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Abstract: It is natural to expect a consistent inflationary model of the very early Universe

to be an effective theory of quantum gravity, at least at energies much less than the Planck

one. For the moment, R+R2, or shortly R2, inflation is the most successful in accounting

for the latest CMB data from the PLANCK satellite and other experiments. Moreover,

recently it was shown to be ultra-violet (UV) complete via an embedding into an analytic

infinite derivative (AID) non-local gravity. In this paper, we derive a most general theory

of gravity that contributes to perturbed linear equations of motion around maximally

symmetric space-times. We show that such a theory is quadratic in the Ricci scalar and

the Weyl tensor with AID operators along with the Einstein-Hilbert term and possibly

a cosmological constant. We explicitly demonstrate that introduction of the Ricci tensor

squared term is redundant. Working in this quadratic AID gravity framework without a

cosmological term we prove that for a specified class of space homogeneous space-times,

a space of solutions to the equations of motion is identical to the space of backgrounds

in a local R2 model. We further compute the full second order perturbed action around

any background belonging to that class. We proceed by extracting the key inflationary

parameters of our model such as a spectral index (ns), a tensor-to-scalar ratio (r) and

a tensor tilt (nt). It appears that ns remains the same as in the local R2 inflation in

the leading slow-roll approximation, while r and nt get modified due to modification of

the tensor power spectrum. This class of models allows for any value of r < 0.07 with a

modified consistency relation which can be fixed by future observations of primordial B-

modes of the CMB polarization. This makes the UV complete R2 gravity a natural target

for future CMB probes.
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1 Introduction

Finding a gravity theory consistent with the concepts of quantum field theory is a long-

standing problem. General Relativity (GR) [1] was known not to be ultra-violet (UV)

complete from the very beginning. Hence one is forced to modify GR in order to construct

any self-consistent model of quantum gravity. Moreover, while generalizing GR, one cannot

give it up altogether, as it is heavily supported by absolutely all measurements in the

low energy or infra-red (IR) regime including the recent direct discovery of gravitational

waves [2].
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One of the most obvious and at the same time very promising generalization to consider

is
M2
P

2

(
R+R2/(6M2)

)
Lagrangian instead of just

M2
P

2 R as in GR where as usually R is the

Ricci scalar, M−2
P = 8πG, G is the Newtonian constant, c = 1 and M becomes the mass

of what is the propagating scalar in this model, dubbed scalaron. We refer it hereafter as

the local R2 model or just R2 model (or Lagrangian, etc.). Besides being the simplest one

and having only one free parameter M whose value is fixed to M ≈ 1.3× 10−5MP by the

observed Fourier power spectrum PR of primordial scalar (matter density) perturbations

in the Universe, this generalization has two major advantages. First it was proven in [3, 4]

that it is renormalizable, i.e. UV complete in the scalar sector. Second, a dramatically

successful model of inflation [5–7] known as “Starobinsky inflation” is provided by the R2

Lagrangian. With the latest Cosmic Microwave Background (CMB) measurements by the

PLANCK mission [8, 9] and the more recent BICEP2/Keck Array experiments [10], R2

inflation produces an excellent fit for the key inflationary predictions.

The advantage of renormalizability of the local R2 gravity has an unfortunate fate to

be spoiled by the non-unitarity as a spin-2 ghost appears in the physical spectrum. This

ghost is a manifestation of the Ostrogradski instability [11] due to higher derivatives and

it appears as long as the required for the full renormalization W 2 term, with W being the

Weyl tensor, is included. It is not hopeless to try to remove such a ghost and few ways

are known in principle. Ghosts may become unphysical in constrained systems [12, 13].

Also one can try to consider special constructions like Horndeski theories [14] in which

higher derivatives in the action still result in a second order equations of motion (EOM).

Another way is to promote the Lagrangian to a non-local model such that infinitely many

derivatives form some operator which does not create new poles in the propagator and

consequently does not generate new physical degrees of freedom. On this way possible

operators which we may encounter are: analytic in derivatives like exp(�) with � being the

covariant d’Alembertian operator, non-analytic in derivatives like 1/�, having logarithms

like � log(�), etc.

It was shown already in [15] that a systematic accounting of one-loop corrections from

quantum matter fields to the R2 gravity leads to infinite derivative logarithmic functions of

the d’Alembertian in the action. Theories with analytic infinite derivative (AID) operators

in the action naturally appear in string theory when the string field theory (SFT) [16, 17]

is considered. Also p-adic string theory [18] is an example of a model featuring AID

Lagrangians. Both of these stringy models are unitary and UV complete theories. A study

of gravity theories having similar AID operators was initiated in [19]. This led recently to

an intensive study of AID gravity theories [20, 21] which were shown moreover to be easily

made ghost free by adjusting the AID operators. This study was focused on a quadratic in

R Lagrangian. Note that absence of ghosts in such a setup can be achieved actually only

by introducing an infinite number of derivatives, i.e. non-local operators. Further questions

of renormalizability [22, 23], presence of a ghost-free bounce [24] and an amelioration of

singularities [21, 25–28] were addressed emphasizing in all instances a possibility to resolve

successfully and consistently the problems in the framework of a quadratic in curvatures

AID gravity modification (AID quadratic gravities/models/theories/etc. in short). On top

of this ad-hoc AID scalar field models with a minimal coupling to GR were proven promising

in tackling various cosmological problems including the Dark Energy one [29–33].
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There are several reasons to stick exactly with analytic differential operators. Primar-

ily these are the presence of a well defined low-energy limit and their native appearance in

a more fundamental approach which is SFT. However, as have been already mentioned the

presence of exactly infinite number of derivatives (i.e. non-local operators) is a requirement

to avoid ghosts. Interest in exactly quadratic in curvatures Lagrangians is stemmed from

the fact that in many applications it is enough to study highly symmetric backgrounds,

in particular Maximally Symmetric Space-times (MSS, which are in fact (Anti)-de Sitter

((A)dS) and Minkowski in the space-time dimension greater than 2) and linear perturba-

tions around them. Linear perturbations in turn are described by the quadratic variation

of the action.

It was proven by explicit construction in [34], that starting with a very generic action for

the metric field such that the Lagrangian is analytic in curvatures and covariant derivatives,

and focusing on the task of studying linear perturbations around MSS, one ends up with

a quadratic in curvature action with analytic functions of the covariant d’Alembertian

operator. In the most general case these analytic functions of derivatives become AID

operators. No other combinations of derivatives apart from d’Alembertian and its AID

functions appear. This is exactly the AID quadratic gravity and this is the most general

and the only relevant Lagrangian we need to use in studying fluctuations around MSS.

The full gravity theory does not have to be just quadratic in curvatures. The point is

that only the quadratic in curvatures part of some more general theory is responsible for the

structure of propagators. This structure in turn in vast amount of situations determines

whether the theory is unitary or not. However, another crucial property of a theory,

its renormalizability, may require higher curvature terms present in the action [35–37].

Nevertheless the already observed properties of AID quadratic models make it inevitable

to ask whether these theories are capable to eventually grow up to a full non-perturbative

quantum theory of gravity. A significant step in this direction with a positive outcome

was made recently in [38] where super-renormalizable or finite quantum gravity candidates

around MSS are constructed.

Given the success of AID quadratic gravity, it is natural to study whether it can admit

inflationary solutions for some range of curvature. This is because cosmic inflation is not

only a very successful theory of the early Universe [5, 39, 40] but also at the same time for

the moment is the best test-bed to challenge modified gravity theories. Viable models of

inflation which can be parametrized by a number of free dimensionless parameters which

values have to be fixed from observational data produce definite predictions about post-

inflationary space-time metric perturbations given that an inflationary stage lasts long

enough. The simplest models like the Starobinsky one have only one such parameter, so

their predictive power is high. Further it explains the emergence of the Standard Model

physics through the reheating mechanism [41, 42]. However, in spite of a very large number

of other inflationary models already excluded by observations, still there remains a sufficient

amount of them which remain viable, too, see e.g. [43, 44]. In many of these models having

a larger number of free parameters, additional scalar fields are introduced and gravity

remains Einsteinian up to the Planck curvature (unity in our notations). Even if we restrict

ourselves, as we do in this paper, to purely geometrical models of inflation and modified

– 3 –
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gravity, still even in the R2 model observations can probe a large curvature regime only

up to R = 4NM2 ∼ 240M2 where N is the number of e-folds from the end of inflation

back in time, that is much less than unity. In this regard AID gravity theories become

natural candidates accounting the fact that they can be made ghost-free and tend to be

renormalizable.

To have inflation is equivalent to guarantee a presence of solutions with a long enough

nearly dS expansion and a subsequent graceful exit from this regime. To compute the

key inflationary parameters one has to study linear perturbations around this nearly dS

expansion phase. As we have explained above, AID quadratic gravity action is the maximal

possible generalization one should ever consider for this purpose. This, as it was proven,

covers considerations of inflation in arbitrary general original gravity theory as long as its

action is analytic in curvatures and derivatives, and an appropriate inflationary solution

exist. One equally can maintain a structural connection with other theories, like SFT,

while this is not obviously necessary.

A first and successful try of embedding R2 inflation into quadratic in R AID gravity was

performed in [45]. In a more recent paper [46] it was argued that a particular quadratic in

R and in W Lagrangian with AID operators is a renormalizable at least by power-counting

and ghost-free gravity theory. The local R2 inflation can be seamlessly embedded in this

AID quadratic Lagrangian as well. Parameters of the new model allow to maintain a good

agreement with the observational data at easy.

The main purpose of this paper is to deepen from the side of inflation the study of

the AID quadratic gravity model undertaken in [46]. In what follows we will provide

more support for the particular action used in that paper. The advance of the current

analysis is the proof that the AID quadratic action which was derived in [34] as the least

non-redundant action for studying linear perturbations around MSS is in fact redundant

thanks to Bianchi identities. Similar ideas were used in [47] doing computations around

the Minkowski background. Here we provide the full treatment around MSS and this is

the purpose of section 2. Further we prove a very important statement that under certain

assumptions the space of background space-homogeneous solutions in our AID model is

identical to the space of backgrounds of a local R2 gravity. This is a very important step

since it allows to claim that the classical inflation remains an attractor behavior in the case

of AID quadratic gravity. This is done in section 3. As the main accent of the present paper

we systematically derive the inflationary parameters following from our model keeping

the leading order in the slow-roll approximation throughout the whole computation. In

particular we compute spectral tilts and tensor to scalar ratio. Note, that the previous

studies assumed an exact dS background in the course of computation and applied the

slow-roll approximation only starting from the action for canonical perturbation variable.

