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Abstract. The equivalent linear elastic fracture model based on an R-curve (a curve characterizing the variation of the
critical energy release rate with the crack propagation length+ 1s generalized to describe both the rate effect and size
effect observed in concrete, rock or other quasibrittle materrals. It is assumed that the crack propagation velocity
depends on the ratio of the stress intensity factor to its criticzl value based on the R-curve and that this dependence
has the form of a power function with an exponent much larger than 1. The shape of the R-curve is determined as the
envelope of the fracture equilibrium curves corresponding to the maximum load values for geometrically similar
specimens of different sizes. The creep in the bulk of a concrete specimen must be taken into account. which is done by
replacing the elastic constants in the iinear elastic iracture —mechamics (LEFM) formulas with a linear viscoelastic
operator in time {for rocks. which do not creep. this 1s omittedi. The experimental observation that the brittleness of
concrete increases as the loading rate decreases (i.e. the respomse shifts in the size effect plot closer to LEFM) can be
approximately described by assuming that stress relaxation causes the effective process zone length in the R-curve
expression to decrease with a decreasing loading rate. Another power function is used to describe this. Good fits of test
data for which the times to peak range from ! sec to 25000% sec are demonstrated. Furthermore, the theory also
describes the recently conducted relaxation tests. as well as the recently observed response to a sudden change of loading
rate {both increase and decrease), and particularly the fact that a sufficient rate increase in the post-peak range can
produce a load-displacement response of positive slope leading o a second peak.

1. Introduction

The rate of loading as well as the load duration is known to exert a strong influence on the
fracture behavior of concrete. Much has been learned in the previous studies of Shah and
Chandra [1]; Wittmann and Zaitsev [2]; Hughes and Watson [3]; Mindess [4]; Reinhardt [3];
Wittmann [6]: Darwin and Attiogbe [7]; Reinhardt [8]: Liu et al. [9]; Ross and Kuennen [10]
and Harsh et al. [117; in particular, it has been well established that the strength as well as the
fracture energy or fracture toughness increases with increasing rate of loading, roughly as a
power function of the loading rate. The previous studies. however, focused mainly on the size
effect under dynamic loading. at which the loading rates are very high. At such high rates. the
rate effect is mainly due to the thermally activated process of bond ruptures. arising from the
effect of stress on the Maxwell-Boltzmann distribution of thermal energies of atoms and
molecules.

In this study. we focus on the rate effect at static Joading rates at which the creep properties
of a material such as concrete begin to play also a significant role, aside from the thermal
activation of bond ruptures. The rate effect at such low rates, which is no doubt closely related
to the effect of load duration. needs to be known for the design of civil engineering structures
carrying high permanent loads or subjected to long time thermal or shrinkage stresses. For such
conditions (which are, for example, important for the fracture of dams), the rate effect in concrete
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fracture has been essentially unexplored until the recent experimental studies of Bazant and
Gettu [12-15].

The difficulty for materials such as concrete (which also includes rocks and tough ceramics)
is that a nonlinear fracture model taking into account the existence of a large fracture process
zone is required. Such materials. nowadays widely called quasibrittie, exhibit a transitional size
effect in terms of their nominal strength: for small sizes. the behavior is close to plasticity, for
which there is no size effect, while for very large sizes the behavior approaches linear elastic
fracture mechanics (LEFM), for which the size effect is the strongest possible. As recently
discovered (Bazant and Gettu [12-15]). the size effect plot. i.e. the plot of the nominal strength
versus the characteristic structure size, 1s significantly influenced by the loading rate or loading
duration. Generally, the loading rate or duration significantly influence the brittleness. Mathe-
matical modeling of this phenomenon is the principal aim of this study.

