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Abstract: In this paper, we consider r-dominating cliques in homogeneously orderable graphs (a com-
mon generalization of dually chordal and distance-hereditary graphs) and their relation to strict r-packing
sets. We prove that a homogeneously orderable graph G possesses an r-dominating clique if and only
if for any pair of vertices x , y of G d (x , y ) ° r ( x ) / r ( y ) / 1 holds where r : V r N is a given vertex
function. Furthermore, we show that for homogeneously orderable graphs with r-dominating cliques the
cardinality of a maximum strict r-packing set equals the cardinality of a minimum r-dominating clique
provided the last parameter is not two. Finally, we present two efficient algorithms: The first one decides
whether a given homogeneously orderable graph has an r-dominating clique and, if so, computes both
a minimum r-dominating clique and a maximum strict r-packing set of the graph. The second one
computes a minimum connected r-dominating set in a homogeneously orderable graph. q 1997 John
Wiley & Sons, Inc. Networks 30: 121–131, 1997

1. INTRODUCTION has a dominating set, but computing a minimum one (i.e.,
a dominating set of smallest size) is, in general, an NP-
hard problem. For special graph classes, the situation isIn a graph G Å (V, E) , a subset D ⊆ V is a dominating
sometimes much better. There are many papers concernedset iff each vertex £ √ V "D has at least one neighbor
with finding minimum dominating sets in specialin D . Often certain constraints for dominating sets are
graphs—for a bibliography of domination, cf. [18],required: The dominating set must be connected (con-
for a compact survey of special graph classes, we refernected dominating set) , complete (dominating clique) ,
to [3] .independent ( independent dominating set) , and so on.

Among the variations of the dominating set problem,Since V itself is a dominating set of G , every graph
the dominating clique one is of a somewhat different
nature since not every graph has a dominating clique.

Correspondence to: F. Nicolai; e-mail: nicolai@informatik.uni- Indeed, there are two problems—first, decide whether a
duisburg.de given graph possesses a dominating clique (this we will

An extended abstract of this paper was presented at the Workshop
call the decision problem) and, if so, then compute aon ‘‘Fundamentals of Computation Theory’’ FCT’95, Dresden, Ger-
minimum one (the minimality problem). For the well-many (cf. [13])

Contract grant sponsors: DAAD; DFG known class of weakly chordal graphs (i.e., those graphs
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122 DRAGAN AND NICOLAI

which do not contain an induced cycle or its complement graphs—a subclass of Helly graphs containing all
strongly chordal graphs (for a characterization cf. [6,of length larger than four) , the decision problem is NP-

complete (cf. [8]) . In chordal graphs (the weakly chordal 14]) —a linear time algorithm is presented (see also
[5]) . In distance-hereditary graphs (cf. [1, 16, 21]) , bothgraphs which do not contain an induced 4-cycle) , the

decision problem is easy but it is an NP-hard problem to the decision and the minimality problem can be solved
in linear time as shown in [11].compute a minimum dominating clique (cf. [20]) . In

contrast, there is a polynomial time algorithm to compute In this paper, we consider r-dominating cliques in ho-
mogeneously orderable graphs and their relation to stricta minimum dominating clique in strongly chordal graphs

(cf. [19]) , an important subclass of chordal graphs. r-packing sets. Homogeneously orderable graphs were
introduced in [7] as a common generalization of duallyIn this paper, we investigate the more general problem

of r-domination. Given a graph G and a vertex function chordal and distance-hereditary graphs. Figure 1 presents
the containment of the mentioned graph classes.r : V (G) r N ( i.e., a nonnegative integer is assigned to

each vertex) , a set D ⊆ V r-dominates G ( is an r-domi- We prove that a homogeneously orderable graph G
possesses an r-dominating clique if and only if for anynating set) iff for each vertex £ of V " D there is a vertex

x in D such that dG(£, x) ° r(£) , where dG is, as usual, pair of vertices x , y of G d(x , y) ° r( x) / r( y) / 1
holds where r : V r N is a given vertex function. Again,the distance metric on G . Obviously, with r(£) Å 1 for

all £ √ V, the classical domination problem is a special this result is a generalization of the one for dually chordal
(cf. [12]) and distance-hereditary graphs (cf. [11]) . Fur-case of the r-domination problem. Again, certain con-

straints for an r-dominating set are considered, yielding thermore, we show that for homogeneously orderable
graphs with r-dominating cliques the cardinality of athe problems r-dominating clique, connected r-domi-

nating set, and so on. maximum strict r-packing set equals the cardinality of
a minimum r-dominating clique provided that the lastNote that the connected r-dominating set problem is

a generalization of the Steiner tree problem (cf. [10]) . parameter is not two.
Finally, we present two efficient algorithms which runIndeed, given a Steiner set T , we assign to each vertex t

√ T the value r( t) :Å 0 (for all other vertices £ define r(£) in quadratic time if an h-extremal ordering is given. The
first one decides whether a given homogeneously or-:Å ÉV (G)É) and then compute a minimum connected r-

dominating set which is a Steiner tree. In [7] , we already derable graph has an r-dominating clique and, if so, com-
putes both a minimum r-dominating clique and a maxi-presented a quadratic time algorithm for the Steiner tree

problem on homogeneously orderable graphs. Note that mum strict r-packing set of the graph. The second one
computes a minimum connected r-dominating set in ho-the r-dominating clique problem is a generalization of

the central vertex (a vertex with minimal eccentricity) mogeneously orderable graphs. An h-extremal ordering
of a given homogeneously orderable graph can be com-problem (cf. [11]) .