The technique developed in this paper opens ways to restrict tighter the parameters of

the new theory and to meet more and more toughly squeezed observational constraints.

All the inflationary computations related to our model are accumulated in section 4. In

section 5 we discuss the main results obtained in the paper and outline open questions.

At last, extensive appendices contain all the notations used in the paper as well as most

technical pieces of the derivations.
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2 Most general AID quadratic gravity action around MSS

One of the most crucial results of [34] provides a most generic action for studying linear

perturbations around MSS. Consider the following action (all notations without an explicit

explanation in the main text hereafter are accumulated in the appendices):

S =

∫
d4x
√
−g

[
P0 +

∑
i

∏
I

PiOiIQiI

]
, (2.1)

where P, Q depend only on the metric, Riemann tensor and curvatures while O depend only

on covariant derivatives. This action accommodates virtually all higher derivative gravity

theories with an analytic dependence on curvatures and covariant derivatives. Assuming an

existence of at least one (A)dS solution, the action relevant to study linear perturbations

of EOM (coming from the quadratic variation of the action) around such a solution boils

down to

S =

∫
d4x
√
−g
[
M2
P

2
R+

λ

2
(RF1(�)R+RµνF2(�)Rµν +RµνρσF4(�)Rµνρσ)− Λ

]
,

(2.2)

where λ is a dimensionless constant which is convenient to control the magnitude of the

R2 modification and Λ is an in principle possible cosmological constant term. Briefly the

reduction is done by carefully accounting all possible terms which may contribute non-

trivially to the second variation around MSS (and dropping all other terms). The fact

which is heavily used on this way is that all curvature tensors on MSS are annihilated by

covariant derivatives.

An important assumption essential for the actual computations and which was dis-

cussed in the Introduction is that all functions F are analytic. To be precise we need at

the moment to have these function analytic around zero. This is indeed required from

the physical point of view. We want functions F(�) reduce to constants or vanish in a

low-energy limit because we have to restore GR at very low energies. There is also other

way to understand this. In writing F(�) we always assume that there is an energy scale

of the gravity modification M, which we name the scale of non-locality as in principle we

may have infinite derivative operators (M should not be mixed with the much lower energy

scale M at which the R2/6M2 term in the local R2 inflationary model becomes comparable

to the GR term R). This scale enters as F(�/M2). Even though for most of our technical

steps we can putM = 1 we still want to have a local or trivial limit onceM→∞ in order

to be able to eventually restore GR. Hence, we come to the conclusion that functions F
must be analytic at least in the origin.

Proposition. Action (2.2) is redundant in describing linear fluctuations around MSS.

This proposition can be proven to be true because the previous analysis did not make

use of Bianchi identities which is the cornerstone of the succeeding further reduction. To

start with, action (2.2) can be rewritten as

S =

∫
d4x
√
−g
[
M2
P

2
R+

λ

2

(
RF̃R(�)R+ LµνFL(�)Lµν +WµνρσF̃W (�)Wµνρσ

)
− Λ

]
.

(2.3)
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The purpose of using the Weyl tensor W and L-tensor is their simplicity. Both are iden-

tically zero on MSS. Moreover, W is zero on any conformally flat background (including

spatially flat FLRW).1 The term to be attacked by Bianchi identities is the L-piece. A good

reason to tackle this term somehow is that being simple on the background it produces

tremendous complications while trying to compute perturbations.

To make the long story short we put all the technical details of the reduction into

appendix B. Upon a lengthy but a straightforward procedure the full resulting action

relevant for study of linear perturbations around MSS vacua of (2.1) becomes

S =

∫
d4x
√
−g
[
M2
P

2
R+

λ

2
(RFR(�)R+WµνρσFW (�)Wµνρσ)− Λ

]
. (2.4)

We consider this action as a significant simplification of (2.3) for several reasons:2

(i) it contains only Ricci scalar and Weyl tensor and no Ricci tensor or its linear combina-

tion with the metric. Weyl tensor enters only quadratically and being identically zero

on any conformally flat manifold does not contribute to conformally flat background

solutions. Importantly, spatially flat FLRW metric is conformally flat.

(ii) as such, any solution already found in the literature with only RFR(�)R piece in the

action is a solution to equations of motion which one can derive from our new action.

(iii) linear perturbations of Weyl tensor are very simple using (1+3) decomposition of the

ADM formalism. These were computed in [46] and one can track computations rele-

vant to our AID models in application to inflation to the end. Actually, perturbations

of a possible term with any of the second rank tensors (Ricci, Schouten, Einstein or

L-tensor) turn out to be very much complicated and seem to be intractable.

It is worth stressing that actions (2.2) and (2.3) are not fully equivalent. They are

equivalent as long as at most linear perturbations around MSS are considered. As a conse-

quence, non-MSS may be solutions to EOM derived from one action and not from another.

For example, local R2 inflationary background is a solution to EOM derived from ac-

tion (2.3) and is not a solution as long as the quadratic term with a second-rank tensor is

restored in the action. Furthermore, higher, i.e. 3-, 4-, . . . -point vertices and correlation

functions are clearly different in these actions. It is however of course possible that the

difference may not be important for particular models and under certain assumptions.

1Notice that in [34] and [48] we have used Sµν for what is now Lµν and C for Weyl tensor. In the present

paper we use S for Schouten tensor and C for Cotton tensor for historical reasons.
2We note that our derivation is almost dimension independent. The only local term which survives in

higher dimensions is the local square of L-tensor which we can drop in D = 4 due to the presence of the

Gauss-Bonnet invariant. As such, the full action relevant for study of linear perturbations around MSS

vacua of (2.1) formulated in D > 4 can be written as follows

S =

∫
dDx
√
−g
[
M2
P

2
R+

λ

2

(
RFR (�)R+ L2

µν +WµνρσFW (�)Wµνρσ)− Λ

]
. (2.5)

We still consider using L-tensor is preferred as it is identically zero on MSS.

– 6 –
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3 Classical dynamics of AID quadratic gravity without Λ

3.1 EOM and solution construction

The major focus of the present paper is on the consideration of inflation in AID quadratic

gravity and for that purpose the cosmological term is not needed. It is shown already in [5]

that in fact a cosmological term spoils the inflation. To proceed with actual computation

we recite action (2.4) dropping the cosmological term Λ:

S =

∫
d4x
√
−g
[
M2
P

2
R+

λ

2
(RFR(�)R+WµνρσFW (�)Wµνρσ)

]
. (3.1)

This action was studied and many technical details were elaborated in [24, 45, 46]. We are

going to use them without extensive further referencing.

EOM which one can derive from action (3.1) (see [26, 49]) read:

Eµν ≡ −(M2
P + 2λF(�)R)Gµν −

1

2
λδµνRF(�)R+ 2λ(∇µ∂ν − δµν�)F(�)R

+λLµν −
λ

2
δµν
(
Lσσ + L̄

)
+ 2λ (Rαβ + 2∇α∇β)FW (�)W αβµ

ν +O(W 2) = 0 , (3.2)

Lµν =

∞∑
n=1

fn

n−1∑
l=0

∂µR(l)∂νR
(n−l−1) , L̄ =

∞∑
n=1

fn

n−1∑
l=0

R(l)R(n−l) , R(l) ≡ �lR .

The trace equation reads

E = (M2
P − 6λ�FR(�))R− λ(Lµµ + 2L̄) +O(W 2) = 0 . (3.3)

Terms linear in Weyl tensor are not present in the trace equation because their trace

vanishes by construction on any space-time. Terms O(W 2) can be found in [50].

We are interested in cosmological solutions of the spatially flat FLRW type. First this

implies that the Weyl tensor vanishes and as such it does not manifest itself in the trace

equation neither in the background nor in linear perturbations. Second, such solutions for

the metric are space-homogeneous and isotropic. This means that system of equation (3.2)

has essentially two distinct equations. The standard choice is the trace equation and the

(0
0)-equation. However, presence of Bianchi identities guarantees that given we have a

solution to the trace equation with zero r.h.s. then it will be a solution to the whole system

of equations modulo a possible radiation source (which is conserved and is traceless). We

are thus focused on solving the trace equation (3.3) which is a non-linear differential (non-

local) equation on R and all the differential operators are of the form of d’Alembertian.

We start solving the trace equation by reminding that originally it was proposed in [20]

to use an ansatz

�R = r1R (3.4)

to construct solutions. First we note that the original ansatz also had a free constant term

r2 in the right hand side but it is not compatible with the absence of the cosmological

term. Also we note that this ansatz was indeed helpful to construct several exact solutions

to equation of motion.

– 7 –
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It is instructive to show sketchy how the technique works. Substituting (3.4) into (3.3)

we restore the result obtained in [20] (see also [24])

(M2
P − 6λr1FR(r1))R− λF (1)

R (r1)(∂µR∂µR+ 2r1R
2) = 0 . (3.5)

The way to solve the latter equation is to assume the algebraic conditions

F (1)
R (r1) = 0 ,

M2
P

2λ
= 3r1F1 , where F1 ≡ FR(r1) . (3.6)

Since we constrain here only parameters we get the most what we can using (3.4). If we

do not impose the above conditions then we must satisfy additional conditions on R which

can be shown to trivialize possible solutions to just one R = 0. We accumulate the details

supporting this claim in appendix C. This will become useful in the coming subsection.

3.2 Proof that (3.4) is general solution to (3.3)

Now we formulate the main claim of this section and in fact a very important statement

for the development of AID quadratic gravity theories in general.

Proposition. Equation (3.4) in combination with conditions (3.6) provide the most general

solution to the trace equation (3.3) if:

(i) the metric is of a spatially flat FLRW type and

(ii) the Fourier harmonics form a basis on the domain of functions of interest on the

space-time manifold.

Let us start with noting that having a physical attitude to the problem we formulate

here sufficient and not obligatory necessary conditions.

