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Abstract
The aim of the paper is to extend the results concerning the Shannon entropy and Kullback–Leibler divergence in product

MV-algebras to the case of R-norm entropy and R-norm divergence. We define the R-norm entropy of finite partitions in

product MV-algebras and its conditional version and derive the basic properties of these entropy measures. In addition, we

introduce the concept of R-norm divergence in product MV-algebras and we prove basic properties of this quantity. In

particular, it is proven that the Kullback–Leibler divergence and Shannon’s entropy of partitions in a given product MV-

algebra can be obtained as the limits of their R-norm divergence and R-norm entropy, respectively.
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1 Introduction

MV-algebras were introduced by Chang (1958) as the

semantical counterpart of the Łukasiewicz many-valued

propositional logic. This algebraic structure is currently

being studied by many researchers, and it is natural that

there are many results regarding entropy in this structure;

for instance, we refer to Di Nola et al. (2005), Riečan

(2005), cf. also Markechová et al. (2018a). An important

case of MV-algebras is the so-called product MV-algebra

introduced independently by Riečan (1999) and Montagna

(2000), see also Di Nola and Dvurečenskij (2001) and

Jakubı́k (2002). This notion generalizes some classes of

fuzzy sets (Zadeh 1965); an example of product MV-al-

gebra is a full tribe of fuzzy sets (see, e.g., Riečan and

Neubrunn 2002).

In this paper, we continue to study entropy in product

MV-algebras, which began in Petrovičová (2000), see also

Petrovičová (2001), by defining and studying the R-norm

entropy and R-norm divergence in this structure. We recall

that the R-norm entropy (cf. Arimoto 1971; Boekke and

Van Der Lubbe 1980) of a probability distribution P ¼
p1; p2; . . .; pnf g is defined, for a positive real number R not

equal to 1, by the formula:

HRðPÞ ¼
R

R� 1
1 �

Xn

i¼1

pRi

" #1
R

0
@

1
A:

Some results regarding the R-norm entropy measure and

its generalizations can be found in Hooda and Ram (2002),

Hooda and Sharma (2008), Hooda and Bajaj (2008),

Kumar and Choudhary (2012), Kumar et al. (2014),

Markechová et al. (2018b). We note that in the recently

published paper Markechová and Riečan (2017), the results

regarding the Shannon entropy of partitions in product

MV-algebras were exploited to define the notions of

Kullback–Leibler divergence and mutual information of

partitions in this structure. The Kullback–Leibler diver-

gence (K–L divergence, for short) was proposed in Kull-

back and Leibler (1951) as the distance measure between

two probability distributions, and it is currently one of the

most basic quantities in information theory (Gray 2009).

We remark that the concepts of the R-norm entropy and R-

norm divergence are extensions of the notions of Shannon

entropy (Shannon 1948) and K–L divergence, respectively.

The aim of the present article is to study the R-norm

entropy and R-norm divergence in product MV-algebras.

The rest of the article is organized as follows. Sect 2
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contains basic definitions, notations and some known facts

that will be used in the succeeding sections. Our results are

presented in Sects. 3 and 4. In Sect. 3, we define and study

the R-norm entropy and conditional R-norm entropy of

finite partitions in product MV-algebras and examine their

properties. In Sect. 4, the notion of the R-norm divergence

in product MV-algebras is introduced and the properties of

this distance measure are studied. It is proved that the

Shannon entropy and the K–L divergence in product MV-

algebras can be derived from their R-norm entropy and R-

norm divergence, respectively, as the limiting cases for

R ! 1: We illustrate results with numerical examples.

Finally, the last section provides brief closing remarks.

2 Basic definitions and related works

Let us begin by recalling the definitions of the basic terms

and some known results that will be used in the following

parts. We mention in this section also some works con-

nected with the issue of this article, of course, with no

claim for completeness.

For defining the notion of MV-algebra, several different

(but equivalent) axiom systems have been used (cf., e.g.,

Cattaneo and Lombardo 1998; Gluschankof 1993; Riečan

1999). In this paper, we apply the definition of MV-algebra

in accordance with the definition given by Riečan (2012),

which is based on Mundici’s representation theorem

(Mundici 1986; see also Mundici 2011). According to the

Mundici theorem, MV-algebras can be viewed as intervals

of a commutative lattice ordered groups (shortly l-group).

We recall that by an l-group (Anderson and Feil 1988) we

mean a triplet ðG; þ; �Þ; where ðG; þÞ is a commuta-

tive group, ðG; �Þ is a partially ordered set being a lattice

and x� y ) xþ z� yþ z:

Definition 1 (Riečan 2012) An MV-algebra is an alge-

braic system ðA; �; �; 0; uÞ satisfying the following

conditions:

(i) there exists an l-group ðG; þ; �Þ such that A ¼
½0; u� ¼ fx 2 G; 0� x� ug; where 0 is the neutral

element of ðG; þÞ and u is a strong unit of G (i.e.,

u 2 G such that u[ 0 and to each x 2 G there

exists a positive integer n with x� nu);

(ii) �; � are binary operation on A satisfying the

following identities: x� y ¼ ðxþ yÞ ^ u;

x � y ¼ðxþ y� uÞ _ 0:

Definition 2 (Riečan and Mundici 2002) A state on an

MV-algebra ðA; �; �; 0; uÞ is a map s : A ! ½0; 1� with

the properties: (i) sðuÞ ¼ 1; (ii) if x; y 2 A such that

xþ y� u; then sðxþ yÞ ¼ sðxÞ þ sðyÞ:

Definition 3 (Riečan 2012) A product MV-algebra is an

algebraic structure ðA; �; �; � ; 0; uÞ; where

ðA; �; �; 0; uÞ is an MV-algebra and � is a commutative

and associative binary operation on A with the following

properties:

(i) for every x 2 A; u � x ¼ x;
(ii) if x; y; z 2 A such that xþ y� u; then

z � xþ z � y� u; and z � ðxþ yÞ ¼ z � xþ z � y:

For the sake of brevity, we write in the following ðA; � Þ
instead of ðA; �; �; � ; 0; uÞ: A relevant probability

theory for the product MV-algebras was developed in

Riečan (2000), see also Kroupa (2005) and Vrábelová

(2000). A suitable entropy theory of Shannon type for the

product MV-algebras has been provided in Petrovičová

(2000, 2001), Riečan (2005). The main idea and some

results of this theory follow.

