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Abstract. The equivalent linear elastic fracture model based 0:;': an R-curve (a curve characterizing the variation of the 

critical energy release rate 'WIth the crack propagation length; IS generalized to describe both the rate effect and size 

effect observed in concrete. rock or other quasi brittle matenals. It is assumed that the crack propagation velocity 

depends on the ratio of the stress intensity factor to its criti~':!.l value based on the R-curve and that this dependence 

has the form of a power function with an exponent much largeT than l. The shape of the R-curve is determined as the 

envelope of the fracture equilibrium curves corresponding [.) the maximum load values for geometrically simIlar 

specimens of different sizes The creep in the bulk of a concrete specimen must be taken into account. which is done by 

replaCing the elastic constants in the iInear elastic :'~acture ~echanlcs ILEF\I) formulas with a linear viscoelastic 

operator In time Ifor rocks. \\ hlCh do not creep. thiS IS omitted L The experimental observation that the brittleness of 

concrete increases as the loading rate decreases (i.e. the response shifts in the size effect plot closer to LEFM) can be 

approximately described by assuming that stress relaxation causes the effective process zone length in the R-curve 

expression to decrease with a decreasing loading rate .. -\nother ?ower function is used to describe this. Good fits of test 

data for which the times to peak range from I sec to 2500C10 sec are demonstrated. Furthermore. the theory also 

describes the recently conducted relaxation tests. as well as the r~cently observed response to a sudden change of loading 

rate (both increase and decrease I. and particularly the fact thaI a sufficient rate increase in the post-peak range can 

produce a load-displacement response of positive slope leading: :0 a second peak. 

l. Introduction 

The rate of loading as well as the load duration is known to exert a strong influence on the 

fracture behavior of concrete. Much has been le::uned in the previous studies of Shah and 

Chandra [1]; Wittmann and Zaitsev [2]; Hughes and Watson [3J; Mindess [4]; Reinhardt [5J; 

Wittmann [6]: Darwin and Attiogbe [7]; Reinhard! [8]: Liu et al. [9J; Ross and Kuennen [10] 

and Harsh et al. [IIJ; in particular, it has been weLl! established that the strength as well as the 

fracture energy or fracture toughness increases wiTh increasing rate of loading, roughly as a 

power function of the loading rate. The previous ~[udies. however, focused mainly on the size 

effect under dynamic loading, at which the loading rates are very high. At such high rates. the 

rate effect is mainly due to the thermally activated process of bond ruptures. arising from the 

effect of stress on the Maxwell-Boltzmann distribution of thermal energies of atoms and 

molecules. 

In this study. we focus on the rate effect at static loading rates at which the creep properties 

of a material such as concrete begin to play also a significant role, aside from the thermal 

activation of bond ruptures. The rate effect at such Jaw rates, which is no doubt closely related 

to the effect of load duration, needs to be known for the design of civil engineering structures 

carrying high permanent loads or subjected to long rime thermal or shrinkage stresses. For such 

conditions (which are, for example, important for the fracture of dams), the rate effect in concrete 

'\\'alter P. \Iurphy Professor of Civil Engineaing. 
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fracture has been essentially unexplored until the recent experimental studies of Baiant and 

Gettu [12-15]. 

The difficulty for materials such as concrete (which also includes rocks and tough ceramics) 

is that a nonlinear fracture model taking into account the existence of a large fracture process 

zone is required. Such materials. nowadays widely called quasibrittle. exhibit a transitional size 

effect in terms of their nominal strength: for small sizes. the behavior is close to plasticity, for 

which there is no size effect, while for very large sizes the behavior approaches linear elastic 

fracture mechanics (LEFM), for which the size effect is the strongest possible. As recently 

discovered (Bazant and Gettu [12-15J). the size effect plot. i.e. the plot of the nominal strength 

versus the characteristic structure size, is significantly influenced by the loading rate or loading 

duration. Generally, the loading rate or duration significantly influence the brittleness. Mathe­

matical modeling of this phenomenon is the principal aim of this study. 

In previous work, the effect of loading rate on the size effect has been approximately 

described by quasielastic analysis, in which the behavior at each loading rate for all the 

specimen sizes is described according to LEFM with an elastic modulus that in effect 

represents the well-known effective modulus for creep. Such analysis brought to light the 

changes of brittleness: it. however, cannot be used as a general model if, e.g., the loading rate 

would vary with time. 