In previous work, the effect of loading rate on the size effect has been approximately
described by quasielastic analysis, in which the behavior at each loading rate for all the
specimen sizes Is described according to LEFM with an elastic modulus that in effect
represents the well-known effective modulus for creep. Such analysis brought to light the
changes of brittleness: it, however, cannot be used as a general model if, e.g., the loading rate
would vary with time,

In this studyv, we will attempt a more general and fundamental model, which can be readily
generalized to arbitrary loading histories. The model will represent an adaptation of quasi-
linear elastic fracture analysis by means of the so-called R-curves. The general principles of this
approach, without any experimental verification, have alreadv been suggested in Bazant
[16,17]. In the present study we refine and extend this mathematical model and compare it to
test data.

The most general and fundamental approach for capturing both the size and rate effects in the
fracture of concrete and other quasibrittle materials is of course a constitutive model for the
evolution of damage in the fracture process zone, with an appropriate localization limiter. Such
a model, which will be required for general finite element codes. should be the objective of future
investigations.

2. Basic equations

The R-curve (resistance curve) approach represents an attempt to describe the nonlinearity
of the law of crack propagation in quasibrittle materials using an approximately equi-
valent linear model in which the fracture energy is considered to depend on the length of an
equivalent linear elastic crack. This equiralent crack is defined as a crack in a linear e¢lastic
material having the same compliance as the actual specimen with a large nonlinear fracture
process zone (Fig. ).

Let us denote the initial crack length by ao and the current crack length by a. It is often more
convenient to work with nondimensional quantities xo = ao/d and x = a'd, where d is the total
length of the ligament (Fig. 1). According to LEFM, an applied load P causes a load-point
displacement

u= E%(:(z). (n
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Fig. 1. 3PB specimen with (a} a nonlinear process zone. (b) an equivalent elastic crack.

a crack-mouth opening displacement (CMOD)

P .
A= ETI;O(I). (2)

and a stress singularity described by the stress intensity factor

P
K = '—:l\(l), 3
- 3

vV

where E’ = E for plane stress, E' = E/(1 — v*) for plane strain (E and v are Young's modulus
and Poisson’s ratio, respectively), b is thickness of the specimen and C(x), o(x), kix) are
nondimensional functions depending on geometry. It can be shown (e.g. Bazant and Cedolin
[16]) that Clx) and k(x) are related by

C(z) = C(0) + 2 Jzkz(i)di, (4)

[¢]

where C(0) is the compliance of the same specimen without any crack. For a three-point-bend
(3PB) specimen with span-to-depth ratio I:d = 2.5:1 we have (Bazant and Kazemi [19]

I /4 .
C(O) = :1;1—5 + Sd = 5406 + 1.5v. {(3)
k(z) = 375/ mx(l — 0¥ 2(1 — 252 + 44927 — 3.98%° + 1.33x%), (6)
5(x) = 14.12[0.76 — 2.28x + 3.87x% — 2.04x> + 0.66(1 — 2)7*]. (7)

The graphs of nondimensional functions &(z) and d(x) are shown in Fig. 2a.b.

The Gniffith criterion for crack propagation in perfectly brittle materials states that the crack
can propagate if the energy needed to create a new free surface is balanced by the elastic energy
release from the structure. This condition is equivalent to K = K. where K is the actual stress
intensity factor and K. its critical value, called fracture toughness.

The usual rate-independent version of the R-curve model for crack propagation in quasi-
brittle materials is based on the assumption that the energy needed to propagate the crack is not
constant. but increases due to growth of the nonlinear fracture process zone with increasing
crack length. According to this assumption. K, is replaced by the function.