Following Petrovičová (2000), by a partition in a product

MV-algebra ðA; � Þ; we will mean any n-tuple a ¼
ðx1; x2; . . .; xnÞ of (not necessarily different) elements of A

with the property x1 þ x2 þ � � � þ xn ¼ u: In the system of

all partitions in a given product MV-algebra ðA; � Þ; we

define the refinement partial order � in a standard way (cf.

Markechová et al. 2018a). If a ¼ ðx1; x2; . . .; xnÞ; and b ¼
ðy1; y2; . . .; ymÞ are two partitions in ðA; � Þ; then we write

b � a (and we say that b is a refinement of a Þ; if there exists

a partition Ið1Þ; Ið2Þ; . . .; IðnÞf g of the set 1; 2; . . .;mf g such

that xi ¼
P

j2I ið Þ yj; for i ¼ 1; 2; . . .; n: Further, we define

a _ b as a k-tuple (where k ¼ n � mÞ consisting of the ele-

ments xij ¼ xi � yj; i ¼ 1; 2; . . .; n; j ¼ 1; 2; . . .;m: Since
Pn

i¼1

Pm
j¼1 xi � yj ¼

Pn
i¼1 xi

� �
�
Pm

j¼1 yj

� �
¼u � u ¼ u; the

k-tuple a _ b is a partition in ðA; � Þ; it represents an

experiment consisting of a realization of a and b:

Proposition 1 Let a ¼ ðx1; x2; . . .; xnÞ be a partition in a

product MV-algebra ðA; � Þ and s be a state on ðA; � Þ:
Then, for any element y 2 A; it holds sðyÞ ¼

Pn
i¼1 sðxi � yÞ:

Proof The proof can be found in Markechová et al.

(2018a).

Proposition 2 If a; b are partitions in a product MV-

algebra ðA; � Þ such that b � a; then for every partition c
in ðA; � Þ; it holds b _ c � a _ c:

Proof The proof can be found in Markechová et al.

(2018a).

Definition 4 Let s be a state on a product MV-algebra

ðA; � Þ: We say that partitions a; b in ðA; � Þ are statistically

independent with respect to s, if sðx � yÞ ¼ sðx Þ � sðyÞ; for

every x 2 a; and y 2 b:

The following definition of entropy of Shannon type has

been introduced in Petrovičová (2000).
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Definition 5 Let a ¼ ðx1; x2; . . .; xnÞ be a partition in a

product MV-algebra ðA; � Þ and s be a state on ðA; � Þ:
Then the entropy of a with respect to s is defined by

Shannon’s formula:

Hs
bðaÞ ¼ �

Xn

i¼1

FðsðxiÞÞ; ð1Þ

where

F : 0;½ 1Þ ! <;FðxÞ ¼ x logb x; if x[ 0;
0; if x ¼ 0:

�

If a ¼ ðx1; x2; . . .; xnÞ; and b ¼ ðy1; y2; . . .; ymÞ are two

partitions in ðA; � Þ; then the conditional entropy of a given

b is defined by:

Hs
b a=bð Þ ¼ �

Xn

i¼1

Xm

j¼1

sðxi � yjÞ � logb
sðxi � yjÞ
sðyjÞ

: ð2Þ

The base b of the logarithm can be any positive real

number; depending on the selected base b of the logarithm,

information is measured in bits (b = 2), nats (b = e), or dits

(b = 10). Note that we use the convention (based on

continuity arguments) that 0 logb
0
x
¼ 0 if x	 0:

The entropy and the conditional entropy of partitions in

a product MV-algebra satisfy all properties corresponding

to properties of Shannon’s entropy of measurable partitions

in the classical case; for more details, see Petrovičová

(2000). The notion of K–L divergence in product MV-

algebras was defined in Markechová and Riečan (2017) as

follows.

Definition 6 Let s; t be states defined on a given product

MV-algebra ðA; � Þ; and a ¼ ðx1; x2; . . .; xnÞ be a partition

in ðA; � Þ: Then, we define the K–L divergence Daðs k tÞ by

the formula:

Daðs k tÞ ¼
Xn

i¼1

sðxiÞ � logb

sðxiÞ
tðxiÞ

: ð3Þ

The logarithm in this formula is taken to the base b ¼ 2

if information is measured in units of bits, to the base

b ¼ 10 if information is measured in dits, or to the base

b ¼ e if information is measured in nats. We use the

convention that x logb
x
0
¼ 1 if x[ 0; and 0 logb

0
x
¼ 0 if

x	 0:

3 The R-norm entropy of partitions
in product MV-algebras

In this section, we shall introduce the concept of R-norm

entropy in product MV-algebras and prove basic properties

of this measure of information. It is shown that it has

properties that correspond to properties of Shannon’s

entropy of measurable partitions, with the exception of

additivity. In particular, we prove that the R-norm entropy

Hs
RðaÞ is a concave function on the family of all states

defined on a given product MV-algebra ðA; � Þ:

Definition 7 Let a ¼ ðx1; x2; . . .; xnÞ be a partition in a

given product MV-algebra ðA; � Þ: The R-norm entropy of

a with respect to a state s defined on ðA; � Þ is defined for

R 2 ð0; 1Þ [ ð1; 1Þ as the number:

Hs
RðaÞ ¼

R

R� 1
1 �

Xn

i¼1

sðxiÞR
" #1

R

0
@

1
A: ð4Þ

Remark 1 For the sake of brevity, we write sðxiÞR instead

of sðxiÞð ÞR:

Remark 2 It is easy to verify that the R-norm entropy

Hs
RðaÞ is always nonnegative. Namely, for 0\R\1; it

holds sðxiÞR 	 sðxiÞ; for i ¼ 1; 2; . . .; n; hence
Pn

i¼1 sðxiÞ
R

	
Pn

i¼1 sðxiÞ ¼ sðx1 þ x2 þ � � � þ xnÞ ¼ sðuÞ ¼ 1: It fol-

lows that
Pn

i¼1 sðxiÞ
R

� �1
R 	 1: Since R

R�1
\0 for 0\R\1;

we get Hs
RðaÞ ¼ R

R�1
1 �

Pn
i¼1 sðxiÞ

R
� �1

R

� �
	 0: On the

other hand, for R[ 1; we have sðxiÞR � sðxiÞ; for i ¼
1; 2; . . .; n; hence

Pn
i¼1 sðxiÞ

R �
Pn

i¼1 sðxiÞ ¼ 1: This

implies that
Pn

i¼1 sðxiÞ
R

� �1
R � 1: Since R

R�1
[ 0 for R[ 1; it

follows that Hs
RðaÞ ¼ R

R�1
1 �

Pn
i¼1 sðxiÞ

R
� �1

R

� �
	 0:

Definition 8 Let a ¼ ðx1; x2; . . .; xnÞ; and b ¼
ðy1; y2; . . .; ymÞ be two partitions in ðA; � Þ and s be a state

defined on ðA; � Þ: The conditional R-norm entropy of a
given b with respect to s is defined for R 2 ð0; 1Þ [
ð1; 1Þ by the formula:

Hs
Rða=bÞ ¼

R

R� 1

Xm

j¼1

sðyjÞR
" #1

R

�
Xm

j¼1

Xn

i¼1

sðxi � yjÞR
" #1

R

0
@

1
A:

ð5Þ

Remark 3 Consider any product MV-algebra ðA; � Þ; and

a state s : A ! ½0; 1�: It is easy to see that the set e ¼ uf g
is a partition in ðA; �Þ with the property a � e; for any

partition a in ðA; � Þ; and with the R-norm entropy Hs
RðeÞ ¼

R
R�1

1 � sðuÞR
� �1

R

� �
¼ 0: Evidently, Hs

Rða=eÞ ¼ Hs
RðaÞ:

The following theorem shows that as the limiting case of

the conditional R-norm entropy Hs
Rða=bÞ for R ! 1; we get

the conditional Shannon entropy Hs
b a=bð Þ expressed in

nats.
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Theorem 1 Let a ¼ ðx1; x2; . . .; xnÞ; and b ¼
ðy1; y2; . . .; ymÞ be two partitions in a product MV-algebra

ðA; � Þ, and s be a state defined on ðA; � Þ: Then:

lim
R!1

Hs
Rða=bÞ ¼ �

Xn

i¼1

Xm

j¼1

sðxi � yjÞ � ln
sðxi � yjÞ
sðyjÞ

:

Proof Put f ðRÞ¼
Pm

j¼1 sðyjÞ
R

h i1
R�
Pm

j¼1

Pn
i¼1 sðxi �yjÞ

R
h i1

R

;

and gðRÞ¼ 1� 1
R
; for every R2 ð0; 1Þ: Then the functions

f ; g are differentiable, and for every R2ð0; 1Þ[ð1; 1Þ;
we can write:

Hs
Rða=bÞ ¼

1

1 � 1
R

Xm

j¼1

sðyjÞR
" #1

R

�
Xm

j¼1

Xn

i¼1

sðxi � yjÞR
" #1

R

0
@

1
A

¼ f ðRÞ
gðRÞ :

Obviously, lim
R!1

gðRÞ ¼ gð1Þ ¼ 0: Further, since by

Proposition 1, for j ¼ 1; 2; . . .;m; it holdsPn
i¼1 sðxi � yjÞ ¼ sðyjÞ; we get:

lim
R!1

f ðRÞ ¼ f ð1Þ ¼
Xm

j¼1

sðyjÞ�
Xm

j¼1

Xn

i¼1

sðxi � yjÞ

¼
Xm

j¼1

sðyjÞ�
Xm

j¼1

sðyjÞ ¼ 1 � 1 ¼ 0:

Using L’Hôpital’s rule, this implies that

lim
R!1

Hs
Rða=bÞ ¼

lim
R!1

f 0ðRÞ

lim
R!1

g0ðRÞ

under the assumption that the right-hand side exists. Let us

calculate the derivative of the function f ðRÞ:

Since lim
R!1

g0ðRÞ ¼ lim
R!1

1
R2 ¼ 1; we get:

lim
R!1

Hs
Rða=bÞ ¼ lim

R!1
f 0ðRÞ ¼

Xm

j¼1

sðyjÞ � ln sðyjÞ

�
Xn

i¼1

Xm

j¼1

sðxi � yjÞ � ln sðxi � yjÞ

¼
Xm

j¼1

Xn

i¼1

sðxi � yjÞ � ln sðyjÞ

�
Xn

i¼1

Xm

j¼1

sðxi � yjÞ � ln sðxi � yjÞ

¼ �
Xn

i¼1

Xm

j¼1

sðxi � yjÞ �

ln sðxi � yjÞ � ln sðyjÞ
� �

¼�
Xn

i¼1

Xm

j¼1

sðxi � yjÞ � ln
sðxi � yjÞ
sðyjÞ

:

h

The following theorem states that the R-norm entropy

Hs
RðaÞ converges for R ! 1 to the Shannon entropy Hs

bðaÞ
expressed in nats.

