
Received February 9, 2021, accepted February 18, 2021, date of publication February 23, 2021, date of current version March 5, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3061601

R-EDoS: Robust Economic Denial of Sustainability
Detection in an SDN-Based Cloud Through
Stochastic Recurrent Neural Network

PHUC TRINH DINH 1, (Member, IEEE), AND MINHO PARK 1,2, (Member, IEEE)
1Department of Information Communication, Materials, and Chemistry Convergence Technology, Soongsil University, Seoul 156-743, South Korea
2School of Electronic Engineering, Soongsil University, Seoul 156-743, South Korea

Corresponding author: Minho Park (mhp@ssu.ac.kr)

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT)

(No. 2020R1F1A1076795).

ABSTRACT Cloud computing is now known as the most cost-effective platform for delivering big data and

artificial intelligence services over the Internet to enterprises and cloud consumers. However, despite many

recent security developments, many cloud consumers continue to express great concern about using these

platforms because they still have significant vulnerabilities. Typically, Economic Denial of Sustainability

(EDoS) attacks exploit the pay-as-you-go billing mechanisms used by cloud service providers, so that a

cloud customer is forced to pay an extra fee for the additional resources triggered by the attack activities.

In our previous work, we already proposed an system to mitigate such EDoS attacks. Overall, this previous

work presented an effective system for detecting abnormal events; however, the false-alarm rates still remain

relatively high and detection rates are low, because abnormal events could be caused by the cloud customer.

Furthermore, our previous work still consumes a large number of computing resources. Therefore, in this

paper, we propose an enhanced scheme to detect and mitigate EDoS attacks efficiently and reliably. Our

proposed scheme is composed of online and offline phases, implementing a gated recurrent unit, which

not only can capture complex temporal dependence relations in the data, but also can reduce the vanishing

gradient problems in time series. First, to reflect the normal patterns, our proposed scheme learns accurate

representations of multivariate time series. Next, these representations are used to reconstruct input data.

Finally, the reconstruction probabilities not only can be used to find anomalies, but also can provide

interpretations. The proposed scheme also introduces a self-adjusting threshold to reduce error rates, whereas

existing solutions normally use a hard threshold to analyze the anomalies, which causes increasing error rates.

Our comprehensive analysis of the results shows outstanding performance compared to other solutions and

our previous work.

INDEX TERMS Economic denial of sustainability, software-defined networking, deep learning, cloud

computing, network function virtualization, service function chaining.

I. INTRODUCTION

In Cloud Computing, two technologies known as software

defined networking (SDN) [1] and network functions virtu-

alization (NFV) [2] are quickly becoming core technologies.

SDN offers a new method which very significantly reduces

the complexity of network devices and provides efficient

network management. NFV is designed to develop, deliver,

and manage network services much less expensively through

The associate editor coordinating the review of this manuscript and

approving it for publication was Xianzhi Wang .

virtualization. Moreover, a new technology known as service

function chaining (SFC), which is the use of ordered lists of

service functions composing virtual chains, chains together

network services such as load balancing, antivirus, and deep

packet inspection, and then steers the network traffic through

such services (Figure 1).

A. PROBLEM STATEMENTS

Cloud computing provides some unique features such as

dynamic resource assignment and usage-based payment

that are considered to be in high demand compared to

VOLUME 9, 2021
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 35057

https://orcid.org/0000-0003-0076-1881
https://orcid.org/0000-0003-3033-192X
https://orcid.org/0000-0001-9582-3445

P. Trinh Dinh, M. Park: R-EDoS: Robust Economic Denial of Sustainability Detection in an SDN-Based Cloud Through Stochastic RNN

FIGURE 1. SFC sitting on NFV integrating with SDN on cloud.

conventional computing services. However, there remain

grave concerns about cloud computing security [5]. For

instances, exploiting a pay-as-you-go pricing engine on the

cloud can force users to pay more for their resource usage.

This is commonly known as an EDoS attack, and is one of

the most difficult cloud security challenges.

The definition of EDos attack is as follows. A special fea-

ture on the cloud called auto-scaling monitors various metrics

such as network bandwidth, memory, and CPU usage. This

is triggered when the parameters cross predefined thresh-

olds. Once activated, a cloud service provider automatically

allocates more resources to meet the increased demands and

charges the cloud user according to the service-level agree-

ment. An EDoS attacker exploits the auto-scaling engine to

force a target cloud user to pay more for extra resources.

EDoS problems become extremely difficult to tackle because:

• In the use of SFC, virtual network functions (VNFs)

are normally public to internet users. Therefore, EDoS

attackers exploit this to launch more VNFs or other

reasons [7].

• Existing solutions addressing EDoS attacks are mainly

hard-threshold-based solutions with high false-alarm

rates [6]. Also, they work well only for a certain distri-

bution of attack traffic, i.e. a Poisson distribution. More-

over, they only focus on some specific types of attack,

leaving significant remaining vulnerabilities [39].

• There is still a trade-off between resource consumption

and detection performance for an EDoS defender. There-

fore, it is a difficult challenge to find a solution that

satisfies both resource usage and detection performance

requirements.

The harmful effects of EDoS attacks are thus a serious secu-

rity limitation of essentially all cloud-based network systems.

Moreover, not many solutions can tackle EDoS attack effec-

tively [6]. A more intelligent, robust approach is needed to

ensure that the EDoS attacks can be mitigated effectively.

B. OUR PROPOSAL

We propose a robust, intelligent, and efficient scheme to

tackle EDoS attacks, employing a technique namedmultivari-

ate time series anomaly detection. In the proposed scheme,

an anomaly score, used as a basis of attack detection, is com-

pared with a dynamic threshold set automatically according

to a trained machine learning model processing traffic statis-

tics collected from a network system. Thus, our scheme can

detect EDoS attacks efficiently and is well-adapted to diverse

network systems. Furthermore, as a recommendation inspired

by N. Agrawal et al., an SDN-based cloud security service

provides various options on the cloud (i.e., software-based

traffic analysis [47]). Therefore, we propose a more com-

plete EDoS defense system to detect and mitigate the EDoS

attacks, which we name robust EDoS defender (R-EDOS).

C. CONTRIBUTION

In summary, our main contributions are listed as follows:

• First, existing solutions addressing EDoS attacks are

mainly hard-threshold-based solutions with high false-

alarm rates [6]. Also, their solutions work well only for a

certain distribution of attack traffic, i.e. a Poisson distri-

bution.Moreover, they only focus on some specific types

of attack, leaving significant remaining vulnerabilities

[39]. Therefore, we propose a new approach that can

tackle the above issues, known as a multivariate time-

series, to deal with stealthy EDoS attacks, effectively.

• Secondly, we propose an efficient scheme called R-

EDoS which applies the proposed approach to detect

anomalous network data generated by EDoS attacks.

• Next, we investigate the characteristics of EDoS attacks,

and present common types of EDoS attacks in an SDN-

based cloud environment.

• We conducted an experiment using simulated different

EDoS attacks on a popular cloud computing platform

called OpenStack and an ONOS SDN controller [49].

This integration could be replaced by other SDN con-

trollers, such as OpenDaylight or Floodlight.

• Finally, we collected and analyzed the experimental

data, and made a detailed comparison with other algo-

rithms and other existing proposals, including our previ-

ous work, in different EDoS attack scenarios. An exten-

sive comparison of R-EDoS against other approaches

proves the detection capability of our proposed scheme.

The remainder of this research study is presented as follows.

The next section presents related work and Section III dis-

cusses background information. Section IV introduces our

research rationale, system design analysis, and internal mod-

ules. Section V describes our testbed. In Section VI, a vari-

ety of evaluation metrics are used to evaluate our proposed

scheme. Finally, Section VII draws some conclusions and

presents future improvements.

II. RELATED WORK

Recently, EDoS has constantly attracted the attention of

researchers for preventing the EDoS attacks from manip-

ulating the auto-scaling engine of the cloud providers.

Table 1 shows different approaches to detect and mitigate

EDoS attacks.

Even though many proposals have been proposed to tackle

EDoS attacks (as presented in Table 1); however, no existing

proposals have the right approach and propose an effective

scheme to tackle such stealthy EDoS attacks effectively and

dynamically.

35058 VOLUME 9, 2021

P. Trinh Dinh, M. Park: R-EDoS: Robust Economic Denial of Sustainability Detection in an SDN-Based Cloud Through Stochastic RNN

TABLE 1. Comparison of different EDoS mitigation approaches.

From the above analyses and recommendations on defense

inspired by two in-depth studies on EDoS characteristics

proposed recently ([4] and [47]), we propose a novel effective

solution to deal with EDoS attacks.

III. BACKGROUND KNOWLEDGE

A. EDoS ATTACKS ON SDN-BASED CLOUD

In EDoS attacks, by definition, the main purpose is to force a

cloud user to rent extra computing resources by manipulating

the auto-scaling engine on the cloud so that the user has to

pay more money. As shown in Figure 2, before launching an

EDoS attack, only three virtual machines are launched. A vir-

tual machine (VM) is a virtual environment that functions as

a virtual computer system. However, an EDoS attack exploits

the auto-scaling engine in order to launch extra six VMs to

meet the resource consumption of the cloud applications so

that a cloud user is requested to pay for the attack activities.

Compared to a DDoS attack, an EDoS attack is stealthier

and can be highly concealed [6]. A DDoS attacker aims

to shut down the network system entirely by irrationally

VOLUME 9, 2021 35059

P. Trinh Dinh, M. Park: R-EDoS: Robust Economic Denial of Sustainability Detection in an SDN-Based Cloud Through Stochastic RNN

FIGURE 2. Before and after launching EDoS attacks.

FIGURE 3. EDoS attack region with attack strength.

by simply launching an attack with the utmost resources.

