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QUOTIENTS OF SMOOTH FUNCTIONS

By HENRI JORIS AND EMMANUEL PREISSMANN

1. Introduction.

The following theorem was proved in [J]: (¥) if f: R—R is such that f?
and f® are of class C=, then so is f. The proof used elementary, but rather
complicated equations relating the derivatives of f and of its powers. We
thought it possible to imagine another proof based on the fact that f is the
quotient of two smooth functions f* and f?, or rather that the product of f by
the smooth function f? is itself smooth. Of course a function g as well as the
product fg may be smooth even if f is not, so we had to look for additional
conditions which are sufficient to imply the smoothness of f.

Here is one possible answer to that problem: :f f, g: R—C, meN and a>0
are such that g, fg and f™ are smooth and |fi=l|gl® f is smooth (Theorem 1).
(*) follows immediately from this theorem if one sets g=f%, m=2, a=1/2.

Remark. An elegant and simple proof of (*), based on ring theory, has
recently been given in [AM].

Theorem 1 will be used to study a family of smooth maps called pseudo-
immersions (cf. [JP1]), and of which the curve t—(2?, ¢*) appearing in (*) is but
a simple example:

A C-=application h: N->M, M and N being C*-manifolds, is a pseudo-immersion
if for each continuous application f of a C*-manifold P to N, he f<C*® implies
fec=,

By the condition that f is continuous, each immersion is a pseudo-immersion.
(If in the above definition C= is replaced by C", for some r&N, then immer-
sions and pseudo-immersions become the same thing.) The same condition im-
plies that the pseudo-immersivity of a smooth map is a local property. Hence,
it’s enough to study maps R®—R™, or even germs of smooth maps (R”, 0)—
(R™, 0). As it was proved in [J], the pseudo-immersivity follows if the condi-
tion of the definition is checked for P=R; thus, by (*), the non-immersive map
t—(1%, t?) is a pseudo-immersion.

In [JP1] the pseudo-immersions N—M for dim N=1, were completely described
(by determining the pseudo-immersive germs (R, 0)—(R™, 0)). For dimN=2,
the task appears to be much more difficult, except in the case where dim M=
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242 HENRI JORIS AND EMMANUEL PREISSMANN

dim N (then any pseudo-immersion is an immersion, that is, a local diffeomorphism)
or in the case where dim N>dim M (then there are no pseudo-immersions) (cf.
[JP27). However, Theorem 1 enables us to find some new families of pseudo-
immersions (Theorems 2’ et 3).

In part 4 we give some examples and counterexamples, disproving or con-
firming a few guesses inspired by the study of the cases dim N=1 and dim N=
dim M.

In the hypothesis of Theorem 1, all four conditions are necessary: if any of
them is omitted the conclusion is no more valid. This is quite obvious except
for the condition f™<C=; if it is omitted, a counterexample is given in the fifh
part, where the following is proved: If f, g: R—C and a>0 are such that g
and fg are smooth, and |f|<|gl®, then f&C; if moreover f is real, then fe
Ct2a1 These conclusions are best possible.

Acknowledgements: In the third part, where we use some results of algebraic
geometry, Prof. M. Ojanguren’s suggestions were very precious for us. We are
indebted to the Fonds national suisse de la recherche scientifigue for financial
support.

Notations: 0 is not a natural number, so N={1, 2, 3, ---}. If I is a real
interval, its length is denoted by [I]. A smooth mapping is a C*-mapping. A
mapping f: R*—C™ is called flat at x, if for any seN one has || f(x)— f(xo)] €
flx—xol|* as x—x,; if f is smooth, this implies that all the derivatives of f at «x,
vanish. By g.c.d. we refer to the greatest common divisor and by [ ] to the
integral part. Q.E.D. denotes the end of the proof.

2. Smoothness of quotients of smooth functions.

Our main concern in this section is with the proof of the following theorem.

THEOREM 1. Let f, g: R—C be two functions, m a natural integer, and let
C, a be two positive constants such that

a) g, fg, I"eC(R, C);
b fI=Clglx)|®  for every real x.

Then f=C*(R, C).

In section 3 we shall apply this theorem to prove the pseudo-immersivity of
certain families of germs. Here we deduce just one easy consequence.

COROLLARY. (see [J] for f real; [DKP], [JP1] [AM] for f complex) If
i+ R—C and r, s&N are such that g.c.d.(r, s)=1, freC», f*eC=, then f€C=

Proof of the corollary. It is easy to show, [J], that f"® and f7**! are smooth.
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The conclusion then follows by Theorem 1 with m=rs, g=f"%, C=1, a=1/rs.
Q.E.D.

We begin the proof of Theorem 1 by three simple lemmas:

LEMMA 1. Let f, g: R—C be functions. Suppose that g and fg are smooth,
that g is not flat at b and that f s bounded near b. Then f 1s smooth near b.

Proof. By Taylor’s theorem and by the hypothesis we may find a natural
number #, such that g(x)=(x—b)"r(x), v smooth, 7(b)#0, and (fg)x)=(x—b)"¢p(x), ¢
smooth ; hence f=¢/r is smooth near b. Q.E.D.

LeEmMA 2. If feC* YR, C) is flat at b, and 1f f(b) is defined, then f(b)
=f'b)= - =f%=0.

Proof. The conclusion follows from Peano’s rarely used version of Taylor’s
Theorem (cf. [F], p.228):

=5 L bt ool Q.E.D.

LEMMA 3. For each n=N there is a constant K,>0 such that
sup | S| ZKa(b—a)" inf |1(0)
for all f=C™*[a, b], R).

Proof. We proceed by induction. Without loss of generality we may sup-
pose that a=—b, f™=1 in [—b,b], and fP(0)=0. Then f™*Pzbh/2 in
[6/2, b]. By the hypothesis of induction one has

sup |f1= sup |f1zK <—ZL)H£=4""K (b—ay
00 rhzmer o PT\2 2 " ’
and the lemma is proved, because K,=1 is obvious. Q.E.D.

