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Working in Einstein frame, we introduce, in order to avoid singularities, holonomy corrections to the
fðRÞ ¼ Rþ αR2 model. We perform a detailed analytical and numerical study when holonomy corrections
are taken into account in both Jordan and Einstein frames, obtaining, in Jordan frame, a dynamics which
differs qualitatively, at early times, from the one of the original model. More precisely, when holonomy
corrections are taken into account, the Universe is not singular, starting at early times in the contracting
phase and bouncing to enter the expanding one where, as in the original model, it inflates. This dynamics is
completely different from the one obtained in the original Rþ αR2 model, where the Universe is singular at
early times and never bounces. Moreover, we show that these holonomy corrections may lead to better
predictions for the inflationary phase as compared with current observations.

DOI: 10.1103/PhysRevD.89.104010 PACS numbers: 04.60.Pp, 04.50.Kd, 98.80.Jk

I. INTRODUCTION

Two kinds of quantum geometric corrections come from
the discrete nature of space-time assumed in loop quantum
cosmology (LQC): inverse volume corrections [1] and
holonomy corrections (see, for instance, [2]). Dealing with
the flat Friedmann-Lemître-Robertson-Walker (FLRW)
geometry, which is the case in our paper, inverse volume
corrections have problems because of arbitrary rescalings
[3]; more precisely, since the scale factor can be arbitrarily
rescaled in a flat metric, these inverse volume corrections
could appear at any arbitrary scale, losing their physical
meaning. They make sense only in a closed Universe,
leading to a bounce that avoids the big bang and big crunch
singularity [4]. On the other hand, holonomy corrections,
which are well introduced for compact and noncompact
geometries, provide a big bounce that avoids singularities
like the big bang and big rip (see, for example, [5]).
On the other hand, it is well known that, in general, fðRÞ

gravity does not avoid singularities, except for particular
nonsingular cases where the R2 term plays an important
role, as demonstrated in [6]. In order to avoid them, one
could introduce holonomy corrections in fðRÞ gravity. The
extension of LQG to fðRÞ gravity has been recently
developed in [7,8], where holonomy corrections are intro-
duced in the Einstein frame (EF), because in that frame the
gravitational part of the Hamiltonian is linear in the scalar
curvature and the matter part is given by a scalar field.

It is important to recall that the idea to introduce holonomy
corrections via the EF was performed in [9] by studying
the graceful exit problem in the pre–big bang scenario,
i.e., studying the regularization of the singularity that
divides the pre–and post–big bang branches in pre–big
bang models.
This extension simplifies very much when one considers

the flat FLRW geometry. In that case, in order to take into
account geometric effects, one has to replace the Ashtekar
connection by a suitable sinus function (see, for instance,
[10]), obtaining the holonomy corrected Friedmann equa-
tion in EF. Finally, from the holonomy corrected Friedmann
equation in EF and through the relation between the
corresponding variables in both frames, one obtains the
holonomy corrected fðRÞ theory in the Jordan frame (JF).
Our main objective is to apply, for the flat FLRW

geometry, holonomy corrections to the fðRÞ ¼ Rþ αR2

model (also called R2 gravity) and study its dynamics.
To do this, first of all we perform a detailed analysis of R2

gravity without corrections. When holonomy corrections
in the model are taken into account, one obtains a very
complicated dynamical equation in the JF. Fortunately,
dynamical equations simplify very much in EF (in fact, the
dynamics is given by the well-known holonomy corrected
Friedmann equation in LQC plus the Klein-Gordon equa-
tion in flat FLRW geometry), which allows us to perform a
very deep analytical and numerical analysis, whose results
can be translated to the JF. Our conclusion is that when
holonomy corrections are taken into account, the Universe
starts at the critical point ðH ¼ 0; _H ¼ 0Þ (the Hubble
parameter and its derivative vanish) and makes small
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oscillations around the critical point before entering the
contracting phase, which it leaves by bouncing (see [11]
for a review of bounce cosmology). Then it enters the
expanding phase where, as in the classical model, it reaches
an inflationary stage which it leaves at late times and comes
back to the critical point, once again, in an oscillating way.
The paper is organized as follows. In Sec. II, we review

fðRÞ gravity in Jordan and Einstein frames. In Sec. III, we
introduce holonomy corrections to fðRÞ gravity. The idea is
very simple: working in EF, fðRÞ gravity is formulated as
Einstein gravity plus a scalar field. Then, the idea, as in
standard LQC for the flat FLRW geometry, is to replace the
Ashtekar connection by a suitable sinus function. Section IV
is devoted to the study of R2 gravity without holonomy
corrections. After performing the change of variable
p2 ¼ H, where H is the Hubble parameter, the obtained
dynamical equation can be understood as the dynamics of a
particle under the action of a quadratic potential with
dissipation. This system is very simple and the phase portrait
can be drawn with all the details. In Sec. V, we analyze the
model with holonomy corrections. We start working in EF
due to the simplicity of equations and, once we have studied
the dynamics in EF, we obtain the dynamics in JF from the
formulas that relate both frames. Moreover, we obtain in
EF the corrected expressions of the slow-roll parameters, the
values of the spectral index for scalar perturbations, and the
ratio of tensor to scalar perturbations, showing that holon-
omy corrections help to match correctly the theoretical
results obtained from R2 gravity with current observations.
Section VI is devoted to discussing a possible unification of
inflation and current cosmic acceleration in the framework of
loop quantum fðRÞ theories. We will show that when one
considers the current suggested models for such unification,
this extension and/or its analytical study is, in general,
unworkable. The only model we have been able to deal with
is R2 plus a small cosmological constant. For such a model,
we have performed a detailed analytical study and the results
are shown at the end of the work.