Conversely, EDoS attackers are usually more sophisticated

and highly logical. They increase the amount of unauthorized

traffic gradually, and the main purpose is to force their target

to pay more. EDoS attacks always try to stay below a tra-

ditional intrusion detection system’s threshold value. In an

SDN context, EDoS attacks not only degrades the SDN/NFV

paradigm on the service provider end, but also forces a cloud

user to pay for the unexpected attack event caused by an

EDoS attacker. Figure 3 shows different traffic regions among

normal traffic, EDoS, and DDoS. The intensity of EDoS

attacks normally stays below the intensity of DDoS attacks.

Therefore, an EDoS attack can easily bypass DDoS defense

mechanisms. Thus, detecting an EDoS attack becomes a very

complex challenge. An intelligent and robust approach is

needed for cloud users and service providers to detect to

detect EDoS attacks emerging in real time.

Compared to an EDoS attack in the cloud, an EDoS attack

in an SDN-based cloud environment is basically similar.

However, by integrating an SDN paradigm into a cloud envi-

ronment, an EDoS attack can be easily detected because the

SDN paradigm provides software-based traffic analysis [47],

which means it provides various important traffic statistics

provided by an SDN controller where it controls, manages,

and collects all the network traffic. Therefore, we first pro-

pose a novel EDoS defense approach, leveraging the benefits

of the SDN paradigm, to not only detect andmitigate different

EDoS attacks effectively but also overcome the shortcomings

of the existing approaches (as stated in sections I.A and I.C).

FIGURE 4. SDN-based cloud prototype.

B. SDN-BASED CLOUD

SDN/NFV paradigm where two technologies NFV and SDN

are combined (as showed in Figure 4) [2] includes a control

module including SDN controller and an NFV orchestrator,

and network devices. The SDN controller takes responsibility

for managing the traffic path to exchange information with

forwarding devices (OpenFlow switch) using the OpenFlow

protocol primarily. And the NFV orchestrator is responsible

for managing NFV services. VMs, which operate on top

of hypervisors, are normally supported by hypervisors in

launching and running network functions. Readers can refer

to [2] for specific details of the SDN/NFV paradigm. Note

that a VM in Figure 4 implies a virtual machine.

C. GRU, VAE, VARIATIONAL METHOD, AND NORMALIZING

FLOWS

Recurrent neural networks (RNNs) [18] are a set of feed-

forward neural networks commonly used for time series data.

Unlike conventional neural networks, RNN’s have an inte-

grated internal memory to process sequences of inputs. How-

ever, RNNs are vulnerable to exploding and vanishing gradi-

ent problems. Moreover, they cannot process long sequences.

Fortunately, a variant form of RNN called gated recurrent

unit (GRU) can overcome RNNs’ major disadvantages. It is

explicitly designed to avoid the long-term dependency prob-

lem which normally arises in time series data [19]. Thus,

in this work, we employ the GRU mechanism.

In detecting anomalies of higher-dimensional data like

multivariate time series [21], a famous method known as a

35060 VOLUME 9, 2021

P. Trinh Dinh, M. Park: R-EDoS: Robust Economic Denial of Sustainability Detection in an SDN-Based Cloud Through Stochastic RNN

FIGURE 5. Two suspected regions highlighted in dashed-blue lines A1
and A2 occur during normal and attack periods.

variational autoencoder (a.k.a. VAE) [20] is often used. This

provides a probabilistic model for describing an observations

in latent space, and can also be transformed into a lower-

dimension space preserving particular properties of the orig-

inal dimension space.

Another variational algorithm known as stochastic gradient

variational Bayes (SGVB) [20] commonly is used along with

VAE to tune parameters. As proposed in [26], SGVB is

not only used to tune parameters of both φ and θ but also

maximize the evidence lower bound (a.k.a. ELBO).

To train a machine learning model, its parameters must

be tuned for increasing the probability of predicting data in

the training dataset under the model. However, this can be

problematic if the output of the model is assumed to show a

Gaussian distribution, as the true probability density function

(PDF) of real data is often far from Gaussian. Therefore,

Danilo Rezende et al. proposed a transformation technique

called Planar normalizing flows (Planar NF) [22] to capture

(qφ(zt |xt)) which is the non-Gaussian posterior density by

transforming it using invertible mappings.

The basic idea of the combination of the four key tech-

niques above is described as follows. GRU first captures

complex spatiotemporal dependencies in state-space. Next,

a variational algorithm (VAE) maps observations in state-

space to stochastic variables. Next, a connection technique

introduced in [27] known as linear Gaussian state-space mod-

eling connects stochastic variables to GRU hidden variables

[26]. Finally, a normalizing flow technique known as ‘‘planar

flow’’ is used to support stochastic variables in qnet (defined

in section IV.D.6) in capturing highly complex distributions

of input data.

IV. R-EDoS: ROBUST EDoS DETECTION AND MITIGATION

In this section, our research rationale and an analysis of our

system design are first given. Then, the components, work-

flow scheme, and the system process logic are introduced,

respectively. Finally, the internal components of our proposed

scheme are thoroughly explained. Also, all variables, con-

stants, and parameters are summarized in Table 2.

A. PROPOSED SCHEME RATIONALE AND DESIGN

ANALYSIS

Cloud users are normallymonitoredwith variousmetrics over

time when auto-scaling of resources is critical for service

TABLE 2. Notation definitions.

level agreements (SLA). For instance, as illustrated in Fig-

ure 5, cloud instances’ parameters, such as CPU utilization

(cpu_util), memory consumption (memory_consumption),

number of incoming bytes (network.incoming.bytes) and so

on, are collected and tracked by the auto-scaling engine. If an

EDoS attack is initiated, some of the chosen metrics will

abruptly change their values. Therefore, to detect anomalous

periods in our multivariate time series during the attack,

we need an intelligent model capable of learning from the

network system. Thus, in this paper, we employ a method

known as a stochastic recurrent neural network [26] that

not only is able to learn from historical data but also to

simultaneously keep track of the multivariate time series to

detect an EDoS attack. The key idea of this technique is to

output an anomaly score by learning from the patterns of

the multivariate time series; then to compare this anomaly

score with a dynamic threshold by using the reconstruction

probabilities, thus detecting anomalies accurately.

A single time series involves consecutive observa-

tions that are appended at equally spaced timestamps

[29]. Multivariate time series can be expressed as

x ={x1, x2, . . . , xN}, where N indicates x’s length, each

observation (i.e. xt ∈ R
M) is a vector with M dimensions,

at time t(t ≤ N) : xt = [x
(t)
1 , x

(t)
2 , . . . , x

(t)
m], and x ∈ RM×N .

The xt−T :t (∈ RM×(T+1)) indicates a set of observations

VOLUME 9, 2021 35061

P. Trinh Dinh, M. Park: R-EDoS: Robust Economic Denial of Sustainability Detection in an SDN-Based Cloud Through Stochastic RNN

FIGURE 6. Conceptual architecture of our EDoS defense scheme.

from time t − T to t written as {xt−T , xt−T+1, . . . , xt}. The

objective of anomaly detection in multivariate time series

is to decide if a new observation xt is normal. Moreover,

the historical data is crucial for predicting the current value

of a sequence in a time series. Therefore, we take all the

sequences xt−T :y to calculate an anomaly score. An anomaly

score for xt is produced from the anomaly detection model,

then this anomaly score is compared against a dynamic

threshold to calculate the anomaly prediction result.

Figure 6 is sketched to show a complete overview of

our EDoS defense framework extending from both a con-

trol layer and a application layer with different modules.

Specifically, a raw data preprocessing scheme, a training

database, and an attack handler are placed in the SDN control

layer; whereas a model training, a dynamic threshold, and an

online detection modules are located in the SDN application

layer.

B. R-EDoS MAIN MODULES AND SYSTEM WORKFLOW

Our EDoS defense scheme is placed in the SDN controller,

including five main modules, as presented in Figure 7, which

are a raw data processing scheme consisting of five sub-

modules, an offline training model, an online detection,

a dynamic threshold module, and an attack handler. This raw

data processing module includes a traffic collector, an fea-

ture extractor, a transformation & standardization module,

a Savitzky-Golay filter module, and an augmented Dickey-

Fuller test, in that order.

The data preprocessing scheme is constructed from five

different sub-modules and is also used by both model training

and online detection. The process inside the module proceeds

as follows. First, the traffic collector sub-module reliably

gathers data on both data plane and instances at a certain

periods of time. Subsequently, a feature extractor sub-module

receives this data. Next some of the extracted features are

selected as more relevant, and are further transformed into

scaled data and smoothed using a Savitzky–Golay filter tech-

nique in order to raise the precision of the data without distort-

ing the signal tendency and is checked stationarity using an

augmented Dickey-Fuller sub-module. Once the data is iden-

tified as stationary, then it is divided into a series of sequences

through sliding windows [30] (T +1 in length). After the raw

data is preprocessed through this scheme, and given amount

of time elapses (i.e. 5 minutes), the training module starts a

training session using the preprocessed data. During training

with the preprocessed data, the learning model tries to discern

typical patterns in the data, and then scores a new observation.

This scoring value is called an anomaly score, later compared

with a dynamic threshold following the peaks over threshold

(POT) approach [32].

Note that, to effectively adapt our proposed scheme to

different network systems, we continually update the training

database with new attributes that are collected from the raw

data preprocessing in a preset time.

C. SYSTEM PROCESS LOGIC

As seen in Algorithm 1, N is represented a sequence of

observations where each observation is an M -dimensional

vector where each dimension indicates a network metric.

Furthermore, xι
t−T :t (∈ R

M×(T+1)) is denoted as a set of obser-

vations {xι
t−T , xι

t−T+1, . . . , x
ι
t} starting from time t − T to t .

The variable curLength denotes the length of current xι
t−T :t .