Remark. It is possible to prove that the best constant is K,=(n!2%""*)"",

LEMMA 4. Let f: R—C be a continuous function such that f™ is smooth for
some m&N. Let IR be a bounded interval. Then for each w>0 there is a
constant k, such that

(= ke|x—pl°
for any x<=1I and any p such that f is flat at p. (Uniform flatness.)
Proof. The points of flatness of f and of f™ are the same, therefore it

suffices to prove the lemma for f™. We may suppose that |x—p|<1 and wE N.
Set h=f™;if & is flat at p, then A(P)=h(p)= - =h“ V(p)=0. Then Taylor’s
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formula gives for xI, x=p:

N T | ST

A= 7 [} o=ty

1 z
< - (@) __ #\e-1
< oprsuplhl| et
__ sup;| At} y
—T(x“i)) .
For x<p the proof is essentially the same. Q.E.D.

For the following lemmas we introduce the spaces
F=C=([0, 1], C), E=C[X],

X being an indeterminate. We endow F with the topology of the uniform con-
vergence for each derivative. For polynomials of bounded (say bounded by N)
degree this topology is the same as the topology given by the norm ||P|=
SuDeszsi| P(x)|. For the coefficients a,, ---, ay of P are obtained linearly from
the values P(j/N), 7=0, ---, N, by means of the inverse of Vandermonde’s matrix
((G/N)®), t=o,..~; on the other hand P™=0, if a>N, and |P®(x)|<(N+1)!
max|a;] if 2N, 0=x<1. (We could also have used the following general

theorem : two topological vector spaces which are Hausdorff and have the same
finite dimension are topologically isomorphic (see [W], p. 5-6, cor. 1 of th. 1).)

The topology in E is the topology of the convergence of each coefficient:
a,=23a,, ,X’ tends to a=>}a, X, if and only if a,,,—a, 7=0,1,2,---. Generally,
if @a=33a,X’, it is not possible to replace X by a complex variable. However,
we may define a(0)=a,, and so a‘*>(0)=~!a,, by formal derivation.

As well in F as in E, we write a—0 for a sequence which converges to 0,
but the same expression also means that « belongs to arbitrary small neighbour-
hoods of 0 (0-filter). We denote such a sequence (or filter) by o(1).

For any feF we denote its Taylor series at 0 by 7f. The mapping T: F
—E is continuous, and f“*(0)=(Tf)**>(0). A polynomial f will be identified with
its Taylor series: f=TYf.

If M&N or M=0, an identity (equality, limit, etc.) (mod X¥) will mean that
we take into account only the coefficients of X° X!, .-, X¥-1, If we derive a
relation (mod X¥) we get a relation (mod X*™1),

LEMMA 5.
a) Let ucC(R, C) be flat at 0, neNU{0}, i>0; and let I,=[as, b:], b=
1,2, 3, -, be a sequence of intervals, a,<bp, a,—0, b,—0, such that
(1) s}lp]u""|>>llklZ for k—co,
&k

Then there is an integer m, n<m<n-+i, such that (for an appropriate subsequence)
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(2) ipkflu‘"”|>>|1kl”"“m,
and for any [>m
®) sup [uOf=o(| 1| "").
Also there is a sequence of polynomials U,, deg U,<<i-+n, [UI»1, such that one

has (in F):
L]~ " ulby — 1| 2)=Ur(x)+0(1).

b) If the sequence I, is as above, if usC(R, C) is flat at 0, and if s>0,
then there is a sequence of polynomials U,, degU ,<s, such that we have in F

el u(br— 11| 0)=U w(x)+o0(1).
Proof. a) We choose m to be the greatest integer having the property

sup 1™ #o(| 4|7,

Then (3) is an immediate consequence. By (1) and the flatness of u at 0 we
have m>=n and m<n-+i. Replacing the sequence I, by a suitable subsequence
we obtain

4) Sluplu(m)|>>|1kl“”‘"‘.
k
Therefore (using (3)),
Suplu(m’l—influ(""légbk [+ () dy <(b,—as)sup|ut™P
I Iy ap I
=o(| [ || I 1" "™ D=0({ 11" ™),
and (2) is implied by this and by (4). Set

Vi()=1Le | ulb,—11e|x).
We then have
VP =21 u (b, —| 1 [x).
By (3), we find that V{™—0 in F. If we set U,(x)=T,V,(x) (which is the
m*® Taylor polynomial of V, at 0) then by Taylor’s formula

Vk(x)—(]k(x):%r(x—z‘)’"V,gm“’(t)dt

V4=U (%) (W%TS:““—”""’VE’"“’U)W if r<m,
r—Uyg x)= '

Vir(x) it r>m.

But we know that V{™*P—0 in F, thus V,—U,—0 in F, and eventually, by (4):
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sup [U™ |z sup [Vi™[+o(1)>1
0szs1 0sz31

Therefore |U,>1, and the proof of a) is complete. The proof of b) is similar
and even easier, so we omit it. Q.E.D.

LEMMA 6. Let F, G be complex fixed polynomials, G+#0, and let m<N.
Suppose that
(GHrIF+@)=GF+o(l),

(F+o)"=F™+0(1),
hold in E=C[X] with y—0. Then ¢—0.

Proof. We may write G(X)=XI'(X), I'(0)#0, scNU{0}. Then I" is a
unit in E, and o(1)I""'=0(1), so we may suppose G(x)=X°. By induction on s
we shall prove the following sharpening of Lemma 6:

(Ay) If MeN, N=Mm®, and if the assumptions of Lemma 6 are verified (mod X¥),
with G=X?, then its conclusion holds (mod X*),

By (1+o(1))'=1+40(1) (mod X¥), we see that (A,) is true. To prove (A, we
suppose

(5) (X+7)(F+@)=XF+4o(1) (mod X¥™),
(6) (F+@)™=F™}0o(1) (mod XMm),

and y—0. We have to show that ¢—0 (mod X¥). We shall see that if ¢—0
(mod X%), 0L L< M, then ¢—0 (mod X***); this will complete the proof of (A,),
since everything is trivial (mod X°). So suppose that

(7 o=0(1)+X™ (mod X¥™);

we shall prove that v(0)—0.
By (5) and (7) we find

(X+ywXr—0  (mod X¥™),
and therefore
(8 (X+7rw—0  (mod X¥™-L),
We set X+7=w. Differentiating (8) we obtain
9 wvt+wy' —— 0 (mod XM m-1-1y,
From (6) and (7) it follows that
w™  (Fto()+v XM =(X+o(1)™ (F™+o(l))  (mod X*™).

