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1 Introduction

For certain classes of systems of linear equations Ax = b, a solution can be
computed efficiently by partitioning the matrix A into blocks, and solving the
system by block factorization. The combinatorial problem we must solve to find
a suitable partitioning is equivalent to quotient tree partitioning of undirected
graphs. For a detailed description of the background of this problem, see [2].

A partitioning of the vertices of G is a division of the vertices into disjoint
subsets: ¥ = {V1,V%,...,V,}. The quotient graph induced by the partitioning,
written G/ 7, is the graph G’ = (¥, ) of p vertices where (V;,V;) € ¢ if and
only if there is some edge in E that connects a vertex in V; with a vertex in Vj.
If a quotient graph is a tree we call it a guotient tree. In what follows we will
refer to vertices of the quotient graph as nodes, and reserve the term vertex for
vertices of the original graph.

The problem we study is how to find tree partitionings that are “good” in
some sense. Just exactly what determines a “good” partitioning depends of
course upon our applications. We will suggest three different measures and
show that for all three measures the problem of finding a best tree partitioning
on an arbitrary undirected graph is NP-complete.

In the following section we will make use of reductions from the Maximum
Independent Set problem. For our purposes this problem, which is known to be
NP-complete [4], is defined as follows:

Definition 1.1: Maximum Independent Set (MIS).

INSTANCE: Undirected graph G = (V, E) and an integer K < |V|.
QUESTION: Does there exist a subset V' C V, such that [V’| > K and such
that no two vertices in V' are connected by an edge in E?

2 Complexity of Quotient Tree Partitioning

In this section we investigate the computational complexity of the problem
of finding a good quotient tree partitioning. We suggest three different measures
and show that for each of them the problem of finding the best quotient tree
partitioning is NP-complete.

The first measure is one where we want to maximize the number of nodes
in the quotient tree. This is the measure used in an algorithm by George and
Liu [1].

Definition 2.1: Maximum Quotient Tree (MQT).

INSTANCE: Undirected graph G = (V, E) and an integer K < |[V].
QUESTION: Does there exist a partitioning ¥ = {V1,V,,...,V,} of V into
p > K disjoint sets, such that G/¥ is a tree?

Theorem 2.1: Maximum Quotient Tree is NP-complete.




Proof: By a reduction from Maximum Independent Set.

Given a graph G = (V,E) and an integer K as an instance of MIS, we form
an instance of MQT by adding one new vertex r to G and making it adjacent
to all the old vertices of G. We claim that this new graph G’ has a quotient
tree of size K + 1 if and only if G has an independent set of size K.

If the size of an independent set in G is K there exists a quotient tree of size
K + 1, since we can take r plus the vertices not in the independent set to be in
the root node of the quotient tree, and all the vertices of the independent set
will be single-vertex leaves in the quotient tree.

Conversely, suppose there is a quotient tree of K + 1 nodes in G'. Consider
the quotient tree to be rooted at the node that contains r. Since r is adjacent
to all other vertices, all the other K nodes in the quotient tree are leaf nodes
that are children of the root. Hence, no two vertices that reside in different leaf
nodes are adjacent to each other. This means that we can form an independent
set of size K by choosing one vertex from each of the K leaf nodes. O

With the maximum number of nodes as our measure of a good quotient
tree we may of course find solutions in which a few nodes are very large. This
consideration leads to our second measure of a good quotient tree, namely one
where we try to minimize the size of each node.

Definition 2.2: Minimum Nodesize Quotient Tree (MNQT).

INSTANCE: Undirected graph G = (V, E) and an integer K.

QUESTION: Does there exist a partitioning ¥ = (V1,V2,...,V;) of V into p
disjoint sets, for some p < [V[, such that |[V;| < K, and such that G/¥ is a tree?

Theorem 2.2: Minimum Nodesize Quotient Tree is NP-complete.

Proof: Again by a reduction from Maximum Independent Set.

Given a graph G = (V, E) and an integer K < |[V| as an instance of MIS we
construct an instance of MNQT as follows. First, add a copy of G to get a new
graph G; = (Vi, E,) that consists of two disjoint copies of G. Clearly, G has an
independent set of size K if and only if G, has an independent set of size 2K.

Let n = |V|. Now, for each vertex v; in V; construct a clique c; of size
|ei| = 4n -1, and make v; adjacent to each vertex in its clique. Then, construct
a new clique H of size 8n — 1. Finally, add one more vertex, r, and make this
new vertex adjacent to all the other vertices.

Call this new graph G'. It has 2n + 2n(4n — 1) + (8n — 1) + 1 vertices, so
its size is polynomial in the size of G. Setting K’ = 5n — K we now claim that
G’ has a quotient tree partitioning with its largest set of size < K' if and only
if G has an independent set of size > K.




