
R-MADDPG for Partially Observable Environments and Limited

Communication

Rose E. Wang 1 Michael Everett 2 Jonathan P. How 3

Abstract

There are several real-world tasks that would ben-

efit from applying multiagent reinforcement learn-

ing (MARL) algorithms, including the coordina-

tion among self-driving cars. The real world has

challenging conditions for multiagent learning

systems, such as its partial observable and nonsta-

tionary nature. Moreover, if agents must share a

limited resource (e.g. network bandwidth) they

must all learn how to coordinate resource use.

This paper introduces a deep recurrent multia-

gent actor-critic framework (R-MADDPG) for

handling multiagent coordination under partial

observable settings and limited communication.

We investigate recurrency effects on performance

and communication use of a team of agents. We

demonstrate that the resulting framework learns

time-dependencies for sharing missing observa-

tions, handling resource limitations, and devel-

oping different communication patterns among

agents.

1. Introduction

To apply reinforcement learning in real world settings, we

must develop robust frameworks that explicitly address com-

mon real world challenges. Much of current RL research

makes unrealistic assumptions, like full observability of

the environment, one agent learning in isolation, or unlim-

ited access to a communication network, none of which

exist in the real world. Therefore, RL algorithms must ad-

dress the following three challenges inherent to real-world

domains: partial observability (agents must learn concise

abstractions of history while learning to make good deci-

1Department of Electrical Engineering and Computer Science
2Department of Mechanical Engineering 3Laboratory for Informa-
tion and Decision Systems; Massachusetts Institute of Technology,
Cambridge, Massachusetts. Correspondence to: Rose E. Wang
<rewang@mit.edu>.

Reinforcement Learning for Real Life (RL4RealLife) Workshop in
the 36

th International Conference on Machine Learning, Long
Beach, California, USA, 2019. Copyright 2019 by the author(s).

sions), nonstationarity (introduced by multiple agents learn-

ing simultaneously), and limited communication between

agents (constraints on sharing of beliefs and intents). Exam-

ple applications include search and rescue scenarios with

constrained vehicle sensors (partial observability), coopera-

tion between humans and machines (nonstationarity), space

exploration missions or coordination among independent

self-driving cars (limited communication).

Common solutions to address these challenges include mul-

tiagent learning (Foerster et al., 2017; Lowe et al., 2017),

communication (Peng et al., 2017; de Freitas, 2016), and re-

source sharing. An extensive discussion on previous works

will follow in Section 2.

This work proposes a new model, the recurrent multiagent

deep deterministic policy gradient model (R-MADDPG),

for handling multiagent coordination under partially observ-

able environments using only limited communication, and

compares the proposed architecture’s performance against

alternatives. R-MADDPG learns two policies in parallel–

one for physical navigation and another for communication–

and not individually as done in previous works. This work

extends upon previous work, Multi-Agent Actor-Critic for

Mixed Cooperative-Competitive Environments (MADDPG)

(Lowe et al., 2017).

Specifically, we assume a multiagent actor-critic model and

propose a model where both the actor and the critic are

recurrent. Alternative architectures include actor-critic mod-

els with only a recurrent actor or only a recurrent critic. Our

experiments show that the fully recurrent actor-critic model

learns with less variability in mean and variance and that

the recurrent critic is the crucial component that enables

learning under real-world conditions (partial observations,

limited communication, multiagent). The experiments sug-

gest a recurrent actor is insufficient by itself for partially

observable domains.

Our contributions include: i) a demonstration of the failure

of current MARL methods in a simple partially observable

coordination task, which identifies a remaining gap between

RL research and the real world; ii) recurrent multiagent

actor-critic architectures for message passing and move-

ment, with experiments showing successful learning under

various constraints on communication and observability; iii)

empirical comparison between the proposed architectures

that highlights the importance of a recurrent critic; and iv)

an open-sourced implementation of R-MADDPG 1.