Kglc) = E'R(c), ]
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Fig. 2. Graphs of (a) k(z). (b} o(=x), (¢} p(7). (d) f(K. Kyt

which depends on the crack propagation distance ¢ = a — a,. The resistance function R(c),
whose graph is called the R-curve, can be determined solely from maximum loads of similar
specimens of different sizes, using the size effect method described in Bazant, Gettu and Kazemi
[20]. Aside from geometry. R(c) depends on two material constants G and ¢, representing the
fracture energy and the fracture process zone length at the peak load for an infinitely large
specimen. Based on the size effect law (see [18], Sec. 12.3 and 13.9). it has been shown (Bazant
and Kazemi [19, 20]) that the shape of the R-curve is determined by the equations

R_c g 9)
Gy crgin)

and
i = [‘i’(})_ e 4 + 10:} g'(IO)‘ (IO)
Cs g'(x) g(%o)

where g(2) = k*(x) = nondimensional function depending only on geometry. Choosing a se-
quence of x-values. one calculates for each of them the value of ¢ ¢; and the corresponding
R/G;.
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Obviously. the relation between R 'G, and ¢/c, depends only on the shape (geometry) of the
structure. It is therefore convenient to separate the effects of geometry from the material
properties and wnte

C
R(c) = Gpl(y), 7+ = o (11)
S/

where p is the normalized resistance function depending on geometry only. Its graph (the
normalized R-curve) for a three-point bend (3PB) specimen with span-to-depth ratio 2.5:1 is
shown in Fig. 2c.

Combining (8) and (11), we get

Krle) = VE'G,/p(y) = K,/ p(7), (12)

where K is the fracture toughness for an infinitely large specimen.
To capture the effects of the loading rate, we assume that the crack propagation rate
a = da,dr depends on the current values of K and Kg:

i = f(K, Kp). (13)

Since K = /E'Gla), Kz = V//E'R(c), this is equivalent to assuming that 4 is a function of Gl(a)
and R(c) where G(a) is the energy release rate. It is clear that 4 should increase with increasing K
and with decreasing K. But what should be the actual form of the crack growth rate function
f(K, Kg)? Experimental evidence indicates that changing the loading rate by several orders of
magnitude causes the peak loads to change only by a factor less than 2 [14, 15, 26]. Therefore,
the crack growth rate function should allow for a very large variation of 4 with only moderate
changes of its arguments. This can be achieved by setting

fIK K) = A(RK—) (14)
R

where x and n are constants. It is expected that n > 1. so that 4 varies with K as indicated in
Fig. 2d.

Equations (1) and (2) have been based on the assumption of linear elasticity. Under loading
rates spanning over several orders of magnitude. creep effects can play an important role. Creep
in the bulk of the specimen can be taken into account by replacing 1'E’ by an appropriate
compliance operator, which yields

u(t) = J J(e, Uy d[P(e)C(1')], (13)

]

I -

Alr) = jj({.t’)d[P(t')d(t’)]. (16)

v

S -
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J(t,t') is the compliance function. which must be determined in advance by measuring or
estimating the creep properties of the material. The geometric compliances C, J are time
dependent because they vary with the relative crack length z. which increases as the crack
propagates.

Experiments performed under load control become unstable after the peak load has
been reached. To study the descending part of the load-displacement curve, displacement
control must be adopted. The available experiments [14,15.21] have been performed under a
constant CMOD rate. In such a case, the time history of CMOD is described by a linear
function

A(t) = r(t — tp), (17)

where 1, is the time at the beginning of the experiment ancd constant r is the prescribed
CMOD rate. The unknown functions P(r) and x(t) describing the varnation of the applied load
and evolution of the crack length can be determined by solving the crack propagation
equation (13) along with (16). Using relations (3). (12). (17) and a = xd, we can rewrite the
basic equations as

oL P 7 d
i) = Fi f<i;/7;—- k[zn)], K, \/p[(x(r) — 10)”}), (18)
bA(r) = j J(t, 1)y d[P(e)o(r')], {19)

where the function f is defined by (14). The CMOD history Alr) is specified as input. to simulate
the present tests. Alternatively, the load point deflection history u(r} can be specified as input. As
still another alternative, the load history P(t) may be specified as input and then, first. (18) is
solved for (1) and, second, A(t) is evaluated from (19). The initial conditions are

2([O) = XAg, P(fo) = 0, A([O) = O (20)