In this study, we will attempt a more general and fundamental model, which can be readily 

generalized to arbitrary loading histories. The model will represent an adaptation of quasi­

linear elastic fracture analysis by means of the so-called R-curves. The general principles of this 

approach, without any experimental verification, have already been suggested in Bazant 

[16,17]. In the present study we refine and extend this mathematical model and compare it to 

test data. 

The most general and fundamental approach for capturing both the size and rate effects in the 

fracture of concrete and other quasibrittle materials is of course a constitutive model for the 

evolution of damage in the fracture process zone, with an appropriate localization limiter. Such 

a model, which will be required for general finite element codes. should be the objective of future 

investigations. 

2. Basic equations 

The R-curve (resistance curve) approach represents an attempt to describe the nonlinearity 

of the law of crack propagation in quasi brittle materials using an approximately equi­

valent linear model in which the fracture energy is considered to depend on the length of an 

equivalent linear elastic crack. This equi\ alent crack is defined as a crack in a linear elastic 

material having the same compliance as the actual specimen with a large nonlinear fracture 

process zone (Fig. I). 

Let us denote the initial crack length by Go and the current crack length by a. It is often more 

convenient to work with nondimensional quantities 10 = ao:d and 1 = G.d, where d is the total 

length of the ligament (Fig. I). According to LEFM, an applied load P causes a load-point 

displacement 

(I) 

_. 
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Fiy. I. 3PB specimen with (al a nonlinear process zone. (bl an equivalent elastic crack. 

a crack-mouth opening displacement (C~10D) 

A P-
u = -o(:x) 

E'b ' 
(2) 

and a stress singularity described by the stress intensity factor 

(3) 

where E' = E for plane stress, E' = E/(l - l·l) for plane strain (E and \' are Young's modulus 

and Poisson's ratio, respectively), b is thickness of the specimen and C'(x), J(:x), k(:x) are 

non dimensional functions depending on geometry. It can be shown (e.g. Bazant and Cedolin 

[16J) that C(:!) and k(:x) are related by 

(4) 

where C(O) is the compliance of the same specimen without any crack. For a three-point-bend 

(3PB) specimen with span-to-depth ratio l:d = 2.5: 1 we have (Batant and Kazemi [19J 

- [3 31(l + v) 
e(O) = 4d 3 + 5d = 5.406 + 1.5\,. 

k(l) = 3.75,,/;;(1 - ):)3 "(l - 2.5:t + 4.-+91" - 3.98:t 3 + l.33):.l), 

b(:xl = 14.b[0.76 - 2.28:t + 3.87:x 2 - 2.04:t 3 + 0.66( I _ ):) - 2]. 

The graphs of nondimensional functions k(:t) and 6(:t) are shown in Fig. 2a.b. 

(5) 

(6) 

(7) 

The Griffith criterion for crack propagation in perfectly brittle materials states that the crack 

can propagate if the energy needed to create a new free surface is balanced by the elastic energy 

release from the structure. This condition is equivalent to K = K" where K is the actual stress 

intensity factor and Kc its critical value, called fracture tot.:ghness. 

The usual rate-independent version of the R-curve model for crack propagation in quasi­

brittle materials is based on the assumption that the energy needed to propagate the crack is not 

constant but increases due to gro\vth of the nonlinear fracture process zone \vith increasing 

crack length. According to this assumption, K, is replaced by the function, 

(8) 



358 Z.P. Ba:anr and :\1. lircisek 

k(a) 

25 

20 

15 

10 

5 

a 
0.0 

per) 
1.5 

1.0 

0.5 

0.0 
0.0 

(0) 

0.2 0.4 0.6 0.8 

(c) 

0.4 O.B 1.2 

o(a) (b) 

200 

150 

100 

50 

a a 
lJ) 0.0 0.2 C.4 0.6 

f(K,KR) (c) 

A 

J( ..................... __ ....... . 

