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Abstract. In this paper, we introduce and study quotients of fully nonlinear control systems.
Our definition is inspired by categorical definitions of quotients as well as recent work on abstractions
of affine control systems. We show that quotients exist under mild regularity assumptions and
characterize the structure of the quotient state/input space. This allows one to understand how
states and inputs of the quotient system are related to states and inputs of the original system. We
also introduce a notion of projectability which turns out to be equivalent to controlled invariance.
This allows one to regard previous work on symmetries, partial symmetries, and controlled invariance
as leading to special types of quotients. We also show the existence of quotients that are not induced
by symmetries or controlled invariance. Such decompositions have a potential use in a theory of
hierarchical control based on quotients.
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1. Introduction. The analysis and synthesis problems for nonlinear control sys-
tems are often very difficult due to the size and complicated nature of the equations
describing the processes to be controlled. It is therefore desirable to have a method-
ology that decomposes control systems into smaller subsystems while preserving the
properties relevant for analysis or synthesis. From a theoretical point of view, the
problem of decomposing control systems is also extremely interesting since it reveals
system structure that must be understood and exploited.

In this paper we will focus on the study of quotient control systems since they can
be seen as lower dimensional models that may still carry enough information about
the original system. We will build on several accumulated results of different authors
that in one way or another have made contributions to this problem. One of the first
approaches was given in [17] were the analysis of the Lie algebra of a control system
lead to a decomposition into smaller systems. At the same time in [35], quotients
of control systems induced by observability equivalence relations where introduced in
the more general context of realization theory. In [31], Lie algebraic conditions are
formulated for the parallel and cascade decomposition of nonlinear control systems,
while the feedback version of the same problem was addressed in [24]. A different
approach was based on reduction of mechanical systems by symmetries. In [39], sym-
metries were introduced for mechanical control systems and further developed in [9]
for general control systems. The existence of such symmetries was then used to de-
compose control systems as the interconnection of lower dimensionality subsystems.
The notion of symmetry was further generalized in [26], where it was shown that
the existence of symmetries implies that a certain distribution associated with the

∗Received by the editors December 1, 2001; accepted for publication (in revised form) May 19,
2004; published electronically March 22, 2005. This research was supported by Fundação para a
Ciência e Tecnologia under grant PRAXIS XXI/BD/18149/98.

http://www.siam.org/journals/sicon/43-5/39902.html
†Department of Electrical Engineering, 268 Fitzpatrick Hall, University of Notre Dame, Notre

Dame, IN 46556 (ptabuada@nd.edu).
‡Department of Electrical and Systems Engineering, 200 South 33rd Street, University of Penn-

sylvania, Philadelphia, PA 19104 (pappasg@seas.upenn.edu).

1844



QUOTIENTS OF FULLY NONLINEAR CONTROL SYSTEMS 1845

symmetries was controlled invariant. This related the notion of symmetry with the
notion of controlled invariance for nonlinear systems. Controlled invariance [23, 12]
was also used to decompose systems into smaller components. A different approach
was taken in [22] where it was shown how to study controllability of systems evolving
on principle fiber bundles through their projection on the base space. More recently,
a modular approach to the modeling of mechanical systems has been proposed in [40],
by studying how the interconnection of Hamiltonian control systems can still be re-
garded as a Hamiltonian control system. A different research direction was taken
in [29], where instead of using structural properties of control systems, a constructive
procedure was proposed to compute smaller control systems called abstractions.

In several of the above approaches, some notion of quotienting is involved. When
symmetries exist, one of the blocks of the decompositions introduced in [9] is simply
the original control system factored by the action of a Lie group representing the
symmetry. If a control system admits a controlled invariant distribution, it is shown in
[23, 12] that it has a simpler local representation. This simpler representation can be
obtained by factoring the original control system by the equivalence relation defined by
considering the leaves of the foliation induced by the controlled invariant distribution,
equivalence classes. The notion of abstraction introduced in [29] can also be seen as a
quotient since the abstraction is a control system on a smaller dimensional state space
defined by an equivalence relation on the state space of the original control system.
These facts motivate fundamental questions such as existence and characterization of
quotient systems. Existence questions have already been addressed in [35] but in a
different setting. Only specific equivalence relations were considered (those induced
by indistinguishability), and the input space remained unaltered by the factorization
process. Furthermore, the quotients discussed in [35] are of a particular nature being
characterized by the notion of projectability introduced in section 6.

A thorough understanding of quotient systems also has important consequences
for hierarchical control, since the construction of quotients proposed in [29] implicitly
indicates that certain states of the original system may become inputs on the quotient
control system. It is perhaps surprising that this methodology interchanges the role of
state and input. However, this fact is the crucial factor that allows the development
of a hierarchical control theory based on quotients. Since states of the original system
may become inputs of the quotient system, a control design performed on a quotient
system can serve as a design specification for the original system. We can therefore
regard a control design as a specification for the evolution of certain state variables
on the more detailed model. A complete and thorough understanding of how the
states and inputs propagate from control systems to their quotients will enable such a
hierarchical design scheme. Preliminary work exploiting such a hierarchical approach
has been reported in [37].

In this paper, we take a new approach to the study of quotients by introducing
the category of control systems as the natural setting for such problems in systems
theory. The use of category theory for the study of problems in system theory also
has a long history which can be traced back to the works of Arbib and Manes (see [2]
for an introduction). More recently, several authors have also adopted a categorical
approach as in [19], where the category of affine control systems is investigated. We
also mention [33], where a categorical approach has been used to provide a general
theory of systems.

We define the category of control systems whose objects are fully (nonaffine)
nonlinear control systems and morphisms map trajectories between objects. The
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morphisms in this category extend the notion of φ-related systems from [28]. In this
categorical setting we formulate the notion of quotient control systems and show, in
one of the main results, that

under some regularity (constant rank) assumptions quotient control systems

always exist.

This result implies that, given a nonlinear projection map from the state space
to some reduced state space, we can always construct a new control system on the
reduced state space with the property that the nonlinear projection map carries tra-
jectories of the original system into trajectories of the reduced system. This should
be contrasted with several other approaches which rely on the existence of symme-
tries or controlled invariance to assert the existence of quotients. We also introduce
the notion of projectable control sections, which will be a fundamental ingredient to
characterize the structure of quotients. This notion is in fact equivalent to controlled
invariance, and this allows one to regard quotients based on symmetries or controlled
invariance as a special type of quotients. General quotients, however, are not nec-
essarily induced by symmetries or controlled invariance and have the property that
some of their inputs are related to states of the original model. This fact, implicit
in [29], is explicitly characterized in this paper by understanding how the state and
input space of the quotient is related to the state and input space of the original
control system. In particular, this paper’s main contribution states that

in the absence of symmetries, states that are factored out in the quotient

construction can be regarded as inputs of the quotient control system.

This result clearly distinguishes general quotients from previously studied quo-
tients based on symmetries or partial symmetries in which inputs of the quotient
system are the inputs (or a quotient) of the original system inputs. Since existence
of symmetries can be regarded as rare phenomena,1 as shown in [32] for single-input
systems, construction of quotients enables a widely applicable hierarchical approach
to control design based on reconstruction of trajectories for the original system from
quotient trajectories [37].

The outline of the paper is as follows. We start by introducing the relevant no-
tions from differential geometry and control theory in section 2. We then review the
notion of φ-related control systems in section 3 which was originally introduced in [28]
and will motivate the definition of the category of control systems presented in sec-
tion 4. In section 5, we introduce the notion of quotient control systems and prove an
existence and uniqueness result regarding quotients which roughly asserts that given
a regular equivalence relation on the state space of a control system a quotient sys-
tem exists (under some regularity conditions) and is unique up to isomorphism. The
characterization of quotients will be the goal of the remaining sections of the paper.
We first introduce the notion of projectable control section in section 6 and prove the
main result of the paper characterizing the structure of the quotient state/input space
in section 7. We end with conclusions and some open questions for further research
in section 8.

2. Control systems. In this section we introduce all the relevant notions from
differential geometry and control systems necessary for the remainder of the paper.
The reader may wish to consult numerous books on these subjects, such as [1] for
differential geometry and [14, 27] for control theory.