3. Numerical solution

To solve the problem numerically, we divide time into equal intervals {7, ;. >,i = 0. 1. 2. ... 0NV,
with 1, = 15 + iAt. Suppose that we have already computed approximate values x; = x(t,).
P, = Puyfori=0.1,2,...,jand we want to proceed to z,-,. P,_,. Equations (18). (19) can be
discretized in {1}, t;,,» as follows:

Xje - X ] Pj‘l +P} Xjey + X /zj'-l + X A d 5
—_— = k K - — 11 (21
At df[ 2bd 2 ryP k 2 zol)cf )

bA, -—iJ(r- L':‘—“iﬁ>[1>- 3, 1) — Polx,)] (22)
Tk Jj= b i~ 1 i~1 { i1d. -

>
i=0
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where A;.; = Alr;. ) = r(j + D At for tests with a constant CMOD rate. For convenience let us
denote
tiey + 1
Jj_i=.l([j,1.-—l,‘)—“’>. (23)
(ji = (5(1(')- (:4)
Jj-1
Sj-1 = ZJ,’J(Pioldiq - P.0,). (23)
i=0

Equations (21). (22) are two nonlinear equations for unknowns P,.,,%;-,. Noting that (22) is
linear with respect to P;.,, we can express P;, as

A, ., =S S
Pj-l - [ j=1 J-1 + PinJ _ . ‘26)
i UETERY

and substitute this expression into (21). We end up with a nonlinear equation with only one
unknown x;.,. As the right-hand side of (21) 1s highly nonlinear. a robust numerical procedure
must be chosen to assure convergence. After some experimentation, an algorithm based on a
secant rather than tangent formula has been adopted.

Special treatment is necessary in the first few ‘time steps when the process zone is very
small and Ky is therefore close to zero. In fact. at time 1, we have Kz = 0, K =0 and the ratio
K Kz is not defined. Even though we do not need to evaluate this ratio at ry but only at
fo + (At/2). z is at the beginning of crack propagation very close to 2, and numerical
problems arise due to strong sensitivity of the high power (K/Kg)" to even very small changes
of 2 '

To overcome these difficulties. we need to make use of an approximate analytical solution,
which can be derived under the simplifving assumptions that x — %, < 1 and that P is a linear
function of time

Pit) = Pt — 1) {27)
where P is a constant to be determined later. For small values of x — x,. kl) can be replaced by

ko = k(x0) and pf(x — %0)d ¢;] by p(x — xg)d.c,. where p = p'(0). Equation (14) can now be
transformed to

S KY t—to )” 5
=—|—] = —_— ). 28
. d (KR/ Co(\ % — g, (=9)
where
CO - i(PI\O\(I—>n (:9)
d \bdK,\'p
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Solving the approximate crack propagation equation (28) by sepzration of variables. we
get

X = % + Cl(f _ ,0)(2n-2)1n~l). (30)
where
Lo\
¢ =(C02n+2) (31)

It is interesting to note that if »n 1s large. x — x4 is approximately proportional to (t — f4)?.
Except for P, all the quantities in expressions (29) and (31) defining C, are known. P can be
determined from the load-CMOD relation (16). If x — %, < 1. we can treat (x(1)) as approxi-

mately equal to J, = d(x,). Using P = P(t — 1) and A = r(t —1,). 116) can be simplified to
brit — 1g) = Pdo i Jit.:1dr’. from which

p- ~l?r(z—r,,) . an
do | Jlt ) dr’
The fact that the right-hand side of (32) depends on time contradicts the assumption
P = const.. but we can think of each time instant ¢ = t; separately. approximating the history
of P(1) in the interval {ty.¢;> by a linear function whose slope depends on the time instant
under consiceration. The analytical solution (30) is used only in the first few steps. We exploit
it to initialize the crack propagation and get a reasonable estimate for the initial crack
propagation rate. In fact we need only an order-of-magnitude estimate as the initial approxi-
mation for the previously described numerical procedure. The rates of crack propagation at
the very beginning have nearly no influence on the later stages of the process and they are
needed only as the approximations to start with. Therefore. the present simplifications are
Jjustified.