Observation 1: Let ¥ be any partitioning that makes G'/¥ a tree, T and let R
be the set that contains r. Consider T to be rooted at R. Then, any other node
in T is a child of R.

Observation 2: Let ¥ be any partitioning and T and R as above. At least one
set of 7 must have size > 4n. This is because the clique H U {r} can be split
over at most two subsets.

Observation 3: There exists a partitioning ¥ of V' such that all sets in 7 have
size < 5n. To see this, let each c;-clique be in a set by itself, and let all vertices of
V1 plus r plus 3n — 1 of the vertices of H be in one set, and let the 5n remaining
vertices of H be in the last set. It is easy to verify that this partitioning induces
a tree and that no set is larger than 5n.

Observation 4: If G has an independent set V; of size d then there is a par-
titioning F which has all sets of size < 5n — d. A partitioning of this form is
constructed as follows: For each vertex v; of V; take that vertex and its c;-clique
to form a separate set of size 4n. Let each of the c¢;-cliques of the remaining
vertices of V; form a separate set of size 4n — 1. Finally, form a root set R
containing r, the 2n — 2d vertices of V; that are not in V4, and 3n +d — 1 of
the vertices of H. The remaining 5n — d vertices of H will be in a separate set.
The total size of R is then 2n —2d+3n+d—1+1 which is 5n —d. Sinced <n
each set of size 4n is also < 5n — d.

Observation 5: Let ¥ be a Minimum Nodesize partitioning of G’. No set in
the partitioning, except R, can contain two or more vertices from V;. Assume
that some set S other than R does contain two vertices from V;. Then their
ci-cliques have to be split between being in S and being in R. Now, |S| < 5n by
observation 3 above and the fact that ¥ is a Minimum Nodesize partitioning.
Hence, at least 8n — 5n = 3n of the vertices of these cliques must fall in R. But
then, since |[H| + 1 + 3n = 11n we must have that either R or the part of H
outside of R is of size [11n/2] which is greater than 5n. This contradicts the
assumption that ¥ is a Minimum Nodesize partitioning.

Assume that there exists a partitioning of G’ which is a MNQT partitioning
and in which every set is of size < p. By observations 2 and 5 we can assume
that every vertex from V) that is not in R is in a set containing only itself
and vertices from its clique, forming a set of size 4n. Furthermore, the c;-
cliques of all Vj-vertices must be outside R, forming sets of size 4n — 1. Let
Sy be the set formed by the vertices of H that are not in R. By assumption
|Sk| +|R| < 2p and among the vertices of Sy UR are the 8n vertices of HU{r}.
Thus, the number of vertices of V; in R is at most 2p — 8n. Hence, at least
one of the identical copies of the original graph has at most p — 4n vertices in
R. This means that for this graph we have an independent set of size at least
n—(p—4n)=5n—-p.

It follows from the observation above that G’ has a Minimum Nodesize
Quotient Tree partitioning with each set < p if and only if G has an independent



set of size > 5n—p. O

We come to our third, and last, measure of a good quotient tree. Here we
want to minimize the sum of the squares of the set sizes in the partitioning. In
the context of matrix block-factorization this is the area of the diagonal blocks;
hence, an upper bound on the space required for these blocks. Not surprisingly,
this measure does not make the problem any easier.

Definition 2.3: Minimum Sum Squares Quotient Tree (MSSQT).
INSTANCE: Undirected graph G = (V, E), integer K < |V|°.

QUESTION: Does there exist a partitioning ¥ = (V;,V2,...,V;) of V into p
disjoint sets, for some p < |V|, such that G/¥ is a tree and such that |[V;|Z +
Va2 +---+ V|2 < K?

Theorem 2.8: Minimum Sum Squares Quotient Tree is NP-complete.

Proof: By a reduction from Maximum Independent Set.

Given a graph G = (V, E) and an integer K < |[V| as an instance of MIS
we construct an instance of MSSQT as follows. Let n = |V| and s = [(/7].
For each vertex v; in V make a clique ¢; of size s, and make v; adjacent to
each vertex in its clique. Also, add an additional clique r of size s, and connect
each vertex in r to all other vertices in the graph. The graph so constructed,
G' = (V',E'), has ns + n + s vertices—hence its size is polynomial in the size
of G.

Setting K' = K(s+1)? + (n — K)s? + (s + n — K)?, we claim that G’ has a
quotient tree partitioning with the sum of the squares of the set sizes at most
K' if and only if G has an independent set of size K.

Let % be the partitioning (rUV,¢i,...,¢,). The cost of % is
Co = (8 +n)? + ns? = (n+1)s? + 2ns + n’.