In [12], the existence criterion for chordal graphs puted in time O(n 3) [7] . For corresponding algorithms
for dually chordal graphs, we refer to [5, 10]; for dis-given in [20] is generalized in terms of r-dominating

cliques and is proved to be valid (in this generalized tance-hereditary graphs, see [4, 9, 11].
The following table summarizes these algorithmic re-form) for Helly graphs and chordal graphs. Again, the

computation of a minimum r-dominating clique is an sults. Hereby, n is the number of vertices and m is the
number of edges of a graph:NP-hard problem for Helly graphs. For dually chordal

r-Dominating Clique
Minimum Connected

Class Recognition Decision Minimum r-Dominating Set

Trees O(n) folk O(n) folk O(n) folk

Chordal graphs O(n / m) [15] O(nm) [20] NP [18] NP [18]

Distance-hereditary graphs O(n / m) [16] O(n / m) [11] O(n / m) [4]

Dually chordal graphs O(n / m) [6,10] O(n / m) [5,12] O(n2) [5,10]

Weakly chordal graphs O(mn2) [22] NP [8] NP [18]

Homogeneously orderable graphs O(n3) [7] O(n2)* here O(n2)* here

* An h-extremal ordering must be given as input.
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r-DOMINATION PROBLEMS ON HOMOGENEOUSLY ORDERABLE GRAPHS 123

D(£, k) :Å {u √ V : dG(u , £) ° k} Å <
k

iÅ0
Ni(£) .

Analogously to neighborhoods of sets, we define for U
⊆ V

D(U , k) :Å <
u√U

D(u , k) .

A nonempty set H ⊆ V is homogeneous in G Å (V, E)
iff all vertices of H have the same neighborhood in V "H :

N(u) > (V "H) Å N(£) > (V "H) for all u , £ √ H ,
Fig. 1. Containment of graph classes.

i.e., any vertex w √ V "H is adjacent to either all or none
of the vertices from H .

A homogeneous set H is proper iff ÉHÉ õ ÉVÉ. Trivi-
ally for each £ √ V, the singleton {£} is a proper homoge-
neous set. Note also that for a subset U , V if a set H2. PRELIMINARIES
⊆ U is homogeneous in G then it is homogeneous also
in the induced subgraph G(U) but not vice versa.Throughout this paper, all graphs G Å (V, E) are finite,

In the sequel, a subset U of V is a k-set iff U inducesundirected, simple (i.e., loop-free and without multiple
a clique in the power Gk , i.e., for any pair x , y of verticesedges) and connected.
of U we have dG(x , y) ° k .A path is a sequence of vertices £0 , . . . , £k such that

Let U1 , U2 be disjoint subsets of V . If every vertex of
£i£i/1 √ E for i Å 0, . . . , k 0 1; its length is k . The

U1 is adjacent to every vertex of U2 , then U1 and U2 formdistance dG(u , £) of vertices u , £ is the minimal length
a join, denoted by U1 Ó U2 . A set U ⊆ V is join-splittedof any path connecting these vertices. Obviously, dG is a
iff U can be partitioned into two nonempty sets U1 , U2metric on G . If no confusion can arise, we will omit the
such that U Å U1 Ó U2 .index G . For a set S ⊆ V and a vertex £ √ V, we define

Next, we recall the definition of homogeneously or-the distance of £ to S as
derable graphs as given in [7]: A vertex £ of G Å (V,
E) with ÉVÉ ú 1 is h-extremal iff there is a proper subsetd(£, S) :Å min{d(£, x) : x √ S}.
H , D(£, 2) which is homogeneous in G and for which
D(£, 2) ⊆ D(H , 1) holds, i.e., H dominates D(£, 2) .Let e(£) denote the eccentricity of vertex £ √ V :
Thus, the sets H and D(£, 2)"H form a join.

A sequence s Å (£1 , . . . , £n) is an h-extremal ordering
e(£) :Å max{d(£, u) : u √ V }. iff for any i Å 1, . . . , n 0 1 the vertex £i is h-extremal

in Gi :Å G({£i , . . . , £n}). A graph G is homogeneously
Then, the radius rad(G) of G is the minimum over all orderable iff G has an h-extremal ordering.
eccentricities e(£) , £ √ V, whereas the diameter diam(G) In [7] , it is proved that a graph is homogeneously
of G is the maximum over all eccentricities e(£) for £ in V. orderable if and only if the hypergraph of the maximal

The k-th neighborhood Nk(£) of a vertex £ of G is the join-split sets is a dual hypertree if and only if the square
set of all vertices of distance k to £: G 2 of G is chordal and each maximal 2-set of G is join-

split.
Nk(£) :Å {u √ V : dG(u , £) Å k}. This local structure of homogeneously orderable

graphs implies a simple recognition algorithm using the
chordality of the square of G .Instead of N 1(£) , we will write N(£) for the (first, open)

neighborhood of £. For a vertex set U ⊆ V, let
Theorem 2.1 ([7]) . Homogeneously orderable graphs
can be recognized in cubic time O(n 3) . An h-extremalN(U) :Å <

u√U
N(u)"U .

ordering can be computed within the same time bound.

Furthermore, in [7] , a characterization of hereditaryThe disk of radius k centered at £ is the set of all
vertices of distance at most k to £: homogeneously orderable graphs (i.e., those graphs for
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124 DRAGAN AND NICOLAI

which every induced subgraph is also homogeneously Note that for arbitrary graphs G we obviously have
orderable) is given. They are exactly the house-hole-dom-
ino-sun-free graphs (HHDS-free graphs) . pr(G) ° gr(G) ° gr,con(G) ° gr,cl(G) .

From characterizations given in [5] and [21], we im-
mediately obtain that both dually chordal and distance-
hereditary graphs are homogeneously orderable graphs.

The following two lemmata are important for the se- 3. GRAPH-THEORETIC RESULTS
quel:

For the sequel, let G be a graph with vertex function r :
Lemma 2.2 ([7]) . For any graph G and any h-extremal V r N. Define Z(G) :Å {£ √ V (G) : r(£) Å 0}. By
vertex £ of G with e(£) ¢ 2 , there is a homogeneous set definition, any r-dominating set must include Z(G) .
H ⊆ N(£) dominating D(£, 2) . Thus, if Z(G) does not induce a complete subgraph of

G , then G has no r-dominating clique.
The following straightforward lemma handles the caseLemma 2.3 ([7]) . If G is a homogeneously orderable

e(£) ° 1 for some vertex £ of G . So, in the sequel, wegraph and £ is an h-extremal vertex of G with e(£) ¢ 2,
may assume that e(£) ¢ 2.then G" {£} is an isometric subgraph of G.