It has been observed experimentally [20] that after the peak load Ric) ceases increasing but
remains constant. The explanation is that after the peak load the process zone length ceases
growing and travels across the ligament approximately as a rigid bod:.

4. Comparison of theory to constant CMOD rate tests

Performance of the proposed model has been compared with the expeimental results reported
[14].[15]. [21] and [26].

Bazant and Gettu investigated simultaneous rate and size effect for three-point-bend concrete
specimens. Each experiment was performed under a constant CMOD rate. They tested
specimens of three different sizes (¢ = 38 mm, 76 mm. 152 mm) and apphied the CMOD rates
ranging from 4 x 107'' m.s to 1073 m s. with the corresponding times to peak ranging from 3
davs to 1 second. Table | shows the peak loads recorded for each test. Most of the specimen
were tested at 28 days after casting. but some of them were much older cup to 120 days). To get
comparable data. the measured peak loads have been adjusted to the same age (28 days) using a
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Tuble |. Experimental results by Bazant and Gettu [14]

Depth CMOD rate Age Peak ivad
[mm] [ms] [days] [N
38 L1 28 2
38 1.110°° 28 1883
38 g410°° 28 1794
38 241070 28 1639
38 1.310°% 28 1774
38 1810 28 1818
38 7110710 40 22356
38 7110710 38 1891
38 71107 39 2128
38 381070 120 2007
76 14107° 28 3612
76 141073 28 3946
76 1410°° 28 3014
76 5310°°% 28 3039
76 1310°°% Al 2750
76 361073 ] 2790
76 1110°° 30 3153
76 1.010°° 16 3463
7 9.41071° 42 3417
76 741071 108 2993
132 21107° 28 6158
152 211078 28 5919
152 2110°° 8 5406
152 711078 28 5007
152 711078 28 4210
152 711078 28 4183
152 1.7107° 31 5139
152 1410°° 32 4216
152 1.4107° 38 1085
152 1.31071° %0 4332

simple approximate empirical formula

Ppcak.ZB = Ppeak.to\/ 086 + —. (33)

lo

where 1, is the age at testing in days. Ppe,u., is the measured peak load and P 28 is the
corrected peak load. The creep compliance function J(z,?') has been approximated by the
well-known double-power law (see [18]. Sec. 9.4):

1
Jet) =g [+ 6t ™" + 2l = 0], (34)
0

In agreement with the data from [14]. the parameters of this law were set as follows:
E, =484 GPa. ¢, = 393. m =0.306. n = 0.133, x = 0.00325.

It is clear from Table 1 and Fig. 3a that the experimentally determined values of the peak
load suffer from considerable scatter, which can be explained by the fact that the specimens
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Fig. 3. Comparison with experiments for concrete: {a) three point bending. b} wedge splitting.

were cast from several batches of concrete. Nevertheless. some general trends can still be
observed:

o The peak loads increase with increasing rate of loading.

o The rate dependence of peak loads is stronger for large specimens than for small ones.

e The nominal strength decreases with increasing size, approximately following the size effect
law proposed by Bazant [24].

The size effect on peak loads is stronger for slow loading rates than for fast ones.

It mav be somewhat surprising that the size effect and the rate effect in concrete appear to be
mutually dependent. In terms of size effect, a decreasing rate of loading causes a shift towards
more brittle behaviour. The same phenomenon can be described in terms of rate effect as an
increase of rate sensitivity with increasing size.

In contrast to concrete, no interaction of size and rate effect could be observed for lime-
stone [13]. This could probably be explained by absence of creep in limestone. both within the
bulk of the specimen and within the fracture process zone. This means that the rate effect in
limestone is due solely to the thermally activated process of bond ruptures, producing the crack
surfaces.