The first condition (i) just serves for the setting of the present paper to discuss a

space-homogeneous inflationary space-time and is simple to account. Technically during

the proof the only property to be exploited will be the space-homogeneity of the metric

in the synchronous frame. As such the proof itself can be applied to more general space-

homogeneous metrics. For example to anisotropic backgrounds like Bianchi I or other.

However, we need the metric to be conformally flat to eliminate the Weyl tensor squared

terms in the trace equation (3.3). This would allow us to claim that the restrictions imposed

by this proposition on the space of solutions apply to the full trace equation. Only for this

purpose we stick to spatially flat FLRW metrics only. This implies that given the Weyl

tensor dependent term is not included in the action (3.1) one can relax condition (i) to:

(i) the metric is space-homogeneous in the synchronous frame.

The second condition (ii) needs more explanations though. We name Fourier harmon-

ics the eigenfunctions of the d’Alembertian operator such that

�ϕi = wiϕi , (3.7)

where wi are constants. Generically we expect the spectrum of the d’Alembertian is con-

tinuous even though this is not crucial. We name ϕi the Fourier harmonics in analogy with

– 8 –
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the flat space-time where they reduce to the plane waves which in turn are used do define

the Fourier transform. A crucial property of the Fourier transform in the flat space-time is

that the corresponding harmonics form a basis in the domain of square integrable functions

L2. Or in other words any square integrable function can be presented as a linear super-

position of plane waves. In our model the situation seems to be more involved as a priori

these nice properties of the Fourier transform in the flat space-time cannot be elevated to

a curved background.

It is known from the spectral analysis of the Beltrami-Laplace (BI) operator on Rie-

mannian manifolds that indeed the eigenmodes of the BI operator form a basis in L2 as

long as the manifold is compact or has a boundary [51]. In most cosmological applications

the space-time manifold is however pseudo-Riemannian (i.e. the metric is not positively

defined and d’Alembertian operator replaces the BI operator), non-compact and without a

boundary. In this situation general theorems do not help and presently one has to consider

systems case-by-case. Paper [52] provides an explicit proof that in two notable cases of dS

and (A)dS space-times indeed the eigenmodes of the d’Alembertian operator form a basis

for square integrable functions. This remains valid in a special situation when there is no

spatial dependence is present. It is an important situation though since in the vast major-

ity cosmologically viable backgrounds are space-homogeneous. Naturally, it is the case for

the present paper as well. Technically, this implies that the d’Alembertian operator lacks

of spatial derivatives and eigenmodes ϕi depend on time only.

Coming to physical grounds we stress that the regime of the space-time evolution

of interest in the present paper is the nearly dS expansion. This in combination with

the results in [52] provides some hint that our condition (ii) in the proposition above

is sensible. However, there is one more physically important argument why a physically

viable space-time must have such a structure that the d’Alembertian operator eigenmodes

form a basis. Namely, we expect that our model can be quantized. To have this happen

we have to have a vacuum and creation and annihilation operators which in the canonical

quantization scheme appear as operator coefficient in front of Fourier modes in which a

given classical solution is decomposed. Given a situation that Fourier modes do not form a

basis (i.e. the set of modes is not enough to represent any function) we will hit a problem

that certain classical configurations cannot be quantized in a canonical way. This simple

consideration shows that the fact that eigenmodes of the d’Alembertian operator form a

basis is necessary to implement the canonical quantization scheme. This gives us even a

stronger hint that we indeed want the condition (ii) in the proposition to be satisfied.

Finally, we do not specify explicitly the domain of functions on which the completeness

of the Fourier decomposition is true. We presume that in most cases we need to have it

either for functions from L2 or functions with a compact support which is a more plausible

case as long as time evolution of a classical system is considered. This will be noted just

below as well.

Therefore, in proving the proposition we assume that the scalar curvature R as any

function can be represented as

R =
∑
i

ϕi , �ϕi = wiϕi (3.8)
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and wi are constants. Possible constants in front of ϕi in the decomposition of R are

absorbed inside of ϕi for simplicity. Few comments are in order here. First, one should

not be confused with the fact that R itself depends on the metric as for the time being

it is just some function of time. Second, one should not worry about possible non-trivial

asymptotics of R in past or future infinities (which may render it non-square integrable)

and consider only a given time interval during which our model describes the evolution of

the Universe. This will waive doubts of the square integrability since the function gains the

compact support by construction. In other words it is equivalent to saying that we work in

a given coordinate patch. Also, here we explicitly come to the special situation mentioned

above that all functions depend on time only since a space-homogeneous background is

considered. The corresponding simplification will become crucial to fulfill the proof.

Using (3.8) one readily computes

�lR =
∑
i

wliϕi , FR(�)R =
∑
i

FR(wi)ϕi (3.9)

and further

Lµµ =
∑
i,j

ωij∂
µϕi∂µϕj , L̄ =

∑
i,j

ωijwjϕiϕj , ωij =
FR(wi)−FR(wj)

wi − wj
. (3.10)

Notice that for i = j we have to use the Taylor series expansion to obtain ωii = F (1)
R (wi)

where the superscript (1) denotes the derivative with respect to an argument. Substituting

all of that into (3.3) and accounting that the Weyl tensor vanishes one yields

M2
P

∑
k

ϕk − 6λ
∑
k

wkFR(wk)ϕk − λ
∑
i,j

ωij(∂
µϕi∂µϕj + (wi + wj)ϕiϕj) = 0 . (3.11)

To prove the proposition we have to show that no (non-trivial) solutions to (3.11) exist as

long as R is a superposition of more than a single Fourier eigenmode.

First we note that the technique of equating coefficient to zero does not work in this

general case. Indeed, the quadratic in ϕi term in (3.11) can be eliminated by requiring

FR(wi) = FR(wj) and F (1)
R (wi) = 0 for any i, j. This being substituted into the terms

linear in ϕi yields

M2
P

∑
k

ϕk − 6λFR(w1)
∑
k

wkϕk = 0 .

Since however different ϕk are eigenfunctions of d’Alembertian with different eigenvalues

they are linearly independent. This means that in order to satisfy the latter equation we

must require M2
P − 6λFR(w1)wk = 0 for each k and as such all wk are equal. We thus

effectively come back to the situation R = ϕ1 like it is served by (3.4).

Thus we must keep the quadratic terms in (3.11) and solve it as a differential equation

on ϕi. Satisfying (3.11) will necessarily produce stringent constraints since the resulting

solution for R must be identical to the Ricci scalar constructed from the metric. Note,

that in the beginning of the proof we have mentioned that R is just some function of time.

Here we explicitly make reference to its relation to the metric. This, however, in no way

complicates the use of desired spectral properties of the d’Alembertian.
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Going further one can pass to modified quantities ϕ̃i = ϕi + ci where we have done

shifts by constants defined as

2λ
∑
j

ωkj(wk + wj)cj +M2
P − 6λwkFR(wk) = 0 for each k . (3.12)

Hence we rewrite (3.11) as∑
i,j

ωij ˙̃ϕi ˙̃ϕj −
∑
i,j

ωij(wi + wj)ϕ̃iϕ̃j = c = −
∑
i,j

ωij(wi + wj)cicj , (3.13)

where we have used the fact that all ϕi are space-homogeneous and depend only on time.

The sign change in front of ∼ ˙̃ϕ2
i is due to the signature of the metric and also we assume

that g00 = −1. Also a common factor λ has been cancelled. Interestingly, we recognize

in the latter formula the conserved integral of energy originating from a sigma-model-type

dynamical system.

To make the succeeding analysis more transparent we rewrite the last formula using

matrix notations as follows

˙̃
R

T

ω
˙̃
R− R̃

T
(wω + ωw)R̃ = c , (3.14)

where R̃ is a vector made of ϕ̃i and w = diag(w1, w2, . . .) and ω is a matrix formed by ωij .

We use a simple transposition as all quantities are real and matrices are symmetric from

the physical origin of the problem. We diagonalize matrix ω by choosing an appropriate

matrix D. We can always do this because if ω cannot be diagonalized then some values wi
are identical and we must just drop equivalent terms from decomposition (3.8). Denoting

d2 = DTωD and using further redefined functions Q = dDTR̃ we get a canonically

normalized diagonal term with derivatives. The whole expression transforms as

Q̇
T
Q̇−QTνQ = c , (3.15)

where ν = d−1DTwDd+ dDTwDd−1. We can simplify the things even more by diago-

nalizing the matrix ν choosing an appropriate matrix M . Denoting m2 = MTνM and

redefining P = MTQ we get

Ṗ
T
Ṗ − PTm2P = c . (3.16)

Here the most crucial achievement that matrix m is diagonal.

Differentiating the latter equation with respect to the time t one gets

Ṗ
T

(P̈ −m2P ) = 0 . (3.17)

As noticed above, all ϕi are linearly independent and the same are Pi. Indeed, since the

matrices which define the quadratic form are non-degenerate this guarantees that Pi are

linearly independent. We thus can consider only the second order linear equations in the

latter expression as all of them must be satisfied independently. Since moreover matrix m

is diagonal we readily find each Pi as

Pi = Pi+e
mit + Pi−e

−mit , (3.18)

where we have assumed m = diag(m1,m2, . . . ).
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Returning to (3.8) we can rewrite the corresponding expression in matrix notations as

well. That is

R̈+ 3HṘ+wR = 0 . (3.19)

Note that the latter equation is valid for any space-homogeneous metric as long as g00 = −1

and as such H is the Hubble function only in the case of a spatially flat FLRW metric.

Passing to variables Pi we get

P̈ + 3HṖ + µP = χc , (3.20)

where µ = MTdDTwDd−1M , χ = MTdDTw and c = diag(c1, c2, . . . ).

To prove the proposition we must show that solutions (3.18) are incompatible

with (3.20) for more than one component vector P . Being lucky that we could construct

solutions for Pi explicitly we just substitute them into (3.20). The resulting expression is

m2P + 3Hm(P+ − P−) + µP = χc , (3.21)

where P± = diag(Pi±e
±mit). Each component Pi is a different exponent and in order

to satisfy the latter equation we must put to zero coefficients in front of each of them.

Moreover, we must have the constant term on the right hand side vanish. If H 6= 0 we

essentially must require the matrix m to be zero and this is equivalent to having all wi = 0

and as such we come back to the situation �R = 0 which is just a sub-case of (3.4) and in

no way requires any more general form of R then a single Fourier mode.