2. Related Works

Three key challenges in applying reinforcement learning

to real life are: multiagent learning in fully and partially

observable environments, multiagent learning for commu-

nication and/or communication protocols, and multiagent

resource sharing. Most works below handle these challenges

separately. This work is the first to handle all three of these

challenges in one general framework.

Multiagent learning General multiagent reinforcement

learning (MARL) methods either assume full observability

and are less applicable to real world conditions (Peng et al.,

2017; Kong et al., 2017), or handle partially observable en-

vironments by making assumptions on the types of policies

learned, such as multiple agents developing homogeneous

policies (Khan et al., 2018). Earlier works (Wu et al., 2009;

Amato et al., 2015) model the multiagent learning problem

as decentralized POMDPs (Dec-POMDPs), nonetheless the

traditional search for an optimal policy requires knowledge

about the transition function which agents typically do not

have access to in the real world.

A well-known issue in multiagent learning is nonstationarity

(Hernandez-Leal et al., 2017): Each agent simultaneously

updates its policy during training, thus making each agent’s

optimal policy a moving target. MADDPG combats nonsta-

tionarity by training the critic in a centralized manner, as in

this work2. Several single agent RL works address nonsta-

tionarity with experience replay (Mnih et al., 2015; Schaul

et al., 2015). However, experience replay in multiagent set-

ting introduces additional challenges, such as how to sample

experiences in a synchronized fashion (Omidshafiei et al.,

2017), and even conflicting information about whether ex-

perience replay helps in multiagent settings (Foerster et al.,

2016; Singh et al., 2018).

Communication and resource sharing Previous multia-

gent communication methods miss important elements of

the real world: the architectures are designed specifically

for communication (de Freitas, 2016) and assume network

parameter sharing (Foerster et al., 2016) or access to other

agents’ hidden states (Singh et al., 2018; Sukhbaatar et al.,

2016). Not only are these assumptions unrealistic for real

world conditions, enforcing a specific communication archi-

tecture can limit the diversity of emergent communication

protocols (Kottur et al., 2017).

1https://github.com/rosewang2008/rmaddpg
2This work distinguishes between centralized training (sharing ex-
periences during network parameter updates) and communication
messages (sharing observations/beliefs during task execution).

Other works model communication separately from other

task policies (like physical motion) (Khan et al., 2019) even

though it oftentimes aids those objectives and should be

learned in conjunction, or propose models for learning long-

term sequential strategies (Peng et al., 2017) but condition

on complete state information. Previously mentioned works

have used recurrence in multiagent reinforcement learning

and communication, but they do not use it for message

passing or simultaneously modelling communication and

other task policies.

MADDPG handles cooperative tasks, however does not

model explicit communication among agents and can-

not handle partially observable environments and history-

dependent decision making. (Khan et al., 2018) is similar to

MADDPG, however scales better to more agents under the

strong assumption that the agents’ policies can be approx-

imated to a single policy. (Jiang & Lu, 2018) is similar to

our learning environment, in that they want to learn how to

conservatively use communication. They propose a central

attentional unit in an actor-critic framework for learning

when communication is needed and for integrating shared

information. Nonetheless, they prioritize minimizing com-

munication as much as possible, whereas this paper demon-

strates that agents are capable of adapting to any amount of

resources.

3. Background

3.1. Reinforcement Learning

In real world settings, agents make noisy observations of

the true environment state to inform their action selection,

typically modeled as a Partially Observable Markov deci-

sion process (POMDPs) (Kaelbling et al., 1998), or in its

extended version with multiple agents, a Decentralized Par-

tially Observable Markov decision process (Dec-POMDPs)

(Bernstein et al., 2002) defined as (I,S,A, T ,Ω,O,R, γ),
where I = {1, ..., N} is the set of N agents, S is the set of

states, A = ×iAi is the set of joint actions, T is the transi-

tion probability function, Ω = ×iOi is the set of joint partial

observations, O is the observation probability function, R
is the reward function, and γ ∈ [0, 1) is the discount factor.