1We thank one of the anonymous reviewers for bringing this fact to our attention.
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2.1. Differential geometry. We will consider that all the manifolds will be C∞

and that all the maps will be smooth. Let M be a manifold and TxM its tangent
space at x ∈ M . The tangent bundle of M is denoted by TM = ∪x∈MTxM , and
πM is the canonical projection map πM : TM −→ M taking a tangent vector X(x) ∈
TxM ⊂ TM to the base point x ∈ M . Now, letting M and N be manifolds and φ : M
−→ N a map, we denote by Txφ : TxM −→ Tφ(x)N the induced tangent map which
maps tangent vectors X at TxM to tangent vectors Txφ ·X at Tφ(x)N . If φ is such
that Txφ is surjective at x ∈ M , then we say that φ is a submersion at x. When φ is
a submersion at every x ∈ M we simply say that it is a submersion. Similarly, we say
that φ has constant rank if the rank of the pointwise linear map Txφ is constant for
every x ∈ M . When φ has an inverse which is also smooth we call φ a diffeomorphism.
We say that a manifold M is diffeomorphic to a manifold N , denoted by M ∼= N ,
when there is a diffeomorphism between M and N . When this is the case we can use
φ−1 : N −→ M to define a vector field on M from a vector field Y ∈ TN , denoted by
φ∗Y = (φ−1)∗Y and defined by Tφ(x)φ

−1 · Y (φ(x)).

A fibered manifold is a manifold B equipped with a surjective submersion πB : B
−→ M . Manifolds B and M are called the total space and the base space, respectively.
The surjection πB defines a submanifold π−1

B (x) = {b ∈ B : πB(b) = x} ⊆ B for every
x ∈ M called the fiber at x ∈ M . We will usually denote a fibered manifold simply by
πB : B −→ M . Since a surjective submersion is locally the canonical projection from
R

i to R
j , i = dim(B) and j = dim(M), we can always find local coordinates (x, y),

where x are coordinates for the base space and y are coordinates for the fibers over
the base space. We shall call these coordinates adapted coordinates.

A map ϕ : B1 −→ B2 between two fibered manifolds is fiber preserving iff there
exists a map φ : M1 −→ M2 between the base spaces such that the following diagram
commutes:

M1 M2
�

φ

B1 B2
�ϕ

�

πB1

�

πB2

,(2.1)

that is to say, iff πB2 ◦ ϕ = φ ◦ πB1 . In such a case we also refer to ϕ as a fiber
preserving lift of φ. Given fibered manifolds B1 and B2, we will say that B1 is a
fibered submanifold of B2 if the inclusion map i : B1 ↪→ B2 is fiber preserving.

Given a map h : M −→ N defined on the base space of a fibered manifold, its
extension to the total space B is given by π∗

Bh = h ◦ πB . We now consider the
extension of a map H : B −→ TM to a vector field in B. We will define local and
global extensions of H. Globally, we define He as the set of all vector fields2 X : B

2Global existence of such vector fields X follows from the existence of a horizontal space H ⊆ TB,
H ∼= TM that allows the decomposition of TB as TB = H ⊕ ker(TπB). A global extension of a
map H : B −→ TM to a vector field X : B −→ TB is now uniquely defined as the vector field
X = H : B −→ TM ∼= H ⊆ TB. Such horizontal space can be obtained, for example, as the
orthogonal complement to ker(TπB) given by a Riemannian metric on B.
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−→ TB such that the following diagram commutes:

B TM�
H

X

�
�

�
�

�
��
TB

�

TπB

(2.2)

that is, TπB(X) = H. When working locally, one can be more specific and select a
distinguished element of He, denoted by H l, which satisfies in adapted local coordi-
nates (x, y), H l = H ∂

∂x +0 ∂
∂y . A vector field Y : M −→ TM on the base space M of a

fibered manifold can also be extended to a vector field on the total space. It suffices
to compose Y with the projection πB : B −→ M and recover the previous situation
since Y ◦ πB is a map from B to TM .

2.2. Control systems. Since the early days of control theory it was clear that
in order to give a global definition of control systems the notion of input could not be
decoupled from the notion of state [4, 41]. Although the coupling between states and
inputs is usually modeled through the use of fiber bundles, we shall consider more
general spaces.

In any case a control system can be globally defined as follows.
Definition 2.1 (control system). A control system ΣM = (UM , FM ) consists of

a fibered manifold πUM
: UM −→ M called the control bundle and a map FM : UM

−→ TM making the following diagram commutative:

UM TM�FM

M
�

πUM πM

�
�

�
�

��
.(2.3)

That is, πM ◦ FM = πUM
, where πM : TM −→ M is the tangent bundle projection.

The input space UM is modeled as a fibered manifold since in general the available
control inputs may depend on the current state of the system. In adapted coordinates
(x, v), Definition 2.1 reduces to the familiar expression ẋ = f(x, v) with v ∈ π−1

UM
(x).

The lack of local triviality assumptions on πUM
is motivated by the need to model

the construction of abstractions of control affine systems, as described in [29], in a
fully nonlinear context. As the following example illustrates, even in simple situations
the inputs of a control system resulting from an abstraction or quotient process can
depend on the states in a way that cannot be modeled by a fiber bundle.

Consider control system FM : UM −→ TM with UM = M ×U , M = R
3, U =]0, 1[

defined by:

FM (x, y, z, u) =

(
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)
u.

On the state space we define the following map φ : R
3 −→ R based on Reeb’s foliation:

φ(x, y, z) = (1 − r2)ez, r = x2 + y2.(2.4)
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Computing the derivative of φ,

dφ = ez(−4rxdx− 4ry dy + (1 − r2) dz),

we see that φ is a submersion since 1− r2 = 0 for r2 = 1, which implies that x �= 0 or
y �= 0, and this in turn implies that dφ �= 0. This shows that we can see φ : R

3 −→ R

as a fibered manifold. If we now compute the projection of FM on R by φ, we obtain

dφ · FM = ez(−4rx2 − 4ry2 + (1 − r2)z)u.

The set of vectors defined by the previous expression can be seen as a control system
on R up to control parameterization, as it defines the possible directions of motion
achievable by control. This is the principle underlying the notion of abstraction
described in [29]. Such a collection of vector fields admits the natural parameterization
π−1
UM

(φ−1(w)) for every w ∈ R. However, such a set of inputs cannot be given the

structure of a fiber bundle. To see this, it suffices to note that the fibers φ−1(w) are
not homeomorphic for w > 0 and w = 0. For w > 0 we can solve φ(x, y, z) = w to
obtain z = log w

1−r2 which defines φ−1(w) as

{
(x, y, z) ∈ R

3 : z = log
w

1 − r2
∧ 0 ≤ r2 < 1

}

and which is homeomorphic to the open unit disk in R
2. If w = 0, solving φ(x, y, z) =

0, we obtain r = 1 which is diffeomorphic to a cylinder. We thus see that for any
open set O in R containing 0, πUM

(φ−1(0)) cannot be diffeomorphic to O × L for
some manifold L describing the typical fibers of φ◦πUM

as they are not diffeomorphic
for different points in O. It is precisely the need to capture and analyze situations
like this that forces one to consider models for the state/input space other than fiber
bundles. The need to model these and other couplings between states and inputs has
led to alternative approaches where the notion of control system and its properties
are defined independently of states and inputs as in Willem’s behavioral theory [30]
and Fliess’ differential algebraic approach [7].

We now return to our discussion of control systems by introducing the notion of
control section3 that is closely related to control systems and which will be funda-
mental in our study of quotients.

Definition 2.2 (control section). Given a manifold M , a control section on M
is a fibered submanifold πSM

: SM −→ M of TM .
We denote by SM (x) the set of vectors X ∈ TxM such that X ∈ π−1

SM
(x). We

now see that under certain regularity assumptions, a control system (UM , FM ) defines
a control section by the pointwise assignment SM (x) = FM (π−1

UM
(x)). Conversely, a

control section also defines a control system as we shall see in detail in section 4.
The notion of a control section allows one to refer in a concise way to the set of all
tangent vectors that belong to the image of FM by saying that X ∈ TxM belongs to
SM (x) iff there exists a u ∈ UM such that πM (u) = x and FM (u) = X. When SM (x)
defines an affine distribution on TM , we call control system FM control affine and
fully nonlinear otherwise.

