following.

For the square torus in Fig. 3, the geodesic distance 
reduces to

That ‖p̄ − q̄‖ = 0 implies that a = 0 and b = 0 . Since 
p̄ and q̄ are assumed to be in the fundamental cell, 
px, qx ∈ [−0.5, 0.5) and |px − qx| < 1 . Then a = 0 requires 
that |px − qx| = 0 , or that px = qx . b = 0 implies that py = qy 

‖p̄ − q̄‖ =
√
a2 + b2

a = min (�px − qx�, 1 − �px − qx�)
b = min (�py − qy�, 1 − �py − qy�)
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by a similar argument, or that ‖p̄i − q̄i‖ = 0 if and only if 
p̄i = q̄i . Then dΛ(�, �) = 0 ⟹ � = �.

F o r  t h e  h e x a g o n a l  t o r u s  i n  F i g .   3 , 
̄̄Ph = [1, 0;1∕2,

√
3∕2; − 1∕2,

√
3∕2] and the geodesic dis-

tance reduces to

Let ̄̄Php̄ = t̄ and ̄̄Phq̄ = w̄ . Since p̄ and q̄ are assumed to 
be in the fundamental cell, tj,wj ∈ [−0.5, 0.5) for all j. 
The seven possible ways for ‖p̄ − q̄‖ = 0 are shown in 
Tab. 2. Observe that only the first satisfies the assumption 

‖p̄ − q̄‖ = {min[a2 + b2, (1 − a)2 + b2,

(a − 0.5)2 + (b −
√
3∕2)2]}1∕2

a = �px − qx�
b = �py − qy�.

that wj ∈ [−0.5, 0.5) for all j, and therefore t̄ = w̄ . This 
implies that ‖p̄i − q̄i‖ = 0 if and only if p̄i = q̄i . Then 
dΛ(�,�) = 0 ⟹ � = �.

  ◻

Second, the proposed distance function is symmetric, or 
dΛ(�,�) = dΛ(�,�) , by the symmetry of ‖p̄i − q̄i‖.

Third, the proposed distance function satisfies the triangle 
inequality, or dΛ(�, �) ≤ dΛ(�,�) + dΛ(�, �).

Proof The triangle inequality can be explicitly rewritten as ∑n

i=1
‖p̄i − r̄i‖ ≤

∑n

i=1
‖p̄i − q̄i‖ +

∑n

i=1
‖q̄i − r̄i‖ . Observe 

that the equation is true if the inequality holds separately 
for the ith term in each of the sums, and that this is true since 
‖ ⋅ ‖ is the geodesic distance.   ◻

Appendix B Relations 
between the descriptors

This section provides proofs and supporting material relating 
to the descriptors zk̄ and their properties. The procedure to 
calculate the zk̄ is shown in Fig. 15. For a disk configura-
tion � where the coordinates of the ith disk center p̄i are 
given in the a1a2-coordinate system, the first step is to define 
the function f (ā) using Eq. 4. By construction, the result is 
invariant to the choice of the n! permutations of the disk 
labels. The Fourier coefficients ck̄ of f (ā) are calculated 
using Eqs. 4 and Eq. 5, but change phase when the underly-
ing disk configuration is translated. This is the motivation for 
taking the modulus of the ck̄ using Eq. 6, since the resulting 
zk̄ are invariant to translations.

Proof Let � and � be two configurations that differ by a 
translation Δ̄ such that p̄i = q̄i + Δ̄ for all i. Then

  ◻

zk̄(�) =
‖‖‖‖

n∑

j=1

exp (−2𝜋ik̄ ⋅ p̄j)
‖‖‖‖

=
‖‖‖‖

n∑

j=1

exp [−2𝜋ik̄ ⋅ (q̄j + Δ̄)]
‖‖‖‖

=
‖‖‖‖
exp (−2𝜋ik̄ ⋅ Δ̄)

n∑

j=1

exp (−2𝜋ik̄ ⋅ q̄j)
‖‖‖‖

=
‖‖‖‖
exp (−2𝜋ik̄ ⋅ Δ̄)

‖‖‖‖
�����������������������

1

‖‖‖‖

n∑

j=1

exp (−2𝜋ik̄ ⋅ q̄j)
‖‖‖‖

= zk̄(�)

Table 2  The seven possibilities that might have zero distance for the 
hexagonal torus. Recall that t1, t2, t3 ∈ [−0.5, 0.5) . Then, only the first 
one can be in the fundamental cell

i qx qy w1 w2 w3

1 px py t1 t2 t3

2 px − 1 py t1 − 1 t2 − 1∕2 t3 + 1∕2

3 px + 1 py t1 + 1 t2 + 1∕2 t3 − 1∕2

4 px − 1∕2 py −
√
3∕2 t1 − 1∕2 t2 − 1 t3 − 1∕2

5 px − 1∕2 py +
√
3∕2 t1 − 1∕2 t2 + 1∕2 t3 + 1

6 px + 1∕2 py −
√
3∕2 t1 + 1∕2 t2 − 1∕2 t3 − 1

7 px + 1∕2 py +
√
3∕2 t1 + 1∕2 t2 + 1 t3 + 1∕2

Fig. 15  The construction of the zk̄ . Permuting the disk labels does not 
change the function f (ā) in Eq. 4. The Fourier coefficients ck̄ are cal-
culated with Eq. 5. The descriptors zk̄ are defined as the magnitude of 
the ck̄ as in Eq. 6
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Since inverting the underlying disk configuration has the 
effect of taking the complex conjugate of the ck̄ , construct-
ing the zk̄ as in Eq. 6 additionally makes them invariant to 
inversions.