Expanding products and powers and using (8), we obtain



QUOTIENTS OF SMOOTH FUNCTIONS 247
w™ 1 Ximy™ () (mod X¥™),
(10) wm ™ —— 0 (mod X¥m-Lm),
and, differentiating (10),
w™ ™ Y mw'v+wy)—w'v) —> 0 (mod X¥m-Lm-1),
By (9) and because w’'=1+7'=140(1), we obtain
(11) wm ™ +vmo(1)+v™ (1)) —> 0 (mod X¥™oLmot),

Similarly, it can be shown that
(12) —ddy(w“v”o(l)(mod XN =w2 (v’o(1) +1°1o(1)) (mod X7T),

if '\a, b N. Differentiating (11) and using (12), we obtain

w™ ™+ v™o(1)+v™ (1) o™ 20(1)) — 0 (mod XHm-Lm-2y
and so on; after (m—1) differentiations we eventually get

v +omo()4+v™ o)+ - +vo(l) —> 0  (mod XH¥m-Lm-m+ly

But this implies v(0)—0, because Mm—Lm-m+1=(M—L~—Lm+1=1. This
ends the proof of (A)).

Now suppose that (A,), (A,), -+, (A,_y) hold, with s=2. We are going to
prove (A;). The lemma is obvious if m=1, so we may suppose m=2 which
implies N=Mm*=22">s. Let p=31§"1a,X’ be the polynomial which is defined
in a unique way by the conditions deg p<N and y=p (mod X¥). Set

N-1
A= 2;] la,l.

By the hypothesis we have p—0, and therefore A—0; thus we may suppose
0<A<1. Let z be a complex variable. Then |p(z)|<A if |z|<1, and |p2)|<
AlzlY if |z|=1. It follows that

lz[*>1p(2)]  if AVEL|z| <AV e,
We deduce, by Rouché’s theorem (cf. [N], p. 106), that z°+p(z) has s roots

71, e, 0, Ts With [r;|< AYS, while the remaining roots py, -+, p, satisfy [p,{=
AYVE=I s here 0£0<N—1—s. Hence 7y, -+, 75, o7, -+, 070, so
X X
X4 p(X)=c-(X=r) - (X=r)(1=2-) - (1= =)
21 Qs

=¢ (X—r (X -o(1)X1+0(1))
=(XHN X 40o(1)),



248 HENRI JORIS AND EMMANUEL PREISSMANN
where ¢—0. By the hypothesis of (A,), we have
(X7 o)X +0)F+@)=XF +0(1)
=X XF+o(1) (mod X#m-m~1y,
(XY FH@) " =(X+0)™(F™+0o(1))
=(XF)™+0o(1) (mod XHm-m3-1y,
From (A,.;) we get
(13) (X+0)F+p)=XF+o(l) (mod X¥™),
and therefore (by (A)))
o —>0 {mod X%).
This completes the proof of (A;) and Lemma 6. Q.E.D.
LEMMA 7.
a) Let f: R—C be a function, flat on the closed set P and smooth on RNP
(and therefore continuous). If fm=C~and f=C" \C", for some natural numbers
m and n, then there is a p=P and a sequence of wntervals I,=[ax, by] with p<

ar<by (or [by, ar] with by<a,<p), I, CR\P, b,—p, and two positive constants c
and K, such that

(14) f @ ze,

(15) sup| fl=KIL|",
infz,|f]

(16) k?;m«.

b) Moreover suppose that g: R—C is a smooth function such that fg is smooth.
Then one has for all s, A& N\UJ{0}

(17) S}lplg‘”l:tJ(IIkl‘), as k—oo.
k

Remark. (14) follows without the hypothesis f™<=C™.

Proof. a) Let us first prove the existence of a sequence b, verifying (14),
bs€P. We consider two possibilities, supposing first that f exists everywhere.
f&Cm, so f™ is non-continuous at some p=F. By Lemma 2, f(p)=0, thus
lim supz.ol f™(x)| >0, which proves the existence of the sequence b, (b,&P
follows from Lemma 2). Next we suppose that f¢ is not defined at a pcP,
say p=0. Because of f* »(0)=0 one has

lim sup [fOP(x)/ x| z4c>0;

so there is a sequence x,—0, say x,>0, such that |f® (x,)|=22¢cxe. If &, is
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defined by &,=sup(PN[0, x,]), we have &,=P and, by Lemma 2, 0Z&,<x,,
f@2(,)=0. Replacing the sequence by a subsequence and multiplying f by an
appropriate constant if necessary, we may suppose that Rf" P(x,)=cx,, where
R stands for “real part of”. Then there is b,, &,<b,<x,, such that

CXRSRFPV(xR)=RFPV(x0) =R ")
=(hp—E )R (0L) S5, R ™ (D),

which implies (14). To prove (15), we shall suppose for simplicity that p=0,
b, >0, ¢c=4 and that R/ ™(b,)=2. The continuity of ™ in the open set R\P,
implies that there is d,, 0<d,<b,, such that [d,, b,JCR P, Rf™(x)=1 in
[de, b:], and hence
sup |flz sup |Rf1=ZK(by—d)",
[dp.bpl [dg. 0]

where K >0 is the constant K, of Lemma 3. Set &,=sup(PN[0,b.]); by
Lemma 4 there is a positive constant C, independent of k, such that |f(x)|<
Cax—&)" < Chp(by—E )" < K/2bp~&,)", for £,<x<b, and £ large enough.
The function M, defined for &,<y<b, by