Having defined control systems the concept of trajectories or solutions of a control
system is naturally expressed by the following definition.

3In some literature this notion is also known as the field of admissible velocities.
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Definition 2.3 (trajectories of control systems). A smooth curve c : I −→ M ,
I ⊆ R

+
0 , is called a trajectory of control system ΣM = (UM , FM ) if there exists a (not

necessarily smooth) curve cU : I −→ UM making the following diagrams commutative:

I M�
c

cU

�
�

�
��
UM

�

πUM

I TM�
Tc

cU

�
�

�
��
UM

�

FM

,(2.5)

where we have identified I with TI.
The above commutative diagrams are equivalent to the following equalities:

πUM
◦ cU = c,

T c = FM (cU ),

which mean in adapted coordinates that x(t) is a trajectory of a control system if there
exists an input v(t) such that x(t) satisfies ẋ(t) = f(x(t), v(t)) and v(t) ∈ π−1

UM
(x(t))

for all t ∈ I.

3. φ-related control systems. We start by reviewing the notion of φ-related
control systems originally introduced in [28] and which motivates the construction of
the category of control systems to be later presented.

Definition 3.1 (φ-related control systems). Let ΣM and ΣN be two control
systems defined on manifolds M and N , respectively. Given a map φ : M −→ N we
say that ΣN is φ-related to ΣM iff for every x ∈ M ,

Txφ(SM (x)) ⊆ SN ◦ φ(x).(3.1)

In [28] it is shown that this notion is equivalent to a more intuitive relation
between ΣM and ΣN .

Proposition 3.2 (see [28]). Let ΣM and ΣN be two control systems defined on
manifolds M and N , respectively, and let φ : M −→ N be a map. Control system ΣN

is φ-related to ΣM iff for every trajectory c(t) of ΣM , φ(c(t)) is a trajectory of ΣN .
Propagating trajectories from one system to another is clearly desirable. Since

most control system properties are properties of its trajectories, relating trajectories
of different control systems also allows one to relate the corresponding properties.
If, in fact, system ΣN is lower dimensional than system ΣM , then we are clearly
reducing the complexity of ΣM . We can therefore regard ΣN as an abstraction of ΣM

in the sense that some aspects of ΣM have been collapsed or abstracted away, while
others remain in ΣN . This motivated the notion of abstraction based on trajectory
propagation in [28], which defined an abstraction of a control system ΣM as a φ-related
control system ΣN by a surjective submersion φ.

The idea of sending trajectories from one system to trajectories of another system
has been used many times in control theory to study equivalence of control systems.
We mention, for example, linearization by diffeomorphism [16] or feedback lineariza-
tion [5, 10, 13]. In these examples the maps φ relating the control systems were in
fact diffeomorphisms so that no aggregation or abstraction was involved. Related to
the feedback linearization problem is the partial feedback linearization problem where
only partial linearization is thought of. Such a problem can be reduced to the feed-
back linearization problem by considering feedback linearization of a subsystem of
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the original control system [20]. The notion of a subsystem can also be described by
defining how subsystem trajectories relate to the original system trajectories. In this
case, we require the existence of a map (satisfying certain injectivity assumptions)
transforming subsystem trajectories into trajectories of the original system. The use
of trajectory propagating maps can already be traced back to the works of Arbib and
Manesl (see [2] for an introduction), where by the use of category theoretic ideas it is
shown that (discrete time) control systems and finite state automata are just different
manifestations of the same phenomena.

4. The category of control systems. Informally speaking, a category is a
collection of objects and morphisms between the objects that relate to the structure
of the objects. If one is interested in understanding vector spaces, it is natural to
consider vector spaces as objects and linear maps as morphisms, since they preserve
the vector space structure. This choice for objects and morphisms defines Vect, the
category of vector spaces. Choosing manifolds for objects leads to the natural choice
of smooth maps for morphisms and defines Man, the category of smooth manifolds.
In this section we introduce the category of control systems which we regard as the
natural framework to study quotients of control systems. Besides providing an elegant
language to describe the constructions to be presented, category theory also offers a
conceptual methodology for the study of objects, control systems in this case. We
refer the reader to [18] and [3] for further details on the elementary notions of category
theory used throughout the paper.

The category of control systems, denoted by Con, has as objects control systems
as described in Definition 2.1. The morphisms in this category extend the concept of
φ-related control systems described by Definition 3.1. Since the notion of φ-related
control systems relates control sections and these can be parameterized by controls,
the lifted notion should relate control sections as well as its parameterizations by
inputs.

Definition 4.1 (morphisms of control systems). Let ΣM and ΣN be two control
systems defined on manifolds M and N , respectively. A morphism f from ΣM to ΣN

is a pair of maps f = (φ, ϕ), φ : M −→ N and ϕ : UM −→ UN making the following
diagrams commutative:

M N�
φ

UM UN
�ϕ

�

πUM

�

πUN

TM TN�
Tφ

UM UN
�ϕ

�

FM

�

FN

.(4.1)

It will be important for later use to also define isomorphisms.
Definition 4.2 (isomorphisms of control systems). Let ΣM and ΣN be two

control systems defined on manifolds M and N , respectively. System ΣM is isomorphic
to system ΣN iff there exist morphisms f1 from ΣM to ΣN and f2 from ΣN to ΣM

such that f1 ◦ f2 = (idN , idUN
) and f2 ◦ f1 = (idM , idUM

).
In this setting, feedback transformations4 can be seen as special isomorphisms.

Consider an isomorphism (φ, ϕ) with ϕ : UM −→ UM such that φ = idM . In adapted

4Some authors use the expression feedback transformation to denote any isomorphism in Con.
We consider the more restrictive use where changes of coordinates in the state space are disallowed
as they cannot be realized by feedback.
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coordinates (x, v), where x represents the base coordinates (the state) and v the
coordinates on the fibers (the inputs), the isomorphism has a coordinate expression
for ϕ of the form ϕ = (x, β(x, v)). The fiber term β(x, v) representing the new
control inputs is interpreted as a feedback transformation since it depends on the
state at the current location as well as the former inputs v. We shall therefore refer to
feedback transformations as isomorphisms over the identity since we have φ = idM .
The control theoretic notion of feedback equivalence is captured in this framework by
noting that two control systems are feedback equivalent iff there exists an isomorphism
(although not necessarily a feedback transformation) between the two systems. A
related notion is that of system immersion. Although we cannot capture such a notion
in our framework, as we have not equipped control systems with observation maps,
a restricted version of system immersion can still be defined within our framework.
Recall that, according to [6], system ΣM is said to be immersed in system ΣN if there
exists an injective map φ : M −→ N such that the input-output behavior of ΣM ,
when initialized at x, equals the input-output behavior of ΣN , when initialized at
φ(x). If we assume that UM = U × M and UN = U × N for some common input
manifold U , that M is a submanifold of N , and that i is the canonical injection of M
into N , then ΣM is immersed into ΣN , when (idU , i) is a morphism from ΣM to ΣN .
Note that the existence of morphism (idU , i) implies that FM (x, u) = Ti ·FM (x, u) =
FN (i(x), idU (u)) = FN (x, u) for local coordinates (x, u) ∈ U ×M ⊆ U ×N , and this
implies that ΣM and ΣN have the same input-output behavior when initialized at x
and i(x), respectively.