This completes the proof of the proposition during which we actually have never used

that the metric must be exactly of a spatially flat FLRW type.

In a slightly exotic situation such that there is a space-homogeneous metric which

generates vanishing factor H in (3.19) in a combination with a non-constant R one need

to have a separate consideration regarding the space of solutions to EOM.

3.3 Discussion on classical dynamics

We just have proven a very important fact related to theories of type (3.1): all space-

homogeneous conformally flat background solutions are subject to equation (3.4) in com-

bination with conditions (3.6).

To understand what happens we must examine conditions (3.6) which tell that a non-

trivial solution (i.e. a solution more involved than a constant R) exists only if there is a

point r1 such that function FR(r1) being considered as a function of r1 as its parameter

obeys two independent algebraic conditions. Moreover, a would be solution must obey an

equation which can be derived from a local R2 gravity. It was elaborated in [46] what

a Lagrangian for a local model must be written such that its equation of motion yields

�R = r1R. So essentially we should worry whether function FR(r1) provides a chance to

have at least some solution.

The other point of view is to consider presence of a solution as a criterion for function

FR(r1) such that it provides a choice of points r1 at which conditions (3.6) are true. Since

functions FX(�) are not constrained so far apart from being analytic at the origin one may

wonder about the space of solutions. Indeed, it is possible that a generic function FR(r1)
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has many or may be even infinitely many points in which r1F1 is the same value and plus

to this F (1)
R (r1) = 0 at these points. This is some sense would mean that our model include

multiple copies of local R2 gravity.

Even though mathematically possible we are going to remind that the operator func-

tions FX(�) get severely constrained by demand that no new excitations must appear in

the spectrum. Indeed, as it was derived in all the details in [48] the quadratic Lagrangian

for the spin-0 mode of the metric around the Minkowski space-time (where we must fix the

operator functions) is

S0 = −1

2

∫
d4x
√
−ḡφ�̄

{
1− 2

λ

M2
P

3�̄F(�̄)

}
φ . (3.22)

In order to contain the spectrum of excitations and to have inflation we must require

that the expression in curly brackets has exactly one zero which would correspond to the

scalaron. This can be achieved by demanding

1− 2
λ

M2
P

3�̄F(�̄) = σ0(�̄−M2)e2σ(�̄) . (3.23)

Here σ(�) must be an entire function. For the definiteness we assume that σ(0) = 0 and

in order not to lose generality we introduce σ0. Recall that F(0) = f0 and evaluating left

and right sides of (3.23) at �̄ = 0 we get

1 = −σ0M
2

yielding σ0 = −1/M2. Next, evaluating (3.23) at �̄ = r1 and accounting (3.6) we get

0 = − 1

M2
(r1 −M2)e2σ(r1) .

This implies that r1 = M2. Differentiating (3.23) with respect to the d’Alembertian,

evaluating the result at �̄ = r1 and accounting (3.6) one gets

−2
λ

M2
P

3F1 = − 1

M2
e2σ(r1) .

This implies σ(r1) = 0.

The above results confirm the derivation done in [46]. However the more important

observation is that the condition r1 = M2 together with the demand that only one exci-

tation can exist guarantees that from the point of view of the physics of our model only a

single unique point r1 is allowed.

This is a very powerful statement because it implies that as long as space-homogeneous

and conformally flat metrics are considered our quadratic AID gravity has exactly the same

space of solutions as a local R2 gravity. In particular this means that the inflationary

background will remain an attractor behaviour as it was found originally for the local R2

model in [5].

To conclude this section we notice that there are already mentioned limitations of our

analysis: we are talking about space-homogeneous and conformally flat solutions (while
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allowing anisotropic metrics like of the Bianchi I types in the absence of the Weyl tensor

term from the very beginning), we do not have matter sources apart from perhaps radiation.

Also, we do not have the cosmological term in the action. It was mentioned above that the

presence of a cosmological term requires (3.4) to be modified as follows [20]:

�R = r1R+ r2 . (3.24)

In this case, for instance, the whole proof of the proposition from the previous subsection

must be reconsidered if at all possible. We keep the generalization of our analysis to

the models with the cosmological term as well as other interesting directions of further

developments for future projects.

4 Universal inflationary predictions from general gravity

4.1 General considerations

As it was understood in section 2 any arbitrary analytic in curvatures and derivatives

gravity action (2.1) is governed around MSS in D = 4 by action (2.4) or (3.1) if no

cosmological term is present. We note that the cosmological term is not needed at all for

the inflation to happen. Inflation is the nearly dS expansion phase and thus action (3.1) is

the correct starting point to compute inflationary parameters. Therefore having computed

and confronted with measurements parameters of inflation from action (3.1) one can further

try to approach the full theory of gravity.

As it was further crucially proven in sections 3, given one seeks for space-homogeneous

and conformally flat metrics, our theory features only solutions which can be found in a

local R2 gravity. Technically this means that any solution must obey equation (3.4) and

due to the ghost-free conditions only one non-zero r1 parameter is allowed. Hence, the

local inflationary background is seamlessly embedded in our most general consideration.

We stress that this particular background is the minimal choice for the physically viable

cosmological inflation which must be a long enough nearly dS phase of expansion with a

graceful exit. Thanks to the proof of absence of other solutions in our model we guarantee

that the local R2 inflation remains an attractor solution which is an important property

from the physical point of view.

Surely, perturbations are expected to be different from a local gravity. Since the main

results in consideration of any inflationary model are related to perturbations we focus on

analyzing them as detailed as possible and this is the main focus of this section. Note that

the best done so far computations of inflationary parameters [46, 53] treated the background

as exact dS until the action for canonical perturbation variables. In the present analysis

we are going to maintain consistently the leading slow-roll approximation throughout all

the computations. To control the slow-roll approximation we use the pretty much standard

slow-roll parameter ε defined as

ε = − Ḣ

H2
= 1− H

′

H2
. (4.1)

Its use is elaborated in appendix D.
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Thus, technically we should work with the solution to equation (3.4) which was solved

already in [5]. The inflationary phase of this solution is known approximately [5, 46]

a(t) ≈ a0(ts − t)−1/6 e−r1(ts−t)2/12 , (4.2)

and one can check that the slow-roll approximation is valid for it for appropriate choice of

parameters. Here ts is the time of the end of inflation. Also, in principle, the solution to

the whole system of Einstein equations may require radiation ρr. Its amount is given by

(see [46]):
M2
P

3M2

[
3

2
RḢ − 3HṘ− 9M2H2

]
+ ρr = 0 , (4.3)

and in the leading slow-roll approximation the radiation source vanishes (see appendix D).

The latter consideration of energy density of radiation emphasizes that given we do not

consider its perturbations we are limited by the linear order in the slow-roll parameter

in our analysis as any further expansion would require to include perturbations of the

radiation fluid into consideration.

4.2 Action for perturbations

In order to analyze perturbations and their properties one can either analyze the linear

variation of EOM or an action for perturbations which is the second order variation of

the background action. While the results must be the same irrespectively of the approach

some steps may be more simple in either of them. Linearization of EOM worked well in

previous papers but a construction of the second order variation of the action was possible

only around MSS.

Below we present for the first time the second order variation of (3.1) around any

solution satisfying (3.4) and conditions (3.6). To do so we introduce an auxiliary local action

Slocal =

∫
d4x
√
−g
(
M2
P

2
R+

λ

2
F1R

2

)
. (4.4)

The answer for the second variation of (3.1) turns out to be unexpectedly simple and it

reads after some laborious steps outlined in appendix E

δ2S =

∫
d4x
√
−g
[
δlocal +

λ

2
ζZ2(�̄)ζ +

λ

2
(δW )FW (�̄)δW

]
, (4.5)

where

δlocal =
λF1

2

[
2(R̄+ 3r1)δ0 − R̄2δg + (δR)2

]
is exactly the second order variation coming from a local action (4.4). Quantities δ0 =

(δ2√−gR)/
√
−g and δg = (δ2√−g)/

√
−g are computed explicitly in appendix E. Further,

ζ = (�̄− r1)δR+ (δ�)R̄ . (4.6)

This is essentially a variation of (3.4) and it would be identically zero in a local case but

may not be assumed as such as (3.4) is not an EOM in our AID action. ζ actually becomes

an essential quantity in our model. Finally,

Z2(�) =
FR(�)−F1

(�− r1)2
(4.7)
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is an operator analytic in �̄ as can be shown using the Taylor series expansion in combi-

nation with (3.6). As usual quantities with bars over them are the background ones.

First we note that the latter action for perturbations is derived without any assump-

tions on the background apart from the fact that it satisfies (3.4) and conditions (3.6)

are satisfied. It is a general action valid in all regimes and not only around the actual dS

expansion of the Universe. This is a complete expression for all modes: scalars, vectors and

tensors. The action differs from a known answer for a local R2 inflationary model by just

one term square in ζ. This term is actually non-local due to the presence of the operator

Z2(�). The last term containing the Weyl tensor variations is that simple because the

Weyl tensor is zero on the backgrounds of interest and as such nothing else can survive

upon the second variation.

We proceed by considering scalar and tensor perturbations meaning that the classifi-

cation is with respect to the 3-dimensional symmetry group.

4.3 Scalar perturbations

The perturbed line element for scalar perturbations in terms of Bardeen potentials

(Φ, Ψ) reads

ds2 = a2 (τ)
[
− (1 + 2Φ) dη2 + ((1− 2Ψ) δij + 2hij) dx

idxj
]
. (4.8)

The gauge invariant perturbation of the scalar curvature is given by

δRGI = 2
(
R̄+ 3�̄k

)
Ψ− 2R̄ (Φ + Ψ)− 6

H
a2

(
Φ′ + Ψ′

)
+ 2

k2

a2
(Φ + Ψ) . (4.9)

This is used instead of δR in the definition of ζ in (4.6) as long as we pass to gauge invariant

variables. As it is shown above ζ essentially measures the difference of our model from the

local R2 gravity (see action (4.5)). Also we recall that being a variation of (3.4) it is zero

in a local R2 gravity but is not obligatory trivial in our case.