It is later comparedwith the length of xι
t−T :t at the next current

time t . Before sending the sequence xι
t−T :t with T consecutive

observations to both the offline model training (OfflineMT)

and online detection (OnDetect) models, xι
t−T :t is fed into a

transformation & standardization sub-module (TSS) so that

the input can be transformed, and standardized xι
t−T :t . Once

the input is already transformed and standardized in the TSS

sub-module, a new sequence is formed from xι′

t−T :t . This

sequence is then filtered using the Savitzky–Golay tech-

nique (SAGF) and is checked for stationarity or using an

augmented Dickey-Fuller test (AUDF). xt−T :t represents the

sequence of successfully passing the stationarity test. Once an

anomaly threshold thF and an anomaly score anomaly_score

are obtained from the dynamic threshold module D− thres,

and OnDetect; a new observation will determine whether the

anomalous data indicates an attack as follows:

• If S2t >= thF is true, then it indicates the new observa-

tion coming from a normal source. Thus, the algorithm

is looped over again.

• Otherwise, the new observation is predicted to be

derived from an attack source. The observation is sent

to the attack handler to perform either drop or remove

actions. Then, the algorithm is also looped over again.

D. INTERNAL MODULES

Here, we present all the components of R-EDoS in order,

as shown in Figure 7.

35062 VOLUME 9, 2021

P. Trinh Dinh, M. Park: R-EDoS: Robust Economic Denial of Sustainability Detection in an SDN-Based Cloud Through Stochastic RNN

FIGURE 7. Main modules of our EDoS defense scheme sitting in the application layer of SDN.

Algorithm 1R-EDoS: Robust EDoSAttack Defense Scheme

N ←− A sequence of observations

xι ={xι
1, x

ι
2, . . . , x

ι
N}←−A set of multivariate time-series

including attributes of an observation

M ←− M -dimensions for each observation

xι
t = [xι1

t , xι2
t , . . . , xιM

t] −→ xι
t ∈ R

M

{xι
t−T , xι

t−T+1, . . . , x
ι
t} −→ xι

t−T :t (∈ RM×(T+1)), from

time t − T to t

TSS←− a transformation & standardization sub-module

SAGF ←− Savitzky–Golay filter sub-module

AUDF ←− augmented Dickey-Fuller test sub-module

OfflineMT ←− offline model training module

OnDetect ←− online detection module

D− thres←− dynamic threshold module

S1i (ano_score)←− output of OfflineMT

S2t (ano_score)←− output of OnDetect at time t

curLength = (xι
t−T :t).length()

loop

while true:

if (xι
t−T :t).length() > curLength do

curLength+ = 1:

Send xι
t−T :t to TSS −→ xι′

t−T :t

Send xι′

t−T :t to SAGF −→ xι′′

t−T :t

Send xι′′

t−T :t to AUDF −→ xt−T :t
Send xt−T :t to OfflineMT −→ S1i
Send S1i to D− thres −→ thF
Send xt−T :t to OnDetect −→ S2t
if S2t < thF then

normal_source_boolean = 0 (attack traffic)

Forward x −→ AttackHandler :

else

normal_source_boolean = 1 (normal traffic)

continue

end if

end if

end while

end loop

1) TRAFFIC COLLECTOR

There are two sources (data plane and instances) that the

traffic collector needs to gather to guarantee the adequacy

TABLE 3. Top (17/38) key features.

of all key features as described in Table 3. First, a statistics

request function is run periodically to request statistics of

an OpenFlow switch in order to collect data from the data

plane (Figure 7). Once the OpenFlow responds to the request

function, the OpenFlow channel forwards a StatsResponse

message which includes requested statistics to the data pro-

cessing scheme. Meanwhile, a Python script fetches other

necessary statistics of cloud instances monitored by Open-

Stack Ceilometer.

2) FEATURE EXTRACTOR

At this stage, we run a feature selection process to automat-

ically select features that contribute the most to the classifi-

cation decision, applying the Boruta algorithm [34] to select

both unbiased and stable attributes. There are some factors

that make Boruta a notable success in finding top important

features from particular data like time series; for instance,

it takes both the interactions and the relationships of multiple

variables into account. The Boruta algorithm workflow can

be summarized as follows. First, it duplicates the original

dataset; then the z_score values, which are acquired from

the two dataset using a random forest algorithm, are used

to compare with each other. Next, if z_score value in the

VOLUME 9, 2021 35063

P. Trinh Dinh, M. Park: R-EDoS: Robust Economic Denial of Sustainability Detection in an SDN-Based Cloud Through Stochastic RNN

Algorithm 2 R-EDoS: Feature Extractor Module - Boruta

in_param feature set: FS = {f1, f2, . . . , ft }, dataset: D

out_params a set of selected featuresFselect = attributes[]

Read D

nof s←− attributes[].length

for f = 1 to nof s do:

Create shadow variable varshadowf

Embed varshadowf to the information system

end for

varshadowshuf ←− Randomly shuffle the varshadowf across

objects.

zscore[] = RandF_Clf (train_set, varshadowshuf)

Define max = 0, r = 0

while r ≤ max_RandF_runs do:

for f = 1 to numf do:

zscore[] = RandF_Clf (train_set, attributes[f])

maxz_score←− z_score[f]

if z_score[f] > maxz_score then:

attributes[f] −→ ‘‘Im′′

else if z_score[f] < maxz_score then:

attributes[f] −→ ‘‘Un′′

else:

Perform two sided equality test

(∀attributes[f] 6= ‘‘Im′′) && (∀attributes[f] 6=

‘‘Un′′)

attributes[f] −→ ‘‘Und ′′

end if

end for

end while

return attributes[f]

Note that: ‘‘Und’’: Undetermined, ‘‘Im’’: Important, ‘‘Un’’:

Unimportant

duplicated dataset is consecutively smaller than in the original

dataset, then the selected feature is chosen.

The following Algorithm 2 and 3 explain the processes

of feature selection with Boruta in detail. First, an addition

system is created by using shadow samples (varshadowf) for

all variables ft ∈ FS in which all the features are mixed

to eliminate biases and high correlations among them. Next,

a random forest algorithm (RandF_Clf) is trained using this

addition system, and then it is used to evaluate the importance

level of each feature (varip). Classification is then conducted

using decision trees from different bagging samples. The

z_score score is then calculated. It is noted whether the

z_score score is statistically significant for the feature; if

not the procedure is run again several times. During every

iteration, by comparing a random set of attributes with actual

attributes, a maximal importance (maxz_score) is calculated.

For all the attributes, a statistical test is conducted. After the

test, trivial attributes are removed. If the importance value

of an attribute is greater than maxz_score, then the attribute is

considered ‘‘important’’. On the contrary, If the importance

value of an attribute is considerably smaller than maxz_score,

Algorithm 3 Define RandF_Clf Function

def RandF_Clf(train_set, feature):

{

Define T −→ # trees

counter = 0

for 1 = 1 to T do:

Bootstrap samples with m variables

∀m, calculate the importance varip based on gini

impurity measurement

DSTt −→ decision tree of m variables

Define nodemin −→ minimum node size

if counter ≤ nodemin then:

Add node to DSTt
counter+ = 1

end if:

nodeDt ←− # nodes in DSTt

nodeip =
6
nodeDt
n=1 varip
nodeDt

Calculate variance σnode in Dt
end for

for all T do:

Calculate z_score(Dt) =
nodeip
σnode
×

√

nodeDt
z_score[]←− z_score(Dt)

end for

return z_score[]

}

then the attribute is considered as ‘‘unimportant’’ and will

be removed. Lastly, attributes that are marked as ‘‘undeter-

mined’’ receive no further actions.

3) FEATURE TRANSFORMATION & STANDARDIZATION

This module is responsible for transforming all the selected

features from the previous stage. First, the categorical fea-

tures such as src_ip and dst_ip are transformed into numeric

variables using one-hot encoding [35]. Second, as stated in

section I.A, unlike existing solutions which are limited to

some specific distributions (typically a Poisson distribution),

in this paper, we employ a method called Yeo-Johnson trans-

formation [16] which is a power transform. Yeo-Johnson not

only stabilizes variance, which can solve issues related to

heteroscedasticity, but also normalizes the data distribution,

transforming it to more closely resemble a Gaussian distri-

bution, to increase the prediction accuracy of our detection

model without having to take into account the mixed distribu-

tions of the attack traffic. Therefore, all the selected features

are further transformed based on Yeo-Johnson’s formula as

follows.

d
(β)
i =



















((di + 1)β − 1)/β, if β 6= 0, di ≥ 0

log(di + 1), if β = 0, di ≥ 0

−[(−di + 1)(2−β) − 1]/(2− β), if β 6= 2, di < 0

−log(−di + 1), if β = 2, di < 0

(1)

35064 VOLUME 9, 2021

P. Trinh Dinh, M. Park: R-EDoS: Robust Economic Denial of Sustainability Detection in an SDN-Based Cloud Through Stochastic RNN

TABLE 4. ADF test result.

In equation 1, di indicates the preprocessed data, and β

indicates the transformation parameter. Note that we also set

standardize = True to standardize the preprocessed data.

4) SAVITZKY–GOLAY FILTER

After being transformed and standardized in the previous

step, the data is further smoothed to remove noise and outliers

caused by non-stationary time series. Specifically, some data

may be lost or unusual while collecting or transmitting data,

and this may cause interference data. To smooth the original

sequence, remove noise, and retain time series’ peak and

width, the least square polynomial smoothing method (also

known as a Savitzky–Golay (SG) filter) [36] is used. The

method works best with a window size of 5.