Fig. 2. Graphs of (al k(:x). (bl <>(xl. (el pC'!. (d) I(K. K.l 

ex 
0.8 1.0 

K 

which depends on the crack propagation distance c = a - ao. The resistance function R(c), 

whose graph is called the R-curve, can be determined solely from maximum loads of similar 

specimens of different sizes. using the size effect method described in Batant. Gettu and Kazemi 

[20]. Aside from geometry. R(c) depends on two material constants Gf and C f representing the 

fracture energy and the fracture process zone length at the peak load for an infinitely large 

specimen. Based on the size effect law (see [l8]. Sec. 12.3 and 13.91. it has been shov,,'n (Bazant 

and Kazemi [19, 20J) that the shape of the R-curve is determined by the equations 

(9) 

and 

(10) 

where g(:x) = k1(:x) = nondimensional function depending only on geJmetry. Choosing a se­

quence of :i-values. one calculates for each of them the value of C cf and the corresponding 

R/G f · 
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Obviously, the relation between R G f and c,'c f depends only on the shape (geometry) of the 

structure. It is therefore convenient to separate the effects of geometry from the material 

properties and write 

R(c) = C fPC'), 
c 

i' =­
Cf 

( II) 

where P is the normalized resistance function depending on geometry only. Its graph (the 

normalized R-curve) for a three-point bend (3PB) specimen with span-to-depth ratio 2.5: I is 

shown in Fig. 2c. 

Combining (8) and (II), we get 

where K f is the fracture toughness for an infinitely large specimen. 

To capture the effects of the loading rate. we assume that the crack propagation rate 

a = daldt depends on the current values of K and K R: 

. ,-- . 
Since K = V E'C(a). KR = J E'R(c), this is equivalent to assuming that a is a function of Cia) 

and R(c) where Cia) is the energy release rate. It is clear that a should increase \ .... ith increasing K 

and with decreasing KR . But what should be the actual form of the crack growth rate function 

f(K, K R )? Experimental evidence indicates that changing the loading rate by several orders of 

magnitude causes the peak loads to change only by a factor less than 2 [14, 15,26]. Therefore, 

the crack growth rate function should allow for a very large variation of a with only moderate 

changes of its arguments. This can be achieved by setting 

(14) 

where I\. and n are constants. It is expected that 11 j? I. so that a varies with K as indicated in 

Fig.2d. 

Equations (I) and (2) have been based on the assumption of linear elasticity. Cnder loading 

rates spanning over several orders of magnitude. creep effects can play an import:lnt role. Creep 

in the bulk of the specimen can be taken into account by replacing I.E' by an appropriate 

compliance operator, which yields 

I it u(t) = b J(£, c') d[p(c')e(!')]. 
to 

115) 

I It .1/t) = b J(t. r') d[P(t')6(t')]. 
tu 

( 16) 
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1(t, t') is the compliance function. which must be determined in advance by measuring or 

estimating the creep properties of the material. The geometric compliances C, J are time 

dependent because they vary with the relative crack length ::to w!'llch increases as the crack 

propagates. 

Experiments performed under load control become unstable after the peak load has 

been reached. To study the descending part of the load-displacement curve, displacement 

control must be adopted. The available experiments [I·t 15.21] ha\e been performed under a 

constant CMOD rate. In such a case, the time history of CMOD is described by a linear 

function 

tl(t) = r(t - to), (I 7) 

where to is the time at the beginning of the experiment ane constant r is the prescribed 

CMOD rate. The unknown functions P(t) and ::t(t) describing the variation of the applied load 

and evolution of the crack length can be determined by sohing the crack propagation 

equation (13) along with (16). Using relations (3). (12). II;) and c = xd, we can rewTite the 

basic equations as 

1 (P(t) / [ d J) 
iU) = d f bjd k[x{t)J, K f ~ p (xU) - 20) C f ' ( 18) 

btl(t) = fl l(t, t') d[P(r')J(r')J, 
10 

(19) 

where the function f is defined by (14). The CMO 0 history .:1( t) is specified as input. to simulate 

the present tests. Alternatively, the load point deflection history 1I(t) can be specified as input. As 

still another alternative, the load history Pit) may be specified as input and then, first. (18) is 

solved for ::tit) and, second, t:,.(t) is evaluated from (I9). The initial conditions are 

::t(to) = ::to. P(to) = 0, !lUo) = O. (20) 

3. :\umerical solution 

To solve the problem numerically. we divide time into equal intervals (l,. ti-rl). i = 0.1. 2 ..... ",'. 

with ti = to + iM. Suppose that we have already computed approximate values Xi = Xlf,). 