At each timestep t, agent i receives a partial observation oit
and takes action ait according to policy πi(hi

t; θ
i), where θi

is agent i’s policy parameters and hi
t is agent i’s observation

history. The current state of the Dec-POMDP st transitions

to st+1 according to the transition function with joint actions

of the agents at = a1t × ...× aNt , i.e. T (st+1; st, at). The

agents receive a shared team reward rt = R(st, at), and

receive a new joint observation set ot+1 = {o1t+1, ..., o
N
t+1}

after the state transition. The objective for each agent is to

maximize its expected discounted reward E[
∑

t rtγ
t].

This work focuses on using recurrent neural networks for

2

learning representations capable of estimating the true state

of the Dec-POMDP S from an agent’s local set of observa-

tions Ωi. The recurrency in the network architecture there-

fore explicitly acts as a system mechanism for gathering

partial observations so as to minimize the differences in

system behavior with and without full observability of S .

3.2. Q-learning

Q-learning and Deep Q-learning methods have been very

popular in the context of Atari game playing. Q-learning

is a model-free approach for determining the long-term

expected return of executing an action a from a state s,

where it makes use of the action-value function under a

given policy π (Sutton et al., 1998). In other words, Q is

iteratively defined as,

Qπ(s, a) = Es′ [r(s, a) + γEa′∼π[Qπ(s, a)]]. (1)

Deep Q-Learning methods approximate the Q-values by

means of a neural network parameterized by the weight θ.

It learns the values for Q∗, where Q̃∗ is the target values, by

minimizing the loss defined as:

L(θ) = Es,a,r,s′ [(Q
∗(s, a|θ)− (r + γmax

a′

Q̃∗(s′, a′)))2].

(2)

Because the same network is used for generating next target

values and for updating Q∗, Deep Q-Learning demonstrates

high variance in its learning trajectory for approximating

action values. Thus, common techniques for facilitating

learning stability include using experience replay (Mnih

et al., 2015; Schaul et al., 2015) in a replay memory buffer

sampled during training, and using a separate, target network

Q̃ for generating the target values in the loss calculation.

This target network is identical to the Q∗ except that the

target network is updated to match Q∗ at a much slower

rate (e.g. every thousand iterations) so as to stabilize the

learning of Q∗.

3.3. Policy Gradient Algorithms

Policy gradient methods are another way for maximizing

expected reward for the agent by directly optimizing the

policy. The policy is parameterized by weights θ. The

objective is to maximize the score function

J(θ) = Eπθ
[
∑

t

Rt] (3)

where the gradient of the policy is defined by the Policy

Gradient Theorem (Sutton et al., 2000) as:

∇θJ(θ) = Eπθ
[∇θ log πθ(a|s)Qπ(s, a)]. (4)

This paper uses the actor-critic framework, where a network,

namely the critic, learns the approximation of Qπ(s, a) by

temporal difference learning. To handle nonstationarity in

the multiagent framework (Lowe et al., 2017), each agent’s

critic uses all agents’ observations and actions for training.

Thus, the loss with respect to agent i’s policy parameteriza-

tion is:

∇θiJ = Eπθi
[∇θi log πθi(ai|oi)Qπi

(o1, ..., oN , a1, ..., aN)].
(5)

4. Methods

This paper proposes three recurrent multiagent actor-critic

models for partially observable and limited communication

settings. The models only take in a single frame at each

timestep. Because they cannot communicate all the time,

they need a way to remember the last communication they

received from their team, when they last transmitted a mes-

sage and how their actions affect the communication budget

over time. Recurrency acts as an explicit mechanism to

do just that. Our models extend the multiagent actor-critic

framework proposed by MADDPG to enable learning in a

multiagent, partially observable, and limited communication

domain.