A time series is represented as:

X = {x1, x2, . . . , xt }, t ∈ N
+ (2)

where xt means a set of tasks at time slot t , N+ ={1, 2, . . .},

X is the workload, and Yn (n[m + 1,t-m]) indicates a subse-

quence of X . Yn is defined as:

Yn = {xn−m, . . . , xn, . . . , xn+m}, n ∈ [m+ 1, t − m] (3)

To find the best mean square, a set of 2m + 1 consecutive

values is used. In which coefficients of a polynomial are as

follow:

p(n) =

ϒ
∑

r=0

arn
r , n ∈ [−m,m] (4)

It is noted that the value of n ranges from −m to m, and

n = 0; therefore, the least-square criterion requires that the

squares of the differences in total between the observed values

xm+n and the computed values p(n) be the minimum over the

time slot being observed [37], defined as:

ε =

m
∑

n=−m

(p(n)− xm+n)
2 (5)

Then, the central point of the fitted polynomial implies the

smoothed data point.

5) AUGMENTED DICKEY-FULLER TEST

For the model to learn from time series data reliably, it is

crucial to check whether a sequence is stationary or not,

therefore, a test called augmented Dickey–Fuller (ADF) [37],

also known as a unit root test, is employed to check the

stationarity of each data sequence. The role of ADF is to

determine how strongly a time series is characterized by a

trend. The test checks if a unit root is included in a sequence;

if not then the sequence is non-stationary; otherwise, it is

stationary.

For the ADF experiment, the null hypothesis (H0) occurs

if the time series is considered as non-stationary. Therefore,

if the processed sequence fails in the stationarity test, a dif-

ferencing technique is run, after which the sequence will be

tested again. On the contrary, ifH0 is rejected, it suggests that

the examining sequence does not have a unit root, meaning

that it is stationary; therefore, it is then sent to the training

model.

In ADF, there are three degrees of rejection 1%, 5%, and

10%, in which a rejection degree of 1% indicates strict rejec-

tion of the original hypothesis. That means if the ADF value

is less than the rejection degree of 1%, then the examining

sequence is not non-stationary. Moreover, we interpret the

test result using the p-value. If the p-value lies under the

rejection degree of 5% or 1%, then it indicates stationarity

(rejection ofH0), otherwise a p-value lies above the rejection

degree, indicating nonstationarity. For example, the results of

the ADF test of a flow_duration feature are shown in Table 4.

The calculated ADF value is much smaller than the rejection

degree of 1%, and the p-value is extremely low (< 0.0001).

That means the selected feature is stationary and is qualified

to be used in training the model.

6) MODEL TRAINING

The model training is composed of two main networks: qnet

and pnet (Figure 8(a) and 8(b), respectively). First, in the pnet

network, zt−T :t , indicating a latent representation, is used to

reconstruct xt−T :t . The more precise the representation of

xt−T :t , the lower the reconstruction loss. Second, the qnet

network approximates the pnet network by optimizing itself

in order to obtain a higher quality latent representation.

As proposed in [26], by tuning three network parameters

(u*-s, w*-s, and b*-s), both the qnet network and pnet net-

work are trained at the same time. The size of each input

sequence data (e.g., xt−T :t) is T + 1. According to [26], for

the l-th sample z
(l)
t−T :t , where q ≤ l ≤ L and L is the sample

length, the loss function is formulated as:

∼

L(xt−T :t) ≈
1

L
6L
l=1[log(pθ (xt−T :t |z

(l)
t−T :t) [1]

+log(pθ (z
(l)
t−T :t)) [2]

−log(qθ (z
(l)
t−T :t |xt−T :t))] [3] (6)

In Equation 6 given above, for each sample:

• The first term is the negative reconstruction error and it is

equal to 6t
i=t−T log(pθ (xi|zt−T :i)). The posterior proba-

bility of xi is formulated as: pθ (xi|zt−T :i) ∼ N (µxi , σ
2
xi
I)

[26].

• The second term is equal to 6t
i=t−T log(pθ (zi|zi−1)),

in which zi is acquired by linear Gaussian state space

modeling proposed in [26].

• The third term approximates the authentic posterior dis-

tribution in the z−space of the qnet of zi and it is equal

VOLUME 9, 2021 35065

P. Trinh Dinh, M. Park: R-EDoS: Robust Economic Denial of Sustainability Detection in an SDN-Based Cloud Through Stochastic RNN

FIGURE 8. Model architecture.

to−6t
i=t−T log(qθ (zi|zzi−1, xt − T : t) where zi (i.e., z

k
i)

is converted from a normalizing flow technique called

planar NF (section III.C). ZKi = f K (FK−1(. . . f 1(z0i))),

in which z0i = µzi + ξiσzi , ξi ∼ N (0, I), and f k is

invertible function mapping [26].

7) ONLINE DETECTION

At this stage, the trained model is used to determine

whether or not an observation at some given time step (i.e.,

xt) is anomalous. It is noted that the input of our learning

model is a set of sequence data with length T + 1. Hence,

xt−T :t , including a sequence of observations, is taken as an

input to reconstruct xt [25]. This reconstruction then acts as

an anomaly score by applying the conditional probability,

as suggested in [23]. S2t represents the anomaly score of xt ,

so S2t = log(pθ (xt |zt−T :t)) [26]. A high value of S2t implies

xt is reconstructed well, meaning that the observation closely

follows the usual patterns of the time series. In conclusion,

if the calculated threshold value is greater than S2t , then the

observation xt is abnormal and vice versa.

8) DYNAMIC THRESHOLD MODULE

First, an anomaly score is calculated while running the model

training module, in which each observation is represented as

a multivariate time series of N ′. The module then produces

a univariate time sequence in the form of S1, S2, . . . , SN ,

as illustrated in Figure 7. Second, an anomaly threshold (thF)

is calculated by applying extreme value analysis (EVA) [31].

EVA is a statistical method that is commonly applied to

discover extreme deviations of a probability distributionwith-

out making assumptions about the distribution. According

to [31], the extreme values are often located in the tail of

the probability distributions. A common approach in EVA is

generally referred to as peaks-over-threshold method (POT)

[32], which learns the tail area of the probability distribu-

tion using a generalized Pareto distribution (GPD) with two

parameters, which must be tuned (low_quantile < 7% and

q = 10−4). Readers can refer to [26] for further details.

Formally, anomaly threshold is defined as follows.

thF ≃ th−
β̂

γ̂
((
qN
′

N ′th
)γ̂ − 1) (7)

In Equation 7, N ′ is the number of observations, N ′th the

number of Si s.t. Si < th, and q the intended probability of

finding that S < th.

9) COMPARISON FUNCTION

This function simply compares the calculated threshold to the

calculated anomaly score. If S2t < thF is true, the model

determines that the input data indicates attack traffic, and the

attack traffic is sent to an attack handler. Otherwise, it was

determined to be a normal traffic.

10) ATTACK HANDLER

Once the training model of R-EDoS detects attack traf-

fic, then an attack handler forwards a flow_mod message,

including a delete action, to the OpenFlow switch. The

attack handler requests the SDN controller to perform drop-

ping packet_in messages of the attack traffic (also presented

in Figure 7).

V. EXPERIMENTAL SETUP

In this section, we show common EDoS attack scenarios that

are also simulated by us in this work. Next, the description

of our dataset is given. We also show readers our sensitivity

analysis and a comprehensive description of model training.

Finally, we describe our implementation in an SDN-based

cloud.

A. ATTACK SCENARIOS

There are no existing works introducing comprehensively

what are some common EDoS attack scenarios in an SDN-

based cloud that are normally used by an attacker. In this

work, we divide into five common EDoS attacks that are

mentioned in these studies ([12], [17], [39] and [42]). Note

that we also followed their instructions to launch these five

different EDoS attacks.

35066 VOLUME 9, 2021

P. Trinh Dinh, M. Park: R-EDoS: Robust Economic Denial of Sustainability Detection in an SDN-Based Cloud Through Stochastic RNN

1) TCP—HTTP FLOODING ATTACK (HTTPAttack)

An HTTP flood attack [39] is one of the DDoS attacks

where a webserver is exploited by an attacker through HTTP

GET or POST requests. The attacker forces the targeted

webserver to allocate the utmost resources for each request.

The request is normally a resource-intensive request.

2) DATABASE API REQUESTS (APIRequests)

In the case of Database API requests attack, a virtual machine

works as a database server where it is frequently queried

through HTTP requests. A cloud provider usually charges a

user for the number of API requests. For example, a cloud

user wants to create a custom dashboard that makes calls

to a relational database RDS provided by AWS [48]. The

user needs two APIs such as DescribeDimensionKeys, and

GetResourceMetrics and the dashboard calls these two APIs

every 5 seconds. The number of calls in 30 days would be:

2 API calls * (30d * 24h * 60m * 60s) / (5s)= 1,036,800 API

calls. If AWS provider monitored only two instances with

the custom dashboard refreshing every 5 seconds, the total

cost would be: ((2 * 1,036,800 - 1,000,000) / 1,000) * 0.01

= $10.74 per month. By manipulating this pricing calcula-

tion, an EDoS attacker can create more fake API calls more

frequently and the user needs to pay extra fees.

3) TCP—SYN FLOODING ATTACK (SYNFlooding)

An SYN flooding attack [39] also known as ‘‘half-open

attack’’ aims at consuming all available resources of a server

so that it is unable to respond to upcoming traffic. This attack

behavior is similar to DDoS attacks. An attacker continuously

sends an initial connection request to a targeted server mak-

ing all ports unavailable to respond to upcoming legitimate

traffic.

4) YO-YO ATTACK (YoYo)

Attacking the auto-scaling engine literally means EDoS

attack, in which Yo-Yo attack [42] with two modes (on-attack

and off-attack) is revealed attack against the auto-scaling

engine. In the first mode, an EDoS attack forwards a burst

of network traffic to trigger the scaling engine so that more

instances are launched. Conversely, in the second mode, after

the attacker believes that all instances are up and the service

is functional; then it will halt forwarding network traffic until

it verifies that scale down has occurred.