P j = PIt,) for i = O. l, 2, ... , j and we want to proceed to xr ;. Pr l' Equations (18). (19) can be 

discretized in < t j' t j + 1) as follows: 

(21 ) 

(22) 
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where 6 j + 1 = 6Uj+ 1) = r(j + 1).1t for tests with a constant C~fOD rate. For convenience let us 

denote 

( 
t, + 1 + t,) 

J j . i = J tj+ 1, 2 ' 123) 

124) 

j- 1 

5 j - 1 = I Jj.iIPi + l£5 i - 1 - P,J j ). (25) 
i=O 

Equations (21), 12l) are two nonlinear equations for unknowns Pj. 1> :t.j_ l' Noting that (22) is 

linear with respect to Pj + 1 , we can express P j + 1 as 

126) 

and substitute this expression into (21). We end up with a nonlinear equation with only one 

unknown :t.j + 1. As the right-hand side of /21) is highly nonlinear. a robust numerical procedure 

must be chosen to assure convergence. After some experimentation, an algorithm based on a 

secant rather than tangent formula has been adopted. 

Special treatment is necessary in the first few' time steps when the process zone is very 

small and KR is therefore close to zero. In fact at time to we have KR = 0, K = ° and the ratio 

K, KR is not defined. Even though we do not need to evaluate this ratio at to but only at 

to + (M'l). :t. is at the beginning of crack propagation very close to :10 and numerical 

problems arise due to strong sensitivity of the high power (K:KRJ" to even very small changes 

of :1. 

To overcome these difficulties. we need to make use of an approximate analytical solution, 

which can be derived under the simplifying assumptions that :1 - :10 ~ 1 and that P is a linear 

function of time 

PU) = Pit - to). (27) 

where P is a constant to be determined later. For small values of:t. - 10, kd can be replaced by 

ko = k(:to) and p[(l - :told c}] by ij(l - :t.u)dcf' \\here j5 = p'(O). Equation (1-0 can now be 

transformed to 

(28) 

where 

1\ ( Pk -:)n Co =- 0" f . 

d bd 1\.. .' p-
i \, 

129) 
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Solving the approximate crack propagation equation (281 by sep';!"Jtion of variables. we 

get 

(30) 

where 

(31 ) 

It is interesting to note that if 11 is large. :t - :r:o is approximately proportional to (t - (0)1. 

Except for P. all the quantities in e:<pressions (29) and (31) defining Cr are known. P can be 

determined from the load-CMOD relation (16). If :r: - :to ~ 1. we ca:: treat c5(:r:If)) as approxi­

mately equal to bo = l)(:r:O)' Using? = P(£ - (0) and ,1 = r([ - (0)' ,:6) can be simplified to 

br(r - (0) = Pc5oS:,,lir. ['Idc'. from which 

- br(r - (0) 

? = . . . 
uoJ:JU. r') dt' 

(32) 

The fact that the right-hand side of (32) depends on time contradicts the assumption 

f5 = const.. but we can think of each time instant r = [j separately. approximating the history 

of ?(r) in the interval ([0. [j) by a linear function whose slope depends on the time instant 

under consiceration. The analytical solution (30) is used only in the first few steps. We exploit 

it to initiali:~e the crack propagation and get a reasonable estimat;: for the initial crack 

propagation rate. In fact we need only an order-of-magnitude estimate as the initial approxi­

mation for the previously described numerical procedure. The rates of crack propagation at 

the very beginning have nearly no influence on the later stages of the process and they are 

needed only as the approximations to start with. Therefore. the present simplifications are 

justified. 

It has been observed experimentally [20J that after the peak load Riel ceases increasing but 

remains constant. The explanation is that after the peak load the pr0~ess zone length ceases 

growing and travels across the ligament approximately as a rigid bod:. 

4. Comparison of theory to constant C\IOD rate tests 

Performance of the proposed model has been compared with the expcmental results reported 

[1-+]. [15]. [2IJ and [26]. 