MU)-‘-;}g [ fCl(be— )",

is continuous and satisfies the inequalities M(d,)=K, M(&)SK/2, thus M(ay)
=K for an a, with &,<ae,=d,; this ends the proof of (15).
In order to prove (16), we set

(18) D)=L " fb—L:|x), 0=xZ1,
and use Lemma 5 on f™:
(19) O(x)=1 """ f™(bp— 1| 2)=Py(x)+0(1)

in F, with deg P.<nm; we have |P;|=K™40o(l), from (15). By compactness
we may then suppose that the sequence P, is convergent, so that

(20) Or(x)=P(x)+o(l) in F,

with a fixed polynomial P, deg P<<um, |P|=K™. Now suppose that (16) does
not hold for any subsequence of the [,. Then infy 3|@:|=K-+0(l), hence
infro, 13| Pl =supre, 13l P|, 1P(x)] is constant, and so P(x), being a polynomial, is
constant too. Therefore we have in F':

o (OB _ (Po(l))y _ ol).
Tlop T op T op

From this we deduce, by iterated differentiations, that @ =0o(1)PL ™, s=
1,2,3,---; in particular f™®(b,)==x0{*(0)—0, which contradicts (14). This
proves (16).
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b) Suppose that (17) is not true. Then there are integers s, 120 and real
¢,>>0 such that

S}lp!g“’lzclllk]‘
k

taking again a subsequence if necessary. As g, fg and f™ are smooth (and f
is not smooth at p) g and fg are flat at p, by Lemma 1. Let us apply Lemma
5 to the functions g and gf:

21 el g(bs—11ulx)=G o +0(1),
(22) 1o~ 42(f@)bs— 1| x)=Hi+0(1)

in F, where G, and H, are polynomials, deg G, <s+2, deg Hy<\n+s+2, [G.ll
>1. From f™g™=(fg)™ and (20) we infer
Gk Hk

(23) (Geur +o) ProWy=( 7t +o) "

this implies ||H.|/[G:ll«1l. Taking again a subsequence, we find polynomials
G and H such that G+0, deg G<s+4, deg H<n-+s+4, and such that G,/ Gl
G+o(l), H./|Gell=H+o(1) in F; then (G-+o(l)™(PHo(l)=(H+o(1))", and
hence PG™=H™. There is a polynomial F such that P=F™, H=FG,
deg F=1/m)deg P<n. Set
@k:@k_F'
By (21) and (22), we have
(GHoD))YF+¢r)=FG+o(l)
and by (20)
(FHo)m=F"+o(1).

Taking Taylor series’, one has in E: (GHo(1))(F+Tey)=GF+o0(1) and (F+T @)™
=F™+0(1). By Lemma 6 we obtain T¢,—0 in E, and then ¢ (0)=(T¢i™)0)
—0. But +f™(b)=00)=F™0)+¢f”(0)=¢”—0 (because deg F<n); this
contradicts (14). Thus Lemma 7 is proved. Q.E.D.

Proof of Theorem 1. If P is the set of flatness of g then (by Lemma 1) f
is smooth on R\P, and by |f|Zclgl|*, f is flat on P. Thus f is continuous.
If f is not smooth, there is a #=N such that f&C**\C", We apply Lemma
7, with s=0, A=n/a. Then

sup|fI> 111",

Ip

sup |gl=o(|1[*'*},
Ip

which is inconsistent with |f|<Zc|gl®.. Q.E.D.
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3. Pseudo-immersions.

In this section we shall use Theorem 1 to deduce sufficient conditions for
the smoothness of »n functions f;, -, fa.

THEOREM 2. If my, ms, -+, m, and s,, Sz, -+, s, are natural numbers such that
g.c.d.(m,, 2s,)=1, j=1,-,m,
and if fi, -, fn: R—R are such that
(25) fT4 e, f3n S e C,

then
fl, "',anCm.

Using the definition of pseudo-immersions we may write Theorem 2 in the
following way:

THEOREM 2'. If my, -, m, and s, -, s, are natural numbers such that
(26) g.c.d.(m,2s)=1, j=1,2,-,7.
Then the map
2
h:R" —> R™, (xl,“-,xn)*’(x’{”,"',xZ‘", Zx?*:)
1
is a pseudo-immersion.

Condition (26) is clearly necessary because if, say, g.c.d.(m,.2s,)=p>1, we
may choose fo=---=f,=0, f(t)=|{ if p is even, and f,(t)=¢"? if p is odd.
Then f&C= but hef<C= Essential tools for the proof of Theorem 2 are
rational representations

e P(x’l'“, e, xz"n’ ?ngj)
QAT e, x e, ST 22

where roots of the denominator are well controlled. We set

X:(le”')Xn); U:(Uly”')Uﬂ;UD)

for indeterminates. A substitution by real or complex numbers is given by cor-
responding small letters. We shall write X™ for (X74,-.-, X?») and Y X% for
>17 X%, with analogous abbreviations for substitutions.

LEMMA 8.
a) The ring of polynomials C[X] is an integral extension of the subring
CLX™ Y X*], finitely generated as a module over C[X™, 3 X?*].
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b) The kernel of the ring homomorphism
H:ClU]— C[X], pU)— p(X™, 2 X*)

is a principal prime ideal (N) generated by an irreducible polynomial N({U)s C[U ]
and

27 grad N(x™, 2x?*)=#0 if x=R" x% 2,70,

Proof.

a) This follows from the fact that the generators Xi,---, X, of C[X] are
integral over C[X™, 2 X?] (see [ZS], p. 254).

b) We have

(28) C(X)=C(X™, Y X*),

for the degree of X, on C(X™) is m,, so the degree of C(X) over C(X™) is at
most m;m,---m,. On the other hand, the field C(X) admits the group I' of
mimy - m, automorphisms over C(X™)

X—LX, (=, .8

ie. Xi—=0i Xy, o, Xo—l,Xs, where £, is a mi* root of unity. The identity cor-
responds to (1,---,1)=1. Thus C(X) is a Galois extension of C(X™), with the
Galois group I”. Because of (26), ({, X, r=X%s if {;=1, J((X)*+2 X% if {+1.
By Galois theory (see [ZS], p. 80) this implies C(X)=C(X™, ¥ X?*).