5) SLOWLORIS ATTACK (Slowloris)

Slowloris attack [46] is commonly known as ‘‘low and slow’’

attacks because it utilizes low bandwidth and aims at mimick-

ing normal traffic. Its goal is to open and to keep many con-

nections as long as possible by using partial HTTP requests

and targeting a webserver on the cloud. Once the attack is

launched, the web server will be overloaded because there

are so many opening threads that need to handle. If the con-

nections exceed the web server’s maximum connections, then

TABLE 5. EDoS attack simulation with different number of requests.

a denial-of-service phenomenon will emerge, which means

upcoming requests will not be responded to.

Note that EDoS attacks are similar to low-rate DDoS in

characteristics [4]. For example, as specified in [3], a high-

rate DDoS attack occurs when the packets per second >

10, 000; therefore, 10,000 packets/s are considered the stan-

dard threshold to differentiate between low rate DDoS and

high rate DDoS. Moreover, low rate DoS attacks normally

account for 10- 40% of normal traffic [3]. Hence, based

on both the studies, to create realistic EDoS attacks with

the five attack scenarios introduced above, we stimulated

different levels of EDoS attacks, in which EDoS attacks

always account for 20% of normal traffic, and the number

of requests ranges from 1000 to 7000 following the EDoS

evaluation scheme proposed by Al-Haidari et al. [43] as

shown in Table 5.

B. DATASET DESCRIPTION

One of the most realistic data of network traffic with various

metrics such as CPU usage, network, and memory consump-

tion, and so on of different servers known as SMD was cho-

sen. This new dataset was publicly published in KDD 2019

[26] and was collected from real network traffic statistics of

a large Internet company. It is also used in many anomaly

detection studies mentioned in [25]. In our study, the offline

model module was trained and tuned its hyper-parameters

using the SMD dataset, in which we sampled this dataset

with 20% attack traffic. The shapes of the training set and

testing set are (28479, 38) and (20300, 38), respectively.

Furthermore, to evaluate our proposed scheme with a real-

life dataset, we also collected more data samples from our

simulated testbed environment with the shape of (16250,38)

including attack and normal traffic.

C. SENSITIVITY ANALYSIS OF USER-DEFINED

PARAMETERS WITH TAGUCHI AND MODEL SETUP

To achieve the best results of R-EDoS where the number

of experiments is as little as possible, it is essential to

investigate its user-defined parameters. In our proposal, four

highly sensitive parameters are needed to find their best

values, which are data sequence length, z− space), planar

NF length, and GRU layers and dense layers. In order to

pick a fair combination between factors rather than the entire

combination, we use the popular Taguchi method proposed

in [28], in which fractional factorial designs (a.k.a. OAs),

VOLUME 9, 2021 35067

P. Trinh Dinh, M. Park: R-EDoS: Robust Economic Denial of Sustainability Detection in an SDN-Based Cloud Through Stochastic RNN

FIGURE 9. Our SDN-based EDoS testbed deployed on OpenStack cloud platform.

TABLE 6. Cluster settings in detail.

TABLE 7. Model parameters.

where relies on both their levels and the number of con-

trol factors, are used to find the number of experiments.

Multiple process variables can be estimated by using OA

design while reducing the number of test runs. In our work,

four key factors and their levels are: data sequence length

∈ {50, 100, 150, 200, 250}; (z-space)∈ {2, 3, 4, 5, 6}; planar

NF length ∈ {5, 10, 15, 20, 25}; GRU and dense layers ∈

{100, 200, 300, 400, 500}. If we run a grid search method,

a full factorial design would require a total of 54 or 625 pos-

sible combinations, which is an enormous number of exper-

iments to run. Fortunately, based on the Taguchi method,

the total required experiments are only 25 with an orthogonal

array of L25(5
4).

To produce the best outcomes and get valuable insights sig-

nificantly from the learning model of R-EDOS, we obtained

the best settings of user-defined parameters based on the

Taguchi results, and we also closely followed the descriptions

in [26]. Based on the sensitivity analysis Taguchi given above,

the z-space dimension equaled 3 and the planar NF lengthwas

assigned as 20. Besides, the GRU and dense layers are equal

to 500 units and the ǫ was set to 10−4 in the standard deviation

layer. The input data sequence is 100 in length. Also, here are

other hyper-parameters settings. The model was trained with

20 epochs and a batch size of 50 including the early stop-

ping regularization criterion. Adam optimizer was selected

as an optimization algorithm for stochastic gradient descent.

Besides, the value of the learning rate was 10−3. While run-

ning back-propagation, gradients may increase their values

rapidly with a very large number resulting to the overflow

problem (i.becomes float.nan) of model parameters [26].

To avoid this problem, the gradient clipping was used and

was set to 10. In addition, all layers in the learning model

were penalized by applying the L2 regularization technique.

Finally, the hyper-parameters settings used in this work are

summarized in Table 7.

In Boruta, an irregular z_score value problem may cause

an infinite loop issue. Fortunately, the issue can be addressed

35068 VOLUME 9, 2021

P. Trinh Dinh, M. Park: R-EDoS: Robust Economic Denial of Sustainability Detection in an SDN-Based Cloud Through Stochastic RNN

TABLE 8. Anomaly detection performance comparison on average between R-EDoS and other solutions in detail.

by setting the depth to 7 [33]. Hence, in our work, we also set

the depth of tree = 7.

D. DETAILED IMPLEMENTATION AND TEST PREPARATION

In this work, as suggested in [44], we set up our OpenStack-

SDN based testbed according to it. Figure 9 displays the

testbed in a production environment for virtual networks

to simulate different EDoS attacks. Our testbed consists of

an OpenStack platform (one controller of SDN known as

(ONOS Quail version 2.0.0) [49], a controller of OpenStack,

two computing nodes attached with OvS version 2.3.2),

and one networking node). In which, Apache Spark is also

installed into our cluster so that we can not only leverage

an optimal preprocessing process but also the learning pro-

cess for machine learning algorithms. We used OpenFlow

version 1.4 in this work. Bonesi simulator was employed

to perform flooding attacks with low attack rates, besides

sFlow and sFlow-RT tools were employed to perform col-

lecting data from the SDN paradigm. As we introduced

in section IV-A, the modules of R-EDoS are sat in the

ONOS node (Figure 6). Our system configurations are pre-

sented in Table 6 running on Ubuntu operating system 64bit

version 18.04. It is noted that we created an auto-scaling

group on OpenStack with nova computing instance config-

urations as follows, instance type: m1.small, VCPUS: 1,

memory: 2048MB, storage: 20GB. For two particular attacks

(HTTPAttack and Slowloris), we created an auto-scaling

group in which instances work as a web server. And for an

APIRequests attack, OpenStack service named Trove is a

database as a service of each instance.

To run both Savitzky–Golay filter and augmented Dickey–

Fuller test, SciPy package and statsmodels were used

respectively. Also, the Yeo-Johnson was run by using sklearn

package and chose its λ parameter automatically.

VI. RESULT ANALYSIS

In this section, we first compare R-EDoS with other solutions

and then present detection performance. Next, resource usage

and the overall performance of our R-EDoS scheme are ana-

lyzed. Then, we interpret the learning model of R-EDoS and

then briefly discuss our deployment. We conclude the section

with a general discussion.

A. COMPARISON WITH OTHER SOLUTIONS

To prove the effectiveness of R-EDoS, we conducted practical

experiments to make comparisons with other existing works

using the same environmental set-up. First, to the best of

our knowledge based on a review of the relevant literature.

Abbasi et al. [39] is the only work applying machine learn-

ing technique to an EDoS detection problem, excluding our

previous work [17]. Hence, we first compared our proposed

scheme with their two approaches (support vector machine

(SVM) and neural network (NN)) independently). Second,

to prove our approach, which is multivariate time series

detection, to be practical, we also compared it with another

machine-learning-based method called one-class SVM [40].

According to Schölkopf et al. [40] one-class SVMs separate

all the data points into two spaces where the distance between

the two spaces are maximized as much as possible. It is a

well-known algorithm and has been used in many anomaly

detection studies [41]. Last, our previously published work

[17], was also selected for comparison to demonstrate the

expected enhancement of R-EDoS.

It is noted that we implemented these studies, [17], [39],

and [40], in our testbed to keep not only their novel features

but also their original functionalities.

B. ANOMALY DETECTION PERFORMANCE

To rigorously assess the anomaly-detecting capacity of R-

EDoS, four criteria, including F1-score, detection rate, accu-

racy, and false alarm rate mentioned in [45] are employed.

To calculate the four criteria, we need four other different

measurements including false positive (FP), false negative

(FN), true positive (TP), and true negative (TN). TP indicates

the ratio of illegitimate traffic that is recognized as such TN

means the percentage of normal traffic that is detected as

anomalous traffic, FP shows the percentage of legitimate traf-

fic that is detected as anomalous, and FN reflects the percent

ratio of abnormal traffic that is classified as normal traffic.

The formula of the four criteria are expressed as follows:

• Detection Rate (R) is the proportion of the number of

detected abnormal flows to the number of all abnormal

flows:

R =
TP

TP+ FN
(8)

• Accuracy (AC) is the proportion of correct detection

over the total the number of total flows:

AC =
TP+ TN

TP+ TN + FP+ FN
(9)

• False Alarm Rate (FAR) is the ratio of anomalous flows

falsely identified as legitimate flows:

FAR =
FP

FP+ TN
(10)

VOLUME 9, 2021 35069

P. Trinh Dinh, M. Park: R-EDoS: Robust Economic Denial of Sustainability Detection in an SDN-Based Cloud Through Stochastic RNN

FIGURE 10. Detection performance with 4 distinct measurements in different kinds of EDoS attacks.

Hence, this score takes both FPs and FNs into account.:

• F1-score (F1) is the weighted average of P and R.

F1 =
2 ∗ P ∗ R

P+ R
(11)

where P = TP
TP+FP

In summary, the detection rate reveals the percentage of

correctly detected attacks over the total number of attacks.