Keeping this in mind, we can make the following claim:

Claim: In any optimal MSSQT partitioning, r lies completely within one set.
Assume that we have a quotient tree partitioning of V' where two sets, S; and
S, both contain vertices of r. Since each vertex of r is adjacent to every other
vertex in V', there can be no other sets in the partitioning. Restricted to two
sets, we get an optimal partitioning by making S; and S, equal in size. Hence
the cost of this partitioning will be at least 2(|(ns+n+8)/2])%, which is greater
than Cy for n > 2.

Let 7 be any optimal MSSQT partitioning and let R be the set that contains
r. If we consider the tree induced by ¥ as rooted at R, then this tree has height
at most 1.




Let S be asetin ¥, S # R. If S contains part of a clique c;, then v; is either
in S orin R. If v; is in R we can construct a better partitioning by placing the
part of ¢; that is in S in a separate set. Hence, we can assume that each set
S contains vertices v; and parts of their cliques ¢;. For each v; its c;-clique is
either completely within R, completely within S, or partly within R and partly
within S. We can assume without loss of generality that at most one vertex v
in S has its clique partly in both R and S.

Assume that some vertex v in S has its clique completely within R. We
construct a new partitioning %, and claim that 7, is as least as good as 7.
Remove the c-clique from R and let it form its own set, and move v from S to
R. Clearly, this is still a quotient tree partitioning. We compare the costs by
which these sets contribute to the total costs of the partitionings. Let z = |R|-s,
y = |S| — 1, and let & be the difference in cost between the old and the new
partitioning. We get: § = (z+8)>+(y+1)?—(z+1)?— 8 —y? = 282+2y—22 > 0.

Let v be a vertex in S whose c-clique straddles R and S. Let a be the
number of vertices of the clique in R, and let b be the number of vertices of
the clique in S. Also, let z = |R| —a, y = |S| —b— 1. We construct a
new partitioning 7, by moving v from S to R and letting the c-clique be in a
separate set. Then, 6 = (z+a)?+ (y+b+1)2—(z+1)? - (a+b)? - y* =
2z(a — 1) + 2b — 2ab+ 2y(b + 1). Since R contains all of r, z > s = a + b implies
6 > 2(a+b)(a—1)+2b—2ab+2y(b+1)=2a(a—1)+2y(b+1) >0

This means that we now have a partitioning where R does not contain any
part of any c-clique. Hence, S contains k vertices of V' and all of their c-cliques.
Assume k > 2 and let v be a vertexin S. Let z = |R|, y = |S|—(s+1). Construct
a new partitioning as follows: move v from S to R and let its c-clique be in a
separate set. We have § = z2+(y+s+1)%>—(z+1)2 -2 —y? = 2y(s+1)+2s—22.
Since k > 2, y > (s+1). This implies § > 2(s+1)2+2s -2z = 2(s> +3s+1—2z).
Furthermore, since R contains only vertices from r and V, z < s + n; and, by
definition, 82 > n. So, § > 2(s? +3s+1—8—n) >2(2s+1) > 0.

We can finally conclude that the optimal value of a MSSQT partitioning can
be achieved through a partitioning of the following kind: we have a set R that
contains r and some vertices of V; for each vertex v in R, its c-clique lies in a
separate set; for each vertex v not in R, v is in a set that contains precisely v
and its c-clique.

Assume that there are d vertices of V' not in R. Clearly, from a partitioning
of this kind we can find an independent set of size d in G. The cost of this
partitioning is C = (8 + n — d)? + (n — d)s? + d(s + 1)%.

Conversely, if G has an independent set of size d, we can easily construct a
partitioning of the type and cost described above. O




3 Maximal Quotient Trees

The NP-completeness of the problems discussed above implies that we prob-
ably cannot find polynomial-time algorithms for MQT. Instead, we have to
turn to approximation algorithms. One possibility then is to look for a maximal
quotient tree rather than a maximum quotient tree.

A mazimal quotient tree is a quotient tree partitioning in which we cannot
partition any node further and still have a tree. A maximal quotient tree is not
necessarily a maximum quotient tree, and can in fact be arbitrarily far from
optimum. George and Liu [1] present an algorithm that will find a maximal
quotient tree partitioning for an undirected graph. They offer no estimate of
the running time of their algorithm, but an analysis of the implementation in [2]
indicates that it has a worst-case running time of {2(n?), where n is the number
of vertices in the original graph. We present in figure 1 an algorithm which is
a different implementation of the same idea, and has a worst-case running-time
of O(m), where m is the number of edges in the graph.

The idea is as follows: We start with a level structure of G. Letting each level
be a subset in the partitioning will certainly give us a quotient tree. However,
to get a maximal quotient tree we refine the partitioning within each level,
according to the following rule:

Partitioning Rule: Vertices v,w on level k are put in the same node
if and only if there is a path from v to w going only through vertices
on levels greater than or equal to k.