4.1. Recurrent Multi Agent Actor

We perform the following updates using experience sam-

pled ∼ U(D). An agent i’s replay buffer D contains tu-

ples of experiences, where an experience at time t contains:

(oi,t, ai,t, o
′

i,t+1, ri,t, h
p
i,t, h

p
i,t+1). o denotes agent i’s par-

tial observations, a its action resulting from πi,t(oi,t, hi,t),
ri,t the agent’s reward, and hp the hidden state of the ac-

tor network before and after the selected action. Let each

agent have a continuous policy µ = µθi , and a target policy

µ′ = µ′

θ′

i
. x ∼ U(D) and a ∼ U(D) are placeholders for

the state and action information of all agents from sampled

experiences. Then, the policy’s gradient is,

∇θiJ(µ) = EU(D)[∇θiµ(ai,t|oi,t, h
p
i,t)

·∇ai,t
Q

µ
i (x, a)|ai,t=µi(oi,t,h

p
i,t

)]. (6)

The action-value function Q
µ
i is updated based on,

L(θi) = EU(D)[((ri + γQ
µ′

i (x′, a′j)|a′

j
=µ′

j
(oj ,h

p
j,t

)

−Q
µ
i (x, a))

2]. (7)

4.2. Recurrent Multi Agent Critic

We perform the following updates using experience sam-

pled ∼ U(D). An agent i’s replay buffer D tuples

of experiences, where an experience at time t contains:

(oi,t, ai,t, o
′

i,t+1, ri,t, h
q
i,t, h

q
i,t+1). We assume the same no-

tation from before, where hq is the hidden state of the critic

network before and after a selected action. The policy gra-

dient is calculated as,

3

(a) (b) (c)

Figure 1. Illustration of the three recurrent models described in Section 4. 1a is the recurrent actor (actors maintain state h
p over time),

1b is the recurrent critic (Q maintains hq over time), and 1c is the recurrent actor critic models used in the experiments. The top row

shows the models during training, and the bottom row shows the models during execution. Actors communicate with each other and share

information (m). If they decide not to communicate or have no communication budget left, an empty message is sent.

∇θiJ(µ) = EU(D)[∇θiµ(ai,t|oi,t)

·∇ai,t
Q

µ
i (x, a, h

q
t)|ai,t=µi(oi,t)]. (8)

The action-value function Q
µ
i is updated based on,

L(θi) = EU(D)[((ri + γQ
µ′

i (x′, a′j , h
q
t+1)|a′

j
=µ′

j
(oj)

−Q
µ
i (x, a, h

q
t)

2]. (9)

4.3. Recurrent Multi Agent Actor and Critic

We perform the following updates using experience sam-

pled ∼ U(D). An agent i’s replay buffer D tuples

of experiences, where an experience at time t contains:

(oi,t, ai,t, o
′

i,t+1, ri,t, h
q
i,t, h

q
i,t+1, h

p
i,t, h

p
i,t+1). We assume

the same notation from before. The policy gradient is calcu-

lated as,

∇θiJ(µ) = EU(D)[∇θiµ(ai,t|oi,t, h
p
i,t)

·∇ai,t
Q

µ
i (x, a, h

q
t)|ai,t=µi(oi,t,h

p
i,t

)].

(10)

The action-value function Q
µ
i is updated based on,

L(θi) = EU(D)[((ri + γQ
µ′

i (x′, a′j , h
q
t+1)|a′

j
=µ′

j
(oj ,h

p
j
)

−Q
µ
i (x, a, h

q
t)

2]. (11)

Figure 2. Simultaneous arrival task with N = 2 agents. The agents

(blue, red) start at different distances from the goal (black), and

their task is to arrive at the goal location simultaneously. A video

can be found here.

5. Experiments

This section shows that the recurrent critic is critical for

agents to learn a good policy from their partially observable

states and under limited communication settings. The re-

current actor alone is not able to discover the right policy,

however combined with the recurrent critic it reduces the

variance in the reward performance. Our experiments use

a simultaneous arrival task, where N agents must arrive
4

https://sites.google.com/view/rmaddpg/home##h.p_Iin8bLPKVOhT

(a) Team distance reward, fully observable settings (b) Team difference reward, fully observable settings.