Bazant and Gettu investigated simultaneous rate and size effect for !'1ree-point-bend concrete 

specimens. Each experiment was performed under a constant C\IOD rate. They tested 

specimens of three different sizes (L1 = 38 mm. 76 mm. 152 mm) and J.;-plied the CMOD rates 

ranging from -+ x 10 - 11m. s to 10 - 5 m s. with the corresponding times to peak ranging from 3 

days to I second. Table I shows the peak loads recorded for each test. \fost of the specimen 

were tested at 28 days after casting. hut some of them were much older'up to 120 days). To get 

comparable data. the measured peak loads have been adjusted to the sa.::e age (28 days) using a 
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, 
Tahle J E.\penmental results by Bazant and Gwu [14 J 

Depth C'"IOD rate .. \ge Peak iuad 

[mmJ [m sJ [da \ s' 
- j C'] 

38 1.110- 5 
~8 ~~I-

38 1.110- 5 28 1883 
38 8.4 10 - h 28 1794 
38 2.4 10 -, 28 1639 
38 1.310-' 28 1~';'4 

38 1.8 IO-~ 28 1818 
38 7.1 10 - 10 40 2~56 

38 7.1 10- 10 38 1891 
38 7.1 10- 10 39 2128 
38 3.810- 11 120 200~ 

76 1.410-~ 28 3612 
76 1.410- 5 ~8 3946 
76 1.4 IO-~ 28 3014 
76 5.3 10- 9 28 3059 
-:6 4.3 10-' 28 :-50 

-:6 3.610-' 28 2~90 

76 l.l IO-
Q 

30 3153 
76 1.010- 9 46 3-U>5 

76 9...110- 10 4' 341':' 
76 7AIO- 11 lOS 2995 

152 2.1 IO-~ 28 6158 
152 2.1 10- 5 28 5919 
152 ~.I 10- 5 23 5.u>6 
152 7.1 10- 8 

~8 5007 

152 7.110- 9 28 4210 
152 7.1 10- 8 28 4185 
152 1.7 10- 9 31 5239 

152 1.410- 9 32 4216 

152 lA 10- 9 38 4085 

152 1.3 10- 10 90 4'" J_'_ 

simple approximate empirical formula 

Ppcak.1S = p pe.k.1o /0.86 +..::., 
'V (0 

(33) 

where (0 is the age at testing in days. P peak.co is the measured peak load and P pe,k . .zS is the 

corrected peak load. The creep compliance function J(r, n has been approximated by the 

well-known double-power law (see [18]. Sec. 9.~): 

I 
J(t, c') = Eo [1 + ¢dr'-m + :1)([ - t't]' (3~) 

In agreement with the data from [14]. the parameters of this law were set as follows: 

Eo = 48.4 GPa_ ¢l = 3.93_ III = 0.306.11 = 0.133, :1 = 0.00325. 

It is clear from Table I and Fig. 3a that the experimentally determined values of the peak 

load suffer from considerable scatter, which can be explained by the fact that the specimens 
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Fig. 3. Comparison with experiments for concrete: la) three point bending. Ib) wedge spli!ling. 

were cast from se\eral batches of concrete. Nevertheless. some general trends can still be 

observed: 

• The peak loads increase \vith increasing rate of loading. 

• The rate dependence of peak loads is stronger for large specimens than for small ones. 

• The nominal strength decreases with increasing size, approximately following the size effect 

law proposed by Bazant [24]. 

• The size effect on peak loads is stronger for slow loading rates than for fast ones. 

It may be somewhat surprising that the size effect and the rate effect in concrete appear to be 

mutually dependent. In terms of size effect. a decreasing rate of loading causes a shift towards 

more brittle behaviour. The same phenomenon can be described in terms of rate effect as an 

increase of rate sensitivity \ .... ith increasing size. 

In contrast to concrete. no interaction of size and rate effect could be observed for lime­

stone [15]. This could probably be explained by absence of creep in limestone. both within the 

bulk of the specimen and within the fracture process zone. This means that the rate effect in 

limestone is due solely to the thermally activated process of bond ruptures, producing the crack 

surfaces. 