Lemma 3.1. If £ is a vertex with e(£) ° 1 and Z(G) isHereby, a (connected) induced subgraph F of G is
complete, then we haveisometric iff the distances within F are the same as in G ,

i.e., for any pair of vertices x , y of F we have dF(x , y)
Å dG(x , y) . 1. If Z(G) x M r-dominates G, then Z(G) is both mini-

Finally, we recall the concept of r-domination. For a mum r-dominating clique and maximum strict r-pack-
vertex function r : V r N (note that we assume zero to ing set of G.
be a natural number) , a set D ⊆ V r-dominates a subset 2. If Z(G) x M does not r-dominate G, then Z(G)
U ⊆ V iff for each vertex u √ U"D there is a vertex x < {£} is a minimum r-dominating clique and Z(G)
√ D such that dG(u , x) ° r(u) holds. If U Å V, then D < {u} is a maximum strict r-packing set of G where
is an r-dominating set for G . u is a private neighbor of £.

An r-dominating set D is minimal iff for any vertex x
3. If Z(G) ÅM, then {£} is both minimum r-dominating√ D the set D" {x} does not r-dominate G . A minimal

clique and maximum strict r-packing set of G.r-dominating set D is minimum iff D has the smallest
cardinality among all minimal r-dominating sets of G .
Analogously, one can define connected r-dominating sets

3.1. The Existence of r-Dominating Cliquesand r-dominating cliques.
If C is a minimal r-dominating clique of a graph G ,

then the minimality of C implies that for every vertex c Lemma 3.2. Let G be a homogeneously orderable graph
of C there must be a vertex xc in G such that d(xc , c) with vertex function r : V r N, £ be an h-extremal vertex
° r( xc) and d(xc , c *) ú r( xc) for all c* √ C " {c}, i.e., such that e(£) ¢ 2, let H ⊆ N(£) be a homogeneous set
xc is r-dominated only by c . Such a vertex xc we call a dominating D(£, 2) . Furthermore, let S be an arbitrary
private neighbor of c . subset of V containing £ and fulfilling

A dual concept is the following: A set S ⊆ V is called
strict r-packing set iff for all vertices x , y of S the equation (P) ∀x , y √ S : dG(x , y) ° r( x) / r( y) / 1.
d(x , y) Å r( x) / r( y) / 1 holds. As above, we can
define maximal and maximum strict r-packing sets.

Define S* :Å (S" {£}) < {w}, where w is eitherSo, we have the following parameters:

(H1) a vertex from S > N(£) > Z(G) if this intersection• pr(G) —the size of a maximum strict r-packing set of
is nonempty but S > H > Z(G) Å M, orG ,

(H2) a vertex from S > H with minimal r-value if H• gr(G) —the size of a minimum r-dominating set of
> S x M, orG ,

(H3) a vertex from H with minimal r-value otherwise.• gr,con(G) —the size of a minimum connected r-domi-
nating set of G and

• gr,cl(G) —the size of a minimum r-dominating clique Then, S * fulfills (P) in G * :Å G" {£} with respect to r *,
where r*(x) :Å r( x) for all x √ V " {w , £} andof G , or ` if G has no r-dominating clique.
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r-DOMINATION PROBLEMS ON HOMOGENEOUSLY ORDERABLE GRAPHS 125

must be vertices x √ C * > N 2(£) and y √ S such thatr *(w)
d(x , y) Å r( y) and d(y , C) ú r( y) . Note that r( y) ¢ 1
since r( x) ú 0 and x x y . Thus, y √/ N(£) , since, other-
wise, £ r-dominates y .

:Å

0 : (H1) or r(£) Å 0,

min{r(w) , r(£) 0 1} : (H2) and r(£) ¢ 1,

r(£) 0 1 : (H3) and r(£) ¢ 1.
CASES (H2) and (H3). Here, we have w √ H . Since

r *(w) Å 0 implies that w √ C , we obtain d(w , y)
¢ r( y) / 1. From d(£, y) Å d(w , y) / 1 and r(£)
Å 0, we conclude that d(£, y) ¢ r(£) / r( y) / 2, aProof. Suppose the contrary, i.e., there are vertices x ,
contradiction.y √ S * such that d(x , y) ú r *(x) / r *(y) / 1 (recall

that by Lemma 2.3 G* is an isometric subgraph of G) . CASE (H1). We immediately conclude that r *(w)
Obviously, one of these vertices must be w , say x Å w , Å r(w) Å 0 and w √ N(£)"H . Thus, d(w , y) Å d(£,
and r *(w) x r(w) . Thus, we are either in case (H2) or y) Å r( y) / 1. If C > H is nonempty, then choose
(H3) and, hence, w √ H . Furthermore, d(w , y) ú r(£) any vertex h √ C > H and proceed as in the above/ r( y) if r(£) ú 0 and d(w , y) ú r( y) / 1 otherwise, case. If C > H Å M, the above considerations imply
i.e., we have d(w , y) ¢ 2. that the new clique C :Å {£, h} < (C * > N(£)) , with

First assume that d(£, y) ¢ 2. Since £ is h-extremal h √ H , is an r-dominating clique in G . j
and the homogeneous set H ⊆ N(£) dominates D(£, 2) ,
we have d(£, y) Å d(w , y) / 1. But, then,

With r(£) Å 1 for all £ √ V, we immediately conclude
that

d(£, y) Å d(w , y) / 1 ú r(£) / r( y) / 1,

Corollary 3.4. A homogeneously orderable graph G iscontradicting the assumption that S fulfills (P) .
dominated by some clique if and only if diam(G) ° 3.Next assume that y √ N(£) . We immediately conclude

that d(w , y) Å 2 and r( y) Å 0. Hence, y √ H > S and
Corollary 3.5. For homogeneously orderable graphs G,case (H3) is not possible. From the choice of w [ in case
we have 2rad(G) ¢ diam(G) ¢ 2(rad(G) 0 1).(H2)] , we obtain w √ H > S and r(w) Å 0. Thus, we

have two nonadjacent vertices in S both having r-value Proof. Suppose that diam(G) õ 2(rad(G) 0 1).
zero, a contradiction. j Then, by Theorem 3.3 for r(£) :Å rad(G) 0 2, £ √ V,

there exists an r-dominating clique C in G . Hence, any
Theorem 3.3. For any homogeneously orderable graph vertex £ of G has e(£) ° rad(G) 0 1, a contradiction
G with vertex function r : V r N and for any subset S of to the definition of the radius. j
V, we have that

3.2. Minimum r-Dominating Cliques andS is r-dominated by some clique C of G if and only if
Maximum Strict r-Packing SetsdG(x , y) ° r( x) / r( y) / 1 for all x, y √ S.