(c) Team distance reward, partially observable settings. (d) Team difference reward, partially observable settings.

Figure 3. Reward performance in observability experiments. Under fully observable settings (top row), both MADDPG (red) and recurrent

variants (green, blue, orange) perform similarly. Under partially observable (bottom row) settings, the recurrent actor (orange) and

MADDPG (red) are unable to learn how to simultaneously arrive (d), and even how to move towards the goal (c). This demonstrates

the importance of the recurrent critic in partially observable settings. For partial observability, the communication budget is set to 20

messages, shared between 2 agents over ∼ 100 timesteps per episode.

at a goal location at the same time (extended from (Lowe

et al., 2017), see example video here). In the fully observ-

able environment, the agents know the positions of all the

agents and the goal. In the partially observable environment,

the agents only know their position and the goal; only if

an agent decides to communicate, do other agents know

its position. The partially observable domain is especially

difficult for MADDPG because it is unable to keep a history

of its previous partial observations; this renders it almost

impossible for MADDPG to estimate the underlying system

state.

This environment allows us to focus on the analysis of time-

wise coordination among agents and multi-timestep com-

munication use under different recurrent architectures. We

investigate the effects of recurrency between MADDPG and

R-MADDPG with the experiments below. For all the ex-

periments we compare among regular MADDPG and these

proposed networks from the Methods section. We both vary

the observability (between full and partial observations) for

the agents and vary the communication budget.

5.1. Experimental Setup

Let s denote an agent’s fully observable state, containing

this agent’s position, (px, py), the goal position (gx, gy),

the communication message, m, is always the other agent’s

position, and a communication budget c. A partially ob-

servable state, s′, contains the same state variables, however

the communication message, m′ is either the other agent’s

position if the other agent communicated that timestep, or

(−1,−1) otherwise. That is,

s = [px, py, gx, gy,m, c] (12)

s
′ = [px, py, gx, gy,m

′, c] (13)

At each time step, each agent selects two types of discrete ac-

tions, one physical, ap ∈ {none, north, east,west, south},

and one verbal, av ∈ {communicate, silent}.

The joint team reward function,

R =
∑

i

d(pi, g)

︸ ︷︷ ︸

Rdist

+
∑

pairs(i,j)

|d(pi, g)− d(pj , g)|

︸ ︷︷ ︸

Rdiff

, (14)

encourages agents to individually reach the common goal

position g = (gx, gy) through Rdist, and encourages simul-

taneity through Rdiff , where d is Euclidean distance.

Throughout this section, we refer to Rdist as the team dis-

tance and Rdiff as the difference in agents’ distances to

goal. These measurements are used in evaluating perfor-

mance respectively on the left and right hand columns of

5

https://sites.google.com/view/rmaddpg/home#h.p_Iin8bLPKVOhT

(a) Team distance to goal. (b) Team difference to goal.

Figure 4. MADDPG’s performance depends on the degree of observability. Decreasing the communication budget dramatically worsens

MADDPG’s performance in partially observable domain. These plots assume each episode is 100 timesteps. Thus, a shared communication

budget of 200 messages means that both agents are able to communicate at every timestep during an episode. Yet, even with a 200

message budget that could enable full observability, MADDPG still performs worse than R-MADDPG which uses only 10% of the budget.

(a) Team distance to goal location over communication budget. (b) Difference in agents’ distances to goal over communication
budget.

Figure 5. Execution performance over varying communication budget. The experiments assume R-MADDPG in a partially observable

domain. The numbers indicate the amount of shared communication budget the agents had. We note that with decreasing budget the

agents still learn how to move to the goal, and performance declines with decreasing budget, as expected.

Figure 3 and Figure 4.