II. CLASSICAL DYNAMICAL EQUATIONS

IN DIFFERENT FRAMES

In this section, we review the relations between Jordan and
Einstein frames in fðRÞ gravity for the flat FLRW geometry.
The Lagrangian in JF for the flat FLRW geometry is

given by LJF ¼ a3

2
fðRÞ, where the scalar curvature is

R ¼ 6 _H þ 12H2, with H ¼ _a
a
as the Hubble parameter,

and the corresponding modified Friedmann equation
in fðRÞ gravity can be obtained from Ostrogradskii’s
construction [10], giving as a result

6fRRðRÞ _RH þ ð6H2 − RÞfRðRÞ þ fðRÞ ¼ 0; (2.1)

where fRðRÞ≡ ∂fðRÞ
∂R

. Taking the derivative of Eq. (2.1)
with respect to time and using the relation R ¼
6ð _H þ 2H2Þ, one obtains the equivalent equation

fRRðRÞðR̈− _RHÞþfRRRðRÞ _R2þ2fRðRÞ
�

R

2
−2H2

�

¼ 0:

(2.2)

To work in the EF, one has to perform the change of
variables [12]

~a ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

fRðRÞ
p

a; d~t ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

fRðRÞ
p

dt: (2.3)

Then, in that frame the Lagrangian density, for flat
FLRW geometries, is

LEF ¼ ~a3
�

1

2
~Rþ 1

2
ð ~ϕ0Þ2 − Vð ~ϕÞ

�

⇔LEF ¼ −3ð ~a0Þ2 ~aþ ~a3
�

1

2
ð ~ϕ0Þ2 − Vð ~ϕÞ

�

; (2.4)

where 0 means the derivative with respect to time ~t. Here, ~a
and ~ϕ have to be considered as independent variables, and
of course, ~R ¼ 6 ~H0 þ 12 ~H2.
The relation between both frames is given through the

relations

~ϕ ¼
ffiffiffi

3

2

r

lnðfRðRÞÞ; Vð ~ϕÞ ¼ RfRðRÞ − fðRÞ
2f2RðRÞ

; (2.5)

and a simple calculation shows that the Friedmann equation
in the EF, i.e., ~H2 ¼ 1

3
~ρ, obtained from the Hamiltonian

constraint

HEF ≡ ~a0
∂LEF

∂ ~a0
þ ~ϕ

0 ∂LEF

∂ ~ϕ
0 − LEF

¼ −3ð ~a0Þ2 ~aþ ~a3
�

1

2
ð ~ϕ0Þ2 þ Vð ~ϕÞ

�

¼ 0; (2.6)

where ~ρ≡ 1
2
ð ~ϕ0Þ2 þ Vð ~ϕÞ, is equivalent to Eq. (2.1).

However, the Friedmann equation in EF, ~H2 ¼ 1
3
~ρ, is a

constraint instead of a dynamical equation. The dynamics
is given by the conservation equation ~ρ0 ¼ −3 ~Hð ~ϕ0Þ2 or the
Raychauduri one ~H0 ¼ −

1
2
ð ~ϕ0Þ2, which are equivalent to

Eq. (2.2).
Note that combining, in EF, the conservation and

Friedmann equations, one obtains

ð~ρ0Þ2 ¼ 3~ρð ~ϕ0Þ2; (2.7)

and coming back to the JF this equation is a second order
differential equation in R (it only contains R, _R; and R̈)
which is equivalent to Eqs. (2.1) and (2.2).
Finally, we show the following relations between both

frames, which will be important when we extend LQC to
R2 gravity:
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H ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

fRðRÞ
p

�

~H −
1
ffiffiffi

6
p ~ϕ

0
�

;

R ¼ fRðRÞð ~Rþ
�

~ϕ
0Þ2 þ

ffiffiffi

6
p ∂Vð ~ϕÞ

∂ ~ϕ

�

: (2.8)

III. f ðRÞ LOOP QUANTUM COSMOLOGY

The idea to extend loop quantum cosmology to fðRÞ
theories [fðRÞ LQC] has been recently developed in [7,8].
For a flat FLRW geometry, the idea is very simple and goes
as follows: working in EF, in the same way as in standard
LQC, we can see that the classical variable ~β≡ γ ~H, where γ
is the Barbero-Immirzi parameter, and the volume ~V ≡ ~a3

are canonically conjugated variables with Poisson bracket
f ~β; ~Vg ¼ γ

2
[13]. Then, in order to take into account the

discrete nature of the space, one has to choose a Hilbert
space where quantum states are represented by almost
periodic functions. However, in this space the variable ~β

does not correspond to a well-defined quantum operator in
this space, and since it appears in the Hamiltonian (2.6),
because it could be written as

HEF ¼ −3
~β
2

γ2
~V þ ~V

�

1

2
ð ~ϕ0Þ2 þ Vð ~ϕÞ

�

¼ 0; (3.1)

in order to have a well-defined quantum theory, one needs
to use the general holonomy corrected Hamiltonian in loop
quantum gravity (see, for instance, [14,15]).
At an effective level, this is equivalent to introducing the

square root of the minimum eigenvalue of the area operator

in LQG, namely, λ ¼
ffiffiffiffiffiffiffiffi

ffiffi

3
p

2
γ

q

, and making the replacement

(see [16–18] for a detailed discussion about the justification
of this replacement)

~β →
sinðλ ~βÞ

λ
; (3.2)

in the Hamiltonian (3.1), while keeping on the Poisson
bracket f ~β; ~Vg ¼ γ

2
. Here, it is important to notice that, after

the introduction of holonomy corrections, ~β stops being
equal to γ ~H. This can be shown from the Hamilton equation
~V 0 ¼ f ~V;HEF;LQCg [whereHEF;LQC is the new Hamiltonian
obtained from (3.1) after the replacement (3.2)], because

this equation can be written as ~V 0 ¼ −
γ

2

∂HEF;LQC

∂ ~β
¼

3
sin λ ~β cos λ ~β

λγ
which is equivalent to

~H ¼ sin 2λ ~β
2λγ

⇔~β ¼ 1

2λ
arcsin 2λγ ~H: (3.3)

Remark III.1. It is stated in [19] that there are many
different inequivalent loop quantizations, i.e., different
pairs of canonically conjugated variables leading to

inequivalent quantum realizations. Here we have used
the so-called new quantization of LQC (also known as μ̄
quantization) [14] based in the use of variables ð ~β; ~VÞ,
which is the unique choice consistent with the physical
requirements proposed in [19].
Remark III.2. It is important to stress that the replace-

ment (3.2) is only valid for spatially flat models, which is
our case. When the spatial curvature does not vanish,
holonomy corrections have to be introduced in a nontrivial
way (see, for instance, [20]).
Finally, from the Hamilton equation ~V 0 ¼ f ~V;HEF;LQCg

and the Hamiltonian constraint HEF;LQC ¼ 0, one obtains
the corresponding holonomy corrected version of the
classical Friedmann equation [13], that is,

~H2 ¼ 1

3
~ρ

�

1 −
~ρ

~ρc

�

; (3.4)

where ~ρc ≡
3

λ2γ2
is the so-called critical density in the EF.