FAR represents the ratio of falsely detected attacks to the

total of falsely identified entities, whereas accuracy tells how

accurate R-EDoS is. Lastly, F1-score takes both FPs and FNs

into account implying the weighted average of P and R.

Figure 10 shows the detection performance of five men-

tioned solutions: R-EDoS, NN-Abbasi et al. [39], SVM-

Abbasi et al. [39], our previouswork [17], and one-class SVM

[40]. The results were acquired through testing on 10 sub

test sets. It is obvious that R-EDoS both outperforms the

other solutions in regards to accuracy, F1-score, and detection

rate and produces the lowest false-alarm rates under different

EDoS attack scenarios. Conversely, the NN-Abbasi et al.

solution performs poorly regarding to the accuracy, detection

rate, and F1-score. Furthermore, it produces false-alarm rates

with the highest rate. Among the three other solutions, it is

shown that our previous work still performs better than both

SVM-Abbasi et al. and one-class SVM solutions, while the

former performs slightly better than the latter.

Based on formulas [9]−[12], we calculated anomaly detec-

tion performance metrics on average as presented in Table 8.

Regarding accuracy and detection rate, R-EDoS and our

previous work clearly outperform the other three solu-

tions. R-EDoS demonstrates stable prediction performance

and it always achieves the highest scores among the mod-

els compared, with a detection rate of 96.27%, and an

accuracy of 94.33%. Moreover, our two works also pro-

duce fewer wrong warnings than the others, with R-EDoS

only showing 4.72% of the total test traffic sequences as

false-positives, whereas [17] had a higher false-positive

rate, 9.75%. In comparison among NN-Abbasi et al. [39],

SVM-Abbasi et al. [39], and one-class SVM [40], a pure neu-

ral network struggles to learn from higher dimensional time

series data; therefore, it performs poorly in detection and pro-

duces a very high false-alarm rate, 20.86%. One-class SVM

is specifically designed for detecting anomalies and its main

advantages are less time and storage space to run compared

to two-class SVM [41]; therefore, as shown in Table 8, its

prediction performance is slightly poorer than SVM-Abbasi.

Lastly, the F1-score is an appropriate measurement criterion

to properly assess the efficiency of R-EDoS since it is taken

35070 VOLUME 9, 2021

P. Trinh Dinh, M. Park: R-EDoS: Robust Economic Denial of Sustainability Detection in an SDN-Based Cloud Through Stochastic RNN

FIGURE 11. Detection time among different solutions.

into account by both FPs and FNs. As introduced in Table 8,

our proposed scheme demonstrates its outstanding prediction

ability with a 95.51% F1-score, which is higher than the sec-

ond highest F1-score by 4.63%. The approaches Following

NN-Abbasi et al., SVM-Abbasi et al., and one-class SVM

achieve 76.58%, 85.4%, and 82.2%, respectively.

Regarding comparison among five attack scenarios (as

shown in Figure 10 and Table 8), R-EDoS outperforms the

others, and it can perform well on all five attack scenarios

overall, even though it has some difficulties in detecting both

YoYo and Slowloris attacks, due to their stealthy characteris-

tic of mimicking normal traffic. Furthermore, the box plots of

R-EDoS (in Figure 10) demonstrate the high stability of our

proposed scheme’s detection capability.

Through the comprehensive analyses above, it is clear

that our multivariate time-series approaches (R-EDoS and

our previous work [17]) outperform both deep-learning-

based and machine-learning-based approaches (neural net-

work, SVM [39] and one-class SVM [40]) in detecting EDoS

attacks. Our proposal (R-EDoS) shows impressive results in

detecting various types of attacks with low false-alarm rates.

C. ATTACK MITIGATION PERFORMANCE

Agrawal and Tapaswi [47] recently proposed some impor-

tant measurements to assess the effectiveness of a defense

scheme, such as accuracy, attack detection time, service

response time, etc. Hence, the metrics given above are

adopted in this paper. Note that all the metrics presented in

this subsection and the following subsection were measured

by us during a SYNFlooding attack with a fixed attack rate

of 7000 req/s excluding the response time metric.

First, to measure how quickly a new attack is exposed,

we created a function to calculate the average time for a

new attack to be exposed during the simulated SYNFlooding

attack we launched (as shown in Figure 11). As mentioned

before, one-class SVM’s main advantages are less time and

storage space to run; it only requires 0.8 seconds on average

to raise an alarm if it detects an EDoS attack, and definitely

FIGURE 12. Response time according to attack rate.

FIGURE 13. Compute usage according to attack rate.

outperforms others in terms of detection time. However,

the detection time difference between one-class SVM and

our two approaches is not very significant because the data

sequence length of R-EDoS and our previous work was only

set at 100 and 250, respectively. That means the detection

time of R-EDoS is only 0.91 seconds (and 0.97 seconds for

our previous work).

Second, service response time is one of the most important

metrics in evaluating any defense system [47]. This is defined

as follows. Once a cloud user makes a request, then one cor-

responding response is sent back to the user. Figure 12 shows

that the higher the attack rate, the longer the response time.

Overall, the response time of all five solutions is short, vary-

ing between 11.1 ms and 32.6 ms. Specifically, R-EDOS, our

previous work, and SVM-Abbasi et al. are similar in response

time, gradually increasing in the 20 - 30 ms response time

range.

D. RESOURCE CONSUMPTION AND COST CALCULATION

To demonstrate the lightweight mechanism of R-EDoS,

resource consumption, including CPU and memory, is also

provided along with the total estimated cost.

VOLUME 9, 2021 35071

P. Trinh Dinh, M. Park: R-EDoS: Robust Economic Denial of Sustainability Detection in an SDN-Based Cloud Through Stochastic RNN

FIGURE 14. Memory utilization in relation to attack rate.

As mentioned in section V.D, we placed all modules in an

SDN controller node. CPU andmemory usageweremeasured

over time. For CPU usage, owing to setting the data sequence

length= 100, R-EDoS consumes the lowest amount of CPU,

varying between 28% and 33% over time, compared to other

solutions (as presented in Figure 13), whereas, other solu-

tions are highly resource-intensive and they tend to perform

unreliably in that their CPU utilization widely fluctuates (i.e.,

SVM-Abbasi et al. varies between 55% and 69%). This wide

fluctuation behavior may degrade the whole cloud network.

As for memory usage, all solutions consume a low amount of

the memory resource (under 9.4%), with R-EDoS only fluc-

tuating between 2.86% and 3.7% (as presented in Figure 14).

Evidently, R-EDoS outperforms other solutions, including

our previous work, in terms of CPU and memory usage. This

proves a great improvement of R-EDoS in resource usage

compared to our existing work, as stated in the abstract.

Figure 15 shows the number of cloud instances allocated

during the simulation of the SYNFlooding attack, with a fixed

attack rate of 7000 req/s and the CPU upper threshold = 80%.

The results show that when under attack, R-EDoS can save

from 33% to 60% on the number of running instances. For

example, 6 instances were launched after 120 minutes under

the attack. By applying R-EDoS to the simulation, only

3 instances were spawned in the same amount of time. Or

in the 105th minute, the number of instances under the attack

with R-EDoS was only 2, compared to 5 instances without

integrating R-EDoS during the attack.

Recently, Al-Haidari et al. [43] proposed a formula that

can easily be used to estimate the future cost that a cloud

user would have to pay for their resource usage based on this

formula:

COST = (Pricebw ∗ λGB/s + Pricecom ∗ S) ∗ T (12)

where Pricebw indicates the price of bandwidth for every

1 GB, λGB/s(= λlegitimate + λmalicious) is the arrival rate in

which λlegitimate and λmalicious are the legitimate and attack

traffic rates respectively, in requests per second, Pricecom
implies the basic fee charged per hour for each instance, and

FIGURE 15. Instances allocation with R-EDoS.

T means the total number of hours that the cloud user intends

to use cloud resources for their application, and S indicates

the number of running instances.

Assume a cloud user needs to create a Web server for

its business website. Therefore, the user chooses AWS [48]

to deploy its application with system configurations as fol-

lows. Ubuntu Server version 20.04 runs on CPU t3.xlarge

size (4 vCPUs, 2.5 GHz, 16 GiB memory, 8 GiB EBS with

IOPS = 100 / 3000), the data transfer rate supports up to

5 Gigabit, and the on-demand price per hour in the Asia

Pacific (Seoul) region is $0.1344 [48]. Based on Equation 12,

if the cloud user intends to run the business website for one

month under EDoS attacks, doing so will cost an estimated

$654.372, where Pricebw = 0.09 [48], Pricecom = 0.1344,

S = 6, λGB/s = 1, and T = 730. Using our proposed

scheme, the cloud user need only pay AWS with the amount

of $327.186 under EDoS attacks with R-EDoS integrated into

the server, where S = 3 and λGB/s = 0.5. We estimate that

in this scenario, the cloud user can avoid paying an extra

$327.186 each month for the EDoS attacks.

E. INTERPRETABILITY AND DEPLOYMENT DISCUSSION

First, during the simulation of different EDoS attacks,

we interpret the experimental results using a feature impor-

tance technique [38] for each type of attack. The interpretabil-

ity results are as follows.

• For the SYNFlooding attack, three key features that have

the most contribution to the prediction are no_syn_pkt ,

no_pkt_per_flow, and no_ack_pkt .

• For the APIRequests attack, top-three features:

network.incoming.packets, memory_consumption, and

disk_usage.

• For the HTTPAttack attack, src_ip, network_protocol,

no_established_connections, and dst_ip play the main

role in detecting this type of attack.

• For the YoYo attack, the four main features that

have the most contribution to the prediction are

no_requests_to_webserver , no_running_instances,

src_ip, network_protocol.