Here, we consider the relationship of the parametersProof. Obviously, if S is r-dominated by some clique
pr(G) , gr(G) , gr,con(G) , and gr,cl(G) for homogeneouslyC , then the distance requirements are fulfilled. The con-
orderable graphs with r-dominating cliques. Recall thatverse we prove by induction on the size of G . Let £ be

an h-extremal vertex. We may assume that e(£) ¢ 2 by
Lemma 3.1. Hence, we can choose a homogeneous set H pr(G) ° gr(G) ° gr,con(G) ° gr,cl(G) .
⊆ N(£) dominating D(£, 2) . Let S be an arbitrary subset
of V which fulfills the distance requirements. If £ √/ S , Lemma 3.6. Let G be a homogeneously orderable graph
then we are done by the induction hypothesis and Lemma with h-extremal vertex £, e(£) ¢ 2 and a vertex function
2.3. So, let £ √ S , G * :Å G" {£} and S * :Å (S" {£}) r : V r N such that r(£) ¢ 1. Moreover, assume that G
< {w}, where w √ N(£) is chosen according to the is not r-dominated by a single vertex but by some mini-
rules (H1) – (H3) of Lemma 3.2. By Lemma 3.2 and the mum clique containing £. Then, there is an r-dominating
induction hypothesis, S * is r *-dominated (r* defined as clique of G of the same size which does not contain £.
in Lemma 3.2) by some clique C* in G *. If r(£) ¢ 1,
we are done since in all cases the vertex r *-dominating Proof. Let C be a minimum r-dominating clique of G

containing £. Thus, C ⊆ D(£, 1) . Since £ is h-extremal andw r-dominates £, too. If r(£) Å 0, we have r*(w) Å 0
and, hence, C* > N(£) is nonempty. Suppose that C e(£) ¢ 2, we can choose a homogeneous set H ⊆ N(£)

dominating D(£, 2) . If C > H is empty, we can replace:Å {£} < (C * > N(£)) does not r-dominate S in G .
Since C * is an r *-dominating clique for S * in G *, there £ in C by any vertex from H . Otherwise, the minimality

776/ 8u12$$0776 07-14-97 18:19:25 netwa W: Networks



126 DRAGAN AND NICOLAI

of C immediately implies that C " {£} ⊆ H . Thus, we can that their r-values are at least one) by w . Otherwise, C *
:Å (C "H) < {w} is an r*-dominating clique in G *.replace £ by some vertex w from N 2(£) . j

Consequently, for each minimum r-dominating clique
C of G , there is an r*-dominating clique C * in G* of theIn the sequel, we will often apply Theorem 3.3 and
same size as C . So, we are done. jLemma 3.2. In all of these cases, we will have S

:Å V (G) . Thus, rule (H3) for the choice of w will never Theorem 3.8. If a homogeneously orderable graph G
be used. possesses an r-dominating clique and gr,cl(G) x 2, then

pr(G) Å gr,cl(G) .
Lemma 3.7. Let G be a homogeneously orderable graph

Proof. Since for gr,cl(G) Å 1 there is nothing to show,
which is r-dominated by some clique but not by a single

let gr,cl(G) ¢ 3. Let £ be an h-extremal vertex of G . If
vertex, i.e., 1 õ gr,cl(G) õ ` . Let £ be any h-extremal

e(£) Å 1, then we are done by Lemma 3.1. So, assume
vertex of G with e(£) ¢ 2 and r(£) ¢ 1 . Furthermore,

that e(£) ¢ 2 and let H ⊆ N(£) be a homogeneous set
let H ⊆ N(£) be a homogeneous set dominating D(£, 2) .

dominating D(£, 2) . First, we consider the case r(£) Å 0.
Define w, G*, and r* as in Lemma 3.2 with S :Å V (G) .

If Z(G) r-dominates G , then it is both a minimum r-
Then, any r *-dominating clique C* in G* is an r-domi-

dominating clique and a maximum strict r-packing set of
nating clique in G, and if C is a minimum r-dominating

G . Otherwise, we show that C :Å Z(G) < {h} with h
clique in G, then there exists an r *-dominating clique C * √ H is an r-dominating clique in G . Assume that Z(G)
in G * of the same size, i.e.,

> H x M and let h* be a vertex from this intersection.
We prove that Z(G) r-dominates G . Suppose for the

gr,cl(G) Å gr =,cl(G *) . contrary that there is a vertex x with d(x , Z(G))ú r( x) .
Obviously, x √/ D(£, 1) , implying that d(£, x) Å d(h *,