As has been discussed in detail in [21], this equation
depicts an ellipse in the plane ð ~H; ~ρÞ, and the dynamics
along this curve is very simple: for a nonphantom field, the
Universe moves clockwise from the contracting to the
expanding phase, starting and ending at the critical point
(0,0) and bouncing only once at ð0; ~ρcÞ.
Finally, note that in the JF, the holonomy corrected

Friedmann equation acquires the complicated form

6fRRðRÞ _RH þ ð6H2 − RÞfRðRÞ þ fðRÞ

¼ −
ð3
2
f2RRðRÞ _R2 þ ðRfRðRÞ − fðRÞÞfRðRÞÞ2

2f4RðRÞ~ρc
: (3.5)

IV. R2 GRAVITY

In this section we study with all the details the classical
model fðRÞ ¼ Rþ αR2, with α > 0. This model contains a
quadratic correction to the scalar curvature and is a
modified version of the Starobinsky model [22], where
the author considered quantum vacuum effects due to
massless fields conformally coupled with gravity. Note
that such (eternal) trace-anomaly driven inflation was
proposed earlier in Ref. [23].
For this model, the classical equation (2.1) becomes

12αH _Rþ 6H2 þ 12αRH2 − αR2 ¼ 0⇔H2

¼ −12α

�

3 _HH2 þHḦ −
1

2
_H2

�

; (4.1)

which coincides, when the parameter β vanishes, with the
dynamical equation studied in [22]
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H2 ¼−12α

�

3 _HH2þHḦ−
1

2
_H2

�

þ βH4; where β> 0:

(4.2)

It is very simple to show that Eq. (4.1) leads to an
inflationary epoch [24,25]. Effectively, when the slow-roll
initial condition j _Hj ≪ H2 is fulfilled, Eq. (4.1) becomes
Ḧ ¼ −3H _H −

H
12α

, which has the following particular
solution in the expanding phase (H > 0)

_HðtÞ ¼ −
1

36α
⇒ HðtÞ ¼ t1 − t

36α

⇒ aðtÞ ¼ aðt1Þe−18αH
2ðtÞ for t < t1: (4.3)

If ti and tf are the beginning and the end of inflation
(ti < tf < t1), then one will have

aðtfÞ ¼ aðtiÞe18αðH
2ðtiÞ−H2ðtfÞÞ ≅ aðtiÞe18αH

2ðtiÞ; (4.4)

and the 60 e-folds needed to solve the flatness and horizon
problemswillbeobtainedwhenαH2ðtiÞ is approximately3.3.
Unfortunately, R2 gravity contains singularities at early

times; that is, all solutions have divergent scalar curvature
at early times. To show that, one has to perform the change
of variables p2ðtÞ ¼ HðtÞ > 0 [26] (in this model, the
Universe does not bounce); then Eq. (4.1), which is
not well-defined at singular value H ¼ 0, becomes the
following well-defined equation:

d

dt

�

_p2

2
þWðpÞ

�

¼ −3p2 _p2; (4.5)

where WðpÞ ¼ p2

48α
.

We can see that the system (4.5) is dissipative.
To understand its dynamics, we can imagine a “particle”
rolling down along the parabola WðpÞ, losing energy and
oscillating, at late times, around p ¼ 0. As a consequence,
when time goes back the particle gains energy
and finally jpj → ∞ (H → ∞); i.e., all the solutions are
singular at early times. One also can check this fact as
follows: we write Eq. (4.5) as

p̈þ p

24α
¼ −3p2 _p; (4.6)

and look for, at early times, solutions of the form
pðtÞ ¼ C

ðt−t̄Þr, where C and r are parameters. Inserting this
expression in (4.6) and retaining the leading terms when
t≳ t̄, one obtains the equation

rðrþ 1ÞC
ðt − t̄Þrþ2

¼ 3rC3

ðt − t̄Þ3rþ1
; (4.7)

which has singular solutions at t ¼ t̄ of the form pðtÞ ¼
ffiffiffiffiffiffiffiffiffi

1
2ðt−t̄Þ

q

.

Remark IV.1. In the contracting phase, we can perform
the change of variable p2ðtÞ ¼ −HðtÞ > 0, obtaining the
system

d

dt

�

_p2

2
þWðpÞ

�

¼ 3p2 _p2; (4.8)

whereWðpÞ ¼ p2

48α
. We can see that in the contracting phase

the system is antidissipative (the Universe gains energy); in
this case the Universe starts oscillating around the bottom
of the potential, leaving it gradually, and becomes singular
at late times.
Equation (4.6) is also useful to obtain the inflationary

period and the dynamics at late times. Effectively, when
initially one has p̈ ≅ 0, Eq. (4.6) becomes p _p ¼ −

1
72α

,
whose inflationary solution is once again

HðtÞ ¼ p2ðtÞ ¼ t1 − t

36α
: (4.9)

On the other hand, to obtain the dynamics at late times
we follow the same method used in chaotic inflation for a
quadratic potential (see page 240 of [27]). Performing the
change of variable

_pðtÞ ¼
ffiffiffi

2
p

fðtÞ cosðθðtÞÞ;
pðtÞ ¼

ffiffiffiffiffiffiffiffi

48α
p

fðtÞ sinðθðtÞÞ; (4.10)

and inserting these expressions in Eqs. (4.5) and (4.6), one
gets the system

� _f ¼ −18αf3ð1 − cosð4θÞÞ
_θ ¼ 1

ffiffiffiffiffiffi

24α
p þ 144αf2sin3ðθÞ cosðθÞ:

(4.11)

Since p goes to zero at late times, we can disregard
the second term in the right-hand side in the second
equation of (4.11), obtaining _θ ¼ 1

ffiffiffiffiffiffi

24α
p , whose solution is

θðtÞ ¼ t
ffiffiffiffiffiffi

24α
p þ ω, ω being a constant of integration.