In an attempt to fit the aforementioned experimental data by the proposed rate-dependent
R-curve model. it has been discovered that the originally proposed version does not exhibit any
shift of brittleness. It was therefore not difficult to get a reasonable agreement between theory
and experiments for limestone (Fig. 4). while for concrete (Fig. 3a) it was impossible to get a
good agreement for all the rates and all the sizes at the same time.

It is nevertheless encouraging that the model can capture both the size effect and the rate
effect. although not their mutual interaction. Let us briefly describe the role of free parameters.
whose values can be adjusted to get the best fit of experimental data:

e Parameters « and K, are mutually dependent, so that only one of them can be regarded as a
free parameter. By increasing K, or decreasing «. the peak loads are increased for all the rates
and sizes in the same ratio.
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peak load (N) f(&) as2m  n=2m
500 large
400
300 medium
200
100
O e — -
107" 10°° 10 ~* 10~ .7 ‘ o
CMOD rate (m/s) a - g
Fiy. 4. Comparison with experiments for limestone. Fig. 5. Graph of ! for different ratos n 2m.

® Parameter n affects mainly the rate sensitivity (for all the sizes in the same manner). By
increasing n, one can decrease the slope of the rate effect curve. which is indicated by
experiments to be roughly linear when the CMOD rate is plotted in a logarithmic scale.

e Parameter ¢, affects brittleness. and does so for all the rates in roughly the same manner.
Increasing ¢, causes a shift toward the left on the size effect curve. ie. to a more ductile
behaviour.

To decrease the rate sensitivity of the model to realistic values. a very large exponent n is
needed. For example to fit the data on 3PB experiments on concrete [14], n had to be set equal
to 38 (Fig. 3a). and for similar experiments on limestone [15] even to 55 (Fig. 4)!

The rate dependent R-curve model has also been used to model wedge-splitting tests on
concrete reported in [217]. Due to considerable scatter in these large-scale tests, it is impossible
to make any quantitative conclusions. However, similar trends as in 3PB tests can be observed
(Fig. 3b). The value of the exponent n came out to be 35. which is about the same as for the
aforementioned 3PB experiments.

5. A generalization: rate-dependent process zone length

The original version of the rate-dependent R-curve model presented in the foregoing suffers by a
serious drawback: It is not capable of modeling the rate-dependent shift of brittleness observed
experimentally by Bazant and Gettu [14]. In an attempt to increase flexibility of our model. we
may replace the constant value of ¢, (process zone length at peak load for an infinitely large
specimen) by a rate-dependent function c,(a). The rate-dependence of ¢, is not illogical. Stress
relaxation in the fracture process zone may be expected to cause the stress profile along the
crack extension line to develop a steeper drop to zero. spanning a shorter length. which means
that the effective fracture process zone length should be smaller at slower crack propagation.
As explained in Section 3. ¢, is the basic parameter affecting brittleness. Because brittleness is
seen to decrease with increasing rate. ¢, should be an increasing function of ¢. However. ¢,
should vary only by a factor of 10 while the rate of loading (and therefore also the rate of crack
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propagation) varies over five orders of magnitude. It is therefore reasonable to use a power
function with a low exponent

d Im i
Cy =Cfo a—o B (33)

where m > 1. For the sake of dimensionalitv we have introduced here, in addition to m. two
more parameters ¢,q.do, but only one of them is independent. The other one can be preset to
any (positive) fixed value without any loss of generality.

With ¢, dependent on d. the crack propagation equation (13) now becomes an implicit law for
the crack propagation rate 4. If the model is to be physicallv reasonable, there must exist a
unique nonnegative solution d for any possible situation. This condition imposes a serious
restriction on the value of m. A simple analysis of this restriction can be performed if we
approximate p(c/c,) by a piecewise linear function

\ /N
p(i)=i i< <1 p(i)=1 irt >0 (36)
&/ < Cr/ Cr

The function f defined by (14) can now be written as

Pl\ n c -n2 c ~n2
K, Kg)=r| ——— - = - . 37
SR Kal h(bv'dlx’f) [p<cf<a)ﬂ f°[p<cf(a)>} B7