Proof. Note at first that the rules (H1) and (H2) of x) / 1. Consequently, d(x , £) ú r( x) / r(£) / 1, a
Lemma 3.2 immediately imply that £ is r-dominated by contradiction to Theorem 3.3. Thus, Z(G) > H is empty
the vertex r *-dominating w . Thus, any r *-dominating and C is complete. By similar arguments (replace h * by
clique C * in G* is an r-dominating clique in G and, hence, h) , C r-dominates G . Since Z(G) does not r-dominate
gr,cl(G)° gr =,cl(G *) . To prove that gr,cl(G)¢ gr =,cl(G *) , G , the clique C is minimum and there is a private neighbor
let C be any minimum r-dominating clique of G . By x of h . Thus, Z(G) < {x} is a maximum strict r-packing
Lemma 3.6, we may assume that £ √/ C . If C r*-dominates set of G . This settles the case r(£) Å 0.
G *, then we are done. So, assume that C does not r*- To prove the assertion for r(£) ¢ 1, we proceed by
dominate G*, i.e., there is a vertex x in G * such that d(x , induction on the size of G . Define w , G*, and r* as in
C) ú r *(x) . But C is an r-dominating clique in G , i.e., Lemma 3.2 with S :Å V [ thus, case (H3) cannot arise] .
d(x , C) ° r( x) . From the definition of r *, we conclude From Lemma 3.7, we have gr =,cl(G *) Å gr,cl(G) . By the
that x Å w and r(w) x r *(w) Å r(£) 0 1, i.e., w is induction hypothesis, we have that pr =(G *) Å gr =,cl(G *) .
chosen by rule (H2). Since pr(G) ° gr,cl(G) , it remains to show that pr =(G *)

Assume that r(£) ¢ 2. Then, d(w , C) ¢ r(£) ¢ 2 ° pr(G) .
implies that either C ⊆ H or C > D(£, 2) Å M. In the By Lemma 2.3, we have only to consider the case
latter case, we obtain the contradiction d(£, C) Å d(w , r *(w) Å r(£) 0 1 õ r(w) and w belongs to a maximum
C) / 1 ¢ r(£) / 1. Thus, C ⊆ H and d(w , C) Å 2. Rule strict r*-packing set P * of G *. Since we only changed the
(H2) together with r(w) ¢ r(£) ¢ 2 implies that for all radius of w , we have d(w , y) x r(w) / r( y) / 1 for
vertices h √ H we have r(h) ¢ 2. We claim that ÉCÉ all vertices y √ P *" {w}.
Å 1, i.e., G is r-dominated by a single vertex, which is Suppose that there is a vertex y √ N(£) > P *" {w}.
a contradiction. Suppose that there are vertices c1 , c2 in From d(w , y) Å r(£) / r( y) ° 2, r(£) ¢ 1, and the
C . Let p1 , p2 be private neighbors of these vertices, i.e., choice of w in case (H2) of Lemma 3.2, we conclude
d(ci , pi ) Å r( pi ) , i Å 1, 2, and d(ci , pj) Å r( pj) / 1, that d(w , y) Å 2, y √ H , r( y) Å r(w) Å r(£) Å 1.
i x j . Since c1 , c2 are also in the homogeneous set H , Assume that there is a vertex x of P *" {w , y}. Then, we
the private neighbors must belong to H . But this implies get d(x , y) Å 2 / r( x) and d(w , x) Å 1 / r( x) . Since
that r( pi ) ° 1, i Å 1, 2, a contradiction. H is homogeneous and w , y are in H , we conclude that

So, r(£) Å 1. Then, C contains at least one vertex x √ H . But then r( x) Å 0, which is impossible in
from N(£) . From the choice of w according to (H2) and case (H2). Thus, pr =(G *) Å 2, contradicting pr =(G *)
since w √/ C , we obtain r(z)¢ 1 for all vertices z √ N(£) Å gr =,cl(G *) Å gr,cl(G) ¢ 3.
and r*(w)Å 0. If C ⊆ H , then {w , u} is an r*-dominating Therefore, for all y √ P *" {w}, we have d(£, y) ¢ 2
clique in G *, where u is an arbitrary vertex from N(£)"H and d(£, y) Å d(w , y) / 1 Å r(£) / r( y) / 1. So, the

set P :Å (P *" {w}) < {£} is a strict r-packing set of Gor from N 2(£) if H Å N(£) . Now assume that C ⊆/ H . If
C > HÅM, then replace some vertex of N(£) > C (recall and, hence, pr =(G *) ° pr(G) . j
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To verify the exception for the case gr,cl(G) Å 2, con- in N j
Gi

(£i ) , j Å 2, . . . , eGi
(£i ) , there is a path of length

sider an induced 4-cycle £0 0 £1 0 £2 0 £3 0 £0 with r(£i ) j joining x and £i and containing wi

Å 1 for all i √ {0, . . . , 3}. Obviously, gr,cl(G) Å 2 and
pr(G) Å 1. the distance matrix of G can be computed in optimal,

quadratic time O(n 2) .
Corollary 3.9. Let G be a homogeneously orderable

Proof. The assertion is proved by induction on n . Letgraph possessing an r-dominating clique:
(£1 , . . . , £n) be an ordering of G according to the pre-
sumptions. By the induction hypothesis, the distance ma-

1. If gr,cl(G) x 2 or pr(G) ú 1, then pr(G) Å gr(G)
trix of G2 :Å G" {£1} can be computed in time O(n 2) .Å gr,con(G) Å gr,cl(G) .
For any vertex x √ N(£1) , we have d(£1 , x) Å 1, for any

2. gr(G) Å gr,con(G) Å gr,cl(G) . vertex x √ V "D(£1 , 1) , (2) implies that d(£1 , x)Å d(w1 ,
x) / 1. For all pairs of vertices x , y √ V " {£1}, the

Corollary 3.10. In a homogeneously orderable graph G, distances remain the same by (1). Thus, updating the
any set of pairwise intersecting disks has either a non- distance matrix of G2 to G takes time O(n) . j
empty common intersection or there is an edge such that
for each of these disks at least one vertex of the edge Note that by Lemma 2.3 any homogeneously orderable
belongs to the disk. graph fulfills the presumptions of Theorem 4.1.