Inserting this approximate solution in the first equation
of (4.11), we obtain a solvable equation whose solution is
given by

fðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

36αt

0

B

@
1 −

sin

�

2t
ffiffiffiffi

6α
p þ 4ω

�

2t
ffiffiffiffi

6α
p

1

C

A

v

u

u

u

u

u

u

t

≅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

36αt

0

B

@
1þ

sin
�

2t
ffiffiffiffi

6α
p þ 4ω

�

2t
ffiffiffiffi

6α
p

1

C

A

v

u

u

u

u

t

; (4.12)

and thus, the Hubble parameter reads
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HðtÞ ≅ 4

3t

0

B

B

@

1þ
sin
�

2t
ffiffiffiffiffiffi

6α
p þ 4ω

�

2t
ffiffiffiffiffiffi

6α
p

1

C

C

A

sin2
�

t
ffiffiffiffiffiffiffiffi

24α
p þ ω

�

:

(4.13)

Now, choosing ω ¼ π=2, one obtains the well-known
result [24,28,29]

HðtÞ ≅ 4

3t

0

B

B

@

1þ
sin
�

2t
ffiffiffiffiffiffi

6α
p

�

2t
ffiffiffiffiffiffi

6α
p

1

C

C

A

cos2
�

t
ffiffiffiffiffiffiffiffi

24α
p

�

; (4.14)

and after integrating by parts one gets, as Starobinsky
in [22],

aðtÞ ≅ t2=3

0

B

@
1þ 2

3

sin
�

t
ffiffiffiffiffiffi

6α
p

�

t
ffiffiffiffiffiffi

6α
p

1

C

A
≅ t2=3: (4.15)

These analytic results are supported numerically in
Fig. 1.
An important remark is in order: note that in the model of

[22], one obtains the same equation (4.5) but with the

potentialWðpÞ ¼ p2

48α
−

βp6

144α
. In this case, the potential has a

stable minimum at p ¼ 0 and two unstable maximums at
p ¼ �β−1=4, which corresponds to the unstable de Sitter
solution H ¼ β−1=2. From the shape of this potential, one
deduces that there are only two unstable nonsingular
solutions (the ones that start at the de Sitter points and
end at the bottom of the potential), and two that only are
singular at late times (the ones that start at the de Sitter

FIG. 1 (color online). Phase portrait for α ¼ 0.1. The Universe comes from a singularity at early times. When time goes forward, it
enters in the attractor inflationary phase, leaving it at early times when the Universe starts to oscillate around (0,0) without bouncing. In
the first part of the figure, we have taken values ofH up to 6 to show clearly the inflationary stage, and in the second one the values ofH
are taken up to 1 to show, in more detail, the oscillatory phase. It is clear from the figures that orbits are unbounded, coming from ∞ at
early times.

FIG. 2 (color online). Shape of the potentials WðpÞ for α ¼ 0.01 and β ¼ 1. The first part of the figure corresponds to the potential
given by R2 gravity and the second one to the potential given by the model suggested in [22]. The dynamics is very easy: one can
imagine a particle moving under the action of the potential W and losing energy. The first potential particles come at early times from
jpj ¼ ∞ and end at late times at p ¼ 0 in an oscillating way. For the second potential, there are two unstable de Sitter solutions at
p ¼ �ð1=βÞ−1=4, so the particle could start at early times at these points and fall down into the wedge of the potential ending, at late
times, at p ¼ 0 in an oscillatory way. These are the only nonsingular solutions. All the other orbits are singular at early and/or late times.
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points and end at jpj ¼ ∞); all the other solutions are
singular at early times. At late times, there are two kinds of
solutions: the ones that have enough energy to overpass the
wedge of the potential and become singular at late times,
and others with less energy that fall down against the wedge
of the potential without clearing it due to the dissipation
and approach p ¼ 0 with the same oscillatory behavior as
in the Rþ αR2 model (see Fig. 2 for the shape of potentials
and Fig. 3 for the phase portrait of the Starobinsky model).
Note that what is really important in the Starobinsky

model at late times is the oscillatory behavior of the scale
factor rather than its amplitude, because at late times the
period of oscillation of the scale factor is much shorter than
the Hubble time, meaning that for a few oscillations the
amplitude of the scale factor can be considered constant.
This behavior can be thought of as oscillations of a decaying
field called scalaron [22] that creates light conformally
coupled particles, which finally thermalize, yielding a hot
Friedmann Universe that matches the Standard Model.

V. LOOP QUANTUM R2 GRAVITY

We start this section by showing that there exists a wide
range of values of α and ~ρc for which the R2 LQC model
does not have any singularity. First at all, from the
holonomy corrected Friedmann equation (3.5), we deduce
that

0 ≤ ~ρ ≤ ~ρc and −

ffiffiffiffiffi

~ρc

12

r

≤ ~H ≤

ffiffiffiffiffi

~ρc

12

r

: (5.1)

On the other hand, Eq. (2.5), applied to R2 gravity, leads
to the positive potential

Vð ~ϕÞ ¼ 1

8α
ð1 − e−

ffiffi

2
3

p
~ϕÞ2; (5.2)

and thus, one also has

0 ≤ ð ~ϕ0Þ2 ≤ 2~ρc and 0 ≤ Vð~ρÞ ≤ ~ρc: (5.3)

Using the Raychaudhuri equation in LQC, ~H0 ¼
−

1
2
ð ~ϕ0Þ2ð1 − 2~ρ

~ρc
Þ, one deduces that

j ~H0j ≤ 1

2
ð ~ϕ0Þ2 ≤ ~ρc⇒ j ~Rj ≤ 7~ρc: (5.4)

Moreover, the potential (5.2) satisfies

∂Vð ~ϕÞ
∂ ~ϕ

¼ 1

fRðRÞ

ffiffiffiffiffiffiffiffiffiffiffi

Vð ~ϕÞ
3α

s

; (5.5)

which means [see the second equation of (2.8)]

R ¼ fRðRÞð ~Rþ ð ~ϕ0Þ2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

2Vð ~ϕÞ
α

s

; (5.6)

and thus,

R ¼ 1

1 − 2αð ~Rþ ð ~ϕ0Þ2Þ

0

B

@

~Rþ ð ~ϕ0Þ2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

2Vð ~ϕÞ
α

s

1

C

A
: (5.7)

From the bound 1 − 2αð ~Rþ ð ~ϕ0Þ2Þ ≥ 1 − 18α~ρc one
easily deduces

jRj ≤ 1

1 − 18α~ρc

 

18~ρc þ
ffiffiffiffiffiffiffi

2~ρc

α

r
!