The monic irreducible polynomial of Y X?* over C(X™) is given by

N(X™; UQ:I{I(UO——Z’(CX)“)EC[X’”; U]
with
NU)=CLU].
We have
HN=N(X™ X X**)=0.

If p(U)eC[U] and p(X™, ¥ X?)=0, then p(X™; U,) is a multiple of N(X™;U,)
in C[X™][U,] because N is monic (for U,); thus N generates the kernel of H.
But the image of H is an integral domain, the kernel (V) is prime, and N is
irreducible. For the last assertion of the lemma, we observe that

aN m 28N __ 28 28
FTIRG ,2X )»—CH;H(ZX 2(EX)),

ON
aU,

We replace X by real non-zero variables x,,---,x,. If {#1, say {;#1, we have

R —Z(Cx)) z " RA-LE) >0

mi—1
m, X7

(Xm; TX)=—25, X IUEX*=SCXP),  j=1,,n.
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by (26); hence 2x?*—3({x)**+0. This proves (27). Q.E.D.

We shall write
Q={xR"™ | xxy+ x,#0}.

Consider the algebraic set
V={usC" | N(u)=0}CC"*,

V is irreducible and its ring of regular functions is C[UJ]/N=C[X™, 2 X*].
The points (x™, 3x2%) are in V and (27) shows that if x=£2, then (x™, Xx*) is a
regular point of V (see [S], p.71-78). This implies that the local ring of V at
(x™, Yx*) is integrally closed ([S], p.109-110). This local ring is the ring of
all quotients

P(X™, 2 X*)

QX™, 2 X**)
where P and @ are polynomials with Q(x™, 2'x%*)=0.

LEMMA 9 (see [ZS], p.260). Let A be an wntegral domain, K its field of
fractions, and A’ the integral closure of A wn K. We suppose that A’ is a finite
A-module. Set

C={acA| aA'CA}

(C is the conductor of A in A’). The following equivalence holds If SCA is a
multiplicatively closed set, the ving of fractions As:={a/s|la= A, s€S} 1s integr-
ally closed in K if and only 1f CN\S is non-empty.

We apply this lemma to A=C[X™ 2 X¥], A’=C[X], K=C(X). The as-
sumptions concerning A and A’ are satisfied by Lemma 8(a) and by the fact
that C[X] is integrally closed (cf. [ZS], p. 261, ex. 1). For x= £, set

Se={Q&C[X™, 2 X*] | Qx™, 2x*)#0}.

As, is the local ring of V at (x™, 2x**). We have already remarked that it is
integrally closed, thus S,NC in not empty. For each x=£, we choose Q,=
S:NC, and we write [ for the ideal generated in A by all the Q,,x=£. As C
is an ideal in A one has ICC, thus JA’CA. A is noetherian, I is therefore
generated by finitely many polynomials P,,---, P,. As Q.<I for all x= 8, one
of the P, does not vanish at x. Therefore the polynomial A, defined by

A=

»-Mar

PPe1,

(the bar means that each coefficient is replaced by its complex conjugate) does
not vanish at £, and AA’C A. The coefficients of A being real, we finally obtain

(29) AX™ SX*™R[X]JCR[X™, 32 X?], Ax™, Zx*)#0 if xe£.
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The next result is due to S. Lojasiewicz ([L], p. 124 ; see also [M], p.59, for a
proof):

LEMMA 10. Let ¢:U—R be a real-analytical function on the open set UCR",
and set Z=¢ Y 0). For each compact KCU there exist positive numbers c=ck,
a=ag such that

lp(x)|=cd(x, Z)*,  for all x€K,
where d(x, Z) stands for the distance from x to Z.

We apply this lemma to ¢(x)=A(x™, Fx**). We have ZC{x|xx;-- x,=0}
since @(x)#0 for x€2. If |x;|<M, j=1,2,---,n then

d(x, Z)z min (), -, sz AL
Therefore
(30 [AGx™, 22> % - xal7,

for x bounded.

LEMMA 11. If the assumptions ave as in Theorem 2, and if a,, -+, a,<=N,
then

fufeee- fareln.
Proof. By (29) we have
Xg1- XgnA(X™, SX*)=P(X", IX*),
where P is a real polynomial. Thus
fi1e famAG™, Z =P, 1),

where A(f™, XY f**) and P(f™, 3 %) are smooth functions. The f, are continuous
and therefore locally bounded. By (30) we thus obtain

A ™, Z > | fr fal®> | f02 0 fan]B, B=a/infa,,
in bounded intervals. Then f¢1--- féreC> follows from Theorem 1. Q.E.D.
Proof of Theorem 2. The theorem is true for n=1, by the corollary to

Theorem 1. We shall proceed by induction. By the assumptions of the theorem,
we have

(ffllsl_i_ _*_f%?n)f%mz f%lmnecw.

By Lemma 11, we may drop the first product, therefore
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S ppmpece.

Since

(f;;(f;nz...f%n))mjecw, ].:2)"'771:
we may use the induction hypthesis with s,==..- =s,=1 to obtain
(31) fg;(fzmsznnn)Ecw’ ]:27'“:"'

Put S=maxs, M=maxm, We shall show thatif &, ---, b, >SM-+(n—1)M? then
(32) fhzo fracC>,
and therefore, by the corollary to Theorem 1,
(33) fefge - fine e, it a,, -, a.21.
Since s,, m, are coprime, one can find y;EN, 0=<y,<m,—1, such that
sv,=b, (modm,), 1=2,-,n.
By (31) we obtain
L pgmtspe e frapiece,
The contribution of f, to this product is
R fpatetn = f1

where g=b, (modm,), and ¢<SM+(n—1)M*<b,. Therefore, if we multiply by
an appropriate power of fI'z2, f, will have the desired exponent b,. We proceed
in the same way with the other f,. This proves (32), and thus (33).