A control system can alternatively be defined by a control section SM on M in
the sense that at each point x ∈ M , SM (x) defines all the possible directions along
which we can flow or steer our system. However, there can be several control pa-
rameterizations for SM and it is important to understand in what sense all those
parameterizations represent the same control system. In order to obtain such equiva-
lence we make the following assumptions about control systems that will be explicitly
mentioned when needed:

AI: The fibers π−1
UM

(x) are connected for every x ∈ M .
AII: The map FM : UM −→ TM is an embedding.
Control systems satisfying assumption AII enjoy the following property.
Proposition 4.3. Let (UM , FM ) be a control system on manifold M satisfying

AII and let (U ′
M , F ′

M ) be any control system on manifold M such that S ′
M (x) ⊆ SM (x)

for every x ∈ M . Then, there exists a unique fiber preserving map FM making the
following diagram commutative:

UM TM�FM

U ′
M

�

FM F ′
M

�
�

�
�
��

.(4.2)

The previous result is an immediate consequence of the fact that FM (UM ) is an
embedded submanifold of TM . This is sufficient for the previous result to hold but
not necessary. In fact, the existence of a unique map FM is the property of interest
and could be used as a definition. However, it would be difficult to check in concrete
examples if a given control system would satisfy such a property. A different approach
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would relax the requirement that FM (UM ) is an embedded submanifold by the weaker
assumption of initial submanifold (see [15] for the definition of initial submanifolds
and its properties).

Since assumption AII implies the universal property [18] stated in Proposition 4.3,
any two control systems satisfying AII and defining the same control section are
isomorphic. It is in this sense that we do not need to distinguish between different
parameterizations of the same control section. They are the same control system, up to
a change of control coordinates, that is, up to an isomorphism over the identity. This
will be important when considering the effect of feedback since, as we have already
seen, this change of control coordinates can be regarded as a feedback transformation.

The relation between the notions of φ-related control systems (3.1) and Con
morphisms (4.1) is stated in the next proposition.

Proposition 4.4. Let ΣM and ΣN be two control systems defined on M and N ,
respectively. If f = (φ, ϕ) is a Con morphism from ΣM to ΣN , then ΣN is φ-related
to ΣM . Conversely, if ΣN satisfies AII and ΣN is φ-related to ΣM by a smooth map
φ : M −→ N , then there exists a unique fiber preserving lift ϕ of φ such that f = (φ, ϕ)
is a Con morphism from ΣM to ΣN .

Proof. Definition 4.1 trivially implies Definition 3.1, so let us prove that Defini-
tion 3.1 implies Definition 4.1. If ΣN is φ-related to ΣM , then by Definition 3.1,
Txφ(SM (x)) ⊆ SN ◦ φ(x). But SM is parameterized by UM , so that the map
Tφ◦FM : UM −→ TN (see the diagram below) satisfies Tφ◦FM (UM ) ⊆ SN . Therefore,
by Proposition 4.3, there is a unique fiber preserving map FN such that

UM UN
�FN

�

FM

�

FN

M N�
φ

TM TN�Tφ

�

πM

�

πN

commutes. By taking ϕ = FN , πUM
= πM ◦ FM , and πUN

= πN ◦ FN one recovers
Definition 4.1 and the equivalence is proved.

The previous result shows that there is an equivalence between smooth maps φ
relating control systems and Con morphisms provided that we work on a suitable
subcategory (where assumption AII holds). This means that many properties of
nonlinear control systems can be characterized by working with SM instead of FM .
We also see that if there is a morphism f from ΣM to ΣN , then this morphism carries
trajectories of ΣM to trajectories of ΣN in virtue of Proposition 3.2.

5. Quotients of control systems. Given a control system ΣM and an equiv-
alence relation on the manifold M , we can regard the quotient control system as an
abstraction since some modeling details propagate from ΣM to the quotient while
other modeling details disappear in the factorization process. This fact motivates
the study of quotient control systems as they represent lower complexity (dimension)
objects that can be used to verify properties of the original control system. Quotients
are also important from a design perspective since a control law for the quotient ob-
ject can be regarded as a specification for the desired behavior of the original control
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system. In this spirit we will address the following questions.
1. Existence. Given a control system ΣM defined on a manifold M and an

equivalence relation ∼M on M , when does there exist a control system on M/ ∼M , the
quotient manifold, and a fiber preserving lift pU of the projection pM : M −→ M/ ∼M

such that (pM , pU ) is a Con morphism?
2. Uniqueness. Is the lift pU of pM , when it exists, unique?
3. Structure of the quotient state/input space. What is the structure of the

fibers (input space) of the quotient control system?
To clarify our discussion we formalize the notion of quotient control systems.
Definition 5.1 (quotient control system). Let ΣL, ΣM , ΣN be control systems

defined on manifolds L, M , and N , respectively, and g, h two morphisms from ΣL

to ΣM . The pair (f,ΣN ), where f is a morphism and ΣN a control system, is a
quotient control system of ΣM if f ◦ g = f ◦ h and for any other pair (f ′,Σ′

N ) such
that f ′ ◦ g = f ′ ◦ h there exists one and only one morphism f from ΣN to Σ′

N such
that the following diagram commutes:

ΣM ΣN
�f

f ′
�

�
�
��

Σ′
N

�
f

ΣL
�g
�

h

.(5.1)

That is, f ′ = f ◦ f .
Intuitively, we can read diagram (5.1) as follows. Assume that the set ∼=

{(u, v) ∈ UM × UM : (u, v) = (g(l), h(l)) for some l ∈ UL} is a regular equiva-
lence relation [1]. Then, the condition f ◦ g = f ◦ h simply means that f respects
the equivalence relation, that is, u ∼ v ⇒ f(u) = f(v). Furthermore, it asks
that for any other map f ′ respecting relation ∼, there exists a unique map f such
that f ′ = f ◦ f . This is a usual characterization of quotient manifolds [1] that we
use here as a definition. The same chain of reasoning shows that if we replace control
systems by the corresponding state space and the morphisms by the maps between
the state spaces, then diagram (5.1) asks for N to also be quotient manifold obtained
by factoring M by a regular equivalence relation ∼M on M defined by g and h. The
same idea must therefore hold for control systems. This means that control system
ΣN must also satisfy a unique factorization property in order to be a quotient control
system.

From the above discussion it is clear that a necessary condition for the existence
of the quotient control system is the existence of the quotient manifold M/ ∼M .
When ∼M is a regular equivalence relation the quotient space M/ ∼M will be a
manifold [1] and the equivalence relation can be equivalently described by a surjective
submersion. We will therefore assume that the regular equivalence relation ∼M is
given by a surjective submersion φ : M −→ N . Similarly, the fiber preserving lift
ϕ of φ will also have to be a surjective submersion. We now consider the following
assumption which will be explicitly stated when required.

AIII: The map Tφ ◦ FM : UM −→ TN has constant rank and connected fibers.
The first two questions of the previous list are answered in the next theorem

which asserts that quotients exist under moderate conditions.
Theorem 5.2. Let ΣM be a control system on a manifold M and φ : M −→ N a

surjective submersion, and assume that AIII holds. Then there exist,
1. a control system ΣN on N ,
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2. a unique fiber preserving lift ϕ : UM −→ UN of φ such that the pair ((φ, ϕ),ΣN )
is a quotient control system of ΣM .

Proof. By assumption AIII, the map Tφ ◦ FM has constant rank and we can
define a regular and involutive distribution D on TUM by D = ker(TTφ ◦ TFM ).
Furthermore, as Tφ ◦ FM has connected fibers, also by assumption AIII, these are
described by the integral manifolds of D. We thus have a regular equivalence relation
∼⊆ UM × UM obtained by declaring two points equivalent if they lie on the same
integral manifold of D. We now consider the manifold UM/ ∼ obtained as the quotient
of UM by ∼ and denote by π : UM −→ UM/ ∼ the canonical projection. Since
Tφ ◦FM (u) = Tφ ◦FM (u′) iff π(u) = π(u′), it follows from the properties of quotient
manifolds [1] that there exists a unique map α : UM/ ∼−→ TN such that α ◦ π =
Tφ ◦ FM . We now define UN as UM/ ∼, πUN

as πN ◦ α, FN as α, and ϕ as π. We
note that ϕ is unique and claim that ((φ, ϕ), UM/ ∼) is a quotient of ΣM . The pair
of maps (φ, ϕ) is a morphism from ΣM to ΣN since Tφ ◦FM = FN ◦ϕ as required by
the second diagram in (4.1), and composing Tφ ◦ FM = FN ◦ ϕ with πN , we obtain,