However, ζ is governed by a linear and homogeneous though non-local equation (F.1)

which we recite here for the completeness{[
∂µR̄∂µ + 2r1R̄

]
Z2

(
�̄k

)
+ 3FR

(
�̄k

)
+
(
R̄+ 3r1

)
Z1

(
�̄k

)}
ζ = 0 , (4.10)

where

Z1 (�) =
FR (�)−F1

(�− r1)
, Z2 (�) =

FR (�)−F1

(�− r1)2 . (4.11)

We are going to explore the solutions to the above equation in the leading slow-roll ap-

proximation. This generalizes our consideration in [46] because there we have taken the

pure dS background for inflation which is the zero level approximation. Strictly speaking

however, having the background (4.2) up to the leading slow-roll correction we have to

follow the same approximation in computing perturbations.

Using the details accumulated in appendix F we state the essence of this consideration

that in the leading slow-roll approximation the only possibility for ζ is a trivial solution

and δW does not contain scalar perturbations at all. This has a major consequence. Just
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looking at action (4.5) we see that the scalar perturbations during inflation at the leading

order are always governed by a local R2 action irrespectively of what the full gravity theory

is. Technically this is seen through the simplification of all the system of linearized scalar

perturbation equations presented in appendix F. Effectively it behaves the same way as in

the pure dS leaving the analysis and the results of [46] intact. As a particular important

consequence we gain

Φ + Ψ = 0 . (4.12)

One can see from the explicit expressions in appendix F that δW depends solely on Φ + Ψ

and as such the contribution which would come from the Weyl tensor piece vanishes.

Having said this we can straightforwardly utilize the results of [45, 46] to write down

the action for a canonical variable which is

δ2Sscalar =

∫
d4x
√
−ḡ λ

2F1R̄
Υ
W
(
�̄
)

FR
(
�̄
) (�̄− r1

)
Υ . (4.13)

Here Υ is the canonical variable in question related to Bardeen potentials as 2F1R̄Ψ = Υ.

The operator W(�̄) is

W(�̄) = 3FR
(
�̄
)

+
(
R̄+ 3r1

)
Z1

(
�̄
)
. (4.14)

Comparing operator W with the expression for the spin-0 propagator around dS back-

ground found in [48] we see that for a consistent theory (around the dS background which

is the case during inflation) we should demand

W(�̄) = e2γ(�̄) (4.15)

for some entire function γ(�̄).

One may wonder about the denominator FR(�̄). Naively one would expect that the

whole fraction W(�̄)/FR(�̄) must be an exponent of some entire function to avoid extra

poles in the propagator. It is however not always necessary as the denominator would

contribute to poles of the propagator only if it has poles on its own. In a particular case that

the denominator itself is an entire function or in a situation that would be propagator poles

are beyond the domain of validity of our effective theory (in simple words the excitations

are heavier than the effective theory scale, in our case heavier than the scale of inflation)

one should not worry about the presence of the denominator in the operator function. The

detailed analysis of such a situation is presented in [38].

Going further we should proceed with the quantization of perturbations and an evalua-

tion of the two-point function in order to deduce the power spectrum and the corresponding

scalar spectral tilt. What is intriguing however, accounting the fact that we have to com-

pute the final quantities at the position of the pole for the canonical variable, i.e. at �̄ = r1

and using that Z1(r1) = 0 we are going to get answers identical to those in a local R2

theory as W(r1)/FR(r1) = 3. On the other hand this is not a surprise as in the situation

when ζ = δW = 0 we see that action (4.5) is nothing but a second order variation of an

action for a local R2 gravity.
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Actual results for the scalar power spectrum PR for R = Ψ + HδRGI/
˙̄R and the

corresponding scalar tile ns can be found in [45, 46] and are as follows

PR|k=aH =
H2

16π2ε2
1

3λF1R̄
, ns ≡

d lnPR
d ln k

∣∣∣∣
k=aH

≈ 1− 2

N
, (4.16)

where N is the number of e-folds.

We thus double argued: first, by using the explicit action for the scalar perturbations

and, second, by the rederivation of the action for a canonical variable in the scalar sector

that irrespectively of what is the general full gravity theory, an inflation would lead always

to the same universal predictions in the scalar sector up to the leading order in the slow-roll

correction. One however would get absolutely new corrections coming truly from the non-

local operators as long as next to leading orders in the slow-roll approximation or higher,

i.e. three- or more, -point correlation functions are considered.

4.4 Tensor perturbations

Computation of the tensor perturbations was done in [46] and already accounts the leading

slow-roll approximation. The action for the canonical variable is

δ2Stensor =

∫
d4x
√
−ḡ λF1R̄

4
hµν

(
�̄− R̄

6

)
P(�̄)hµν , (4.17)

where hµν is transverse and traceless and the factor 4 instead of 2 in the denominator is

useful as one has to multiply further by 2 to account for two polarizations. The extra

operator P(�) appears because of the original AID operators and reads as

P(�̄) = 1 +
1

F1R̄

(
�̄− R̄

3

)
FW

(
�̄ +

R̄

3

)
. (4.18)

Noticec that a constant FW (�̄) results in the second pole in the spin-2 Lagrangian and

this is exactly the Weyl ghost observed by Stelle in [3, 4]. Demanding that no new (and

necessarily ghost) spin-2 excitations appear we must have either P(�̄) = const > 0 or

P(�̄) = e−2ω(�̄) where ω(�̄) is an entire function in full analogy with γ(�̄) in (4.15). The

first choice results in a non-analytic FW (�̄). The second choice on the one hand evades

a ghost but on the other hand proves that only a truly non-local operator can generate

a ghost-free spectrum. As the result presence of a non-constant ω(�̄) is inevitable. The

result for the power spectrum of tensor modes without slow-roll corrections as it was got

in [46] is

PT |k=aH =
H2

π2λF1R̄
e
−2ω

(
R̄

6M2

)
. (4.19)

Note that function ω(�̄) must be evaluated at the position of the pole which is R̄/6 and

also we restore M, the scale of non-locality in our model.

Here we advance our study in comparison with [46] by computing also the tensor

tilt and finding it up to the leading order in the slow-roll approximation. However, to

achieve this, the next order slow-roll correction may need to be added to the tensor power

spectrum (4.19), since in the case of the local R2 model the leading term in PT does not
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depend on N = − ln k + const [7] (cf. the recent paper [54] in this connection, too). A

careful computation gives

PT |k=aH =
1

12π2λF1
(1− 3ε) e

−2ω
(

R̄
6M2

)
. (4.20)

We use this to obtain

nt ≡
d lnPT
d ln k

∣∣∣∣
k=aH

≈ −d lnPT
dN

(
1 +

1

2N

)
≈ − 3

2N2
+

(
8

N
+

6

N2

)
R̄

6M2
ω′
(

R̄

6M2

)
,

(4.21)

where prime is the derivative with respect to the argument and we have used that ε =

1/(2N) with N the number of e-folds. Note that if ω′
(

R̄
6M2

)
= 0 we recover the tensor

tilt of the Starobinsky model, i.e. nt = − 3
2N2 which is a red tilt nt < 0.

4.5 r and modified consistency relation

Using a standard (local) results for the scalar power spectrum as advocated above (4.16)

and modified tensor power spectrum (4.19) the tensor to scalar ratio is given by

r =
PT
PR

∣∣∣∣
k=aH

=
12

N2
e
−2ω

(
R̄

6M2

)
. (4.22)

Therefore the presence of the Weyl tensor squared term in the action modifies the

single field consistency relation (r = −8nt) as follows

r

nt
= −8

e
−2ω

(
R̄

6M2

)
1− 16

3 N
R̄

6M2ω′
(

R̄
6M2

) . (4.23)

Using the fact that our computations do not depend technically on whether operators

are of finite or infinite order in derivatives one can readily compare our results with an

analogous derivation done in [55] where a pure Weyl tensor squared term was considered.

In that case our answers can be shown to match. We however stress again that only a truly

non-local operator, i.e. AID operator is necessary to get rid of the Weyl ghost.

5 Conclusions

R2 always stood as the most successful theory of inflation and it is now the best fit for

the most recent Planck data. In a recent study [46] this model realized in the context

of non-local gravity that was shown to be UV complete in the sense of having no ghosts

(unitarity) and being super-renormalizable (or finite). This was the significant theoretical

development which embeds R2 inflationary paradigm in a finite theory of quantum gravity.

The present paper further extends this previous study with more rigorous analysis of the

action, generalized solutions for EOM and derivation of inflationary parameters that can

be tested in the future CMB data.
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We have started by deriving explicitly that a most general theory of gravity that

contributes to the linearly perturbed EOM around MSS contains the Einstein-Hilbert term,

R2 and Weyl tensor squared terms with AID operators in between, and the cosmological

constant, see (2.4) and (2.5). Using the power of Bianchi identities we were able to reduce

the final action presented in [48] effectively eliminating the Ricci tensor squared term.

Our proof applies to any theory of gravity in any dimension. It is worth mentioning that

SFT [17] provides a natural motivation for such kind of AID actions.

We have proceeded by presenting a rigorous mathematical proof that the trace equation

of a local R2 gravity without the cosmological term i.e., �R = r1R is the only solution to

EOM of our AID quadratic gravity also without the cosmological term as long as spatially

flat FLRW metrics are considered. This means that even though we have complicated the

local higher derivative theory of gravity [3] with AID operators, the space of background

solutions remains the same satisfying �R = r1R. In the situation when the Weyl tensor

term is not included from the very beginning the claim remains true for any metric which is

space-homogeneous in the synchronous reference frame, for example, anisotropic metrics,

in particular Bianchi I type configurations, etc.

Further, we have derived the full perturbed second order action of AID quadratic

gravity without the cosmological term around general backgrounds satisfying �R = r1R

and conditions (3.6), significantly boosting the previous studies where perturbations were

only computed around MSS [24, 45, 46]. This full second order action is undoubtedly useful

for further studies in the framework of AID gravities.

One of the crucial immediate task to be done in a forthcoming study is to extend these

achievements to the models involving the cosmological term and to other types of metric,

for example space-inhomogeneous or those describing spherically symmetric solution. This

will allow one to attack in full, for example, the study of non-singular and ghost-free

bounce configurations [24, 49] which require the cosmological term to be present in the

action. Also one can use the AID quadratic gravity framework to reconsider the problem

of the curvature singularity which was proven to be generic in the case of Bianchi I metric

in a local R2 model [56].