We start the whole thing all over again, noting that

(31 - L EnfAms e fRmre=Co
and therefore
(35t wor + fEWf4m oo fRmne O,

by (33). After several repetitions, we eventually find f2*»**™»<= C* and (because
fEa=C) f,eC™. Q.E.D.

Let us change the assumptions in Theorem 2.
N
fry e fon ;fg:e Cc=, g.cdim,s)=1, j=1,2,-, n.

The exponents in the sum may be odd. It is easy to prove a lemma analogous
to Lemma 8, except for (27), which is wrong in general. However, let us
consider a special case:
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n=2, s,=s,=1, g.c.d.Om, m)=1.

In order to prove (27), we have to show that if x, y are real numbers, {, a
m,-th root of unity, /=1, 2, ({;, L)+, 1), and if x+y={x+Ly, then xy=0.
If {;=1, then {,#1 and thus y=0; we have the same result if {;=1. Now, let
us suppose that {;#1, {,#1, and set {,=exp 2ria/m,), 0<a<<m,, Cy;=exp (2rib/m,),
0<b<m,. We obtain the following linear system
x(l_C1)+y(l’—C2):0
x(1=E)+y1—=L)=0
which must be singular if there were to be a solution such that xy=+0:
-G _1-G
l_Cl 1_C2 ’

and by an easy calculation

)
my ’
This is not possible under our assumptions. Now we can go on as in the proof
of Theorem 2 and show that f, and f, are smooth. Somewhat more generally

we get:

exp (Zﬂi%):exp (27:2'

THEOREM 3. Let m, n, v, s be natural numbers such that
(34) g.c.d.(m, n)=g.c.d.(m, r)=g.c.d.(n, s)=1,
and let f, g: R—R be functions such that
fr+g’ fmogrel.
Then f, g=C™.
Proof. We just did the proof in the special case r=s=1. By the hypothesis,

()™, (g*)" and f"+g* are smooth, therefore f” and g° too are smooth, and so
are f and g by the corollary to Theorem 1.

The conditions g.c.d.(m, r)=g.c.d.(n, s)=1 are necessary, as is shown by
the counterexamples given just after Theorem 2’. If » or s is odd, the condi-
tion g.c.d.(m, n)=1 is necessary too. In fact, if ¢=g.c.d.(m, n)>1, then we
define f(H)=|t|%, git)=—|t|" if ¢ is even, and f()=¢"% g(t)=—1"/? if ¢ is odd
and s is odd, say. Combining these remarks with Theorem 3 and Theorem 2/,
we obtain:

THEOREM 3'. The map
R —s R,  (x, 3)—> (X" 4% x™, 3"),

is a pseudo-immersion if and only if
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a) g.c.d.(r, m)=g.c.d.(s, n)=1;
b) », s are even or g.c.d.(m, n)=1.

4. Examples and counterexampls.
Pseudo-immersivity being a local property, we shall consider smooth germs
h: (R 0)—(R™ 0).

The family of all such germs will be denoted by I’y ., A&l ,» is pseudo-
immersive if % is represented by a pseudo-immersion. We shall write ¢, . for
the family of all pseudo-immersive A</, ,. In this section we shall answer
some questions that arise quite naturally in studying pseudo-immersions.

a) In [JP1] we have determined all the germs h&¢,,.,, and proved that the
pseudo-immersivity of hel",, ., depends only on the Taylor series Th. Is this still
true for I'w . with an arbitrary n? The (negative) answer is provided by the
following example. Set

g(x, y=(x2, %% ).

g is the cartesian product of the (pseudo-immersive) identity and the map x—
(x*, x°) which is pseudo-immersive by the corollary to Theorem 1; hence g&¢; ,.
Let w: R—R be defined by
o(y)=exp(—2y~*)sin¥1/y), if y=0,
w(0)=0.
With this we now define a germ
h(x, y)=(x%, x*—x0(y), )

which has the same Taylor expansion as g but is not pseudo-immersive.
Indeed, Th=Tg follows from the flatness of @ at 0. And if f()=(Vea(@), )=
(exp(—t~?)|sin(1/t)], t), then f is continuous, f¢&CY, but A~ f(#)=(w(), 0, ¢), and
therefore he f&C>. Thus we have proved

THEOREM 4. There exist g, h&1'n o such that Tg=Th, gSPnn hEDy

In our counterexample, # is neither analytic not injective, which leads us
to ask the following questions:

Let g, h&l'n n, 8S¢m.n, Tg=Th. Does any of the three conditions listed
below imply that £ is pseudo-immersive ?

(i) h is a polynomial;

(ii) & iS analytic;

(iii) & is injective.

Obviously (i) implies (ii). Also (ii) implies (iii), under our assumptions, but this
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is much less obvious.
b) In [JP2] we have shown that a pseudo-immersive germ is almost injective

i.e. if xp, ¥,—0, A(xp)=h(yp), then [(x— )| Llxp)*+|y51* for all «>0. But a
pseudo-immersive germ may be non-injective as is shown in the following

theorem.

THEOREM 5. Set
h(x, y)=(x% x*—xe™ "'V, »)  if y+#0,
h(x, 0)=(x% x*, 0).

Then h represents a pseudo-immersive non-injective germ. The non-injectivity
follows from h(e™Y*%, )=h(—e V""", 1),

Proof. h is immersive except at (0, 0); we omit the proof which is straight-
forward. Let f: R—R? be a continuous function such that k-f is smooth and
set f(t)=(x(t), y(t)). Then obviously ycC= By the immersivity of & (except
at the origin), we know that f is smooth except possibly at the zeros of y.
Define o by w(u)=exp(—1/|ul|) for u+#0, o(0)=0. If y{#,)=0, then w-y is flat
at t,. If x is not flat at ¢, then x*—w-y is not flat either and x is smooth at
t, by Lemma 1, because x*—w-y, x(x*—w-y), x* are smooth. Thus f can be non-
smooth only at the points of flatness of x. We now apply Lemma 7, with x
for f, and g=xt—wey, s=0, i=2n, m=2. If f€C*\C" we have by (15), (16)
and (17):

S}l}?(woy)vazllkI“, for k—oco,

inf; (@°y)
koo SUDp (@oy)

Therefore there are two constants B>A>0 and sequences ¢, s,<=1, with w(y(t,))
=B11*", lo(3(se)]=Al1:]*", and y(s:)>0, y(t,)>0, say. Then

11
y(se) y(te)
because w(y)=exp(—1/y) for y>0. On the other hand, since y is smooth and
tr, Se=1r, we have y(t:)—y(s:)<1:]|. But u=o((log u)"%) for u—0, so there is
a contradiction, Q.E.D.