πN ◦ Tφ ◦ FM = πN ◦ FN ◦ ϕ
⇔ φ ◦ πM ◦ FM = πN ◦ FN ◦ ϕ since πN ◦ Tφ = φ ◦ πM

⇔ φ ◦ πUM
= πN ◦ FN ◦ ϕ by commutativity of diagram (2.3)

⇔ φ ◦ πUM
= πUN

◦ ϕ by definition of πUN
,

which shows that the first diagram in (4.1) also commutes.
It remains to show that any other morphism f ′ = (φ′, ϕ′) such that φ′ is compat-

ible with the equivalence relation defined by φ factors uniquely through f . Since the
equivalence relation defined by φ on M induces the equivalence relation ∼ on UM , we
see that ϕ(u) = ϕ(u′) implies ϕ′(u) = ϕ′(u′). It then follows from the universality of
ϕ that ϕ′ factors uniquely through ϕ; that is, there exists a unique map ϕ such that
ϕ′ = ϕ ◦ ϕ. Similarly, φ′ factors uniquely trough φ via φ. It then remains to show
that (φ, ϕ) is a morphism from ΣN to Σ′

N .
We first show that diagram (4.1) commutes. Let un ∈ UN , as ϕ is a surjective

map; there is a um ∈ UM such that ϕ(um) = un. We now have, by diagram chasing,

F ′
N ◦ ϕ ◦ ϕ(um) = F ′

N ◦ ϕ′(um) since ϕ′ factors on ϕ

= Tφ′ ◦ FM (um) by commutativity of the 2nd diagram in (4.1)

= Tφ ◦ Tφ ◦ FM (um) since φ′ factors on φ

= Tφ ◦ FN ◦ ϕ(um) by commutativity of the 2nd diagram in (4.1),

and replacing ϕ(um) by un we see that f satisfies the second diagram in (4.1).
Commutativity of the first diagram in (4.1) can be obtained similarly by diagram
chasing.

This result provides the first characterization of quotient objects in Con. It
shows that given a regular equivalence relation on the base (state) space of a control
system and a mild regularity condition, there exists a quotient control system on the
quotient manifold. Furthermore, it also shows that the regular equivalence relation
on M or the map φ uniquely determines a fiber preserving lift ϕ which describes how
the state/input pairs of the control system on M relate to the state/input pairs of the
quotient control system. Furthermore, we also see that the map FN is an injective
immersion, a fact we will use several times in the remainder of this paper.

Existence of quotients under such weak conditions is perhaps surprising given the
fact that in other contexts, quotients exist only in very specific situations. A quotient
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group can only be obtained by factoring a group by a normal subgroup and not by a
general equivalence relation, a quotient linear space can only be obtained by factoring
a linear space by a linear subsubspace and not by a general equivalence relation, etc.
This fact highlights the relevance of Theorem 5.2 at the theoretical level but also at
the practical level since quotients can be constructively used to hierarchically design
trajectories [37].

Having answered the first two questions from the previous list (existence and
uniqueness), we concentrate on the characterization of the quotient control system
input space. This problem requires a deeper understanding of how φ determines
ϕ and will be the goal of the remainder of this paper. Since Con was defined over
Man, that is, morphisms in Con are smooth maps and control systems are defined on
manifolds, the characterization of ϕ will require an interplay of tools from differential
geometry and category theory.

6. Projectable control sections. We now extend the notion of projectable
vector fields from [21] and of projectable families of vector fields from [22] to control
sections. The notion of projectable control sections is weaker than projectable vector
field or families of vector fields but nonetheless stronger than Con morphisms. The
motivation for introducing this notion comes from the fact that projectability of con-
trol sections will be a fundamental ingredient in characterizing the structure of the
quotient system input space . Furthermore, we will also see that projectability, as de-
fined in this categorical setting, will correspond to the well-known notion of controlled
invariance.

Given a vector field X on M and a surjective submersion φ : M −→ N we say
that X is projectable with respect to φ when Y = Tφ · X, the projection of X, is
a well-defined vector field on N that satisfies Tφ · X = Y ◦ φ [21]. The vector field
Y is also called φ-related to X [1]. This notion was extended to families of vector
fields in [22] by requiring that the projection of each vector field in the family is a
well-defined vector field on N . However, when working with control sections, which
can be regarded as sets of vectors at each base point x ∈ M , one should require only
that the projection of these sets of vectors is the same set when the base points on M
project on the same base point on N . Intuitively, we are asking for control sections
that behave well under the projection defined by φ. This is formalized as follows.

Definition 6.1. Let M be a manifold, SM a control section on M , and φ : M
−→ N a surjective submersion. We say that SM is projectable with respect to φ iff SM

induces a control section SN on N such that the following diagram commutes:

M N�
φ

P(TM) P(TN)�Tφ

�
SM

�
SN

,(6.1)

where P(TM) denotes the powerset of TxM for every x ∈ M .
We see that if SM is in fact a vector field we recover the notion of projectable

vector fields. The notion of projectable control sections is stronger then the notion of
Con morphism since for any x1, x2 ∈ M such that φ(x1) = φ(x2) we necessarily have
Tφ(SM (x1)) = SN ◦ φ(x1) = Tφ(SM (x2)) if SM is projectable. On the other hand, if
(φ, ϕ) is a Con morphism for a fiber preserving lift ϕ of φ, we only have the inclusions
Tφ(SM (x1)) ⊆ SN ◦ φ(x1) and Tφ(SM (x2)) ⊆ SN ◦ φ(x1). Therefore, projectability



QUOTIENTS OF FULLY NONLINEAR CONTROL SYSTEMS 1857

with respect to φ and AII implies that φ can be extended to a Con morphism but
given a Con morphism f = (φ, ϕ) from ΣM to ΣN it is not true, in general, that SM

is projectable with respect to φ.
To determine the relevant conditions on SM that ensure projectability we will

need an auxiliary result.
Lemma 6.2. Let f : M −→ N be a map between manifolds and let Xt be the flow

of a vector field X ∈ TM such that f ◦Xt = f . Then the following equality holds for
every x ∈ M :

Txf TXt(x)X−t = TXt(x)f.(6.2)

Proof. The equality f ◦Xt = f is equivalent to

f ◦Xt(x) = f(x)

⇔ f(Xt(x)) = f ◦ (Xt)
−1 ◦Xt(x)

⇔ f(Xt(x)) = f ◦X−t(Xt(x)),(6.3)

and by differentiation of the previous expression we arrive at the desired equality

TXt(x)f = Txf TXt(x)X−t.(6.4)

We can now give sufficient and necessary conditions for projectability of control
sections.

Proposition 6.3 (projectable control sections). Let M be a manifold, SM a
control section on M , and φ : M −→ N a surjective submersion with connected fibers.
Given any control system (UM , FM ) satisfying AI and defining SM , and any F̂M ∈
F e
M , SM is projectable with respect to φ iff

[F̂M , ker(Tπ∗
UM

φ)] ⊆ ker(Tπ∗
UM

φ) + [F̂M , ker(TπUM
)].(6.5)

Proof. We show necessity first. Assume that diagram (6.1) commutes. Then we
have

Txφ(SM (x)) = Tx′φ(SM (x′))(6.6)

for all x, x′ ∈ M such that φ(x) = φ(x′), that is, for any x and x′ on the same leaf
of the foliation induced by ker(Tφ). If we denote by Kt the flow of any vector field
K ∈ ker(Tπ∗

UM
φ), expression (6.6) implies that

TπUM
◦Kt(u)φ(FM ◦Kt(u)) ∈ Txφ(SM (x))(6.7)

for every t ∈ R such that Kt is defined and for every u ∈ π−1
UM

(x). Since the left-hand

side of (6.7) belongs to the right-hand side and π−1
UM

(x) is connected by AI, we can
always find a Y ∈ ker(TπUM

) such that its flow Yt will parameterize the image of the
left-hand side. That is

TπUM
◦Kt(u)φ(FM ◦Kt(u)) = TπUM

◦Yt(u)φ(FM ◦ Yt(u)).(6.8)