George and Liu[1] prove that if we partition the vertices of G according to this
rule the result will be a maximal quotient tree.

In the first part of the algorithm we use a breadth-first search to find a level
structure for G. This part of the algorithm (not explicitly shown in the figure),
returns an array of lists of vertices. Furthermore, for each vertex v in the graph
we record in the field Level|v] the level of v.

In the second part of the algorithm we process the vertices looking at one
level at a time. The first part of the body of the main loop builds an auxiliary
graph H, whose vertices are the vertices on the present level plus the nodes of
the next higher level.

In building the auxiliary graph we include all the edges that the vertices of H
induce. To avoid adding an edge to H more than once, we take two precautions:
First, if while processing vertex v on level k, we see an edge (v, w) within the
level, we only add it if w < v. Second, assume that (v, w) is an interlevel edge,
i.e., wis in a node u on level k¥ + 1. We add the edge (v,u) to H and set the
field Latest|u] to v. Now, if v should be adjacent to any other vertex in node
u, we can detect that this edge has already been added simply by checking the
value of Latest|u].

Having built H, we find its connected components using a depth-first search
(not explicitly shown in the figure). Each new node in the quotient tree is made




MAXIMAL QUOTIENT TREE ALGORITHM:
Input: A connected graph G = (V, E).
Output: A maximal quotient tree partitioning of V' as given by the array Node.

1. Use a breadth-first search to find a level structure for G.

2. fori « 1 to n do Latest[i] «— 0; od
3. for k — mazlevel to 1 do
4 U « {vertices on level k} U {nodes on level k +1};
5 H ~ (U,9);
6. for each vertex v on level k do
7 for each w € Adj[v] do
8. if Level|w] = Level[v] and w < v then
9. H — Hu (w,v);
10. else if Level[w] > Level[v] then
11. p — Node|w);
12. if Latest[p] # v then
13. H«~Hu(p,v)
14. ' Latest[p] — v;
fi
fi
od

od
15. Determine the connected components of H,

using a depth-first search.

The level-k vertices of each connected component of H

form a new node:
16. for all vertices v in node p do Node|v] «— p; od

od

Figure 1: Algorithm for finding a maximal quotient tree.




up of the level k vertices of some connected component of H.

Theorem 3.1: The algorithm in figure 1 computes a maximal quotient tree
in time O(m).

Proof: We first claim that vertices v,w on level k are in the same connected
component of H if and only if there is a path from v to w going only through
vertices of levels greater than or equal to k.

This is obvious for vertices on mazlevel. So, assume it is true for vertices
on levels k + 1, ..., mazlevel, and consider level k.

If v and w are in the same component, then obviously there is a path from v
to w in H; and the path goes only through vertices of level k and nodes on level
k + 1. If v; is a node on the path, then v;_; and v;4; must both be vertices
on level k. Let (vi_1,u) and (u’,vi4;) be the edges in G, where u,u’ are in
the same node p on level k + 1. By induction hypothesis there is a path of the
desired kind from u to u’. Hence there is a path from v to w going only through
vertices on levels greater than or equal to k.

For the other direction, assume that a path v = v;,vs,...,uy = w exists,
where each v; is on level k or higher. Let v; be the first vertex on the path that
is on level k + 1. (If no such vertex exists, the path is completely within level
k, and we are done.) Let v,4; be the first vertex after v; that is on level k. By
inductive assumption, v; and v; are in the same node on level k + 1, say node
p. This means that (v;_,p) and (p,vj41) are both edges in H. By repeating
this argument we can reduce the path in G from v to w to a path going only
through vertices on level k¥ and nodes on level k + 1. It follows that v and w
will be connected in H, and hence will be in the same node on level k.

We have proved that the algorithm makes a partitioning according to the
Partitioning Rule above. As proved by George and Liu [1], this implies that the
algorithm correctly computes a maximal quotient tree.

For the running time of the algorithm first note that determining the level
structure of G can be done in time O(m), since this is the running time of a
breadth-first search.

In the part where we construct the auxiliary graphs each vertex of G is
considered exactly once as v in the loop on line 6. For each adjacent vertex w
of v we make a constant number of operations. Hence, the building of all the
auxiliary graphs takes at most time O(m).

Finally, it suffices to note that each edge that is added to an auxiliary graph
corresponds uniquely to some edge in G. Hence, the total number of edges in
all the auxiliary graphs is less than or equal to m. Since depth-first search takes
time linear in the number of edges, the last part of the algorithm can also be
done in time O(m). It follows that the total worst-case running time of the
algorithm is O(m). O
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