Theorem 2 Let a ¼ ðx1; x2; . . .; xnÞ be a partition in a

product MV-algebra ðA; � Þ; and s be a state defined on

ðA; � Þ: Then:

lim
R!1

Hs
RðaÞ ¼ �

Xn

i¼1

sðxiÞ � ln sðxiÞ:

Proof The claim follows immediately from Theorem 1 by

substituting uf g for b: h

In the following part, basic properties of the R-norm

entropy Hs
RðaÞ are derived.

Theorem 3 Let s be a state defined on a product MV-

algebra ðA; � Þ: Then for arbitrary partitions a; b and c
ðA; � Þ it holds:

d

dR
f ðRÞ ¼ e

1
R

ln
Pm
j¼1

sðyjÞR

� � 1

R2
� ln
Xm

j¼1

sðyjÞR þ
1

R
� 1

Pm

j¼1

sðyjÞR
Xm

j¼1

sðyjÞR � ln sðyjÞ

0

BBB@

1

CCCA

� e

1
R

ln
Pn
i¼1

Pm
j¼1

sðxi�yjÞR

� � 1

R2
� ln
Xn

i¼1

Xm

j¼1

sðxi � yjÞR þ
1

R
� 1

Pn

i¼1

Pm

j¼1

sðxi � yjÞR
Xn

i¼1

Xm

j¼1

sðxi � yjÞR � ln sðxi � yjÞ

0
BBB@

1
CCCA:
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Hs
Rða _ b=cÞ ¼ Hs

Rða=cÞ þ Hs
Rðb=a _ cÞ: ð6Þ

Proof Suppose that a ¼ ðx1; x2; . . .; xnÞ; b ¼ ðy1; y2; . . .;
ymÞ; c ¼ z1; z2; . . .; zrf g: Let us calculate:

Hs
Rða _ b=cÞ

¼ R

R� 1

Xr

k¼1

sðzkÞR
" #1

R

�
Xn

i¼1

Xm

j¼1

Xr

k¼1

sðxi � yj � zkÞR
" #1

R

0
@

1
A

¼ R

R� 1

Xr

k¼1

sðzkÞR
" #1

R

�
Xn

i¼1

Xr

k¼1

sðxi � zkÞR
" #1

R

0

@

1

A

þ R

R� 1

Xn

i¼1

Xr

k¼1

sðxi � zkÞR
" #1

R

0
@

�
Xn

i¼1

Xm

j¼1

Xr

k¼1

sðxi � yj � zkÞÞR
" #1

R

1
A

¼ Hs
Rða=cÞ þHs

Rðb=a _ cÞ:

h

Using mathematical induction, we get the following

generalization of Eq. (6).

Theorem 4 Let a1; a2; . . .; an and c be partitions in a

product MV-algebra ðA; � Þ; and s be a state defined on

ðA; � Þ: Then, for n ¼ 2; 3; . . .; the following equality holds:

Hs
R _n

i¼1ai=c
� �

¼ Hs
Rða1=cÞ þ

Xn

i¼2

Hs
R ai= _i�1

k¼1ak
� �

_ c
� �

:

ð7Þ

Remark 4 Let a1; a2; . . .; an be partitions in a product MV-

algebra ðA; � Þ: If we put c ¼ uf g in Eq. (7), we get the

following equality:

Hs
Rða1 _ a2 _ . . . _ anÞ ¼ Hs

Rða1Þ þ
Xn

i¼2

Hs
R ai= _i�1

k¼1 ak
� �

:

ð8Þ

Putting n ¼ 2 in (8), we obtain the following property of

the R-norm entropy Hs
RðaÞ:

Theorem 5 Let a and b be two partitions in a product MV-

algebra ðA; � Þ and s be a state defined on ðA; � Þ: Then:

Hs
Rða _ bÞ ¼ Hs

RðaÞ þ Hs
Rðb=aÞ: ð9Þ

To illustrate the result of the previous theorem, we

provide the following example.

Example 1 Consider the measurable space ð½0; 1�; B Þ;
where B is the r-algebra of all Borel subsets of the unit

interval ½0; 1�: Let A be the family of all Borel measurable

functions f : ½0; 1� ! ½0; 1�; so-called full tribe of fuzzy

sets (Riečan and Neubrunn 2002). The family A is closed

also under the natural product of fuzzy sets and represents a

special case of product MV-algebras. We define a state

s : A ! ½0; 1� by the equality sðf Þ ¼
R 1

0
f ðxÞdx; for any

element f of A: Evidently, the pairs a ¼ ðf1; f2Þ and b ¼
ðg1; g2Þ; where f1ðxÞ ¼ x; f2ðxÞ ¼ 1 � x; g1ðxÞ ¼ x2;

g2ðxÞ ¼ 1 � x2; x 2 ½0; 1�; are two partitions in ðA; �Þ with

the s-state values 1
2
; 1

2
and 1

3
; 2

3
of the corresponding elements,

respectively. By simple calculations, we get that Hs
1=2ðaÞ ¼

1; Hs
1=2ðbÞ _¼0:94281; Hs

2ðaÞ _¼0:585786; Hs
2ðbÞ _¼ 0:509288:

The join of partitions a and b is the quadruple a _ b ¼
ðf1 � g1; f1 � g2; f2 � g1; f2 � g2Þ with the s-state values
1
4
; 1

4
; 1

12
; 5

12
of the corresponding elements. Using the formula

(4), it can be computed that Hs
1=2ða _ bÞ _¼ 2:741023;

Hs
2ða _ bÞ _¼ 0:894458; and using the formula (5), it can be

computed that Hs
1=2ða =bÞ _¼ 1:798212; Hs

1=2ðb=aÞ _¼
1:741023; Hs

2ða =bÞ _¼ 0:38517; and Hs
2ðb=aÞ _¼ 0:308672:

It can be verified that:

Hs
1=2ða _bÞ¼Hs

1=2ðaÞþHs
1=2ðb=aÞ¼Hs

1=2ðbÞþHs
1=2ða=bÞ;

Hs
2ða _bÞ¼Hs

2ðaÞþHs
2ðb=aÞ¼Hs

2ðbÞþHs
2ða=bÞ:

Theorem 6 If a; b and c are partitions in a product MV-

algebra ðA; � Þ such that b � a; then:

(i) Hs
RðaÞ�Hs

RðbÞ;

(ii) Hs
Rða=cÞ�Hs

Rðb=cÞ:

Proof (i) Assume that a ¼ ðx1; x2; . . .; xnÞ; b ¼
ðy1; y2; . . .; ymÞ; c ¼ z1; z2; . . .; zrf g; b � a: Then there

exists a partition Ið1Þ; Ið2Þ; . . .; IðnÞf g of the set

1; 2; . . .;mf g such that xi ¼
P

j2I ið Þ yj; for i ¼ 1; 2; . . .; n: It

follows that sðxiÞ ¼ s
P

j2I ið Þ yj

� �
¼
P

j2I ið Þ sðyjÞ; for i ¼
1; 2; . . .; n: For the case of R[ 1; we obtain:

sðxiÞR ¼
X

j2IðiÞ
sðyjÞ

0

@

1

A
R

	
X

j2IðiÞ
sðyjÞR; for i ¼ 1; 2; . . .; n;

and consequently:

Xn

i¼1

sðxiÞR 	
Xm

j¼1

sðyjÞR:

Hence

Xn

i¼1

sðxiÞR
" #1

R

	
Xm

j¼1

sðyjÞR
" #1

R

:

R-norm entropy and R-norm divergence in product MV-algebras 6089

123



Since R
R�1

[ 0 for R[ 1; we conclude that:

Hs
RðaÞ ¼

R

R� 1
1 �

Xn

i¼1

sðxiÞR
" #1

R

0

@

1

A

� R

R� 1
1 �

Xm

j¼1

sðyjÞR
" #1

R

0
@

1
A ¼ Hs

RðbÞ:

The case of 0\R\1 can be obtained using similar

techniques.

(ii) Let a; b and c be partitions in a product MV-algebra

ðA; � Þ such that b � a: Then, according to Proposition 2,

we have b _ c � a _ c: Therefore, by Theorem 5 and the

property (i), we get:

Hs
Rða=cÞ ¼ Hs

Rða _ cÞ � Hs
RðcÞ�Hs

Rðb _ cÞ � Hs
RðcÞ

¼ Hs
Rðb=cÞ:

h

Theorem 7 Let s be a state defined on a product MV-

algebra ðA; � Þ; and a; b be statistically independent par-

titions in ðA; � Þ with respect to s. Then:

Hs
Rða=bÞ ¼ Hs

RðaÞ �
R� 1

R
Hs

RðaÞ � Hs
RðbÞ:

Proof Let a ¼ ðx1; x2; . . .; xnÞ; b ¼ ðy1; y2; . . .; ymÞ: By the

assumption, sðxi � yjÞ ¼ sðxiÞ � sðyjÞ; for i ¼ 1; 2; . . .; n; j ¼
1; 2; . . .;m: Therefore, we can write:

Hs
Rða=bÞ ¼ R

R� 1

Xm

j¼1

sðyjÞR
" #1

R

�
Xm

j¼1

Xn

i¼1

sðxi � yjÞR
" #1

R

0
@

1
A

¼ R

R� 1

Xm

j¼1

sðyjÞR
" #1

R

�
Xm

j¼1

sðyjÞR
" #1

R Xn

i¼1

sðxiÞR
" #1

R

0

@

1

A

¼ R

R� 1
1 �

Xn

i¼1

sðxiÞR
" #1

R

�1 þ
Xn

i¼1

sðxiÞR
" #1

R

0

@

þ
Xm

j¼1

sðyjÞR
" #1

R

�
Xm

j¼1

sðyjÞR
" #1

R Xn

i¼1

sðxiÞR
" #1

R

1
A

¼ R

R� 1
1 �

Xn

i¼1

sðxiÞR
" #1

R

0

@

1

A

� R� 1

R

R

R� 1
1 �

Xn

i¼1

sðxiÞR
" #1

R

0
@

1
A

0
@

� R

R� 1
1 �

Xm

j¼1

sðyjÞR
" #1

R

0

@

1

A

1

A

¼ Hs
RðaÞ �

R� 1

R
Hs

RðaÞ � H
l
RðbÞ:

h

One of the most important properties of Shannon

entropy is its additivity: the entropy of combined

experiment consisting of the realization of two inde-

pendent experiments is equal to the sum of the entropies

of these experiments. In the case of the R-norm entropy

Hs
RðaÞ; the following property (so-called pseudo addi-

tivity) applies.