The previous equality implies that for any F̂M ∈ F e
M we have

TKt(u)π
∗
UM

φ(F̂M ◦Kt(u)) = TYt(u)π
∗
UM

φ(F̂M ◦ Yt(u));(6.9)
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however, the equalities π∗
UM

φ ◦Kt = Kt, π
∗
UM

φ ◦Yt = Yt and Lemma 6.2 allow one to
rewrite (6.9) as

Tuπ
∗
UM

φ(TKt(u)K−t ◦ F̂M ◦Kt(u)) = Tuπ
∗
UM

φ(TYt(u)Y−t ◦ F̂M ◦ Yt(u))

⇔ Tuπ
∗
UM

φ(Kt(u)∗F̂M ) = Tuπ
∗
UM

φ(Yt(u)∗F̂M ).(6.10)

Time differentiation at t = 0 now implies

Tuπ
∗
UM

φ([K(u), F̂M (u)]) = Tuπ
∗
UM

φ([Y (u), F̂M (u)])

⇒ [K, F̂M ] ∈ [Y, F̂M ] + ker(Tπ∗
UM

φ),(6.11)

which trivially implies inclusion (6.5).
To show sufficiency we use a similar argument. Assume that (6.5) holds; then for

any K ∈ ker(Tπ∗
UM

φ) there exists a Y ∈ ker(TπUM
) such that

Tuπ
∗
UM

φ([F̂M (u),K(u)]) = Tuπ
∗
UM

φ([F̂M (u), Y (u)])

⇔ Tuπ
∗
UM

φ([F̂M (u),K(u) − Y (u)]) = 0.(6.12)

Consider now the regular and involutive distribution ker(Tπ∗
UM

φ). Involutivity and
regularity imply that Z∗

t W ∈ ker(Tπ∗
UM

φ) for any W ∈ ker(Tπ∗
UM

φ) and the flow Zt of
any vector field Z ∈ ker(Tπ∗

UM
φ) [34]. Since K ∈ ker(Tπ∗

UM
φ) and Y ∈ ker(Tπ∗

UM
φ),

it follows that K − Y ∈ ker(Tπ∗
UM

φ), but from (6.12), [F̂M ,K − Y ] also belongs to
ker(Tπ∗

UM
φ) so that we conclude

Tuπ
∗
UM

φ((K − Y )t(u)∗[F̂M ,K − Y ]) = 0,(6.13)

where (K − Y )t denotes the flow of the vector field K − Y . However, the previous
expression is equivalent to

Tuπ
∗
UM

φ

(
d

dt
(K − Y )t(u)∗F̂M

)
= 0

⇔ d

dt
Tuπ

∗
UM

φ((K − Y )t(u)∗F̂M ) = 0,(6.14)

where the last equality follows from the fact that Tφ is a linear map. Since the time
derivative is zero, we must have

Tuπ
∗
UM

φ((K − Y )t(u)∗F̂M ) = Tuπ
∗
UM

φ((K − Y )0(u)∗F̂M ) = Tuπ
∗
UM

φ(F̂M (u)).

(6.15)

From the equality π∗
UM

φ = π∗
UM

φ◦(K−Y )t we conclude that Tuπ
∗
UM

φT(K−Y )t(u)(K−
Y )−t = T(K−Y )t(u)π

∗
UM

φ by Lemma 6.2 so that (6.15) can be written as

T(K−Y )t(u)π
∗
UM

φ(F̂M ◦ (K − Y )t(u)) = Tuπ
∗
UM

φ(F̂M (u))(6.16)

and projecting on TM we get

TπUM
(K′

t(u))φ(FM ◦ (K ′)t(u)) = Txφ(FM (u))(6.17)
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with K ′ = K − Y . This equality shows that for any X ∈ SM (x), Txφ · X ∈
Tx′φ(SM (x′)); therefore, Txφ(SM (x)) ⊆ Tx′φ(SM (x′)). However, replacing x by x′

and K by −K on (6.17), we get Tx′φ(SM (x′)) ⊆ Txφ(SM (x)) so that we conclude the
equality

Txφ(SM (x)) = Tx′φ(SM (x′)).(6.18)

By connectedness of the fibers φ−1(y) any point x′′ satisfying φ(x′′) = φ(x) can be
reached by a concatenation of flows induced by vector fields in ker(Tφ). Transitivity
of equality between sets implies that (6.18) holds for any two points x, x′ ∈ M such
that φ(x) = φ(x′) from which commutativity of diagram (6.1) readily follows.

By now it is already clear that projectability and local controlled invariance are
equivalent concepts. We recall the notion of locally controlled invariant distribution.

Definition 6.4 (locally controlled invariant distributions [27]). Let ΣM =
(UM , FM ) be a control system on manifold M and let D be a distribution on M .
Distribution D is locally controlled invariant for FM if for every x ∈ M there exist an
open set O ⊆ M containing x and a local (feedback) isomorphism over the identity α
such that in adapted coordinates (x, v) the new control system FM ◦ α satisfies

[FM ◦ α(x, v),D(x)] ⊆ D(x)(6.19)

for every (x, v) in the domain of α.

If a control section is projectable, then locally we can always choose F̂M = F l
M

and therefore recover the conditions for local controlled invariance from [8].

Theorem 6.5 (see [8]). Let ΣM be a control system on manifold M satisfying
AI and φ : M −→ N a surjective submersion with connected fibers. The distribution
ker(Tφ) is locally controlled invariant for FM iff SM is projectable with respect to φ.

Even though controlled invariance and projectability are equivalent concepts, we
shall use the notion of projectability to describe control sections that behave well
under projection instead of controlled invariance which was introduced to describe
certain control enforced invariance properties of control systems [42].

From the study of symmetries of nonlinear control systems [9, 26] it was already
known that the existence of symmetries or partial symmetries implies controlled invari-
ance of a certain distribution associated with the symmetries. This shows that control
systems that are projectable comprise quotients by symmetry and controlled invari-
ance. Furthermore, quotients induced by indistinguishability, as discussed in [35], are
also of this type. However, there are also quotients for which projectability does not
hold as we describe in the next section. Furthermore, as the existence of symmetries
can be considered a rare phenomena [32], it is especially important to understand the
structure of general nonprojectable quotients.

7. The structure of quotient control systems. We have already seen that
the notion of Con morphisms generalizes the notion of projectable control sections.
This shows that it is possible to quotient control systems whose control sections are
nonprojectable. In this situation the map ϕ and the input space of the quotient
control system will be significantly different from the projectable case. To understand
this difference we start characterizing the fiber preserving lift ϕ of φ. Recall that
if f = (φ, ϕ) is a morphism from ΣM to ΣN , we have the following commutative
diagram:
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TM TN�
Tφ

UM UN
�ϕ

�

FM

�

FN

.(7.1)

Since ϕ is a surjective submersion, we know that UN is diffeomorphic to UM/ ∼, where
∼ is the regular equivalence relation induced by ϕ. This means that to understand
the structure of UN it is enough to determine the regular and involutive distribution
on UM given by ker(Tϕ). However, the map ϕ is completely unknown, so we will
resort to the elements that are available, namely, FM and φ, to determine ker(Tϕ).
Differentiating5 diagram (7.1) we get

TTM TTN�
TTφ

TUM TUN
�Tϕ

�

TFM

�

TFN

(7.2)

from which we conclude that

ker(TTφ ◦ TFM ) = ker(TFN ◦ Tϕ) = ker(Tϕ),(7.3)

where the last equality holds since FN is an immersion, provided that assumption
AIII holds. We can now attempt to understand what is factored away and what is
propagated from UM to UN since ker(Tϕ) is expressible in terms of FM and φ. The
first step is to clarify the relation between ker(Tϕ) and ker(Tφ). Since ϕ is a fiber
preserving lift of φ, the following diagram commutes:

TM TN�
Tφ

TUM TUN
�Tϕ

�

TπUM

�

TπUN

,(7.4)

which implies that

TπUM
(ker(Tϕ)) ⊆ ker(Tφ).(7.5)

However, this only tells us that the reduction on M due to φ cannot be “smaller”
than the reduction on the base space of UM due to ϕ. This leads to the interesting
phenomena which occurs when, e.g.,

TπUM
(ker(Tϕ)) = {0} ⊆ ker(Tφ).(7.6)

5The operator sending manifolds to their tangent manifolds and maps to their tangent maps is
an endofunctor on Man, also called the tangent functor [15].
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The above expression implies that the base space of UM is not reduced by ϕ. However,
UN is a fibered manifold with base space N and therefore the points reduced by φ must
necessarily move to the fibers of UN . This means that points u, u′ ∈ UM satisfying
πUM

(u) �= πUM
(u′) will be mapped by ϕ to points satisfying πUN

◦ϕ(u) = πUN
◦ϕ(u′)

and ϕ(u) �= ϕ(u′). This will not happen if we can ensure the existence of a distribution
D ⊆ ker(Tϕ) such that TπUM

(D) = ker(Tφ). The existence of such a distribution
turns out to be related with projectability. To show such a fact we need the following
characterization of ker(Tϕ).