)~ @nlog 1 1,1)*log 2

3ta) =y (se)=(E)y(se)( T

¢) If both mappings h;: RP—R™ and h*: R%—R*’ are pseudo-immersions,
then the cartesian product h;Xh,: R**"—>R"** is a pseudo-immersion too, and
similarly for the germs. We call the cartesian product of two germs reducible.
More generally, we say that A<, , is reducible if we can find 2,7, ., h,&
Ly s, with m=p-+q, n=r+s, p, q, 7, s=1, and germs of diffeomorphisms S, T
such that the diagram
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h
35 (Rn, 0) —_—> (Rm’ 0)
%) s (hsy hy) T
(R, )X (R, 0) —— (R?, 0)X (R, 0)

is commutative; h is pseudo-immersive if and only if h, and h, are pseudo-
immersive. If h&¢y 2, n=2, then h is diffeomorphic, and therefore equivalent
to the identity on (R", 0) and, consequently, reducible; if n>m, then ¢, , is
empty (cf. [JP2]). But for other dimensions irreducible pseud-immersive germs
do exist:

THEOREM 6. If n<lm, there is an irreducible germ in ¢m, n.
Proof. For k=1 set
k
Sok(xl) Tty xk):<x§y Tty x?e: ?.X?).

By Theorem 2/, ¢, is a pseudo-immersion. Thus A(x)=@n . 1°@n-2° 2P, is @
pseudo-immersion too. It is evident that

(0)={lx*(0, ---, 0, 1)-+o(1)),
as x—0, and therefore
h(x)=x[|%e+o(1)).

where Q=2""" ¢=(0, -, 0, 1)& R™. Suppose now that A is reducible, as in
the diagram (35), and that 7/(0)=L. Then

(ha(u), O)=T"hoS(u, O=T(|S(u, 0Ol %e+o(1))=]S(x, 0)]*(Le+0o(1)),

as u—0. Thus
Le:(lirrg ha()[|SCu, 0179, 0).

In the same way
Le=(0, lirlol hoA)[ISO, ]79).

Therefore Le=0, which contradicts the inversibility of L. Q.E.D.

5. Differentiability of quotients of smooth functions.

It is easy to see that in Theorem 1 none of the conditions geC=, fgeC>
|f1<|gl* may be omitted without adequate replacement. That the condition
™= (= cannot be suppressed either is part of the following theorem.

THEOREM 7. Let f, g: R—C be two functions and a a positive constant ; suppose
that
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(a) g, fgeC™;
(B) fIZ]g)|* for all real x.

Then
feCrl,  §f f is real,

and
fe e, if f is complex.

This result is best possible: there are real functions f, g satisfying (a) and (b),
with f&C** s there are complex functions f, g satisfying (a) and (b), with
f@é Cre1+1,

Proof. (i) Let us show first that if f is real, then (a) and (b) imply fe Cr2*1,
Denote by P the (closed) set of flatness of g. Then f is flat on P (by (b)) and
smooth on RN\P (by Lemma 1). In particular f is continuous. Suppose that
feC**tand peP. Then

(gf)(n+2)(-x) —0 as x_)p; x$P)

that is, by Leibniz’ formula,

n+2
gx)fr+P(x)+(n +2)g'(x)f<"“’(x)+( ) )g”(X)f("’(X)

n-1

n-+2 A
+Z( : )g(n+2-])(x)f‘j)(g)-—>0.
J

J=0

But g+ P(x)fP(x)—0 if j<n—1, by Lemma 2. Let
plx)=f™(x) for x&P,
Then
n+2
(36) (ggo")(x)—{—(n—|—2)(g’go’)(x)+< ) )(g”go)(x)-——>0,

as pe P, x—p, x&P. Suppose now that
37 n=2a, [feCrIN\NC".

We shall prove that this is inconsistent with (36).

LEMMA 12. If the function f:[q, al—R is flat at q and m-times differentiable
for x>q, then liminf, .| f™(x)] =0.

Proof. We may suppose that ¢=0. By Lemma 3 and the flatness of f at
0, we get for O0<s<a/2:

inf | F™(x)|< inf | F™(x)|<s™™ sup | f(x)] Ks™ ™ s™H =g,
0Lz 28 ssrses ssxs2s
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This proves the lemma. Q.E.D.

LEMMA 13. Let P be a closed set in R, and let [: R—R be a real function,
smooth on R\P and flat on P. Suppose that f C* \NC" for some natural number
n. Then there exist p P, and a sequence of intervals [,=[a,, b, JITR P with
ap<bp, ar—p, bp—p, and a sequence of numbers c,<I,, such that

(38) sup | f1 > 11,]";

Ip
(39 sup | f™|>1;

Ig
(40) Sup | /0= f"(e) | 2 4 | ] “sup | f)

k Iy
(41) F*(e,)=0;
(42) sup | f*R = |1, | 'sup | fV]
Ip Iy

Proof. By the remark which follows Lemma 7, we may find p=P and a
sequence of numbers y,¢ P, y,—p, such that (with ¢=f™ as above),

o(y)zc>0.

(Henceforth, we shall replace sequences by subsequences if necessary, without
mentioning it each time.) We may suppose p=0, y,>0, ¢(y,)=2. There are
uy, 0<ur<ys, such that [u,, y,JCR\NP and

(43) oup)=1, @x)21 in [u, y:].