In an attempt to fit the aforementioned experimental data by the proposed rate-dependent 

R-curve model. it has been discovered that the originally proposed \ersion does not exhibit any 

shift of brittleness. It was therefore not difficult to get a reasonable agreement between theory 

and experiments for limestone (Fig. 4). while for concrete (Fig. 3a) it was impossible to get a 

good agreement for all the rates and all the sizes at the same time. 

It is ne\'ertheless encouraging that the model can capture both the size effect and the rate 

effect. although not their mutual interaction. Let us briefly describe the role of free parameters. 

whose values can be adjusted to get the best fit of experimental data: 

• Parameters 1\ and K J are mutually dependent. so that only one of them can be regarded as a 

free parameter. By increasing K J or decreasing 1\. the peak loads are increased for all the rates 

and sizes in the same ratio. 
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Fi</. 4. Comparison \\1{h e.~peflments for limestone. Fl</. 5. Gr:lph oi.! ior different r:l!105 /I 2m. 

• Parameter /I affects mainly the rate sensitivity (for all the sizes in the same manner). By 

increasing n, one can decrease the slope of the rate effect curve. which is indicated by 

experiments to be roughly linear when the CMOD rate is plotted in a logarithmic scale. 

• Parameter C f affects brittleness. and does so for all the rates in roughly the same manner. 

Increasing C f causes a shift toward the left on the size effect curve. i.e. to a more ductile 

behaviour. 

To decrease the rate sensitivity of the model to realistic values. a very large exponent II is 

needed. For example to fit the data on 3PB experiments on concrete [14J, 11 had to be set equal 

to 38 (Fig. 3a). and for similar experiments on limestone [15J even to 55 (Fig. 4)! 

The rate dependent R-curve model has also been used to model wedge-splitting tests on 

concrete reported in [21]. Due to considerable scatter in these large-scale tests. it is impossible 

to make any quantitative conclusions. However. similar trends as in 3PB tests can be observed 

(Fig. 3b). The value of the exponent 11 came out to be 35. \'ihich is about the same as for the 

aforementioned 3PB experiments. 

5. A generalization: rate-dependent process zone length 

The original version of the rate-dependent R-curve model presented in the foregoing suffers by a 

serious drawback: ft is not capable of modeling the rate-dependent shift of brittleness observed 

experimentally by Bazant and Gettu [14]. fn an attempt to increase flexibility of our model. we 

may replace the constant value of cI (process zone length at peak load for an infinitely large 

specimen) by a rate-dependent function cf',i). The rate-dependence of Cf is not illogical. Stress 

relaxation in the fracture process zone may be expected to cause the stress profile along the 

crack extension line to develop a steeper drop to zero. spanning a shorter length. which means 

that the effective fracture process zone length should be smaller at slower crack propagation. 

As explained in Section 3. cI is the basic parameter affecting brittleness. Because brittleness is 

seen to decrease with increasing rate. C f should be an increasing function of d. However. cf 

should vary only by a factor of 10 while the rate of loading (and therefore also the rate of crack 
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propagation) varies over five orders of magnitude. It IS therefore reasonable to use a power 

function with a low exponent 

( ')1 m 

cf = CfO ~ . 
(10 

(35) 

where In ~ I. For the sake of dimensionality we have introduced here. in addition to m. two 

more parameters cfO. ao. but only one of them is independent. The other one can be preset to 

any (positive) fixed value without any loss of generality. 

With cf dependent on ii. the crack propagation eq uation (13) now becomes an implicit law for 

the crack propagation rate a. If the model is to be physically reasonable. there must exist a 

unique nonnegative solution ti for any possible situation. This condition imposes a serious 

restriction on the value of m. A simple analysis of this restriction can be performed if we 

approximate p(cc I) by a piecewise linear function 

( 
C)\ C 'f C 

P - =- 1-<1. 
cf cf cf 

. C 
If - ?! I. 

cf 

The function f defined by (14) can now be written as 

(36) 

(37) 

Suppose that the current values of p, k, C are given and we want to solve (I 4) for unknown ti. 