; (5.8)

which is always bounded provided we choose α < 1
18~ρc

.
Finally, since jRj is bounded, from the first equation

of (2.8) one deduces that jHj is bounded, and consequently
j _Hj ¼ 1

6
jR − 12H2j is bounded, meaning that R2 gravity in

LQC has no singularities.
In fact, as we will see, in any case there are singularities

when one takes into account holonomy corrections.
However, when 8α~ρc > 1 the scalar curvature R can
achieve very large values. To show that, we have to perform
a detailed analysis in EF.

A. R2 LQC in Einstein frame

To perform a deeper analysis of the model we will work
in EF, where the dynamical equations are simpler than
in the JF one. In fact, when fðRÞ ¼ Rþ αR2, Eq. (3.5)
becomes

FIG. 3 (color online). Phaseportrait forα ¼ 0.01andβ ¼ 1ofthe
Starobinsky model. The unique nonsingular solutions are the de
Sitter ones which correspond to the saddle point (1,0), which is the
unique critical point of the system (painted brown), and the black
curve that starts at the critical point and ends oscillating at (0,0).
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12α _RH þ 6H2ð1þ 2αRÞ − αR2

¼ −
α2½2αðR3 þ 3 _R2Þ þ R2�2

2ð1þ 2αRÞ4 ~ρc
: (5.9)

On the other hand, in EF, the field ~ϕ satisfies the equation

~ϕ
″ þ 3 ~H ~ϕ

0 þ ∂Vð ~ϕÞ
∂ ~ϕ

¼ 0; (5.10)

where the potential ~ϕ is given by (5.2).
As we have already explained, due to the holonomy

effects in EF, the Universe starts in the contracting phase
with zero energy, and the energy density increases until it
catches up with the critical value ~ρc, where the Universe
bounces and enters in the expanding phase.

Performing the change of variable
ffiffi

2
3

q

~ϕ ¼ ln ~ψ , i.e.,

~ψ ¼ fRðRÞ ¼ 1þ 2αR (essentially ~ψ is like R), one gets

~ψ ″ ~ψ − ð ~ψ 0Þ2 þ 3 ~H ~ψ 0 ~ψ þ 1

6α
ð ~ψ − 1Þ ¼ 0: (5.11)

From Eq. (5.11) one can show that the orbits in the plane
ð ~ψ ; ~ψ 0Þ are symmetric with respect to the axis ~ψ 0 ¼ 0 in
the expanding and contracting phase, because Eq. (5.11)
remains invariant after performing the replacement ~t → −~t
and ~H → − ~H. To be more precise, consider in the plane
ð ~ψ ; ~ψ 0Þ a trajectory [a solution of (5.11)] σ1ðtÞ ¼
ð ~ψðtÞ; ~ψ 0ðtÞÞ in the contracting ~H < 0 (respectively,
expanding ~H > 0) phase. Then, σ2ðtÞ ¼ ð ~ψð−tÞ;
− ~ψ 0ð−tÞÞ is a trajectory in the expanding ~H > 0 (respec-
tively, contracting ~H < 0) phase.

The energy density, using the new variables, is given by

~ρ ¼ 3

4 ~ψ2

�

ð ~ψ 0Þ2 þ 1

6α
ð ~ψ − 1Þ2

�

; (5.12)

which means that ~H vanishes at the point ð ~ψ ; ~ψ 0Þ ¼ ð1; 0Þ
and over the curve ~ρ ¼ ~ρc, with equation

ð ~ψ 0Þ2
4~ρc

3ð1−8α~ρcÞ
þ
ð ~ψ −

1
1−8α~ρc

Þ2
8α~ρc

ð1−8α~ρcÞ2
¼ 1; (5.13)

which produces an ellipse for 1 − 8α~ρc > 0, a hyperbola
for 1 − 8α~ρc < 0, and a parabola for 1 − 8α~ρc ¼ 0. Note
also that (1,0) is the unique critical point corresponding to
~ρ ¼ 0, which means that all the orbits start and end at this
point (the Universe starts and ends at this point), and in the
curve (5.13) the Universe in EF bounces, because it
corresponds to ~ρ ¼ ~ρc.
From the previous analysis, we can conclude that the

dynamics, working in EF, goes as follows: the Universe
starts in the contracting phase ~H < 0, oscillating around the
unique critical point (1,0) and increasing the amplitude of
oscillations, and then it reaches the curve ~ρ ¼ ~ρc, where
it bounces and enters in the expanding phase ~H > 0,
coming back once again to (1,0) in an oscillatory way
(our analytical study is supported numerically in Fig. 4).
Two important remarks are in order:
(1) Strictly speaking, the phase portrait in the plane

ð ~ψ ; ~ψ 0Þ shows the dynamics of two dynamical
systems, because Eq. (5.11) defines two different
differential equations, one with ~H > 0 and the other
one with ~H < 0. Then, since we have two different
autonomous dynamical systems, at each point of the

FIG. 4 (color online). In the first part, we have the phase space portrait of an orbit in EF for the case 1 − 8α~ρc > 0 (α ¼ 0.1 and
~ρc ¼ 1). The Universe starts, in the contracting phase ~H < 0, oscillating around (1,0) (red curve) and arriving at the ellipse defined by
Eq. (5.13) (blue curve), where the Universe bounces, entering the expanding phase ~H > 0 and coming back to (1,0) by oscillating (black
curve). In the second part, we draw an orbit in EF for the case 1 − 8α~ρc < 0 (α ¼ 0.1 and ~ρc ¼ 15). The dynamics is similar; the only
difference is that now the blue curve is a hyperbola. At the top of the panel, we have inserted and increased in size the oscillatory
behavior around the critical point (1,0).
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plane ð ~ψ ; ~ψ 0Þ, two different orbits, one with ~H > 0

and the other one with ~H < 0, cross.
(2) It is important to realize that the system does not

contain singularities because all the orbits start
and end at the critical point (1,0). In the case
1 − 8α~ρc > 0, the variables ~ψ and ~ψ 0 move inside
an ellipse (a compact domain), meaning that, in this
case, all the quantities are bounded. Effectively,
inside the ellipse the quantities ~H, ~R, ~ϕ, ~ϕ0, and ~ψ ¼
1þ 2αR are bounded. Consequently, it follows from
(2.8) that H is bounded. On the other hand, in the
case 1 − 8α~ρc < 0, the variables ~ψ and ~ψ 0 move
inside an unbounded region delimited by a hyper-
bola, meaning that there are orbits where ~ψ , and
consequently the scalar curvature R, achieve very
large values, which never happens in the other case.