35072 VOLUME 9, 2021

P. Trinh Dinh, M. Park: R-EDoS: Robust Economic Denial of Sustainability Detection in an SDN-Based Cloud Through Stochastic RNN

• For the Slowloris attack, no_established_connections,

no_ack_pkt , and network.incoming.packets are two fac-

tors that greatly contribute to detect the Slowloris attack.

Second, during tuning of R-EDoS hyperparameters,

we observed the sensitivity of the results to variations in

the value of the hyperparameters. We found that the model

becomes highly sensitive if we set z-space dimension at a

high value. In this case, we found that the reconstruction

probability was unable to find a good posterior, whereas the

underfitting problem remains unchanged.

Third, in the case of a legitimate cloud user suddenly

sends a large number of requests, which increase the val-

ues of some key features such as network.incoming.packets,

network.incoming.bytes, no_established_connections, etc.

R-EDoS may produce false-positive rates in this case. How-

ever, the dynamic threshold will dynamically adjust its value

to reduce the false-positive rates because the constructed

usual pattern of R-EDoS will change its pattern according to

the values of the key features.

F. GENERAL DISCUSSION

Based on our comprehensive result analyses given above,

we summarize some outstanding points that demonstrate the

effectiveness of R-EDoS in detecting real EDoS attacks con-

ducted in our practical testbed:

• R-EDoS not only produces low error rates but also yields

high detection rates, accuracies, and F1-scores, which

clearly show that it outperforms other solutions.

• Our proposed scheme can defense against some com-

mon EDoS attacks such as HTTPAttack, APIRequests,

and SYNFlooding effectively, though it faces some

slight difficulties in detecting both YoYo and Slowloris

attacks.

• The proposed scheme needs only a very short time to

detect a new attack.

• R-EDoS consumes a very low amount of CPU andmem-

ory.

• Using this defense scheme can save up 30% to 50% of

the total cost that a cloud user is forced to pay for the

unexpected cost coming from EDoS attacks.

VII. CONCLUSION AND FUTURE WORK

In this work, we propose a novel approach to deal with

stealthy EDoS attacks known as a multivariate time-series

anomaly detection system. This approach can apply to dif-

ferent network systems and adapts well. Second, we propose

an intelligent, robust scheme called R-EDoS, which can pro-

cess and extract valuable information from high-dimensional

time-series data. This lays the foundations for an intelligent

model to detect anomalous network traffic behaviors occur-

ring in EDoS attacks easily. Our work not only can help

cloud users to avoid paying for various EDoS attacks such

as slow HTTP/SYN flooding, database API requests, Yo-Yo,

and Slowloris, but also can allow cloud service provider to

improve their services. In future research, we not only plan to

enhance the proposed scheme but also plan to draw a detailed

comparison with other EDoS defense systems, using more

evaluation criteria for particular EDoS attacks.

REFERENCES

[1] J. Rubio-Loyola, A. Galis, A. Astorga, J. Serrat, L. Lefevre, A. Fischer,

A. Paler, and H. Meer, ‘‘Scalable service deployment on software-defined

networks,’’ IEEE Commun. Mag., vol. 49, no. 12, pp. 84–93, Dec. 2011.

[2] Y. Li and M. Chen, ‘‘Software-defined network function virtualization

A survey,’’ IEEE Access, vol. 3, pp. 2542–2553, 2015.

[3] Y. Xiang, K. Li, and W. Zhou, ‘‘Low-rate DDoS attacks detection and

traceback by using new information metrics,’’ IEEE Trans. Inf. Forensics

Security, vol. 6, no. 2, pp. 426–437, Jun. 2011, doi: 10.1109/TIFS.2011.

2107320.

[4] W. Zhijun, L. Wenjing, L. Liang, and Y. Meng, ‘‘Low-rate DoS attacks,

detection, defense, and challenges: A survey,’’ IEEE Access, vol. 8,

pp. 43920–43943, 2020, doi: 10.1109/ACCESS.2020.2976609.

[5] Q. Yan, F. R. Yu, Q. Gong, and J. Li, ‘‘Software-defined networking

(SDN) and distributed denial of service (DDoS) attacks in cloud computing

environments: A survey, some research issues, and challenges,’’ IEEE

Commun. Surveys Tuts., vol. 18, no. 1, pp. 602–622, 1st Quart., 2016.

[6] F. Z. Chowdhury, L. B. M. Kiah, M. A. M. Ahsan, and M. Y. I. B. Idris,

‘‘Economic denial of sustainability (EDoS) mitigation approaches in

cloud: Analysis and open challenges,’’ in Proc. Int. Conf. Electr. Eng.

Comput. Sci. (ICECOS), Palembang, Indonesia, Aug. 2017, pp. 206–211.

[7] T. G. Nguyen, T. V. Phan, B. T. Nguyen, C. So-In, Z. A. Baig,

and S. Sanguanpong, ‘‘SeArch: A collaborative and intelligent NIDS

architecture for SDN-based cloud IoT networks,’’ IEEE Access, vol. 7,

pp. 107678–107694, 2019, doi: 10.1109/ACCESS.2019.2932438.

[8] M. H. Sqalli, F. Al-Haidari, and K. Salah, ‘‘EDoS-shield—A two-steps

mitigation technique against EDoS attacks in cloud computing,’’ in Proc.

4th IEEE Int. Conf. Utility Cloud Comput., Victoria, NSW, Australia,

Dec. 2011, pp. 49–56.

[9] S. H. Khor and A. Nakao, ‘‘Spow: On-demand cloud-based eddos mit-

igation mechanism,’’ in Proc. 11th Int. Symp. Appl. Internet (SAINT).

Piscataway, NJ, USA: IEEE Press, 2011, pp. 160–171.

[10] M. Masood, Z. Anwar, S. A. Raza, and M. A. Hur, ‘‘EDoS armor: A cost

effective economic denial of sustainability attack mitigation framework for

e-commerce applications in cloud environments,’’ inProc. INMIC, Lahore,

Pakistan, Dec. 2013, pp. 37–42.

[11] F. Z. Chowdhury, M. Y. I. Idris, L. M. Kiah, and M. A. M. Ahsan, ‘‘EDoS

eye: A game theoretic approach to mitigate economic denial of sustainabil-

ity attack in cloud computing,’’ in Proc. IEEE 8th Control Syst. Graduate

Res. Colloq. (ICSGRC), Shah Alam, Malaysia, Aug. 2017, pp. 164–169.

[12] P. Singh, S. Ul Rehman, and S. Manickam, ‘‘Comparative analysis of state-

of-the-art EDoS mitigation techniques in cloud computing environment,’’

2019, arXiv:1905.13447. [Online]. Available: http://arxiv.org/abs/1905.

13447

[13] A. Shawahna, M. Abu-Amara, A. Mahmoud, and Y. E. Osais, ‘‘EDoS-

ADS: An enhanced mitigation technique against economic denial of sus-

tainability (EDoS) attacks,’’ IEEE Trans. Cloud Comput., vol. 8, no. 3,

pp. 790–804, Sep. 2020.

[14] N. Agrawal and S. Tapaswi, ‘‘A proactive defense method for the stealthy

EDoS attacks in a cloud environment,’’ Int. J. Netw.Manage., vol. 30, no. 2,

p. e2094, Mar. 2020, doi: 10.1002/nem.2094.

[15] M. Monge, J. Vidal, and L. Villalba, ‘‘Entropy-based economic denial of

sustainability detection,’’ Entropy, vol. 19, no. 12, p. 649, Nov. 2017.

[16] S. Weisber, ‘‘Yeo–Johnson power transformations,’’ Dept. Appl. Statist.,

Univ. Minnesota, Minneapolis, MN, USA, Tech. Rep., Oct. 2001, pp. 1–4.

[Online]. Available: http://www.stat.umn.edu/arc/yjpower.pdf

[17] P. T. Dinh and M. Park, ‘‘Dynamic economic-denial-of-sustainability

(EDoS) detection in SDN-based cloud,’’ in Proc. 5th Int. Conf. Fog Mobile

Edge Comput. (FMEC), Paris, France, Apr. 2020, pp. 62–69.

[18] P. Malhotra, L. Vig, G. Shroff, and P. Agarwal, ‘‘Long short term memory

networks for anomaly detection in time series,’’ in Proc. 23rd Eur. Symp.

Artif. Neural Netw., Comput. Intell. Mach. Learn., Bruges, Belgium, 2015,

pp. 89–94.

[19] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, ‘‘Empirical evalua-

tion of gated recurrent neural networks on sequence modeling,’’ 2014,

arXiv:1412.3555. [Online]. Available: http://arxiv.org/abs/1412.3555

[20] D. P Kingma and M. Welling, ‘‘Auto-encoding variational Bayes,’’ 2013,

arXiv:1312.6114. [Online]. Available: http://arxiv.org/abs/1312.6114

VOLUME 9, 2021 35073

http://dx.doi.org/10.1109/TIFS.2011.2107320
http://dx.doi.org/10.1109/TIFS.2011.2107320
http://dx.doi.org/10.1109/ACCESS.2020.2976609
http://dx.doi.org/10.1109/ACCESS.2019.2932438
http://dx.doi.org/10.1002/nem.2094

P. Trinh Dinh, M. Park: R-EDoS: Robust Economic Denial of Sustainability Detection in an SDN-Based Cloud Through Stochastic RNN

[21] J. Sun, X. Wang, N. Xiong, and J. Shao, ‘‘Learning sparse representation

with variational auto-encoder for anomaly detection,’’ IEEE Access, vol. 6,

pp. 33353–33361, 2018, doi: 10.1109/ACCESS.2018.2848210.
[22] D. Jimenez Rezende and S.Mohamed, ‘‘Variational inference with normal-

izing flows,’’ 2015, arXiv:1505.05770. [Online]. Available: http://arxiv.

org/abs/1505.05770
[23] H. Xu, W. Chen, N. Zhao, Z. Li, J. Bu, Z. Li, Y. Liu, Y. Zhao, D. Pei,

Y. Feng, J. Chen, Z.Wang, and H. Qiao, ‘‘Unsupervised anomaly detection

via variational auto-encoder for seasonal KPIs inWeb applications,’’ 2018,

arXiv:1802.03903. [Online]. Available: http://arxiv.org/abs/1802.03903
[24] S. Bhingarkar and D. Shah, ‘‘FLNL: Fuzzy entropy and lion neural learner

for EDoS attack mitigation in cloud computing,’’ Int. J. Model., Simul., Sci.