Using the above described tools which are constructed in the present paper for the

first time, we have come with the inflationary predictions of AID quadratic gravity model

such as scalar spectral index, tensor to scalar ratio and tensor tilt consistently computing

them in the leading order of the slow-roll approximation.

On this way we have proven that in the leading slow-roll approximation scalar per-

turbations in our model are equivalent to those in a local R2 gravity. Our analysis thus

makes it transparent that the scalar power spectrum remains the same as in a local R2

model proving therefore that our model is to be the best fit with the present constraint

ns = 0.968± 0.006.

The tensor power spectrum however gets modified exactly due to a differential op-

erator in the Weyl tensor squared term introducing thereby a new parameter associated

solely with this operator. As a result, the tensor to scalar ratio r gets a correction by a

parameter that can give any value of r < 0.07 following (4.22). As an interesting but not a

surprising consequence the computed tensor tilt deviates from a local R2 model and thus

the consistency relation gets modified as in (4.23). This resembles the results obtained

– 20 –



J
H
E
P
0
3
(
2
0
1
8
)
0
7
1

in [55] with a huge difference that our model can avoid ghosts by promoting an operator

in the Weyl tensor squared term to an AID operator. In particular, eq. (4.18) and the

discussion thereafter gives a very simple and clear explanation that the only way to defeat

the Weyl ghost is to introduce a truly infinite derivative operator as long as one allows

only analytic dependence on derivatives.

Our current AID quadratic gravity model modifies the tensor power spectrum and

consequently r by a new parameter which is associated in this model with a quantum

gravity prescription in the UV regime. This is in contrast to many other “Starobinsky”-

like models in the market [57–60] which modify only the scalar power spectrum. The tensor

tilt in our model gets a new parameter related to the scale of non-locality M. The value of

this new parameter can be fixed by future observations of primordial B-modes. Therefore,

inflation in AID quadratic gravity meets all the current CMB constraints by PLANCK and

is undoubtedly a very interesting and natural target for future CMB probes. We emphasize

also that despite the fact that we can have any value of r < 0.07 in this model the energy

scale of inflation remains the same as the latter is determined by scalar perturbations. This

is a noteworthy feature of our model which is absent in the scalar field attractor models,

i.e. so called α-attractor models [61].

Our results for AID quadratic gravity theory provide a foundation for studying not

only inflation but also bounce, black holes, late time acceleration etc. in this framework.

Given the theoretical progress we have achieved in the present paper future studying of

reheating, non-gaussianities and other crucial questions are very important and timely.

Intensifying the study of more inflationary parameters in combination with constraints

from the observational camp would allow to narrow, for instance, the scale of non-locality

and to start shaping the non-perturbative quantum gravity.
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A Notations and common quantities

The metric gµν is such that

gµν = (−,+,+,+, . . . ), gµνg
µν = D . (A.1)

In most cases D = 4 unless indicated otherwise. Small Greek letters are the D-

dimensional indices.

Γρµν =
1

2
gρσ(∂µgνσ+∂νgµσ−∂σgµν) , ∇µF .α..β. = ∂µF

.α.
.β. +ΓαµχF

.χ.
.β. −ΓχµβF

.α.
.χ. , (A.2)

Rσµνρ = ∂νΓσµρ − ∂ρΓσµν + ΓσχνΓχµρ − ΓσχρΓ
χ
µν , (A.3)

Rµνρσ = −Rµνσρ = −Rνµρσ = Rρσµν , Rµνρσ +Rµσνρ +Rµρσν = 0 . (A.4)
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The last property in the latter line is sometimes called algebraic Bianchi identity.

Rµν = Rσµσν , Rµν = Rνµ , R = Rµµ (A.5)

[∇µ,∇ν ]Aρ = RχρνµAχ , � = gµν∇µ∇ν . (A.6)

The (differential) Bianchi identity is:

∇λRµνρσ +∇σRµνλρ +∇ρRµνσλ ≡ 0 . (A.7)

We note down the following important second rank tensors

Einstein: Gµν = Rµν −
1

2
Rgµν , due to Bianchi identity ∇µGµν ≡ 0 , (A.8)

Schouten: Sµν =
1

D − 2

(
Rµν −

1

2(D − 1)
Rgµν

)
, (A.9)

Traceless Ricci: Lµν = Rµν −
1

D
gµνR , Lµµ = 0 . (A.10)

All these tensors are symmetric.

An important third rank tensor is the Cotton tensor:

Cµνα = ∇µSνα −∇νSµα, Cµνα + Cαµν + Cναµ = 0, C α
µα = 0, ∇αCµνα = 0 (A.11)

The fourth rank Weyl tensor is:

Wµ
ανβ = Rµανβ −

1

D − 2
(δµνRαβ − δ

µ
βRαν + gαβR

µ
ν − gανR

µ
β)

+
R

(D − 2)(D − 1)
(δµν gαβ − δ

µ
βgαν)

= Rµανβ − δ
µ
νSαβ + δµβSαν − gαβS

µ
ν + gανS

µ
β . (A.12)

The Weyl tensor has all the symmetry properties of the Riemann tensor (A.4) and it is

absolutely traceless, i.e. Wµ
αµβ = 0 . Moreover it is invariant under the conformal rescal-

ing, i.e.

Ŵµ
αβγ = Wµ

αβγ for ĝµν = Ω2(x)gµν . (A.13)

This implies that the Weyl tensor is zero on conformally flat manifolds (i.e. when the

metric can have the form ds2 = a(x)2ηµνdx
µdxν where ηµν is the Minkowski metric with

the same signature).

In fact, one should keep in mind that in D ≥ 4 vanishing Weyl tensor is a necessary

and a sufficient condition for the space-time to be conformally flat.

Applying the Bianchi identity to the Weyl tensor one can find

∇βWαµνβ = −(D − 3)Cαµν = −(D − 3)(∇αSµν −∇µSαν) . (A.14)
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Squaring the last equality we get

(∇βWαµνβ)2 = −2(D − 3)∇βWαµνβ∇αSµν . (A.15)

Next one can compute

1

D − 3
∇α∇βWαµνβ = −�Sµν +

1

2(D − 1)
∇µ∂νR+

1

D − 2
WρνµαL

αρ

+
D

(D − 2)2
LµαL

α
ν −

1

(D − 2)2
gµνL

2
αβ +

1

(D − 1)(D − 2)
RLµν

(A.16)

Going further one finds

∇µ∇α∇βWαµνβ = (D − 3)∇µ(Wα
µνρS

ρ
α) + (D − 4)∇αW ρ

νµαS
µ
ρ (A.17)

We see that in 4 dimensions the combination

Bµν = ∇α∇βWαµνβ −
1

2
Wα
µνρR

ρ
α (A.18)

is transverse. We have used here the normalization of the Schouten tensor and the traceless

property of the Weyl tensor. The latter combination is named Bach tensor. It is symmetric,

traceless, transverse (for D = 4) and has the conformal weight −2 (i.e. scales as Ω(x)−2

upon scaling of the metric by Ω(x)2).

The spatially flat FLRW Universe metric is

ds2 = −dt2 + a(t)2
(
dr2 + r2dΩ2

)
. (A.19)

t is the cosmic time and a(t) is the scale factor. We intrinsically assume zero spatial

curvature. The Hubble function is H = ȧ/a with dot denoting the derivative with respect

to t. Equivalently we write the FLRW metric (A.19) as

ds2 = a(τ)2
(
−dτ2 + δijdx

idxj
)
. (A.20)

τ is the conformal time such that adτ = dt. Spatially flat FLRW Universe is conformally

flat and the Weyl tensor in it is identically zero. The background quantities in the latter

metric are

Γµ0ν = Hδµν , Γ0
µν = δµνH , H = a′/a , (A.21)

R =
6

a2
(H′ +H2) , Rµν =

(
−3H′ 0

0 (H′ + 2H2)δij

)
, (A.22)

R0
i0j = H′δij , Ri0j0 = −H′δij , Rijkm = H2(δikδjm − δimδkj) .

(A.23)

We use the index “0” for the τ -component of any tensor in order not to confuse with just a

small Greek letter (the cosmic time is used less often and wherever needed we designate it
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with the index t). Latin small letters from the middle of the alphabet are spatial indices,

prime is the derivative with respect to the conformal time τ . Further:

∂0 = a∂t, H = H/a, �s = − 1

a2
(∂2

0 + 2H∂0 − δij∂i∂j), R = 6Ḣ + 12H2 , (A.24)

where �s is the d’Alembertian operator acting on scalars.

In using non-local operators FX(�) whereX is some notational index we always assume

that these operators are analytic functions of their arguments. This allows to write them

in a Taylor series representation

FX(�) =
∑
n=0

fXn�
n (A.25)

The metric perturbations are introduced as

gµν = ḡµν + hµν , h = hµµ (A.26)

For any other quantity ϕ apart from the metric we use ϕ̄ for its background value and δϕ

for linear corrections. A spatial Fourier transform used to study perturbations is

ϕ(τ, ~x) =

∫
ϕ(τ,~k)ei

~k~xd~k, �̄k → −
1

a2
(∂2

0 + 2H∂0 + k2) . (A.27)

~k is the spatial comoving momentum.

B Reduction of (2.3) to (2.4)

As the first step of this procedure we notice that one can use Schouten tensor Sµν instead

of Lµν in (2.3). This is a linear transformation of L-tensor and it leads to some redefinition

of function F̃R(�). Using that FL(�) is an analytic function we can write it as a Taylor

series and the corresponding expression is∫
d4x
√
−gSµνFL(�)Sµν =

∫
d4x
√
−gSµν

∑
n≥0

fLn�
nSµν . (B.1)

The zero term in this series can be dropped thanks to the presence of the Gauss-Bonnet

(GB) invariant in 4 dimensions. With �-s in between there is no such an obvious possibility.

However, we can write the series without the zero term as follows∫
d4x
√
−g(�Sµν)

∑
n≥1

fLn�
(n−1)Sµν .

We have moved one d’Alembertian to the left using an integration by parts since we are

doing our computation under the integral.