Denote by ae the value of a for which cf(aj = c. If 0 < a < cie• then cf(d) < c. P(c/cf(a)) = I and 

f(K. K R ) = fo. If d > ae. then cf(a) > c, P(cCf(ti)) = c/cf(a) and 

(38) 

The right hand side of (38) is graphically presented in Fig. 5 for three different cases. It is 

clear that if 112111 < I. equation ,i = f( K, K R) has a unique positive solution for any values of j~ 

and ae. However. if 1I,2m > I. the equation has no solution or two solutions depending on 

whether fo > cie or fo < cie. Thus. to ensure a proper formulation of the crack propagation 

·equation. the parameter III in (35) must be larger than 11.2. II being the exponent in (14). This 

condition has been derived under the simplifying assumption (361. but numerical calculations 

reveal that the method indeed does not converge if m < 11,2 and sometimes even if III is only 

slightly above 11/2. , 

It has been mentioned in Section 4 that. in order co ensure realistic rate sensitivity. II must 

assume very large values, typically between 30 and 40. On the other hand, 111 should not be too 

large if we want to get a substantial shift of brittleness. Unfortunately, III > n/2 must hold. 

otherwise the problem of crack propagation is not well-posed. The best fit of experimental results 

that could be constructed with rate-dependent cf is still underestimating the measured peak 
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loads for small specimens under slow loading rates (Fig. 6a). In terms of the size effect. this 

means that the parameter do in the size effect law [2..+J 

Bj; 
a.\· = ---;== 

!d 
/1 +­

\i do 

(39) 

does not change with rate as much as it should. according to the tests of concrete (see Fig. 6b. c). 

The theoretical curves in Fig. 6a correspond to the following set of parameters: 

n: = 8 x 1O-6 m s. K f = 9 X 105 Nm- J 
2. II = ~9, CfO = 0.014m. (io = 0.01 m's, III = 17. Let us 

emphasize again that only four of these six parameters are independent. 
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6. Comparison to tests with a sudden rate change 

Another set of experiments on rate effect in concrete fracture was performed by Bazant. Gu and 

Faber [25]. who studied the effect of a sudden change of loading rate. In their tests on 3PB notched 

specimens, the initial CMOD rate was held constant in the prepeak range and in a part of the post­

peak range. After the load decreased from its peak value PI to some lower value Pc. the C\-fOD rate 

was suddenly increased or decreased by several orders of magnitude and the test continued with the 

new value of a constant C7vtOD rate. This resulted into a sudden change of slope in the 

load-CMOD diagram. For a sufficiently large increase of the loading rate. the load started 

increasing again and a second peak Pz could be observed IFig. 7al. On the other hand, a decrease of 

the loading rate was followed by a fast drop of the load-CMOD curve IFig. 7b). The rate-dependent 

R-curve model exhibits qualitatively the same behavior (Fig. 7cl. The tests suggest that. after a rate 

change, the curve for the new rate asymptotically approaches the curve for a constant rate test with 

a rate equal to the new rate. The theory agrees with this behavior also (Fig. 7c). 

load (a) 

CMOD 

(c) load 

load 

A 

-----

CMOD 

(b) 

Relative 
change 
of rote: 

10
3 

10
2 

10
1 

10° 

10-1 

CMOD 

Fiy. - Load·CMOD curves: (a) t!\perimenlal cune (rale increased!. (bl t!xperimenlal cur\e IralC dccrca,;cdl. lei 

theoretical curves. 



Pl /P 1 (%) 
140 

120 

100 

80 

60 

40 

20 

(0) 
Theory: 

a /Iorg~ 

_medium 

'small 

Experiments: 

00000 large 
aaaoa medium 
00000 small 

R-clInl! moddilliJ 369 

0~'"'""':'2"""0~~4""0~""'60~~8""'0~""1 0 

(b) 
140 Initial rate 10-12 _10-8 m/s 

120 Relative rate change 10
J 

100 

80 

60 

40 

20 

°o~~~~~~~~~"'" 
20 40 60 80 100 

Pc/P 1 (%) 

P c/P 1 (%) 

P /P (07)\ 
2 1 ?O (c) 

140 

120 

100 

80 

60 

40 

20 

Relative rete change: /' 10' 
./ • (".:I __ IU 

-10 2 

............. 1 C' 

06" '''io ' 4'0 ""6'0" '8'0"',00 

Pc/P 1 (%) 

Fiy, 8, Second peak \'ersus load at rate change: (a) effect of size.lbl effect of inilial rate. Ie) effect of relati\<! rate change. 