Comput., vol. 9, no. 6, Dec. 2018, Art. no. 1850049.
[25] P. T. Dinh and M. Park, ‘‘ECSD: Enhanced compromised switch detec-

tion in an SDN-based cloud through multivariate time-series analysis,’’

IEEE Access, vol. 8, pp. 119346–119360, 2020, doi: 10.1109/ACCESS.

2020.3004258.
[26] Y. Su, Y. Zhao, C. Niu, R. Liu, W. Sun, and D. Pei, ‘‘Robust anomaly

detection for multivariate time series through stochastic recurrent neural

network,’’ in Proc. 25th ACM SIGKDD Int. Conf. Knowl. Discovery Data

Mining, Jul. 2019, pp. 2828–2837.
[27] G. Kitagawa and W. Gersch, ‘‘Linear Gaussian state space modeling,’’ in

Smoothness Priors Analysis of Time Series (Lecture Notes in Statistics),

vol. 116. New York, NY, USA: Springer, 1996, pp. 55–65.
[28] S. Gao, M. Zhou, Y. Wang, J. Cheng, H. Yachi, and J. Wang, ‘‘Dendritic

neuron model with effective learning algorithms for classification, approx-

imation, and prediction,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 30,

no. 2, pp. 601–614, Feb. 2019, doi: 10.1109/TNNLS.2018.2846646.
[29] S. Papadimitriou, J. Sun, and C. Faloutsos, ‘‘Streaming pattern discovery

in multiple time-series,’’ in Proc. 31st Int. Conf. Very Large Data Bases,

2005, pp. 697–708.
[30] C. J. Chu, ‘‘Time series segmentation: A sliding window approach,’’ Inf.

Sci., vol. 85, nos. 1-3, pp. 147–173, 1995, doi: 10.1016/0020-0255(95)

00021-G.
[31] L. de Haan and A. Ferreira, Extreme Value Theory: An Introduction

(Springer Series in Operations Research and Financial Engineering).

New York, NY, USA: Springer, 2006, pp. 65–126.
[32] M. R. Leadbetter, ‘‘On a basis for ‘peaks over threshold’ modeling,’’

Statist. Probab. Lett., vol. 12, no. 4, pp. 357–362, Oct. 1991.
[33] A. N. Iman and T. Ahmad, ‘‘Improving intrusion detection system by

estimating parameters of random forest in Boruta,’’ in Proc. Int. Conf.

Smart Technol. Appl. (ICoSTA), Surabaya, Indonesia, Feb. 2020, pp. 1–6,

doi: 10.1109/ICoSTA48221.2020.1570609975.
[34] M. B. Kursa and W. R. Rudnicki, ‘‘Feature selection with the Boruta

package,’’ J. Stat. Softw., vol. 36, no. 11, pp. 1–13, 2010.
[35] M. Cassel and F. L. Kastensmidt, ‘‘Evaluating one-hot encoding finite

state machines for SEU reliability in SRAM-based FPGAs,’’ in Proc. 12th

IEEE Int. Line Test. Symp. (IOLTS), Lake Como, Italy, Jul. 2006, p. 6,

doi: 10.1109/IOLTS.2006.32.
[36] A. Savitzky and M. J. E. Golay, ‘‘Smoothing and differentiation of data

by simplified least squares procedures,’’ Anal. Chem., vol. 36, no. 8,

pp. 1627–1639, Jul. 1964.
[37] J. Bi, H. Yuan, and M. Zhou, ‘‘Temporal prediction of multiap-

plication consolidated workloads in distributed clouds,’’ IEEE Trans.

Autom. Sci. Eng., vol. 16, no. 4, pp. 1763–1773, Oct. 2019, doi: 10.

1109/TASE.2019.2895801.
[38] A. Altmann, L. Tolosi, O. Sander, and T. Lengauer, ‘‘Permutation impor-

tance: A corrected feature importance measure,’’ Bioinformatics, vol. 26,

no. 10, pp. 1340–1347, May 2010.
[39] H. Abbasi, N. Ezzati-Jivan, M. Bellaiche, C. Talhi, and M. R. Dagenais,

‘‘Machine learning-based EDoS attack detection technique using execu-

tion trace analysis,’’ J. Hardw. Syst. Secur., vol. 3, no. 2, pp. 164–176,

Jun. 2019.
[40] B. Schölkopf, R. C. Williamson, A. J. Smola, J. Shawe-Taylor, and

J. C. Platt, ‘‘Support vector method for novelty detection,’’ in Proc. Adv.

Neural Inf. Process. Syst., vol. 12, 1999, pp. 582–588.
[41] M. Amer, M. Goldstein, and S. Abdennadher, ‘‘Enhancing one-class

support vector machines for unsupervised anomaly detection,’’ in Proc.

ACM SIGKDD Workshop Outlier Detection Description. New York, NY,

USA: Association Computing Machinery, 2013, pp. 8–15, doi: 10.1145/

2500853.2500857.
[42] A. Bremler-Barr, E. Brosh, and M. Sides, ‘‘DDoS attack on cloud

auto-scaling mechanisms,’’ in Proc. IEEE INFOCOM-IEEE Conf. Com-

put. Commun., Atlanta, GA, USA, May 2017, pp. 1–9, doi: 10.1109/

INFOCOM.2017.8057010.

[43] F. Al-Haidari, M. Sqalli, and K. Salah, ‘‘Evaluation of the impact of EDoS

attacks against cloud computing services,’’ Arabian J. Sci. Eng., vol. 40,

no. 3, pp. 773–785, Mar. 2015, doi: 10.1007/s13369-014-1548-y.
[44] P. Singh and S. Manickam, ‘‘Design and deployment of OpenStack-SDN

based test-bed for EDoS,’’ in Proc. 4th Int. Conf. Rel., Infocom Technol.

Optim. (ICRITO) (Trends Future Directions), Noida, India, Sep. 2015,

pp. 1–5, doi: 10.1109/ICRITO.2015.7359327.
[45] N. Goix, ‘‘How to evaluate the quality of unsupervised anomaly detection

algorithms?’’ 2016, arXiv:1607.01152. [Online]. Available: http://arxiv.

org/abs/1607.01152
[46] E. Cambiaso, G. Papaleo, G. Chiola, and M. Aiello, ‘‘Slow DoS attacks:

Definition and categorisation,’’ Int. J. Trust Manage. Comp. Commun.,

vol. 1, nos. 3–4, pp. 300–319, Jan. 2013.
[47] N. Agrawal and S. Tapaswi, ‘‘Defense mechanisms against DDoS attacks

in a cloud computing environment: State-of-the-art and research chal-

lenges,’’ IEEE Commun. Surveys Tuts., vol. 21, no. 4, pp. 3769–3795,

4th Quart., 2019, doi: 10.1109/COMST.2019.2934468.
[48] J. Polzehl and V. Spokoiny, ‘‘Propagation-separation approach for local

likelihood estimation,’’ Probab. Theory Rel. Fields, vol. 135, no. 3,

pp. 335–362, Jul. 2006.
[49] P. Berde et al., ‘‘ONOS: Towards an open, distributed SDN OS,’’ in Proc.

3rd workshop Hot Topics Softw. Defined Netw. (HotSDN), 2014. [Online].

Available: https://onosproject.org

PHUC TRINH DINH (Member, IEEE) received

the B.S. degree in information technology

from Telecommunications University, Vietnam,

in 2018, and themaster’s degree in information and

communication from Soongsil University, Seoul,

South Korea, in February 2021. His research inter-

ests include deep learning, reinforcement learning,

big data, cloud computing, software-defined net-

works, and network security.

MINHO PARK (Member, IEEE) received the B.S.

and M.S. degrees in electronics engineering from

Korea University, in 2000 and 2002, respectively,

and the Ph.D. degree from the School of Elec-

trical Engineering and Computer Science, Seoul

National University, Seoul, South Korea, in 2010.

He is currently an Associate Professor with

the School of Electronic Engineering, Soongsil

University, Seoul. His current research interests

include wireless networks, vehicular communica-

tion networks, network security, and cloud computing.

35074 VOLUME 9, 2021

http://dx.doi.org/10.1109/ACCESS.2018.2848210
http://dx.doi.org/10.1109/ACCESS.2020.3004258
http://dx.doi.org/10.1109/ACCESS.2020.3004258
http://dx.doi.org/10.1109/TNNLS.2018.2846646
http://dx.doi.org/10.1016/0020-0255(95)00021-G
http://dx.doi.org/10.1016/0020-0255(95)00021-G
http://dx.doi.org/10.1109/ICoSTA48221.2020.1570609975
http://dx.doi.org/10.1109/IOLTS.2006.32
http://dx.doi.org/10.1109/TASE.2019.2895801
http://dx.doi.org/10.1109/TASE.2019.2895801
http://dx.doi.org/10.1145/2500853.2500857
http://dx.doi.org/10.1145/2500853.2500857
http://dx.doi.org/10.1109/INFOCOM.2017.8057010
http://dx.doi.org/10.1109/INFOCOM.2017.8057010
http://dx.doi.org/10.1007/s13369-014-1548-y
http://dx.doi.org/10.1109/ICRITO.2015.7359327
http://dx.doi.org/10.1109/COMST.2019.2934468