The second step is to express �Sµν using Bianchi identity (A.16) and the right most Sµν
through Lµν and gµνR. Schematically without explicit coefficients this can be written as∫

d4x
√
−g
(
x1∇α∇βW ν

αµ β + x2∇µ∂νR+ x3W
ν

αµ βL
αβ + x4LµαL

αν

+ x5δ
ν
µL

2
αβ + x6L

ν
µR

)∑
n≥1

fLn�
(n−1) (y1L

µ
ν + y2δ

µ
νR) .

(B.2)
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Here xi, yi are numeric coefficients. We observe the following by primary inspection: terms

proportional to ∼ WLL or ∼ LLL would not survive under the second variation around

MSS as they contain 3 multipliers which are trivial on the background; since Weyl tensor

and L-tensor are fully traceless any contraction of them with δ-symbol vanishes. Terms

which still can contribute are written below:∫
d4x
√
−g

[(
x1∇α∇βW ν

αµ β + x2∇µ∂νR+ x6L
ν
µR
)∑
n≥1

fLn�
(n−1)y1L

µ
ν

+
(
x2�R+ (x4 + 4x5)L2

αβ

)∑
n≥1

fLn�
(n−1)y2R

]
.

(B.3)

A careful examination reveals that the last term in the first line of the latter expression

can survive the second variation only if each of two L-tensors is varied. As such this term

with R taking its background value R̄ resembles the L-piece in action (2.3). We thus can

tackle this term recursively looping back to (B.1) and considering a new expression∫
d4x
√
−gx6y1R̄Sµν

∑
n≥0

fL(n+1)�
nSµν . (B.4)

Obviously, this is essentially the same expression as in (B.1) with new series coefficients.

Iterating more and more (infinitely many) times we eliminate this term entirely. At each

iteration the zero term with n = 0 can be dropped thanks to the use of the GB invariant.

Further, first term on the second line in (B.3) can be effectively absorbed in RF̃R(�)R

piece. The second term of the last line only contributes to a second variation when both

L-tensor multipliers are varied and R takes its background value. Thus, it is again a local

L2 term and we drop it thanks to the use of the GB invariant.

So for the moment what we are left with is just first two terms from the first line

of (B.3). We rewrite these two terms for convenience:∫
d4x
√
−g
(
x1∇α∇βW ν

αµ β + x2∇µ∂νR
)∑
n≥1

fLn�
(n−1)y1L

µ
ν . (B.5)

The second term here is somewhat simpler to play with and we will show using its example

that one can commute covariant derivatives without paying attention to extra contribution

exactly like it happens in Minkowski background. For the zero term in the series we simply

write (modulo the constant coefficient x2fL1y1)∫
d4x
√
−g(∇µ∂νR)Lµν = −

∫
d4x
√
−g(∂νR)∇µ

(
Gµν +

1

4
δµνR

)
=

1

4

∫
d4x
√
−gR�R ,

(B.6)

where we have used the Bianchi identity for the Einstein tensor (A.8). So this is just

another contribution to RF̃R(�)R piece. Given we have one d’Alembertian operator we
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can write the following (again we omit the constant coefficient x2fL2y1)

∫
d4x
√
−g(∇µ∂νR)�Lµν

= −
∫
d4x
√
−g(∂νR)∇µ�Lµν

=

∫
d4x
√
−g(∂νR)

(
�∇µLµν +∇αRραLρν +∇αRρναµLµρ +Rρναµ∇αLµρ

)
.

(B.7)

The first term on the right can be treated in full analogy with (B.6) with one extra

d’Alembertian inside. All other pieces can be in fact can be treated again as (B.6). Indeed,

a non-zero second variation would only be present if R in the first factor ∂νR and L-tensor

in the second factor are varied. As such, Riemann and Ricci tensors take their background

values and all the terms but first in the second parenthesis can be absorbed in the zero

series term. With the same strategy in mind, for any n the n-th term in the series can be

redistributed into (n−1)-th term and RF̃R(�)R. Finally this recursion absorbs everything

of interest into RF̃R(�)R.

The first term in (B.5) in fact produces indeed non-vanishing remaining contributions.

For the first term in series expansion without d’Alembertian we have (we again omit con-

stant coefficient x1fL1y1 below)

∫
d4x
√
−g(∇α∇βW ν

αµ β)Lµν . (B.8)

Given we have at least one d’Alembertian, we will first replace Lµν → Sµν which is possible

since the difference is proportional to the metric and the Weyl tensor is traceless, and

second, we will use (A.16) to express �Sµν like in (B.2). This yields (modulo overall

constant multiplier x1y1)

∫
d4x
√
−g(∇α∇βW ν

αµ β)
∑
m≥0

fL(m+2)�
m�Lµν

=

∫
d4x
√
−g(∇α∇βW ν

αµ β)
∑
m≥0

fL(m+2)�
m
(
x1∇ρ∇σW µ

ρ νσ + x2∇µ∂νR

+ x3W
µ

ρ νσL
ρσ + x4LνρL

ρµ + x5δ
µ
νL

2
ρσ +x6L

µ
νR) .

(B.9)

Terms ∼ WLL or ∼ LLL cannot contribute to the quadratic variation as they are cubic

in quantities which are identically zero on the background. The term x6L
µ
νR can only

survive having R taking its background value R̄. Otherwise, the second variation of this

term in the action will be zero. As such, this term resembles the l.h.s. of the equality with

one d’Alembertian less. One can recursevely apply (A.16) as long as no d’Alembertians

are left at all. Without d’Alembertian oeprators in between the structure like in (B.8) is

reproduced.
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The term x2∇ν∂µR can be transformed as follows∫
d4x
√
−g(∇α∇βW ν

αµ β)
∑
m≥0

fL(m+2)�
mx2∇µ∂νR

→−
∫
d4x
√
−g(∇µ∇α∇βW ν

αµ β)
∑
m≥0

fL(m+2)�
mx2∂νR

=

∫
d4x
√
−g
(
∇µ
(
Bν
µ −

1

2
W ν
αµ βL

αβ

))∑
m≥0

fL(m+2)�
mx2∂νR .

(B.10)

The first transformation is possible thanks to the same logic as explained after (B.7).

According to it we move derivatives absorbing all newly emerging Riemann tensor terms

inside of terms with one d’Alembertian operator less. The second transform is an equality

which uses the definition of the Bach tensor Bµν (see (A.18)). This tensor is transverse

and as such this contribution vanish. This is exactly like that in D = 4. In higher

dimensions the divergence of the analog of Bach tensor gains non-vanishing contributions

of the form ∼ WL and as such similar in their properties to the second term which is

already present. This second term (and possible its complements in D > 4) produces

∼ WL∂R contribution which does not survive the second variation as all three factors

must be varied to be non-trivial.

The last unaccounted term in (B.9) which actually survives is∫
d4x
√
−g(∇α∇βW ν

αµ β)
∑
m≥0

fL(m+2)�
mx1∇ρ∇σW µ

ρ νσ . (B.11)

Thus to the moment we have the following result. We started with (B.1) and ended

up with two non-vanishing contributions (B.8) and (B.11) while also function F̃R(�) got

redefined due to absorption of similar terms into it.

In order to simplify (B.8) we move one derivative by integration by parts to L-tensor

and use (A.15) to write an equivalent expression (modulo a constant factor):∫
d4x
√
−g(∇βWαµνβ)∇γWαµνγ =

∫
d4x
√
−g(∇γWαµνβ)∇βRαµνγ . (B.12)

Here we followed the logic explained after (B.7) according to which we can move derivatives

like in Minkowski space. We also have replaced one Weyl tensor with the Riemann tensor

as their difference vanishes upon contraction with another (traceless) Weyl tensor. We can

now apply the Bianchi identity (A.7) and transform the last expression to

−
∫
d4x
√
−g(∇γWαµνβ)(∇γRαµβν +∇νRαµγβ)

=

∫
d4x
√
−g(−Wαµνβ�W

αµνβ −∇νWαµνβ∇γWαµγβ) .

(B.13)

Here we moved derivatives like in Minkowski space again and returned to the Weyl tensor

as this transformation is identical. We see that the last term in the last expression is
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just the l.h.s. in (B.12) with an opposite sign. Therefore, expression in (B.8) is equivalent

modulo a constant factor to ∫
d4x
√
−gWαµνβ�W

αµνβ , (B.14)

and can be absorbed inside of F̃W (�).

In order to simplify (B.11) we have to repeat the same sequence of moves like for (B.8)

just four times longer. The bottom line is that∫
d4x
√
−g(∇α∇βW ν

αµ β)�m∇ρ∇σW µ
ρ νσ →

∫
d4x
√
−gWαµνβ�

m+2Wαµνβ , (B.15)

again effectively redefining F̃W (�).

Summing all up we come to (2.4).

C Solving (3.5) without using (3.6)

Let us find all solutions of eq. (3.5)

AR = B(Ṙ2 + 2r1R
2), A = M2

P − 6λr1FR(r1) , B = λF (1)
R (r1) (C.1)

under the condition that R satisfies the equation (3.4)

�R = r1R (C.2)

with r1 > 0 and a spatially flat FLRW space-time is assumed. The simplest way to solve

this problem is to reduce the differential equation (C.1), which is the second order with

respect to the Hubble function H ≡ ȧ/a (the scale factor a(t) itself does not enter due to

invariance under rescaling of all spatial coordinates), to an expression containing R(t) only

which should be an identity if R is not a constant.

Note first that one such solution is R ≡ 0, and then no conditions on A,B and r1 arise.

Let us assume further that R is not identically equal to 0. Let B 6= 0. Then

Ṙ = −

√
R

(
A

B
− 2r1R

)
, (C.3)

where we take the minus sign for Ṙ corresponding to decrease of R with time for definite-

ness. If r1 6= 0 and R 6= 0, Ṙ 6= 0 too. By differentiating eq. (C.1) with respect to time

and dividing both its sides by Ṙ, one gets

A

2B
= R̈+ 2r1R = −3HṘ+ r1R . (C.4)

From eqs. (C.3) and (C.4), the expression for H(t) follows:

H =
1

6

√
A

BR
− 2r1 . (C.5)
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Differentiating eq. (C.5) and using eq. (C.3) once more, we arrive to

Ḣ =
A

12BR
. (C.6)

From this the expression

R ≡ 6Ḣ + 12H2 =
5A

6BR
− 2r1

3
(C.7)

follows that cannot be satisfied for Ṙ 6= 0. Thus, the only remaining possibility is B = 0

and then A = 0 if R 6= 0.