Lemma 7.1. Let ΣM = (UM , FM ) be a control system on manifold M , φ : M
−→ N a surjective submersion and ϕ : UM −→ UN a fiber preserving lift of φ which is
also a submersion, and assume that AIII holds. Under these assumptions, a regular
distribution D ⊆ TUM belongs to ker(Tϕ) iff

[F̂M ,D];⊆ ker(Tπ∗
UM

),(7.7)

where F̂M is any vector field in F e
M .

Proof. Assume the existence of the distribution D; then D ⊆ ker(Tϕ) is equivalent
to

TTφ ◦ TFM (D) = {0}(7.8)

since AIII holds. Let Z ∈ D and denote by Zt the flow of Z. Expression (7.8) implies
that

d

dt

∣∣∣
t=0

TπUM
◦Zt(u)φ(FM ◦ Zt(u)) = 0 ⇒ d

dt

∣∣∣
t=0

TZt(u)π
∗
UM

φ(F̂M ◦ Zt(u)) = 0

(7.9)

for any F̂M ∈ F e
M and for all t ∈ R such that Zt is defined.

Noticing that Z ∈ D ⊆ ker(Tϕ) implies ϕ = ϕ ◦ Zt (since ϕ is constant on the
leaves of the foliation induced by ker(Tϕ)) and πUN

◦ ϕ = φ ◦ πUM
by commutativity

of diagram (4.1), we conclude that π∗
UM

φ is also Zt invariant:

π∗
UM

φ ◦ Zt = φ ◦ πUM
◦ Zt = (πUN

◦ ϕ) ◦ Zt = πUN
◦ ϕ = φ ◦ πUM

= π∗
UM

φ.(7.10)

Lemma 6.2 now ensures that

TZt(u)π
∗
UM

φ = Tuπ
∗
UM

φ ◦ TZt(u)Z−t,(7.11)

and expression (7.11) allows one to rewrite (7.9) as

d

dt

∣∣∣
t=0

TZt(u)π
∗
UM

φ(F̂M ◦ Zt(u)) = 0 ⇔ d

dt

∣∣∣
t=0

Tuπ
∗
UM

φ(TZt(u)Z−t ◦ F̂M ◦ Zt(u)) = 0

⇔ d

dt

∣∣∣
t=0

Tuπ
∗
UM

φ(Zt(u)∗F̂M ) = 0

⇔ Tuπ
∗
UM

φ([Z(u), F̂M (u)]) = 0(7.12)

or, equivalently, [Z, F̂M ] ∈ ker(Tπ∗
UM

φ). Since Z is any vector field in D it follows

that [F̂M ,D] ⊆ ker(Tπ∗
UM

φ) as desired.
The converse is similarly proved.
Using Lemma 7.1, we can now characterize the existence of a distribution D ⊆

ker(Tϕ) projecting on ker(Tφ).
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Proposition 7.2. Let ΣM = (UM , FM ) be a control system on manifold M
satisfying AI, φ : M −→ N a surjective submersion, and ϕ : UM −→ UN a fiber
preserving lift of φ which is also a submersion. There exists a regular distribution D
on UM satisfying D ⊆ ker(Tϕ) and TπUM

(D) = ker(Tφ) iff SM is projectable with
respect to φ.

Proof. We start by showing that projectability implies the existence of D. If SM

is projectable with respect to φ, then for every x, x′ ∈ M such that φ(x) = φ(x′) we
have that Txφ(SM (x)) = Tx′φ(SM (x′)). This means that for any x ∈ M , u ∈ π−1

UM
(x),

and X ∈ ker(Tπ∗
UM

φ), there exists a Y ∈ ker(TπUM
) (recall that π−1

UM
(x) is connected

by AI) such that

TπUM
◦Xt(u)φ(FM ◦Xt(u)) = Txφ(FM ◦ Yt(u))(7.13)

for all t ∈ R such that the flows Xt and Yt of X and Y are defined. Considering now
Tφ as a map between the manifolds TM and TN , the time derivative of Tα(t)φ(β(t))
for (α, β) : R −→ TM provides T(α(t),β(t))Tα(t)φ(Tβ(t)). The same considerations
applied to (7.13) at t = 0 give

T(x,FM (u))Txφ ◦ TuFM (X(u)) = T(x,FM (u))Txφ ◦ TuFM (Y (u)),(7.14)

which we rewrite as

T(x,FM (u))Txφ ◦ TuFM (X(u) − Y (u)) = 0(7.15)

by linearity of the involved maps. Since (7.15) is true for any X ∈ ker(Tπ∗
UM

φ), we
can define the distribution

D =
⋃

K∈ker(Tφ)

{Z = X − Y : X ∈ Ke ∧ Y ∈ ker(TπUM
) is such that (7.15) holds}.

(7.16)

This distribution clearly satisfies

TTφ ◦ TFM (D) = {0} ⇔ D ⊆ ker(Tϕ),(7.17)

is regular since dim(D) = dim(ker(Tφ)) by construction, satisfies TπUM
(D) = ker(Tφ)

also by construction, and is therefore the desired distribution.
The converse is proved as follows. Assume the existence of the distribution D ⊆

ker(Tϕ). By Lemma 7.1 we have

[F̂M ,D] ⊆ ker(Tπ∗
UM

).

Since TπUM
(D) = ker(Tφ) it follows that D + TπUM

= Tπ∗
UM

φ and

[F̂M ,D] ⊆ ker(Tπ∗
UM

)

⇒ [F̂M ,D + ker(TπUM
)] ⊆ ker(Tπ∗

UM
) + [F̂M , ker(TπUM

)]

⇒ [F̂M , ker(Tπ∗
UM

φ)] ⊆ ker(Tπ∗
UM

) + [F̂M , ker(TπUM
)],

which combined with Proposition 6.3 shows that SM is projectable with respect to φ
as desired.
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Collecting the results given by Lemma 7.1 and Proposition 7.2 we can now char-
acterize both ϕ and UN . Intuitively, we will use projectability to determine if the
fibers of the quotient control system will receive states from M and Lemma 7.1 to
characterize the amount of reduction induced by ϕ on the fibers of πUM

.

Theorem 7.3 (structure of control systems quotients). Consider a control system
ΣM = (UM , FM ) over a manifold M satisfying AI, let (f,ΣN ) = ((φ, ϕ), (UN , FN )) be
a quotient of ΣM where φ has connected fibers, and assume that AIII holds. Let E be
the involutive distribution defined by E = {X ∈ ker(TπUM

) : [F̂M , X] ∈ ker(Tπ∗
UM

φ)},
which we assume to be regular, denote by RE the regular equivalence relation induced
by E, and let F̂M be any vector field in F e

M . Under these assumptions the following
can be stated:

1. Reduction from states to states and no reduction on inputs. Fibered manifold
UN has base space diffeomorphic to N , and fibers π−1

UN
(y) diffeomorphic to π−1

UM
(x),

φ(x) = y iff
(i) SM is projectable with respect to φ;
(ii) E = {0}.
2. Reduction from states to states and from inputs to inputs. Fibered manifold

UN has base space diffeomorphic to N , and fibers π−1
UN

(y) diffeomorphic to π−1
UM

(x)/RE ,
φ(x) = y iff

(i) SM is projectable with respect to φ;
(ii) E �= {0}.
3. Reduction from states to inputs and no reduction on inputs. Fibered man-

ifold UN has base space diffeomorphic to N , and fibers π−1
UN

(y) diffeomorphic to

π−1
UM

(φ−1(y)), φ(x) = y iff

(i) for all K ∈ ker(Tπ∗
UM

φ), [F̂M ,K] /∈ ker(Tπ∗
UM

φ);
(ii) E = {0}.
4. Reduction from states to inputs and from inputs to inputs. Fibered man-

ifold UN has base space diffeomorphic to N , and fibers π−1
UN

(y) diffeomorphic to

(π−1
UM

/RE)(φ−1(y)), φ(x) = y iff

(i) for all K ∈ ker(Tπ∗
UM

φ), [F̂M ,K] /∈ ker(Tπ∗
UM

φ);
(ii) E �= {0}.