This follows from Lemma 12 with ¢=sup (PN[0, ».1), a=y,, n=m. We may
suppose y;<u,_,. Then, there is a sequence of numbers z,, v, <z,=u,_, such
that [v:, z, JCR\P,

(44) plze)=1, @x)=1 in [y, 2.].

This follows from (43) and from ¢(u,.)=1 if [y, u,-,JCR\F, and again from
Lemma 12 in the opposite case. Now we choose b, such that u,<b,<z, and

(45) so(bk)=tma>§]so(x>22, ©'(bx)=0.
Up,?
Set J.=[us, b;]. Then ¢=1 in J. by (43) and (44); by Lemma 3 we then obtain
(46) sup [ f|> [ J:1".
Tk

If |¢’{ has a maximum on [, at a point ¢, where ¢” vanishes, we set a,=u,,
I.=/]; then (40) follows from

o
47 sup |¢| =2inf lo],
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and (42) in a similar way. In the opposite case, |¢’| has its maximum in J, at
Uy, and @’(ue)Z | el ™, for (43) implies ¢’(u,)=0. Using Lemma 12 once more
we find a point a,, 0<a,<us, [ap, ur, ] CR\P, such that

(48) 0"(a.)=0, ez (X)Ze (u)=|]1"" for a,<x=Zu,.

Set I,=[ay, br] and cr=a,. The estimates (39)-(42) follow as above. In order
to prove (38), we distinguish two cases u,—a,<b,—u, and wu,—a,=b,—us.
In the first case we have [I,|<2|J.], and (38) is a consequence of (46). In the
second case, we obtain (using Lemma 3 with (48)):

. 1 n+1
sup | £1>(us—as)™ inf o'z Ll M e 210 (F 1),
[Qp url [ap tpl
thus proving (38). Q.E.D.

Let us go back to the proof of Theorem 7. We suppose that (37) is true.
By (38) and the hypothesis (b), we obtain

sup | g| > [ 1|4,
Ig

We apply Lemma 5 with 1=n/a<2, the n of the lemma being 0. Thus there
is a number m<n/a such that

(49) illﬂf g™ | >[I |Me-m
k
and
(50) S}lplg“’[=0(llk|”’““) for [>m.
k

Since n/a<2, one has m=0 or m=1.
In the first case (m=0) we obtain from (39), (40), (42), (49) and (50) (setting
sup=supy,, inf=inf;, for simplicity):

n+2
sup g¢//+(n+2)g,§01+ 2 g”(P

zsup |@”|inf | g| —(n+42)*sup |¢’| sup | g’ | +sup |¢|sup | g”})
zsup |@” [inf | g|— s lo(| Te|** )= Te [Po(} [x | */*7%))
P2 L M=, |21,

which is inconsistent with (36). If m=1, we have

n+2
g’ +(n+2)g"¢ + X )g"go)(ck)

n+2
(<n+2>g’so’+( ’ )g”go)(ck)
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=(n+2)@'(cp)|(inf | g} —(n+1)| 1| sup | g”|)
S ATA R ALY AP AL
>>|[k|n/u~z>>1’

which is again inconsistent with (36). This time, (41) was used instead of (42).
This completes the proof of f< (2ol

(ii) If f is complex, then by hypothesis ge=C*>, therefore |g|*=gg=C”
and f|gl*=(fg)g=C> thus fif|g|*=C~. Condition (b) becomes |Rf]<(jg|%)*/?
it follows (by the real case) that ®Rf=C*1=Cl*), Similarly, Jf<Ct*!, and
finally f=Crtel ( stands for “imaginary part of”).

It is possible to give a direct proof, similar to (i). We can obtain an
analogous of Lemma 13, but without (41) which we needed to treat the case
m=1; to exclude this case we have to suppose n/a<1, that is to say n<[al.

(iiiy We choose a function H= C*(R, R) having the properties

(D 0=H<1, H»=0 for |y|=1;
(52) H~—1 is flat at y=0.

We then choose a non-constant (real or complex) polynomial p of degree N with
the property
(53) [P =1 for y real.

1/p is not a polynomial because p is not constant. Therefore we may suppose
that

(54) <—d%~>ENa]+l<_;_;>(0)¢0'

Finally we choose two sequences ¢, >¢;>¢;> - >0, ¢,—0, and D,, D,, D,, --- with
0< D £1/2¢s, cos1+Drsi<cr—Dy,and set dpy=exp (—1/Dy), [y =[cs— Dy, ¢ +D: .
The I, are disjoint and accumulate towards 0. With
B=[Nal+1, y=§/a, w=lal+l,
we define f, g: R—C by
g(x)y=dp((x—c)/d)H(x—cp)/De) in I

Ho((x—cs)/Ds)
p(x—cp)/dy)

flx)=g(x)=0 if x is not in the union of the I,, in particular f(0)=g(0)=0.
From |pl=1, |H|<1 and a<w we obtain

f(x)=d4 in I,.

lg(0)| *ZdF H¥((x—ce)/ Da)ZdAH (x—c2)/ D) Z | f(2)]

for x=I,, and hence for all x&R; thus condition (b) of the theorem holds.
Because >N and d,<D§ for arbitrary S>0, we have
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2l n
g™ (x)= ;( )di"”ﬁ”’”((x ~¢x)/d)DEF " H®™((x—cr)/ D)
m

min(n, N

)
& mZ]O diy™Dy/d)Y "mDp

<di-V DY < DY,

if xel,, for n=0, 1, 2, ---, M>0, with constants depending on n and M. Since
x=D, for x<1,, we can easily deduce that g=C> and that g is flat at x=0
(f is therefore also flat at 0). Similarly, one shows that fg&= C*. On the other
hand we get

fPeny=(p)P(0)=0,

by (52) and (54) and therefore f®(c,)>»1. Since f is flat at 0, we deduce that
FECE=C¥NeaI4 Ag a particular case let us choose N=2, p(y)=1+(y—s)?,
where s=R is such as to satisfy (54). Then f and g are also real and f¢&
ctzaitt  If we choose N=1, p(y)=1+i(y—s), then f and g are complex and
feCtarrt - This completes the proof. Q.E.D.
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