The communication budget is shared between agents, and

a full communication budget is consider to be 1.0. If the

communication budget is set to sending x (total) messages,

then the budget decreases by 1
x

with every communication

message. If no budget is given, i.e. no communication is

allowed, the budget is set to 0.0. No agent is allowed to com-

municate once the budget reaches 0.0, and their messages

are defaulted to a blank value (−1,−1).

Network architecture: The networks contain three layers

each with 64 units, where the first and last are fully con-

nected layers and the middle layer is an LSTM layer. The

first fully connected layer has an ReLU activation (Nair &

Hinton, 2010).

Hyperparameters: The experiments assume an Adam Op-

timizer with a learning rate of 0.01, τ = 0.01 for the target

network updates, and γ = 0.95. The replay buffer size

is 106. We sample after every other 100 timesteps, and

sample a batch size of 256 by episode. Training happens

with 4 random seeds for all the experiments found above.

All the hyperparameters will be set as the default in the

open-sourced implementation of R-MADDPG.

5.2. Results

5.2.1. OBSERVABILITY

This section first explores whether the models are capable

of learning in multiagent environments assuming complete

observations, then learning in multi-agent environments

assuming partial observations.

The experiments verify that both MADDPG and R-

MADDPG variants perform equivalently well under fully

observable settings in going to the goal (Figure 3a). R-

MADDPG (in green, Figure 3b) does not converge as

quickly in arriving simultaneously, and we hypothesize this

is because it takes longer to learn if backpropagating through

time in both in the actor and critic.

Under partially observable settings, the experiments illus-

trate the importance of the recurrent critic for learning a

policy from partial observations and under a limited com-

munication budget that, at minimum requirement, moves

the agents towards the goal (Figure 3c, Figure 3d). Further-

more, the figures illustrate that the recurrent actor and critic

learns more stably than only the recurrent actor model; we

define stable learning by the reward mean fluctuations and

6

(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

Figure 6. Example scenarios assuming R-MADDPG and shared communication budget of 50 messages (agents can only communicate

∼ 25% of timesteps). Here is a video including these examples. Using communication, agents either hover around their location (blue

agent in Figure 6a) or move away from the goal (red agent in Figure 6b) in order to synchronously arrive at the goal with the other agent.

In cases where one agent dominates the communication (red agent in Figure 6c), the agents take longer to arrive to the goal even though

they are initialized close to one another.

the reward variance, where these experiments assumed the

same experiment stochasticity as described in section 5.1.

The experiments demonstrate that recurrent actor by itself

performs similarly to MADDPG. It is unable to learn from

a sequence of partial observations, not only how to simul-

taneously arrive at the goal (Figure 3d), but to even to go

to the goal (Figure 3c). In other words, the recurrent actor

provides insufficient information about the underlying task.

We hypothesize this is because the actor optimizes with

respect to the critic (Eq. 6). A policy gradient taken with

respect to Q
µ
i (x, a)|a=µi(oi,h

p
i
)), a critic that cannot cap-

ture the partial observable dynamics of the environment,

results in the actor converging to a poor policy. Thus, we

believe that the RNN plays a more important role in the

critic Q
µ
i (x, a, h

q
i) than in the actor µi(oi, h

p
i).

5.2.2. COMMUNICATION BUDGET

This section investigates how well the models perform under

different resource constraints by varying the communication

budget shared by the agents. The communication budget

dictates how many messages are allowed to be sent within a

team of agents. We still assume the agents are in a partially

observable environment, thus the agents must share infor-

mation in order to arrive simultaneously at the goal. Video

examples of R-MADDPG, which illustrate the communi-

cation use and physical movements of the agents, can be

found here.