1. Inflation in Einstein frame

The slow-roll parameters in EF are given by (see, for
example, [30])

~ϵ≡ −

~H0

~H2
and ~η≡ ~ϵ − ~δ ¼ 2~ϵ −

~ϵ0

2 ~H ~ϵ
; (5.14)

where ~δ ¼ ~ϕ″

~H ~ϕ0.
Slow-rolldynamics requires ð ~ϕ0Þ2 ≪ Vð ~ϕÞand ~ϕ

″
≪ ~H ~ϕ

0.
Then, in the slow-roll phase, the dynamical equations read

~H2 ¼ Vð ~ϕÞ
3

�

1 −
Vð ~ϕÞ
~ρc

�

and 3 ~H ~ϕ
0 þ ∂Vð ~ϕÞ

∂ ~ϕ
¼ 0;

(5.15)

and thus, in this phase, the slow-roll parameters are
approximately

~ϵ ≅
1

2

�

1

Vð ~ϕÞ
∂Vð ~ϕÞ
∂ ~ϕ

�2 ð1 − 2Vð ~ϕÞ
~ρc

Þ

ð1 − Vð ~ϕÞ
~ρc
Þ2

and

~η ≅
1

Vð ~ϕÞ
∂2Vð ~ϕÞ
∂ ~ϕ

2

1

ð1 − Vð ~ϕÞ
~ρc
Þ
: (5.16)

For the potential given by R2 gravity, i.e., for (5.2),
slow-roll conditions (j~ϵj ≪ 1 and j~η ≪ 1) are only satisfied
for large positive values of the field. In that case, Eq. (5.16)
becomes

~ϵ ≅
4

3

e−
ffiffi

8
3

p
~ϕ

ð1 − e−
ffiffi

2
3

p
~ϕÞ4

�

1 −
ð1−e−

ffiffi

2
3

p
~ϕÞ2

4α~ρc

�

�

1 −
ð1−e−

ffiffi

2
3

p
~ϕÞ2

8α~ρc

�2
(5.17)

and

~η ≅
4

3

2e−
ffiffi

8
3

p
~ϕ
− e−

ffiffi

2
3

p
~ϕ

ð1 − e−
ffiffi

2
3

p
~ϕÞ2

1

ð1 − ð1−e−
ffiffi

2
3

p
~ϕÞ2

8α~ρc
Þ
: (5.18)

To calculate inflation ends, the values of the slow-roll
parameters must be of the order 1, which happens, for
positive values of the field ~ϕ, when it satisfies the equation

e−
ffiffi

2
3

p
~ϕ

ð1 − e−
ffiffi

2
3

p
~ϕÞ2

≅

ffiffiffi

3
p

2
; (5.19)

whose solution is

~ϕend ¼ −

ffiffiffi

3

2

r

ln

 

1þ
ffiffiffi

3
p

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
ffiffiffi

3
p

þ 1
p

ffiffiffi

3
p

!

> 0: (5.20)

And to calculate the number of e-folds that the scale
factor increases during the period of inflation

~N ≡

Z

~tend

~tin

~Hd~t ¼
Z

~ϕend

~ϕin

~H

~ϕ
0 d

~ϕ; (5.21)

we have to use the slow roll equations (5.15), obtaining

~N ≅

Z

~ϕin

~ϕend

Vð ~ϕÞ
∂Vð ~ϕÞ
∂ ~ϕ

�

1 −
Vð ~ϕÞ
~ρc

�

d ~ϕ: (5.22)

In the case of our potential (5.2), the final number of
e-folds is approximately

~N ≅
3

4
e
ffiffi

2
3

p
~ϕin : (5.23)

On the other hand, for a given value of ~N the slow-roll
parameters are

~ϵ ≅
3

4 ~N2

ð1 − 1
4α~ρc

Þ
ð1 − 1

8α~ρc
Þ2 and ~η ≅ −

1

~N

1

ð1 − 1
8α~ρc

Þ : (5.24)

With these values, the spectral index of scalar perturba-
tions, namely, ~ns, and the ratio of tensor to scalar
perturbations, namely, ~r, are approximately

~ns ≅ 1 − 6~ηþ 2~η

≅ 1 −
2

~N

1

ð1 − 1
8α~ρc

Þ ;

~r ≅ 16~ϵ ≅
12

~N2

ð1 − 1
4α~ρc

Þ
ð1 − 1

8α~ρc
Þ2 ; (5.25)

which coincide when holonomy corrections are disregarded,
i.e., when ~ρc → ∞, with the values obtained in [31].
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A very important remark is in order: the latest Planck
data give for the spectral index the approximate value
~ns ¼ 0.9603� 0.0073. If one disregards the loop correc-
tions, to achieve the value 0.96 one has to take ~N ¼ 50

e-folds, which does not give enough inflation to solve the
flatness and horizon problems. However, if one takes into
account holonomy corrections, for the values 8α~ρc ≅ 6

and ~N ¼ 60 (the minimum number of e-folds required to
solve the horizon and flatness problems), one obtains the
desired result. Moreover, for these same values, one obtains
~r ¼ 0.0031, which satisfies the current bound ~r < 0.11.
To be more precise, if one disregards loop corrections,

60 e-folds are only achieved when 0.9666 ≤ ~ns ≤ ~ns;max ¼
0.9676; in fact, for ~ns ¼ 0.9676, one obtains 61.72 e-folds,
which means that, in this model without corrections, it
is impossible for the Universe to inflate more that 61.72
e-folds. However, including loop quantum effects one
easily achieves a greater number of e-folds; for example,
for ~ns ¼ 0.9676, one obtains 70 e-folds, choosing 8α~ρc ≅

8.46. To sum up, we have shown that loop quantum
corrections could be essential to match R2 inflation
correctly with the current observational data.