Suppose that the current values of P, k, ¢ are given and we want to solve (14) for unknown a.
Denote by a. the value of d for which ¢ (d) = ¢. If 0 < d < d.. then ¢/(d) < ¢, p(c/cp(a)) = 1 and
SIK.Kg) = fo.1f d > d,. then ¢ (d) > ¢, p(c.cp(d)) = ¢/ (d) and

ﬂK,KR>=fo[——C—)rm] -=/5<.3) o (38)

('fo((.} [io tlc/,

The right hand side of (38) is graphically presented in Fig. 5 for three different cases. It is
clear that if n.2m < 1. equation ¢ = f(K. Kg) has a unique positive solution for any values of f,
and d.. However. if n,2m > 1. the equation has no solution or two solutions depending on
whether f, > d. or fy < a.. Thus. to ensure a proper formulation of the crack propagation
equation, the parameter m in (335) must be larger than n/2, n being the exponent in (14). This
condition has been derived under the simplifying assumption (36). but numerical calculations
reveal that the method indeed does not converge if m < n,2 and sometimes even if m is only
shightly above n,2. )

[t has been mentioned in Section 4 that. in order to ensure realistic rate sensitivity, n must
assume very large values, typically between 30 and 40. On the other hand, m should not be too
large if we want to get a substantial shift of brittleness. Unfortunately, m > n/2 must hold.
otherwise the problem of crack propagation is not well-posed. The best fit of experimental results
that could be constructed with rate-dependent ¢, is still underestimating the measured peak
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aaaaa slow
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Fiy. 6. Generalized model with variable ¢, (a) rate effect. (b) experimental size effect. (c) numerical size effect.

loads for small specimens under slow loading rates (Fig. 6a). In terms of the size effect. this
means that the parameter d, in the size effect law [24]

Bf,
Oy = o
i [1
L+ —
\J/ do

does not change with rate as much as it should. according to the tests of concrete (see Fig. 6b.c).

The theoretical curves in Fig. 6a correspond to the following set of parameters:
h=8x10°ms. K; =9 x 10°Nm 3" n=29 ¢,,=0004m do=00Im’s, m=17 Let us
emphasize again that only four of these six parameters are independent.
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6. Comparison to tests with a sudden rate change

Another set of experiments on rate effect in concrete fracture was performed by Bazant. Gu and
Faber [23]. who studied the effect of a sudden change of loading rate. In their tests on 3PB notched
spectmens, the initial CMOD rate was held constant in the prepeak range and in a part of the post-
peak range. After the load decreased from its peak value P, to some lower value P,. the CMOD rate
was suddenly increased or decreased by several orders of magnitude and the test continued with the
new value of a constant CMOD rate. This resulted into a sudden change of slope in the
load-CMOD diagram. For a sufficiently large increase of the loading rate. the load started
increasing again and a second peak P, could be observed (Fig. 7a). On the other hand. a decrease of
the loading rate was followed by a fast drop of the load-CMOD curve (Fig. 7b). The rate-dependent
R-curve model exhibits qualitatively the same behavior (Fig. 7c). The tests suggest that. after a rate
change, the curve for the new rate asymptotically approaches the curve for a constant rate test with
a rate equal to the new rate. The theory agrees with this behavior also (Fig. 7c).

load (a) load (b)
A
Py beeeoaae.
= SO U
CMOD CMOD
Relative
change
(C) load of rate:
A ST 3
s 10
AN 107
10
10°
107
CMOD
Fig. ~. Load-CMOD curves: (a) experimental curve (rate increasedh. (b) experimental cunve (rate decreased) (o

theoretical curves.
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Fig. 8. Second peak versus load at rate change: (a) effect of size, (b) effect of initial rate. {c) effect of relative rate change.

Quantitative agreement between theory and experiments can be verified by plotting the ratio
P, P, versus P.. P, for all available results. The points marked by different symbols in Fig. S8a
correspond to tests on specimens with three sizes (d = 38 mm. 76 mm. 152 mm) in which the rate
increased by three orders of magnitude (on the average from 10 3m s to 107 % m s). The results
seem to be independent of size.