The experiments verify that the poor performance seen in

Figure 3c and Figure 3d by MADDPG is due to the insuf-

ficient communication budget which prevents MADDPG

from having complete observations over the environment at

every timestep. Figure 4 fixes the best performing model

from Figure 3c and Figure 3d, namely R-MADDPG, and

uses it as the best performing model. The graph increases the

communication budget for MADDPG up to 200 messages,

which means that every agent is allowed to communicate

at each timestep of the episode. Only when this happens

does the model’s performance closely match R-MADDPG’s

performance under partially observable conditions.

An examination of how communication is used through-

out an episode is in Figure 6, which identifies emergent

coordination-communication behaviors that do not come

across in the plotted aggregate statistics. Notably with lim-

ited communication, agents learn to either wait or move

away from the goal in order to simultaneously arrive at the

goal with the other agent (Figure 6a, Figure 6b). There

exist edges cases, for instance Figure 6c, where agents are

initialized closed to each other however one agent domi-

nates the communication and the agents take longer to get

to the goal.

The experiments also vary the communication budget on

R-MADDPG to evaluate how sensitive the model is to de-

7

https://sites.google.com/view/rmaddpg/home##h.p_J7OE3k83VXFa
https://sites.google.com/view/rmaddpg/home#h.p_Iin8bLPKVOhT

creased observability. The figures Figure 5a, Figure 5b

display the reward performance (Eq. 14) over communi-

cation budget. As expected, the figures show that with

increasing amounts of communication budget, the agents

perform better at simultaneously arriving. Additionally, the

performance variance decreases with increasing amount of

communication budget in both plots. The plot illustrates the

tradeoff between network bandwidth and team performance,

which could be used to inform system-level design decisions

in real-world applications.

6. Conclusions and Future Work

This paper proposes a recurrent multi-agent actor-critic

model for coordination in partially observable, limited com-

munication settings. This model is more applicable to real-

world conditions since real-world settings are multiagent,

partially observable and limited in communication. The

experiments showed the recurrent critic is important for

enabling R-MADDPG to handle partially observable envi-

ronments. They also showed shown that R-MADDPG is

capable of enabling coordination among agents in arriving

simultaneously while varying the communication budget.

As future work, we hope to develop create more multi-agent

coordination and communication scenarios and evaluate R-

MADDPG in more other environments, such as the environ-

ments used in (Mordatch & Abbeel, 2017) and DeepMind’s

soccer environment from (Liu et al., 2019).

We also hope to expand it to coordination among heteroge-

nous agents and explore the effects of the replay buffer

parameters/settings in the multi-agent environments.

7. Acknowledgments

The authors would like to thank Dong-Ki Kim and Macheng

Shen for their feedback on the paper’s draft and interesting

discussions. This work was supported by Lockheed Martin.

References

Amato, C., Konidaris, G., Cruz, G., Maynor, C. A., How,

J. P., and Kaelbling, L. P. Planning for decentralized con-

trol of multiple robots under uncertainty. In 2015 IEEE

International Conference on Robotics and Automation

(ICRA), pp. 1241–1248. IEEE, 2015.

Bernstein, D. S., Givan, R., Immerman, N., and Zilberstein,

S. The complexity of decentralized control of markov

decision processes. Mathematics of operations research,

27(4):819–840, 2002.

de Freitas, N. Learning to learn and compositionality

with deep recurrent neural networks. Proceedings of the

22nd ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining - KDD 16, 2016. doi:

10.1145/2939672.2945358. URL http://dx.doi.

org/10.1145/2939672.2945358.

Foerster, J., Farquhar, G., Afouras, T., Nardelli, N., and

Whiteson, S. Counterfactual multi-agent policy gradients,

2017.

Foerster, J. N., Assael, Y. M., de Freitas, N., and White-

son, S. Learning to communicate to solve riddles with

deep distributed recurrent q-networks. arXiv preprint

arXiv:1602.02672, 2016.

Hernandez-Leal, P., Kaisers, M., Baarslag, T., and de Cote,

E. M. A survey of learning in multiagent environments:

Dealing with non-stationarity, 2017.