So, all solutions of eq. (C.1) under the condition (C.2) are given either by R ≡ 0, or

by A = B = 0. However, since R ≡ 0 is a particular solution of eq. (C.2) (or (3.4)), too,

we notice that this case having zero measure in the space of initial conditions for eq. (3.3)

does not require special consideration further.

We finally note that one can extend the above proof to any metric which is space-

homogeneous in the synchronous frame.

D Slow-roll approximation using (4.1)

The slow-roll parameter ε defined in (4.1) and we note it down again here for references:

ε = − Ḣ

H2
= 1− H

′

H2
. (D.1)

During inflation which is a nearly dS expansion we have ε � 1 and use it as the small

parameter for our approximations. It is useful to compute

ε′ = 2H (1− ε)2 − H
′′

H2
, (D.2)

We require ε′ � Hε which is the condition to have inflation last long enough. The back-

ground scalar curvature and its conformal time derivatives become

R̄ =
6H2

a2
(2− ε) , R̄′ = −2HεR̄− R̄ ε′

2− ε
≈ −2HεR̄ ,

R̄′′ ≈ −2HR̄(ε′ +Hε) + 6H2ε2R̄ ≈ −2H2εR̄ ≈ HR̄′ .
(D.3)

Substituting these expressions into (3.4) one finds an important relation among our pa-

rameters

r1 ≈
6H2ε

a2
≈ R̄ε

2
. (D.4)

Further examining equation (4.3) one finds

M2
P

3M2

[
3

2
RḢ − 3HṘ− 9M2H2

]
+ ρr = O(ε2) + ρr = 0 . (D.5)

As such, radiation contributes at least at the order ε2.
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E Second order variation of action (3.1) around (3.4) and (3.6)

We will actively use

Z1(�) =
FR(�)−F1

�− r1
, Z2(�) =

FR(�)−F1

(�− r1)2
, (E.1)

where both quantities are analytic in � thanks to condition F ′R(r1) = 0 (see (3.6)). We

also remind few sums:

n−1∑
l=0

1 = n ,
n−1∑
l=0

xl =
xn − 1

x− 1
,

n−2∑
l=0

(l + 1)xl = − xn − 1

(x− 1)2
+ n

xn−1

x− 1
.

This allows to compute

(δFR(�))R̄ = Z1(�)(δ�)R̄ ,∫
d4x
√
−gR̄(δ2FR(�)|δ2�)R̄ =

∫
d4x
√
−g

∞∑
n=1

fRn

n−1∑
l=0

R̄�l(δ2�)�n−l−1R̄ ∼ F ′R(r1)

= 0 ,∫
d4x
√
−gR̄(δ2FR(�)|δ�δ�)R̄ =

∫
d4x
√
−g

∞∑
n=2

fRn
∑

α+β≤n−2

R̄�α(δ�)�n−α−β−2(δ�)�βR̄

=

∫
d4x
√
−gR̄(δ�)Z2(�)(δ�)R̄ ,∫

d4x
√
−gR̄(δF(�))δR =

∫
d4x
√
−gR̄(δ�)Z1(�)δR .

The most tedious piece in varying (3.1) is the one with FR. Its variation contains 10

terms which explicitly can be written as

δ2SFR =
λ

2

∫
d4x
√
−g
[
R̄F1R̄δg + (δ2R)F1R̄+ R̄F1δ

2R+ R̄(δ�)Z2(�)(δ�)R̄

+
h

2
(δR)F1R̄+

h

2
R̄FR(�)δR+ R̄(δ�)Z1(�)δR

+
h

2
R̄Z1(�)(δ�)R̄+ (δR)Z1(�)(δ�)R̄+ (δR)FR(�)δR

]
,

(E.2)

where we use

√
−g =

√
−ḡ
(

1 +
h

2
+ δg +O(h3

µν)

)
, δg =

h2

8
−
h2
µν

4

as well as the above derived relations.

To advance further we compute some quantities involving hµν

δgµν = −hµν , δΓρµν = γρµν =
1

2
(∇µhρν +∇νhρµ −∇ρhµν) (E.3)
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and for the d’Alembertian acting on scalars

δ� = δ(∇µ∂µ) = −hµν∇µ∂ν − (∇µhρµ)∂ρ +
1

2
(∂ρh)∂ρ . (E.4)

We do not use the subscript “s” because no variations of other (acting on tensors for

example) d’Alembertians are used in the paper. Using this latter expression we can show

utilizing the integration by parts∫
d4x
√
−gR̄(δ�)X =

∫
d4x
√
−g
[
(δ�R̄)X − 1

2
R̄h(�− r1)X

]
. (E.5)

This in combination with the definition (4.6) simplifies (E.2) to

δ2SFR =
λ

2

∫
d4x
√
−g
[
(2δ0 − R̄δg)F1R̄+ F1(δR)2 + ζZ2(�)ζ

]
, (E.6)

where

δ0 = R̄δg +
h

2
δR+ δ2R

is in fact the second order variation of the Einstein-Hilbert action.

Accounting the Einstein-Hilbert and Weyl tensor terms in (3.1) and using condi-

tions (3.6) we arrive to (4.5).

F Linearized EOM and proof that ζ = 0 in slow-roll approximation

The variation of the trace equation (3.3) reads

δE =
{[
∂µR̄∂µ + 2r1R̄

]
Z2

(
�̄k

)
+ 3FR

(
�̄k

)
+
(
R̄+ 3r1

)
Z1

(
�̄k

)}
ζ = 0 , (F.1)

where ζ is defined in (4.6) and Z1, Z2 are defined in appendix E.

The variation of the (ij)-equation with i 6= j in the system (3.2) yields

δEij = −2λ
kikj
a2

[
F1(R̄+ 3r1)(Φ−Ψ) + Υ

]
+ 2λcij = 0 . (F.2)

The variation of the (0
i )-equation in the system (3.2) yields

δE0
i = 2λ

iki
a2

[
2F1(R̄+ 3r1)(Ψ′ +HΦ)− (Υ′ −HΥ) + F1R̄

′Φ− 1

2
R̄′Ξ

]
+ 2λc0

i = 0 . (F.3)

The variation of the (0
0)-equation in (3.2) yields

δE0
0 =

2λ

a2

[
− 2F1(R̄+ 3r1)(3HΨ′ + 3H2Φ + k2Ψ) + 3HΥ′ − 3H′Υ + k2Υ

−3F1R̄
′(Ψ′ + 2HΦ)− R̄′

2
Ξ′ +

1

2

(
R̄′′ + 2HR̄′

)
Ξ

]
+ 2λc0

0 = 0 . (F.4)

Here we have used the notations

Υ =
F(�̄k)−F1

�̄k − r1
ζ + F1δRGI and Ξ =

F(�̄k)−F1

(�̄k − r1)2
ζ ,
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where δRGI is the gauge invariant scalar curvature variation defined in (4.9). Moreover cµν
is found to be,

cij =
kikj
a2

(
Θ′ + 2HΘ +

k2

3
Ω

)
, i 6= j ,

c0
i = −2

3

ikik
2

a2
Θ , c0

0 =
2

3

k4

a2
Ω ,

Θ = Ω′ + 2HΩ , Ω = FC(�̄k + 6H2)
Φ + Ψ

a2
.

Here �̄k is given in (A.27). Note that the above expression for cij with i 6= j is equivalent

to one given in [46] upon identical cancellations.

To see explicitly that ζ = 0 is the only solution to (F.1) in the first order slow-roll

approximation let’s assume for the beginning that

ζ =
∑
i

ζνi , �̄ζνi = wiζνi . (F.5)

Here �̄ is the d’Alembertian operator for the exact dS space and wi are constant. An

assumption that an arbitrary function can be represented as a linear superposition of

eigenfunctions of the d’Alembertian is exactly the condition (ii) in the proposition proven

in section 3.2 and justifications of the validity of this assumption are already presented

there. Note that the Fourier decomposition of ζ can be taken with respect to any choice

of the d’Alembertian operator. The main property we utilize is the orthogonality of the

Fourier eigenmodes.

In the dS limit a ≈ − 1
Hτ and H ≈ − 1

τ and we yield for each ζνi

ζνi = (kτ)3/2 [jikJνi (kτ) + yikYνi (kτ)] , (F.6)

where Jν (kτ), Yν (kτ) are Bessel and Neumann functions, jik, yik are constants and

νi =

√
9

4
− wi
H2

.

Substituting explicit solution for ζ in (F.1) we get in the leading slow-roll approximation

εR̄2
∑
i

Z2 (wi)

[
− τ

6
ζ ′νi + ζνi

]
= −

∑
i

W (wi) ζνi . (F.7)

Here operator W is given in (4.14) and as explained below that definition must be an

operator without eigenvalues. That is W(z) is non-zero for any complex z. Using the

recursion properties valid for Bessel functions (here fν(x) is either Jν(x) or Yν(x) function)

2νfν (z) =z [fν−1(z) + fν+1(z)] ,

d

dz
(fν(z)) =

1

2
(fν−1(z)− fν+1(z)) =

ν

z
fν (z)− fν+1 (z) = −ν

z
fν (z) + fν−1 (z) ,

(F.8)
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one can get

ζ ′νi =
k

2
(kτ)3/2 [jik(Jνi−1 (kτ)− Jνi+1 (kτ)) + yik(Yνi−1 (kτ)− Yνi+1 (kτ))] +

3

2τ
ζνi .

(F.9)

We see from the last equation that the single derivative term with ζνi in the trace equation

can be recast in other ζ-s but also in the same ζ with an extra time-dependent factor. The

orthogonality of Bessel and Neumann functions together with the appearance of this extra

τ -factor proves ζ = 0 is the only solution to (F.1) in the leading slow-roll approximation.

Going further one can work out the same technique using the quasi dS scale factor and

Hubble parameter in terms of the conformal time

a ∼ − 1

Hτ
+
ε [ln(−τ)− 1]

Hτ
+O

(
ε2
)
, H = −1

τ
− ε

τ
+O

(
ε2
)
. (F.10)

One can show upon construction of the ε-corrected d’Alembertian and corresponding eigen-

modes that an appearance of new linearly independent functions upon computing the

derivatives is the blocking issue for any solution apart from ζ = 0.
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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