Proof. We note that in all four cases the base space of UN is diffeomorphic to N ,
since UN is equipped with a surjective submersion πUN

: UN −→ N . We will, therefore,
only discuss the characterization of fibers of πUN

. We follow the enumeration of the
theorem.

1 and 2: Since ϕ is fiber preserving, we denote by ϕx : π−1
UM

(x) −→ π−1
UN

(φ(x)) the

restriction of ϕ to the fibers π−1
UM

(x), x ∈ M . We now claim that projectability implies

ϕx(π−1
UM

(x)) = ϕx′(π−1
UM

(x′)) for every x, x′ ∈ M such that φ(x) = φ(x′). Recall
that by definition of projectability, we have Txφ(SM (x)) = Tx′φ(SM (x′)). However,
SM (x) = FM (π−1

UM
(x)) so that we conclude Txφ◦FM (π−1

UM
(x)) = Tx′φ◦FM (π−1

UM
(x′)).

From assumption AIII follows injectivity of FN , which combined with commutativity
of the second diagram in (4.1) leads to ϕx(π−1

M (x)) = ϕx′(π−1
M (x′)), as desired. This

equality also shows that ϕx is surjective since ϕ is. Furthermore, we conclude that to
characterize π−1

UN
(y) it suffices to characterize the image of ϕx for some x ∈ φ−1(y).

We now consider ker(Tϕ(x))∩ ker(Tπ−1
UM

(x)), which by Lemma 7.1 is equal to E and

is regular by assumption. Fields in π−1
UM

(x) and the equivalence relation RE can be

identified with an equivalence relation on π−1
UM

(x). We first note that projectability
implies via Proposition 7.2 and (7.5) that TπUM

(ker(Tϕ)) = ker(Tφ). This shows



1864 PAULO TABUADA AND GEORGE J. PAPPAS

that

dim(ker(Tϕ)) = dim(ker(Tφ)) + dim(E).(7.18)

On the other hand,

dim(π−1
UN

(y)) = dim(UN ) − dim(N)

= dim(UM ) − dim(ker(Tϕ)) − dim(N)

= dim(UM ) − dim(ker(Tφ)) − dim(E) − dim(N) by (7.18)

= dim(UM ) − dim(ker(Tφ)) − dim(E) − dim(M) + dim(ker(Tφ))

= dim(UM ) − dim(E) − dim(M)

= dim(π−1
UM

(x)) − dim(E) = rank(ϕx),(7.19)

which shows that ϕx is a submersion. We thus see that π−1
UN

(y) can now be identified

with π−1
UM

(x)/RE since every vector field X ∈ E satisfies TπUM
(X) = 0 and therefore

induces a vector field on π−1
UM

(x). If E = {0}, it follows that π−1
UN

(y) ∼= π−1
UM

(x)/RE ∼=
π−1
UM

(x) as required by case 1.
Conversely, since the base of UN is diffeomorphic to the quotient of M by the

regular equivalence relation induced by ker(Tφ) and the fibers of πUN
diffeomorphic

to πUM
/RE , it follows that ker(Tϕ) can be locally described by D ⊕ E for D =

ker(Tφ)l and TπUM
(E) = {0}. From the existence of D and Proposition 6.3 follows

projectability of SM (x). Furthermore, if the fibers of πUM
are diffeomorphic to the

fibers of πUN
, we have E = {0} (case 1) and otherwise E �= {0} (case 2).

3 and 4: From assumption (i) and Lemma 7.1 we conclude that there exists no
X �= 0 belonging to K(Tϕ) such that TπUM

(X) ∈ ker(Tφ). Since TπUM
(ker(Tϕ)) ⊆

ker(Tφ) (see the discussion before (7.5)), it follows that TπUM
(ker(Tϕ)) = {0}. Con-

sequently, every X ∈ ker(Tϕ) is tangent to π−1
UM

(x) and ϕ(UM ) is diffeomorphic to

a fibered manifold with base space M and fibers π−1
UM

(x)/RE . Let us denote by
π : ϕ(UM ) −→ M the projection from total space to base space which clearly satis-
fies πUM

= π ◦ ϕ. We now use the fact πUN
◦ ϕ = φ ◦ πUM

with πUM
= π ◦ ϕ to

get πUN
◦ ϕ = φ ◦ π ◦ ϕ and by surjectivity of ϕ we finally conclude the equality

πUN
= φ ◦ π. It is now clear that π−1

UN
(y) ∼= π−1(φ−1(y)) ∼= (π−1

UM
/RE)(φ−1(y)) as

required by case 4. Case 3 is obtained by setting E = {0} and obtaining π−1
UN

(y) ∼=
(π−1

UM
/RE)(φ−1(y)) ∼= π−1

UM
(φ−1(y)).

The converse is proved as follows. Since the fibers of πUN
are diffeomorphic to

(π−1
UM

/RE)(φ−1(y)), we see that points u, u′ ∈ UM satisfying πUM
(u) �= πUM

(u′) and
φ ◦ πUM

(u) = φ ◦ πUM
(u′) also satisfy ϕ(u) �= ϕ(u′). This shows that no vector

field X �= 0 in ker(Tπ∗
UM

φ) belongs to ker(Tϕ) since otherwise different points in a
trajectory of X would violate the above remark. The nonexistence of such vectors
X implies, via Lemma 7.1, condition (i) and also implies that ker(Tϕ) = E . It then
follows that if π−1

UN
(y) ∼= π−1

UM
(φ−1(y)), then E = 0 (case 3) and E �= 0 otherwise (case

4).
We see that the notion of projectability is fundamentally related to the structure

of quotient control systems. If the controlled section SM is projectable, then the
inputs of the quotient control system are the same or a quotient of the original inputs.
Projectability can therefore be seen as a structural property of a control system in the
sense that it admits special decompositions [11, 27]. However, for general systems not
admitting this special structure, that is, for systems that are not projectable, it is still
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possible to construct quotients by moving the neglected state information to the fibers.
The states of the original system that are factored out by φ are regarded as control
inputs in the quotient control system. This shows that from a hierarchical synthesis
point of view, control systems that are not projectable are much more appealing
since one can design control laws for the abstracted system that when pulled-down
to the original one are regarded as specifications for the dynamics on the neglected
states [37].

8. Conclusions. In this paper quotients of fully nonlinear control systems were
investigated. We showed that under mild conditions quotients exist, and we character-
ized the structure of the quotient state/input space. This was achieved by introducing
the category of control systems which was the natural framework to discuss quotients
of control systems. One of the important ingredients of the characterization of quo-
tients was the notion of a projectable control section, which being equivalent to con-
trolled invariance allowed one to understand the difference between general quotients
and those induced by symmetries, partial symmetries, or controlled invariance.

There are still innumerous directions to be explored. The correct relations of the
results presented in this work with the notion of extended control system [25] are not
yet understood. This seems to lead to a possible generalization of the constructive
procedures presented in [29] to compute quotients of nonlinear control affine systems to
fully nonlinear control systems. Other directions being currently investigated include
similar results for mechanical control systems where the Hamiltonian structure is
preserved by the factorization process [36] as well as hybrid control systems [38].
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