Proof Let � and � be two configurations that differ by an 
inversion symmetry such that p̄i = −q̄i for all i. Then

  ◻

The final step is to sort the zk̄ with respect to the distance 
of k̄ to the origin and to remove any redundant values. For 
example, the Fourier coefficients ck̄ and c−k̄ have the same 
magnitudes zk̄ for any configuration.

Proof Let � be any configuration.

  ◻

Other redundancies are introduced by the symmetries L 
of the domain. While it is straightforward to write down the 
action of a particular symmetry operator L ∈ L as a matrix 
̄̄L that acts on a vector of coordinates in the xy-coordinate 
system, the calculation of the zk̄ is naturally done in the a1a2
-coordinate system. For this reason, it is useful to be able 
to convert vectors of coordinates or transformation matri-
ces written using one coordinate system to the other. This 
is accomplished by means of a coordinate transformation 
matrix ̄̄T  such that ā = ̄̄Tx̄ and x̄ = ̄̄T

−1
ā , where x̄ and ā are 

vectors of coordinates of the same point in the xy- and a1a2
-coordinate systems. This also allows the matrix ̄̄L to be 

ck̄(�) =

n∑

j=1

exp (−2𝜋ik̄ ⋅ p̄j)

=

n∑

j=1

exp (2𝜋ik̄ ⋅ q̄j)

= c∗
k̄
(�)

zk̄(�) =
√

ck̄(�)c
∗

k̄
(�) =

√
c∗
k̄
(�)ck̄(�) = zk̄(�)

ck̄(�) =

n∑

j=1

exp (−2𝜋ik̄ ⋅ p̄j)

=

{ n∑

j=1

exp (2𝜋ik̄ ⋅ p̄j)

}∗

=

{ n∑

j=1

exp [−2𝜋i(−k̄ ⋅ p̄j)]

}∗

= c∗
−k̄
(�)

zk̄(�) =
√

ck̄(�)c
∗

k̄
(�) =

√
c∗
−k̄
(�)c−k̄(�) = z−k̄(�)

converted into a matrix ̄̄U = ̄̄T ̄̄L ̄̄T
−1 that performs the equiva-

lent action in the a1a2-coordinate system. This can be seen 
by the following calculation, where x̄′ and ā′ are vectors of 
coordinates of a point related by the symmetry operator L 
to x̄ and ā:

Given the ability to calculate the matrix ̄̄U for any L ∈ L , the 
calculation of the redundant zk̄ specifically for the square and 
hexagonal domains proceeds as below.

For the square torus, ̄̄T = [1, 0;0, 1] and L is the dihedral 
symmetry group of order eight ( D4 ). Equation 7 is

where zLj
k̄

 are the descriptors zk̄ of the configuration Lj� with 
Lj ∈ L . The zLj

k̄
 can instead be written as

where k̄� = ̄̄U
T

j
k̄ . Computing k̄′ for the elements in L for the 

square torus yields

For the hexagonal torus, ̄̄T = [1,−1∕
√
3;0, 2∕

√
3] and L is 

the dihedral symmetry group of order twelve ( D6 ). Repeat-
ing the procedure above yields
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ā� = ̄̄Tx̄� = ̄̄T ̄̄Lx̄ = ̄̄T ̄̄L ̄̄T
−1
ā = ̄̄Uā

ẑk̄ =
1

8

8∑

j=1

z
Lj

k̄

z
Lj

k̄
=
‖‖‖‖

n∑

l=1

exp (−2𝜋ik̄ ⋅ ̄̄Ujāl)
‖‖‖‖

=
‖‖‖‖

n∑

l=1

exp (−2𝜋ik̄� ⋅ āl)
‖‖‖‖

[p, q] ∼ [−p, q] ∼ [q,−p] ∼ [−q,−p] ∼

[−p,−q] ∼ [p,−q] ∼ [−q, p] ∼ [q, p].

[p, q] ∼ [q, q − p] ∼ [q − p,−p] ∼ [−p,−q] ∼

[−q, p − q] ∼ [p − q, p] ∼ [−p, q − p] ∼ [−q,−p] ∼

[p − q,−q] ∼ [p, p − q] ∼ [q, p] ∼ [q − p, q].

https://github.com/burakericok/quotient_hard_disks
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provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.
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