Quantitative agreement bet\veen theory and experiments can be verified by plotting the ratio 

P 2 PI versus PC'P I for all available results. The points marked by different symbols in Fig. Sa 

correspond to tests on specimens with three sizes !eI = 38 mm. 76 mm. 152 mm) in which the rate 

increased by three orders of magnitude (on the average from 10- 8 m s to 10- 5 m sl. The results 

seem to be independent of size. 

The relationship between the two nondimensional ratios Pc PI and P2 PI can be calculated 

using the rate-dependent R-curve model described in previous sections. rnstead of trying to 

adjust the parameters so as to fit the experimental data. their values were taken frl1nl the best 

fit of tests by Bazant and Gettu [14J constructed in Section 5. It is gratifying that these 

parameter values lead to a satisfactory agreement with measurements by Bazant. Gu and 

Faber [25]. 

The theoretical curves are only slightly dependent on size (Fig. 8al and almost independent of 

the initial rate (for the same relative rate change-Fig, Sbl. But. as expected. they are sensiti\e to 

the relative rate change (Fig. 8c). 
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7. Comparison to relaxation tests 

The paper by Bazant and Gettu [14J reported still another type of experiment on the rate effect 

in concrete fracture - relaxation tests. The CMOD rate was initially held constant and after 

some time (usually in the post-peak range) suddenly decreased to zero. This type of test can be 
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regarded as a limit case of the experiments with a sudden change of rate. All tests were 

performed on medium size 3PB specimens (d = 76 mm). 

In the first series of experiments. the initial rates were different and relaxation started in the 

post-peak range at about 85 percent of the peak load. Denoting the time at which relaxation 

started by (c and the corresponding load by Pc. one can plot the relaxation curves PUJIPc versus 

( - (", The experimental and theoretical relaxation curves are shown in Fig. 9. A qualitative 
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ag.reement can be obsen'cd - the cunes corresponding to ditTerent initial rates ha\e the same 

final slope in a loganthmic plot and are shifted with respect to each other. However. the slope of 

the theoretical curves is much steeper than of the experimental ones. 

The second series of experiments was conducted with the same initial rate Ir = 8.5 x 

10 - b m s) but relaxation started at different stages - in the prepeak range. at peak. and at 

ditTerent load levels in the post-peak range. Figure IOc re\eals again only a qualitative 

agreement - the relaxation curve) starting in the post-peak range lie below the cune starting 

approximately at peak. which in turn lies below the curve starting in the pre-peak range. The 

theoretical curves are again steeper than the experimental ones. 

8. Conclusions 

I. The equivalent linear elastic fracture model based on an R-cune (a curve characterizing the 

variation of critical energy release rate with crack propagation length) can be generalized to 

the rate effect if the crack propagation velocity is assumed to depend either on the ratio of 

the stress intensity factor to its critical value based on the R-curve. or on the difference 

between these two variables. This dependence may be assumed in the form of an increasing 

power function with a large exponent. 

") The creep in the bulk of a concrete specimen must also be taken into account. which can be 

done by replacing the elastic constants in the LEF\;I formulas with a linear viscoelastic 

operator in time. For rocks. which do not creep. this is not necessary. 

3. The experimental observation that the brittleness of concrete increases with a decreasing 

loading rate (i.e. the response shifts in the size effect plot closer to linear elastic fracture 

mechanics) can be at least approximately modeled by assuming the effective fracture process 

zone length in the R-curve expression to decrease with a decreasing rate. This dependence 

may again be described by a power function. 

4. Good agreement with the previous test results for concrete and limestone. recently measured 

at very different loading rates. with times to peak ranging from I second to 250000 seconds. 

is achieved. 

5. The model can also predict the following phenomena recently observed in the laboratory: 

(a) When the loading rate is suddenly increased. the slope of the load-displacement diagram 

suddenly increases. For a sufficient rate increase. the slope becomes positive even in the 

post-peak range. and later in the test a second peak. lower or higher than the first peak. is 

observed. 

{bl \Vhen the rate suddenly decreases. the slope suddenly decreases and the responsc 

approaches the load-displacement cune for the lower rate. 

(C) When the displacement is arrested. relaxation causes a drop of load. approximatc/:­

following a logarithmic time cuneo 
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