The relationship between the two nondimensional ratios P, P, and P, P, can be calculated
using the rate-dependent R-curve model described in previous sections. Instead of trying to
adjust the parameters so as to fit the experimental data. their values were taken from the best
fit of tests by Bazant and Gettu [14] constructed in Section 3. It is gratifving that these
parameter values lead to a satisfactory agreement with measurements by Bazant. Gu and
Faber [23].

The theoretical curves are only slightly dependent on size {Fig. 8a) and almost independent of
the initial rate (for the same relative rate change —Fig. 8b). But. as expected. they are sensitive to
the relative rate change (Fig. 8c).
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7. Comparison to relaxation tests
The paper by Bazant and Gettu [14] reported still another type of experiment on the rate effect

in concrete fracture — relaxation tests. The CMOD rate was initially held constant and after
some time (usually in the post-peak range) suddenly decreased to zero. This type of test can be
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Fig. 9. Relaxation curves for different initial rates: (a) experimental, (b) theoretical.
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Fig. 10. Relaxation curves for different loads at relaxation start: (a) experimental. (b} theoretical.

regarded as a limit case of the experiments with a sudden change of rate. All tests were
performed on medium size 3PB specimens (d = 76 mm).

In the first series of experiments. the initial rates were different and relaxation started in the
post-peak range at about 85 percent of the peak load. Denoting the time at which relaxation
started by ¢, and the corresponding load by P,. one can plot the relaxation curves P(1)/P. versus
t —t.. The experimental and theoretical relaxation curves are shown in Fig. 9. A qualitative
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agreement can be observed - the curves corresponding to different initial rates have the same
final slope in a logarithmic plot and are shifted with respect to each other. However. the slope of
the theoretical curves is much steeper than of the experimental ones.

The second series of experiments was conducted with the same initial rate {r =835 x
107°m s) but relaxation started at different stages - in the prepeak range. at peak. and at
different load levels in the post-peak range. Figure 10c reveals again only a qualitative
agreement — the relaxation curves starting in the post-peak range lie below the curve starting
approximately at peak. which in turn lies below the curve starting in the pre-peak range. The
theoretical curves are again steeper than the experimental ones.

8. Conclusions

. The equivalent linear elastic fracture model based on an R-curve (a curve characterizing the
variation of critical energy release rate with crack propagation length) can be generalized to
the rate effect if the crack propagation velocity is assumed to depend either on the ratio of
the stress intensity factor to its critical value based on the R-curve. or on the difference
between these two variables. This dependence may be assumed in the form of an increasing
power function with a large exponent.

The creep in the bulk of a concrete specimen must also be taken into account. which can be

done by replacing the elastic constants in the LEFM formulas with a linear viscoelastic

operator in time. For rocks. which do not creep. this is not necessary.

3. The experimental observation that the brittleness of concrete increases with a decreasing
loading rate (i.e. the response shifts in the size effect plot closer to linear elastic fracture
mechanics) can be at least approximately modeled by assuming the effective fracture process
zone length in the R-curve expression to decrease with a decreasing rate. This dependence
may again be described by a power function.

4. Good agreement with the previous test results for concrete and limestone. recently measured

at very different loading rates. with times to peak ranging from I second to 250000 seconds.

1s achieved.

The model can also predict the following phenomena recently observed in the laboratory:

(a) When the loading rate is suddenly increased. the slope of the load-displacement diagram
suddenly increases. For a sufficient rate increase. the slope becomes positive even in the
post-peak range. and later in the test a second peak. lower or higher than the first peak. s
observed.

{b) When the rate suddenly decreases. the slope suddenly decreases and the response
approaches the load-displucement curve for the lower rate.

(c) When the displacement is arrested. relaxation causes a drop of load. approximately
following a logarithmic time curve.

9
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