Proof. Let D Å {D(xi , ri ) : i Å 1, . . . , k} be a set
of pairwise intersecting disks and define a vertex function 4.1. r-Dominating Cliques and Strict
r : V r N by r-Packing Sets

By Theorem 4.1, the distance matrix of a given homoge-
neously orderable graph can be computed in quadraticr(£) :Å H ri : £ Å xi , i Å 1, . . . , k

diam(G) : otherwise. time. Thus, by Theorem 3.3, it can be decided within
the same time whether the given graph possesses an r-
dominating clique. Moreover, by using the distance ma-

Since the disks pairwise intersect, we have d(xi , xj) trix, it is easy to check in quadratic time, too, whether
° r( xi ) / r( xj) and pr(G) Å 1. Thus, by Theorem 3.3, the graph has an r-dominating vertex. So, assume for the
G has an r-dominating clique. The assertion follows from sequel that a given homogeneously orderable graph G is
the preceding corollary. j not r-dominated by some vertex but by some clique.

The following algorithm both computes an r-domi-
Again, an induced 4-cycle shows that homogeneously nating clique of minimum size and a maximum strict r-

orderable graphs are in general not Helly, i.e., it is not packing set of G . It works in three rounds. In the first
necessary that pairwise intersecting disks have a non- round, it steps through a given h-extremal ordering and
empty common intersection in a homogeneously or- manipulates r by using the rules of Lemma 3.2 and the
derable graph. arguments of Lemma 3.7 until it reaches a vertex £ with

Note that Theorem 3.8 and Corollaries 3.9 and 3.10 r(£) Å 0 or e(£) Å 1. In the second one, a minimum r-
generalize similar results for distance-hereditary graphs dominating clique C and a maximum strict r-packing set
presented in [11]. P of the current graph is chosen according to Lemma 3.1

and to the proof of Theorem 3.8. By Lemma 3.7, the
clique C is also a minimum r-dominating clique in G . If
ÉCÉ Å 2, then pr(G) ° 2, and a maximum strict r-4. THE ALGORITHMS
packing set P of the initial graph can be computed in
quadratic time by only using the distance matrix.At first, we present an efficient algorithm for computing

If ÉCÉ x 2, to find a maximum strict r-packing set inthe distance matrix of certain graphs in optimal, quadratic
G , the algorithm in the third round goes backward throughtime.
the sequence and updates the parameter P according to
the arguments of the proof of Theorem 3.8.Theorem 4.1. For any graph G possessing an ordering

In the sequel, an h-extremal ordering t of a homoge-(£1 , . . . , £n) such that for each i Å 1, . . . , n 0 1 it holds
neously orderable graph G is given as sequence of pairsthat (with G1 :Å G)
(£i , Hi ) , i Å 1, . . . , n , where £i is h-extremal in Gi

ÅG({£i , . . . , £n}) and Hi , DGi
(£i , 2) is a homogeneous

1. Gi/1 :Å G({£i/1,. . . ,£n}) is an isometric subgraph of Gi set in Gi which dominates DGi
(£i , 2) . This sequence of

2. For a given vertex wi in NGi
(£i ) and for any vertex x pairs can be obtained in O(n 3) time by using the recogni-
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tion algorithm from [7]. Note that t( i , 1) :Å £i and t( i , endif;
(11) stop (C , P) .2) :Å Hi for i Å 1, . . . , n . For convenience, we use the

following abbreviations: ei (£) :Å eGi
(£) and Ni (£)

:Å N(£) > V (Gi ) . We conclude

Algorithm RDC Theorem 4.2. In homogeneously orderable graphs, it
can be decided in time O(n 2) whether the given graph is

Input: A homogeneously orderable graph G with vertex r-dominated by some clique, provided that an h-extremal
function r : V r N and an h-extremal ordering t Å ((£1 , ordering is given. Moreover, if the graph has an r-domi-
H1) , . . . , (£n , Hn)) of G . nating clique, then a minimum one and a maximum strict
Output: A minimum r-dominating clique C and a maxi- r-packing set can be computed in the same time.
mum strict r-packing set P , or ‘No.’

Proof. We may assume that a given homogeneously
orderable graph G is not r-dominated by some vertex but(1) Compute the distance matrix D(G) of G .
by some clique. The three different cases arising in our(2) if not (∀x , y √ V : d(x , y) ° r( x) / r( y) / 1)
algorithm are the following:then stop (‘No’) .

(3) if ∃x √ V ∀y √ V " {x} : d(x , y) ° r( y) then CASE 1. e(£) ¢ 2 and r(£) ¢ 1.
stop ({x}, {x}). Define w , G *, and r * according to the rules (H1) –
(* Now, 1 õ gr,cl(G) õ ` *) (H3) of Lemma 3.2. By Lemma 3.7, we have that

(4) Compute Z(G) :Å {x √ V : r( x) Å 0}. gr,cl(G) Å gr =,cl(G *) , and each minimum r *-domi-
(5) i :Å 1; £ :Å t(1, 1); H :Å t(1, 2); G1 :Å G ; Z1 nating clique of G * is a minimum r-dominating clique

:Å Z(G) ; r1 :Å r . of G .
(* Round 1. *)

CASE 2. e(£) Å 1.(6) while (ri (£) ¢ 1) and (ei (£) ¢ 2) do
In this case, round one is terminated. Then, the parame-(6.1) if (H > Zi Å M) and (Ni (£) > Zi x M) then
ters (C , P) of the current graph defined according tochoose w √ Ni (£) > Zi

Lemma 3.1 are computed, and round three starts. This(6.2) else choose w √ H such that ri (w) Å min
can be done in time O(n 2) by using the distance ma-{ri (h) : h √ H};
trix.(6.3) ri/1(w) :Å min{ri (w) , ri (£) 0 1};

(6.4) s( i) :Å w ; (*pointer to the neighbor w of £ *)
CASE 3. e(£) ¢ 2 and r(£) Å 0.