B. R2 LQC in Jordan frame

To study the dynamics in the JF from the results obtained
in the EF, we look for the points in the space ð ~ψ ; ~ψ 0Þ where
the Universe could bounce in the JF; i.e., we look for the
points where H ¼ 0. Since H ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

fRðRÞ
p

ð ~H −
1
ffiffi

6
p ~ϕ

0Þ, one
has to solve the equation ~H2 ¼ 1

4

ð ~ψ 0Þ2
~ψ2 , which gives, for

~ψ > 1, the following curve:

ð ~ψ 0Þ2
~ρc

12ð1−
ffiffiffiffiffiffiffi

8α~ρc

p
Þ

þ

�

~ψ −
1−

ffiffiffiffiffiffiffi

2α~ρc

p
1−

ffiffiffiffiffiffiffi

8α~ρc

p
�

2

2α~ρc

ð1−
ffiffiffiffiffiffiffi

8α~ρc

p
Þ2

¼ 1; (5.26)

which, as in EF, produces an ellipse for 1 − 8α~ρc > 0, a
hyperbola for 1 − 8α~ρc < 0, and a parabola for
1 − 8α~ρc ¼ 0. And for 0 < ~ψ < 1, the curve is

ð ~ψ 0Þ2
~ρc

12ð1þ
ffiffiffiffiffiffiffi

8α~ρc

p
Þ

þ

�

~ψ −
1þ

ffiffiffiffiffiffiffi

2α~ρc

p
1þ

ffiffiffiffiffiffiffi

8α~ρc

p
�

2

2α~ρc

ð1þ
ffiffiffiffiffiffiffi

8α~ρc

p
Þ2

¼ 1; (5.27)

which is always an ellipse. Then, when in EF the orbits in
the plane ð ~ψ ; ~ψ 0Þ reach those curves, the Universe in the
JF could bounce. To assure that it bounces, the equation
~H ¼ ~ψ 0

2 ~ψ
must be satisfied.

Now we are ready to explain the dynamics in JF from the
results already obtained in EF: in EF the dynamics starts in
the contracting phase and ends in the expanding one at the
critical point ð ~ψ ; ~ψ 0Þ ¼ ð1; 0Þ. From the relation between
both frames

H ¼
ffiffiffiffi

~ψ
p

�

~H −
~ψ 0

2 ~ψ

�

;

_H ¼ ~ψ 0

2

�

~H −
~ψ 0

2 ~ψ

�

þ ~ψ

�

~H0
−
1

2

�

~ψ 0

~ψ

�0�

; (5.28)

which is obtained from the first equation of (2.8) and its
derivative, one deduces that, in JF, the Universe starts
and ends at ðH ¼ 0; _H ¼ 0Þ. Note that to calculate explic-
itly _H one has to use the Raychaudhuri equation ~H0 ¼
−

3
4
ð1 − 2~ρ

~ρc
Þð ~ψ 0

~ψ
Þ2 and the field equation (5.11). Moreover,

since in EF the orbits of the system at early and late times
oscillate around the point ð ~ψ ; ~ψ 0Þ ¼ ð1; 0Þ, crossing many
times the curves (5.26) and (5.27), one can conclude that in
JF the orbits of the system at early times oscillate around
the point ðH; _HÞ ¼ ð0; 0Þ, meaning that the Universe
makes small bounces many times, and when it leaves this
oscillatory regime, it enters the contracting phase and
bounces [in EF when the orbit reach the curve (5.13)] to
enter the expanding phase, where the Universe inflates and
finally, at late times, it goes asymptotically to the critical
point (0,0) in an oscillating way, that is, bouncing again
many times.
Note that this behavior is completely different from the

one obtained by disregarding holonomy corrections where,
in JF, as we have already seen in Sec. IV, the Universe never
bounces and is singular at early times. Moreover, it is
important to remark that the holonomy corrected equation
(5.9) is not singular at H ¼ 0, and thus, the orbits can cross
the axis H ¼ 0, which allows the Universe to bounce.
Of course, that does not happen in classical R2 gravity,
where the corresponding dynamical equation [Eq. (4.1)] is
not defined at H ¼ 0.
Numerically, the dynamics in the plane ðH; _HÞ is easily

derived via (5.28) from the one in EF, which is very simple
as we have already shown. In Fig. 5, we have depicted in
the plane ðH; _HÞ the orbits depicted in Fig. 4.
Note also that Eq. (5.11) defines two different dynamical

systems, which means that in the plane ðH; _HÞ, two
different orbits, one with ~H > 0 and the other one with
~H < 0, cross at each point. Moreover, the invariance of
Eq. (5.11) with respect to the replacement ~t → −~t
and ~H → − ~H means that the phase portrait in the plane
ðH; _HÞ has a symmetry with respect to the axis H ¼ 0.
More precisely, given a piece of an orbit with ~H > 0

(respectively, ~H < 0) in EF, there is a symmetric piece,
with respect to the axis H ¼ 0, of an orbit with ~H < 0

(respectively, ~H > 0) in EF.
A final remark is in order: in JF, the dynamics of our

extension of LQC to R2 gravity in the vacuum (we have not
considered any scalar field) is given by Eq. (5.9), which is a
second order differential equation on H, mathematically
meaning that it is a first order differential system in
variables ðH; _HÞ. Working in EF, we depict the dynamics
with Eq. (5.10), which is also a second order in ~ϕ, meaning
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that the dynamics is given by a first order differential
system in variables ( ~ϕ; ~ϕ0). (Note that from the holonomy
corrected Friedmann equation, ~H is merely a function of ~ϕ
and ~ϕ

0, in the same way as in standard LQC.)
The same happens in fðRÞ gravity “à la Palatini,” where

the connection is a free variable (see, for instance, [32]),
and in teleparallel fðTÞ gravity [21], when the stress tensor
is depicted by a scalar field ϕ, because in both cases the
corresponding modified Friedmann equation relates the
Hubble parameter with the energy density; i.e., the Hubble
parameter ia a function of ϕ and _ϕ, meaning that the
dynamics is given by the conservation equation

ϕ̈þ 3H _ϕþ ∂V

∂ϕ
¼ 0; (5.29)

which is a second order differential equation in ϕ.
However, if one considers standard fðRÞ gravity or fðRÞ

LQC, i.e., if the connection is fixed to be the Levi-Cività
one, coupled with a scalar field ϕ, the number of degrees of
freedom will increase, because apart from the modified
Friemann equation in fðRÞ gravity, which is second order
in H, one has to consider the conservation equation, which
is second order in ϕ, meaning that one will have a first order
differential system in the plane ðH; _H;ϕ; _ϕÞ.