Jiang, J. and Lu, Z. Learning attentional communication for

multi-agent cooperation. In Advances in Neural Informa-

tion Processing Systems, pp. 7254–7264, 2018.

Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. Plan-

ning and acting in partially observable stochastic domains.

Artificial intelligence, 101(1-2):99–134, 1998.

Khan, A., Zhang, C., Lee, D. D., Kumar, V., and Ribeiro,

A. Scalable centralized deep multi-agent reinforce-

ment learning via policy gradients. arXiv preprint

arXiv:1805.08776, 2018.

Khan, A., Zhang, C., Kumar, V., and Ribeiro, A. Collabo-

rative multiagent reinforcement learning in homogenous

swarm, 2019. URL https://openreview.net/

forum?id=ByeDojRcYQ.

Kong, X., Xin, B., Liu, F., and Wang, Y. Revisiting the

master-slave architecture in multi-agent deep reinforce-

ment learning, 2017.

Kottur, S., Moura, J., Lee, S., and Batra, D. Natural

language does not emerge naturally in multi-agent di-

alog. Proceedings of the 2017 Conference on Empirical

Methods in Natural Language Processing, 2017. doi:

10.18653/v1/d17-1321. URL http://dx.doi.org/

10.18653/v1/d17-1321.

Liu, S., Lever, G., Merel, J., Tunyasuvunakool, S., Heess,

N., and Graepel, T. Emergent coordination through com-

petition, 2019.

Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, O. P.,

and Mordatch, I. Multi-agent actor-critic for mixed

cooperative-competitive environments. In Advances in

Neural Information Processing Systems, pp. 6379–6390,

2017.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,

J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-

land, A. K., Ostrovski, G., et al. Human-level control
8

http://dx.doi.org/10.1145/2939672.2945358
http://dx.doi.org/10.1145/2939672.2945358
https://openreview.net/forum?id=ByeDojRcYQ
https://openreview.net/forum?id=ByeDojRcYQ
http://dx.doi.org/10.18653/v1/d17-1321
http://dx.doi.org/10.18653/v1/d17-1321

through deep reinforcement learning. Nature, 518(7540):

529, 2015.

Mordatch, I. and Abbeel, P. Emergence of grounded com-

positional language in multi-agent populations. arXiv

preprint arXiv:1703.04908, 2017.

Nair, V. and Hinton, G. E. Rectified linear units improve

restricted boltzmann machines. In Proceedings of the 27th

international conference on machine learning (ICML-10),

pp. 807–814, 2010.

Omidshafiei, S., Pazis, J., Amato, C., How, J. P., and Vian, J.

Deep decentralized multi-task multi-agent reinforcement

learning under partial observability. In Proceedings of

the 34th International Conference on Machine Learning-

Volume 70, pp. 2681–2690. JMLR. org, 2017.

Peng, P., Wen, Y., Yang, Y., Yuan, Q., Tang, Z., Long, H.,

and Wang, J. Multiagent bidirectionally-coordinated nets:

Emergence of human-level coordination in learning to

play starcraft combat games, 2017.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. Priori-

tized experience replay, 2015.

Singh, A., Jain, T., and Sukhbaatar, S. Learning when to

communicate at scale in multiagent cooperative and com-

petitive tasks. arXiv preprint arXiv:1812.09755, 2018.

Sukhbaatar, S., Szlam, A., and Fergus, R. Learning multia-

gent communication with backpropagation, 2016.

Sutton, R. S., Barto, A. G., et al. Introduction to reinforce-

ment learning, volume 135. MIT press Cambridge, 1998.

Sutton, R. S., McAllester, D. A., Singh, S. P., and Mansour,

Y. Policy gradient methods for reinforcement learning

with function approximation. In Advances in neural in-

formation processing systems, pp. 1057–1063, 2000.

Wu, F., Zilberstein, S., and Chen, X. Multi-agent online

planning with communication. In Nineteenth Interna-

tional Conference on Automated Planning and Schedul-

ing, 2009.

9