(6.5) if ri/1(w) Å 0 then Zi/1 :Å Zi < {w} else Zi/1 In this case, round one is terminated. Since any r-
:Å Zi ; dominating clique is contained in D(£, 1) , either C

(6.6) forall x √ V (Gi )" {£, w} do ri/1(x) :Å ri (x) ; Å P Å Z(G) or C Å {h} < Z(G) and P Å Z(G)
(6.7) Gi/1 :Å Gi " {£}; i :Å i / 1; £ :Å t( i , 1) ; H

< {x}, where h √ H and x is a private neighbor of
:Å t( i , 2)

h . By the proof of Theorem 3.8, C is a minimum r-
endwhile;

dominating clique and P is a maximum strict r-packing
(* Round 2. *)

set of the current graph. By using the distance matrix,
(7) if ei (£) ° 1 then

this step can be easily performed in quadratic time.
(7.1) if Zi Å M then C Å P :Å {£}

Now round three starts.
(7.2) else if Zi ri-dominates Gi then C Å P :Å Zi

(7.3) else C :Å Zi < {£};
Obviously, the overall running time is O(n 2) . j(7.4) P :Å Zi < {u}, u private neighbor of £

(8) else (* ei (£) ¢ 2 and ri (£) Å 0 *)
(8.1) if Zi ri-dominates Gi then C Å P :Å Zi 4.2. Connected r-Dominating Sets
(8.2) else C :Å Zi < {h}, h √ H;

Here, we extend the method described in [10] (see also(8.3) P :Å Zi < {x}, x private neighbor of h
[5]) for the connected r-dominating set problem on du-endif;
ally chordal graphs to the class of homogeneously or-(* Round 3. *)
derable graphs. To prove the correctness of the next algo-(9) if ÉCÉ Å 2 then compute P by using D(G)
rithm, we will need the following lemma from [7].(10) else for j :Å i 0 1 downto 1 do

(10.1) w :Å s( j) ; £ :Å t( j , 1) ;
(10.2) if (rj/1(w) õ rj(w)) and (w √ P) then P Lemma 4.3 ([7]) . Let G be a homogeneously orderable

:Å (P" {w}) < {£} graph with h-extremal ordering s Å (£1 , . . . , £n) . Let
endfor G * be the graph obtained from G by adding an arbitrary

edge between vertices of N(£1) . Then, G* is homoge-
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neously orderable and s remains an h-extremal ordering conclude that D cannot r *-dominate G *. Since
we have only changed the r-value of h in G * andfor G *.
D is a connected r-dominating set in G , the only
vertex in G* which is not r *-dominated by D isFor the sequel, let £ be an h-extremal vertex with e(£)
h , i.e., d(h , D) ú r *(h) Å r(£) 0 1. But D r-¢ 2 and let H ⊆ N(£) be a homogeneous set dominating
dominates £ in G , i.e., d(£, D) ° r(£) . FromD(£, 2) . Define A :Å N(£)"H , rH :Å min{r(h) : h
r(£) ¢ 2, we have d(h , D) ¢ 2. If D√ H} and rA :Å min{r(a) : a √ A} (if A Å M, we put ⊆ V (G)"D(£, 2) , then we have d(£, D) Å d(h ,rA :Å `) . Moreover, suppose that £ does not r-dominate
D) / 1 ú r(£) , a contradiction. Otherwise, weG . Define G * :Å G" {£} and let S* be a minimum con-
immediately conclude that D , H and d(h , D)nected r *-dominating set in G * (r * will be defined in the
Å r(£) Å 2. From r(h) Å rH ¢ 2, we obtain thatfollowing cases) . In what follows, we describe how we
h r-dominates G and r *-dominates G *, yieldingcan obtain a minimum connected r-dominating set S in
a contradiction.G from S *.

CASE 3.2. £ √ D .
CASE 1. r(£) ú 0 and min{rH , rA} Å 0. From min{rH , rA} ú 0, we conclude that ÉD

We define r *(x) :Å r( x) for all vertices x √ V (G *) > N(£)É Å 1 (recall that £ does not r-dominate G) .
and claim that S :Å S * is a minimum connected r- We may assume that D > N(£) Å {h}. If D >
dominating set in G . Obviously, S is a connected r- N 2(£) x M, then we can delete £, contradicting the
dominating set in G . Suppose that S is not minimum, minimality of D . Thus, D ⊆ D(£, 1) . But now we
but D . Since we did not change the r-values in G*, can replace £ by some vertex w of N 2(£) , obtaining
we immediately conclude that £ √ D . Moreover, not a connected r-dominating set of the same size as D
both of rA and rH can be zero, for, otherwise, we can but without £, a contradiction by Case 3.1.
delete £ [recall that H is homogeneous and dominates

CASE 4. r(£) Å 1 and min{rH , rA} ú 0.D(£, 2)] . If rA Å 0, then we can replace £ in D by
We distinguish between two subcases:some vertex h in H obtaining a connected r-dominating

set of the same size as D but without £, a contradiction. CASE 4.1. There is a vertex x in Ni(£) , i ¢ 2, such
If rH Å 0, then we can replace £ by some vertex w of that d(x , £) ¢ r( x) / 2.
A < N 2(£) which yields the same contradiction. Thus, We define r*(h) :Å 0 for an arbitrary vertex h of
S is minimum. H and r *(x) :Å r( x) for all x √ V (G *)" {h}.

We prove that S :Å S * is a minimum connected r-CASE 2. r(£) ú rH and min{rH , rA} ú 0.
dominating set in G .Again, we define r *(x) :Å r( x) for all vertices x

Since d(x , £) ¢ r( x) / 2 and r(£) Å 1, in any√ V (G *) and claim that the connected r-dominating
connected r-dominating set D of G there must beset S :Å S * is minimum in G . Suppose that there is a
a vertex from N 2(£) . Moreover, such a set D maysmaller connected r-dominating set D in G . Since we
not contain £ and its intersection with N(£) is adid not change the r-values in G*, we immediately
singleton since min{rH , rA} ú 0. Thus, we mayconclude that £ √ D . Moreover, from min{rH , rA}
assume that S * > N(£) Å {h}, which implies theú 0, we obtain ÉD > N(£)É Å 1. W.l.o.g., we may
correctness.assume that D > N(£) ⊆ H .