VI. INFLATION AND DARK ENERGY IN R2 LQC

Some time ago, the unification of the early time inflation
with late time dark energy (DE) in frames of modified
gravity was proposed [33]. Later, several improved models
containing DE have been suggested to unify inflation with
the current acceleration of the Universe. In this work, the
idea is to add to R2 gravity a correction gðRÞ given a model
of the form fðRÞ ¼ Rþ αR2 þ gðRÞ that takes into account

the accelerated expansion of the Universe and passes the
Solar System tests. Two of the best-regarded examples of
these corrections are gðRÞ ¼ λðe−bR − 1Þ, where λ and b

are positive constants [34], and gðRÞ ¼ −m2 c1ðR=m2Þn
c2ðR=m2Þnþ1

,

where n > 0 and c1, c2 are dimensionless parameters [35].
The problem with these kinds of models is that they lead

to very complicated potentials in EF, complicating consid-
erably their extension to LQC. Moreover, it is nearly
impossible to perform a detailed analytical study and it
is not evident how to perform numerical computations.
For this reason, in order to deal with DE, we will consider
the simplest model: we will add a small cosmological
constant to our model; i.e., we will consider the fðRÞ ¼
Rþ αR2 − 2Λ model.
When one does not take into account holonomy correc-

tions, the system after the change p ¼ H2 has the same

form as (4.5) but with the potential WðpÞ ¼ p2

48α
þ Λ

144αp2.

This potential satisfies Vð0Þ ¼ Vð∞Þ ¼ ∞, meaning that
the dynamics can be restricted to positive values of p.
The potential only has a minimum at the point p ¼ ðΛ

3
Þ1=4

(de Sitter solution), and thus at late times all the solutions
go asymptotically to this point, oscillating around it.
Moreover, the inflationary solution given in (4.9) is also
an attractor when the cosmological constant is taken into
account. Finally, it is easy to show that the solutions are
singular at early times. When a cosmological constant is
considered, there are two kind of solutions: the ones that,
as in R2 gravity without cosmological constant, are given

by pðtÞ ¼
ffiffiffiffiffiffiffiffiffi

1
2ðt−t̄Þ

q

, and the other ones given by pðtÞ ¼
ð Λ
36α

ðt − t̄ÞÞ1=6, which vanish at t ¼ t̄ but have divergent
scalar curvature.
Incorporating the cosmological constant into the EF

model, we have obtained the following potential

FIG. 5 (color online). In the first part of the figure, we have the phase space portrait of an orbit in JF for the case 1 − 8α~ρc > 0 (α ¼ 0.1
and ~ρc ¼ 1). The Universe starts oscillating around (0,0). Then it enters the contracting phase ðH < 0Þ and bounces, entering the
expanding phaseH > 0, coming back to (0,0) by oscillating. In the second part, we draw an orbit in JF for the case 1 − 8α~ρc < 0 (α ¼ 0.1
and ~ρc ¼ 15). The dynamics is similar to that described in the other part, but there is enough inflation here in the expanding phase.
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Vð ~ϕÞ ¼ 1
8α
ð1 − e−

ffiffi

2
3

p
~ϕÞ2 þ Λe−

ffiffi

8
3

p
~ϕ, which has a minimum

at ~ϕmin ¼
ffiffi

3
2

q

lnð1þ 8αΛÞ. That means that, at late times in

the plane ð ~ϕ; ~ϕ0Þ of EF, all the solutions oscillate around
~Qmin ≡ ð ~ϕmin; 0Þ. When we introduce loop quantum effects
in EF, the orbits will oscillate initially around ~Qmin in the
contracting phase, i.e., ~H < 0. In fact, ~Qmin in the con-
tracting phase corresponds to the anti–de Sitter solution

~H− ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vð ~ϕminÞ
3

ð1 − Vð ~ϕminÞ
~ρc

Þ
q

, where Vð ~ϕminÞ ¼ Λ

8αΛþ1
is

the minimum value of the potential. After leaving the
anti–de Sitter phase, the orbits move into the contracting
phase before bouncing and entering the expanding one
where the Universe inflates, and finally they oscillate
asymptotically to the de Sitter solution ~Hþ ≡ − ~H−.
In JF, the dynamics is very similar: the Universe starts

oscillating around the anti–de Sitter solution H− ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8αΛþ 1
p

~H−, and after leaving the anti–de Sitter phase,
it moves into the contracting phase H < 0, which it leaves
by bouncing. Then it enters the expanding phase where it
inflates and finally, at late times, it oscillates around the
de Sitter solution Hþ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8αΛþ 1
p

~Hþ. This oscillatory
behavior at late times is essential, because it excites the
light fields coupled with gravity that will reheat the
Universe [22,24,28], yielding a hot Universe that matches
the ΛCDM model.

VII. CONCLUSIONS

We have introduced holonomy corrections to R2 gravity
in order to avoid early time singularities that appear in this

model. We have performed a detailed analytical and
numerical analysis which shows that the new model is
not singular due to the quantum geometric corrections
(holonomy corrections) coming from the discrete nature of
space-time assumed in LQC. The new model is more
involved than the original one. For this reason, in order to
understand the dynamics in JF, a previous analysis must be
performed in EF, where the dynamical equations greatly
simplify. This allows us to perform a detailed study of
its dynamics, which is essential in order to have a global
idea of the system in JF. From this analysis we conclude
that, when quantum geometric corrections are taken into
account, the Universe evolves from the contracting phase to
the expanding one through a big bounce, and when it enters
the expanding phase, as in the classical model, it inflates
in such a way that these holonomy corrections lead to
theoretical predictions that match correctly with current
observational data. Finally, we remark that it would be
interesting to study different versions of fðRÞ gravity,
for instance, with several power-law type terms, in order to
understand how such theories which normally do not
support the inflation behave in the LQC approach.
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