CASE 4.2. For all vertices x √ V "D(£, 1) , we haveIf D > N 2(£) x M, then we can delete £, a contra-
d(x , £) ° r( x) / 1. If H is r-dominated by somediction to the minimality of D . Thus, D ⊆ D(£, 1) .
vertex h √ H , then S :Å {h}. Otherwise, eitherBut now we can replace £ by some vertex w of N 2(£)
there is a vertex a √ A which r-dominates G or S[recall that e(£) ¢ 2], obtaining a connected r-domi-
contains at least two vertices. But, then, we maynating set of the same size as D but without £, a contra-
choose S :Å {£, h} where h is an arbitrary vertexdiction.
from H .

CASE 3. 1 õ r(£) ° rH and rA ú 0.
CASE 5. r(£) Å 0.Choose a vertex h from H such that r(h) Å rH ; define

If there is a vertex w √ N(£) with r(w) Å 0, then wer *(h) :Å r(£) 0 1 and r*(x) :Å r( x) for all remaining
do not change the r-values. Otherwise, define r *(w)vertices. We claim that the connected r-dominating set
:Å 0 for an arbitrary vertex w of H and r *(x) :Å r( x)S :Å S * is minimum in G . Suppose that there is a
for all other vertices. In both cases, add the edgesconnected r-dominating set D such that ÉDÉ õ ÉSÉ
between each vertex of N(£)" {w} and w in G * (byholds.
Lemma 4.3, G* has the same h-extremal ordering as
G) . Moreover, the distance matrix of G * can be ob-CASE 3.1. £ √/ D .

From the minimality of S * in G *, we immediately tained in linear time from the distance matrix of G .
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It is easy to see that S :Å S * < {£} is a connected (S19) S :ÅLocalCRDS( j / 1, G" {£}, r*,
D(G" {£}));r-dominating set in G . Using the same arguments as

in the preceding cases, we can prove that S is a mini- (S20) stop(S)
(S21) else if r(£) Å 1 thenmum one.
(S22) if ∃x √ V (G)"D(£, 1) : d(£, x)

¢ r( x) / 2 thenFinally, consider the case e(£)° 1. If there are vertices
(S23) Choose h √ H .with r-value zero, i.e., Z(G) x M, then Z(G) or Z(G)
(S24) r *(h) :Å 0;< {£} is a minimum connected r-dominating set of G .
(S25) forall x √ V (G)" {£, h} do r*(x)Otherwise, £ r-dominates G .

:Å r( x) ;In the following algorithm, we will use the same no-
(S26) S :ÅLocalCRDS( j / 1, G" {£},tions as in the algorithm RDC.

r *, D(G" {£}));
(S27) stop(S)Algorithm CRDS.
(S28) else if ∃x √ N(£) which r-dominates

G then stop({x})Input: A homogeneously orderable graph G with vertex
(S29) else stop({£, h}), h √ Hfunction r : V r N and an h-extremal ordering t Å ((£1 ,
(S30) else (* r(£) Å 0 *)H1) , . . . , (£n , Hn)) of G .
(S31) if ∃w √ N(£) : r(w) Å 0 then takeOutput: A minimum connected r-dominating set S .

w with r(w) Å 0
(S32) else choose an arbitrary vertex w

(1) Compute the distance matrix D(G) of G . √ N(£) ;
(2) S :Å LocalCRDS (1, G , r , D(G)) ; (S33) r*(w) :Å 0;
(3) stop(S) . (S34) forall x √ V (G)" {£, w} do r *(x)

:Å r( x) ;
Hereby, we use the following: (S35) forall x √ N(£)" {w} do add edge

xw ;
subroutine LocalCRDS( j , G , r , D) : S (S36) Let G* be the resulting graph and
Input: A positive integer j , a homogeneously orderable D * be the distance matrix of
graph G with vertex function r and distance matrix D . G*" {£}.
Output: A minimum connected r-dominating set S of G . (S37) S :ÅLocalCRDS( j / 1, G *" {£},

r*, D*) ;
(S38) stop(S < {£}).(S1) £ :Å t( j , 1) ; H :Å t( j , 2) ;

(S2) if e(£) ° 1 then
(S3) Compute Z(G) :Å {x √ V (G) : r( x) Å 0}. Theorem 4.4. In homogeneously orderable graphs, a
(S4) if Z(G) Å M then stop({£}) minimum connected r-dominating set can be computed in
(S5) else if Z(G) is connected then stop(Z(G)) time O(n 2) provided that an h-extremal ordering is given.
(S6) else stop(Z(G) < {£})

endif: Proof. The correctness follows from the preceding
cases. To verify the time bound, recall that the distance(* Now, e(£) ¢ 2. *)

(S7) if £ r-dominates G then stop({£}). matrix of G can be computed in quadratic time by Theo-
rem 4.1. In the subroutine LocalCRDS , all parts up to(S8) rH :Å min{r(h) : h √ H};

(S9) A :Å N(£)"H; steps (S5) and (S28) run in time O(n) . In step (S5),
the connectedness of Z(G) must be checked. This step(S10) if A Å M then rA :Å ` else rA :Å min{r(a) : a

√ A}; costs O(n / m) time, but it will be performed only once;
it terminates the recursion. The same holds for steps(S11) if (r(£) ú rH) or (r(£) ú 0 Å rA) then

(S12) S :ÅLocalCRDS( j / 1, G" {£}, r , (S28) and (S29). Indeed, to compute S in steps (S28)
and (S29) in time O(n / m) , proceed as follows: LetD(G" {£}));

(S13) stop(S) H1 be the vertices of H with r-value 1. If there is a vertex
h √ H which is adjacent to each vertex of H1 , then define(S14) else (* Now, r(£) ° rH and, if r(£) ú 0 then rA

ú 0. *) S :Å {h}. Otherwise, for all vertices a √ A , check
whether a r-dominates G using the distance matrix of G .(S15) if r(£) ú 1 then

(S16) Choose h √ H such that r(h) Å rH . If there is such a vertex a , then put S :Å {a}; otherwise,
define S :Å {£, h} for an arbitrary vertex h in H .(S17) r *(h) :Å r(£) 0 1;

(S18) forall x √ V (G)" {£, h} do r*(x) Thus, all recursive steps in LocalCRDS run in time
O(n) , whereas those steps which terminate the recursion:Å r( x) ;
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