Theorem 8 Let s be a state defined on a product MV-

algebra ðA; � Þ; and a; b be statistically independent par-

titions in ðA; � Þ with respect to s. Then:

Hs
Rða _ bÞ ¼ Hs

RðaÞ þ Hs
RðbÞ �

R� 1

R
Hs

RðaÞ � Hs
RðbÞ:

Proof The claim follows by combining Theorem 5 with

Theorem 7. h

Let us denote by the symbol S ðAÞ the class of all states

defined on a given product MV-algebra ðA; � Þ: It is very

easy to verify that if s; t 2 S ðAÞ; then, for every real

number k 2 ½0; 1�; ksþ ð1 � kÞt 2 S ðAÞ: In the following,

we prove that the R-norm entropy Hs
RðaÞ is a concave

function on the family S ðAÞ: In the proof, we will use the

known Minkowski inequality which states that for nonneg-

ative real numbers a1; a2; . . .; an; b1; b2; . . .; bn; we have:

Xn

i¼1

aRi

" #1
R

þ
Xn

i¼1

bRi

" #1
R

	
Xn

i¼1

ðai þ biÞR
" #1

R

; for R[ 1;

and

Xn

i¼1

aRi

" #1
R

þ
Xn

i¼1

bRi

" #1
R

�
Xn

i¼1

ðai þ biÞR
" #1

R

; for 0\R\1:

Theorem 9 Let a be a partition in a product MV-algebra

ðA; � Þ: Then, for every s; t 2 S ðAÞ; and for every real

number k 2 ½0; 1�; the following inequality holds:

kHs
RðaÞ þ ð1 � kÞHt

RðaÞ�H
ksþð1�kÞt
R ðaÞ: ð10Þ

Proof Assume that a ¼ ðx1; x2; . . .; xnÞ; and k 2 ½0; 1�:
Putting ai ¼ ksðxiÞ; and bi ¼ ð1 � kÞtðxiÞ; i ¼ 1; 2; . . .; n;

in the Minkowski inequality, we get for R[ 1 :

Xn

i¼1
ai

R
h i1

Rþ
Xn

i¼1
bi

R
h i1

R 	
Xn

i¼1
ðai þ biÞR

h i1
R

;

and for 0\R\1 :

Xn

i¼1
ai

R
h i1

Rþ
Xn

i¼1
bi

R
h i1

R �
Xn

i¼1
ðai þ biÞR

h i1
R

:

This means that the function s 7!
Pn

i¼1 sðxiÞ
R

� �1
R

is

convex in s for R[ 1; and concave in s for 0\R\1:

Therefore, the function s 7!1 �
Pn

i¼1 sðxiÞ
R

� �1
R

is concave in
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s for R[ 1; and convex in s for 0\R\1: Evidently,
R

R�1
[ 0 for R[ 1; and R

R�1
\0 for 0\R\1: According to

definition of the R-norm entropy Hs
RðaÞ; we obtain that for

every R 2 ð0; 1Þ [ ð1; 1Þ; the R-norm entropy s 7!Hs
RðaÞ

is a concave function on the family S ðAÞ: This means that

the inequality (10) is valid. h

4 The R-norm divergence in product MV-
algebras

In this section, we define the concept of the R-norm

divergence of states defined on a given product MV-alge-

bra ðA; � Þ: We will prove basic properties of this quantity.

In order to avoid expressions like 0
0
; we will use in this

section the following simplification: for any partition a ¼
ðx1; x2; . . .; xnÞ in ðA; � Þ; we assume that sðxiÞ[ 0, for

i ¼ 1; 2; . . .; n:

Definition 9 Let s; t be two states defined on a given

product MV-algebra ðA; � Þ; and a ¼ ðx1; x2; . . .; xnÞ be a

partition in ðA; � Þ: The R-norm divergence of states s;t

with respect to a is defined for R 2 ð0; 1Þ [ ð1; 1Þ as the

number:

daRðs k tÞ ¼ R

R� 1

Xn

i¼1

sðxiÞRtðxiÞ1�R

" #1
R

�1

0
@

1
A: ð11Þ

Remark 5 As can be easily seen, for any partition a in

a product MV-algebra ðA; � Þ; the R-norm divergence

daRðs k sÞ is zero.

The following theorem shows that the K–L divergence

Daðs k tÞ measured in nats can be obtained as the limiting

case of R-norm divergence daRðs k tÞ for R going to 1.

Theorem 10 Let s; t be two states defined on a given

product MV-algebra ðA; � Þ; and a ¼ ðx1; x2; . . .; xnÞ be a

partition in ðA; � Þ: Then lim
R!1

daRðs k tÞ ¼
Pn

i¼1 sðxiÞ ln
sðxiÞ
tðxiÞ :

Proof For every R 2 ð0; 1Þ [ ð1; 1Þ; we can write:

daRðs k tÞ ¼ 1

1 � 1
R

Xn

i¼1

sðxiÞRtðxiÞ1�R

" #1
R

�1

0
@

1
A ¼ f ðRÞ

gðRÞ ;

where f ; g are continuous functions defined for R 2
ð0; 1Þ by the formulas:

f ðRÞ ¼
Xn

i¼1

sðxiÞRtðxiÞ1�R

" #1
R

�1; gðRÞ ¼ 1 � 1

R
:

By continuity of the functions f ; g; we get that

lim
R!1

gðRÞ ¼ gð1Þ ¼ 0; and

lim
R!1

f ðRÞ ¼ f ð1Þ ¼
Xn

i¼1
sðxiÞtðxiÞ0 � 1 ¼

Xn

i¼1
sðxiÞ � 1

¼ 1 � 1 ¼ 0:

Using L’Hôpital’s rule, it follows that:

lim
R!1

daRðs k tÞ ¼
lim
R!1

f 0ðRÞ

lim
R!1

g0ðRÞ

under the assumption that the right-hand side exists. Let us

calculate the derivative of the function f ðRÞ:

Since lim
R!1

g0ðRÞ ¼ lim
R!1

1
R2 ¼ 1; we get:

lim
R!1

daRðs k tÞ ¼ lim
R!1

f 0ðRÞ ¼
Xn

i¼1

sðxiÞ � ln sðxiÞ � sðxiÞ � ln tðxiÞð Þ

¼
Xn

i¼1

sðxiÞ � ln
sðxiÞ
tðxiÞ

:

h

Let a ¼ ðx1; x2; . . .; xnÞ be a partition in ðA; � Þ: In

Markechová and Riečan (2017), it has been shown that

for the K–L divergence Daðs k tÞ it holds the inequality

Daðs k tÞ	 0: The equality holds if and only if sðxiÞ ¼
tðxiÞ; for i ¼ 1; 2; . . .; n: We remark that the previous

inequality is known in information theory as the Gibbs

inequality. An analogous result also applies to the case of

d

dR
f ðRÞ ¼ e

1
R

ln
Pn
i¼1

sðxiÞRtðxiÞ1�R

� � 1

R2
� ln
Xn

i¼1

sðxiÞRtðxiÞ1�R

 
þ 1

R
� 1
Pn

i¼1 sðxiÞ
R
tðxiÞ1�R

Xn

i¼1

�sðxiÞRtðxiÞ1�R � ln tðxiÞ þ tðxiÞ1�R
sðxiÞR � ln sðxiÞ

� �!
:

R-norm entropy and R-norm divergence in product MV-algebras 6091

123



the R-norm divergence daRðs k tÞ; as shown in the following

theorem.

Theorem 11 Let s; t be two states defined on a given

product MV-algebra ðA; � Þ; and a ¼ ðx1; x2; . . .; xnÞ be a

partition in ðA; � Þ: Then daRðs k tÞ	 0 with the equality if

and only if sðxiÞ ¼ tðxiÞ; for i ¼ 1; 2; . . .; n:

Proof In the proof, we use the Jensen inequality for the

function w defined by wðxÞ ¼ x1�R; for every x 2 ½0; 1Þ:
We shall consider two cases: the case of R[ 1; and the

case of 0\R\1:

Consider the case of R[ 1: The assumption that R[ 1

implies 1 � R\0; hence the function w is convex.

Therefore, applying the Jensen inequality, we obtain:

1 ¼
Xn

i¼1

tðxiÞ
 !1�R

¼
Xn

i¼1

sðxiÞ
tðxiÞ
sðxiÞ

 !1�R

�
Xn

i¼1

sðxiÞ
tðxiÞ
sðxiÞ

	 
1�R

¼
Xn

i¼1

sðxiÞRtðxiÞ1�R;

ð12Þ

and consequently:

Xn

i¼1

sðxiÞRtðxiÞ1�R

" #1
R

	 1:

Since R
R�1

[ 0 for R[ 1; it follows that

daRðs k tÞ ¼ R

R� 1

Xn

i¼1

sðxiÞRtðxiÞ1�R

" #1
R

�1

0

@

1

A	 0:

For 0\R\1; the function w is concave. Hence, using

the Jensen inequality, we obtain:

Xn

i¼1

sðxiÞRtðxiÞ1�R

" #1
R

� 1:

Since R
R�1

\0 for 0\R\1; this yields that:

daRðs k tÞ ¼ R

R� 1

Xn

i¼1

sðxiÞRtðxiÞ1�R

" #1
R

�1

0
@

1
A	 0:

The equality in (12) holds if and only if
tðxiÞ
sðxiÞ is constant,

for i ¼ 1; 2; . . .; n; i.e., if and only if tðxiÞ ¼ csðxiÞ; for i ¼
1; 2; . . .; n: Taking the sum over all i ¼ 1; 2; . . .; n; we get

the equality
Pn

i¼1 tðxiÞ ¼c
Pn

i¼1 sðxiÞ; which implies that

c ¼ 1: Therefore tðxiÞ ¼ sðxiÞ; for i ¼ 1; 2; . . .; n: This

means that daRðs k tÞ ¼ 0 if and only if sðxiÞ ¼ tðxiÞ; for

i ¼ 1; 2; . . .; n: h

In the following example, it is shown that the triangle

inequality for the R-norm divergence daRðs k tÞ does not

hold, in general, which means that the R-norm divergence

daRðs k tÞ is not a metric.

Example 2 Consider the product MV-algebra ðA; � Þ from

Example 1 and the real functions F1; F2; F3 defined by

F1ðxÞ ¼ x; F2ðxÞ ¼ x2; F3ðxÞ ¼ x3; for every x 2 ½0; 1�:
On the product MV-algebra ðA; � Þ; we define the states

s1; s2; s3 by the formulas siðf Þ ¼
R 1

0
f ðxÞdFiðxÞ; i ¼

1; 2; 3; for any element f of A: In addition, we will consider

the partition a in ðA; � Þ from Example 1. It can be easily

calculated that it has the s1-state values 1
2
; 1

2
; the s2-state

values 2
3
; 1

3
; and the s3-state values 3

4
; 1

4
of the corresponding

elements. We get:

da1=2ðs1 k s2Þ ¼ 1 �
ffiffiffiffiffiffiffiffi
1

2
� 2

3

r
þ

ffiffiffiffiffiffiffiffi
1

2
� 1

3

r	 
2

_¼ 0:02860;

da1=2ðs1 k s3Þ ¼ 1 �
ffiffiffiffiffiffiffiffi
1

2
� 3

4

r
þ

ffiffiffiffiffiffiffiffi
1

2
� 1

4

r	 
2

_¼ 0:066987;

da1=2ðs2 k s3Þ ¼ 1 �
ffiffiffiffiffiffiffiffi
2

3
� 3

4

r
þ

ffiffiffiffiffiffiffiffi
1

3
� 1

4

r	 
2

_¼ 0:008418:

Evidently,

da1=2ðs1 k s3Þ[ da1=2ðs1 k s2Þ þ da1=2ðs2 k s3Þ:

Theorem 12 Let s; t be two states defined on a given

product MV-algebra ðA; � Þ; and a ¼ ðx1; x2; . . .; xnÞ be a

partition in ðA; � Þ: In addition, let t be uniform over a; i.e.,
tðxiÞ ¼ 1

n
; for i ¼ 1; 2; . . .; n: Then, it holds:

Hs
RðaÞ ¼

R

R� 1
1 � n

1�R
R

� �
� n

1�R
R � daRðs k tÞ: ð13Þ

Proof Let us calculate:
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daRðs k tÞ ¼ R

R� 1

Xn

i¼1

sðxiÞRtðxiÞ1�R

" #1
R

�1

0
@

1
A

¼ R

R� 1

Xn

i¼1

sðxiÞRnR�1

" #1
R

�1

0

@

1

A

¼ R

R� 1
� nR�1

R

Xn

i¼1

sðxiÞR
" #1

R

� R

R� 1

¼ �n
R�1
R � R

R� 1
1 �

Xn

i¼1

sðxiÞR
" #1

R

0
@

1
A

þ n
R�1
R � R

R� 1
� R

R� 1

¼ �n
R�1
R � Hs

RðaÞ þ
R

R� 1
n

R�1
R � 1

� �
:

From this, it follows Eq. (13). h

By combining the results of Theorems 11 and 12, we

obtain the following property of R-norm entropy.

Corollary 1 Let s be a state defined on a product MV-

algebra ðA; � Þ: Then for any partition a ¼ ðx1; x2; . . .; xnÞ
in ðA; � Þ; it holds:

Hs
RðaÞ�

R

R� 1
1 � n

1�R
R

� �

with the equality if and only if the state s is uniform over

a.

Theorem 13 Let s be a state defined on a product MV-

algebra ðA; � Þ: Then, for every partition a ¼
ðx1; x2; . . .; xnÞ in ðA; � Þ; it holds:

(i) 0\R\1 implies daRðs k tÞ�Daðs k tÞ;
(ii) R[ 1 implies daRðs k tÞ	Daðs k tÞ;

where

Daðs k tÞ ¼
Xn

i¼1

sðxiÞ ln
sðxiÞ
tðxiÞ

:

Proof By using the inequality ln x� x� 1; that applies for

all real numbers x[ 0; we get:

ln
Xn

i¼1

sðxiÞRtðxiÞ1�R

" #1
R

�
Xn

i¼1

sðxiÞRtðxiÞ1�R

" #1
R

�1: ð14Þ

Suppose that 0\R\1: Then R
R�1

\0: Therefore, using

the inequality (14) and the Jensen inequality for the

concave function w defined by wðxÞ ¼ ln x; x 2 ð0; 1Þ;
we can write:

daRðs k tÞ ¼ R

R� 1

Xn

i¼1

sðxiÞRtðxiÞ1�R

" #1
R

�1

0
@

1
A

� R

R� 1
ln
Xn

i¼1

sðxiÞRtðxiÞ1�R

" #1
R

¼ 1

R� 1
ln
Xn

i¼1

sðxiÞRtðxiÞ1�R

¼ 1

R� 1
ln
Xn

i¼1

sðxiÞ
sðxiÞ
tðxiÞ

	 
R�1

� 1

R� 1

Xn

i¼1

sðxiÞ ln
sðxiÞ
tðxiÞ

	 
R�1

¼
Xn

i¼1

sðxiÞ ln
sðxiÞ
tðxiÞ

:

The case of R[ 1 can be obtained using similar

techniques. h

To illustrate the result of previous theorem, let us con-

sider the following example which is a continuation to

Examples 1 and 2.

Example 3 Consider the product MV-algebra ðA; � Þ from

Example 1 and the real functions F1; F2 defined by

F1ðxÞ ¼ x; F2ðxÞ ¼ x2; for every x 2 ½0; 1�: On the pro-

duct MV-algebra ðA; � Þ; we define two states s1; s2 by the

formulas siðf Þ ¼
R 1

0
f ðxÞdFiðxÞ; i ¼ 1; 2; for any element f

of A: In addition, we consider the partition a ¼

v 0; 1
2

½ �; v 1
2
; 1ð �

� �
in ðA; � Þ: It can be easily calculated that it

has the s1-state values 1
2
; 1

2
of the corresponding ele-

ments, and the s2-state values 1
4
; 3

4
of the correspond-

ing elements. By simple calculations, we obtain:

Daðs1 k s2Þ _¼ 0:14384 nats, Daðs2 k s1Þ _¼ 0:13081 nats,

da1=3ðs1 k s2Þ _¼ 0:04343; da1=3ðs2 k s1Þ _¼ 0:04478;

da2ðs1 k s2Þ _¼ 0:309402; da2ðs2 k s1Þ _¼ 0:236068: As can be

seen, for R ¼ 1
3

we have daRðs1 k s2Þ \Daðs1 k s2Þ;
daRðs2 k s1Þ \Daðs2 k s1Þ; and for R ¼ 2 we have

daRðs1 k s2Þ [Daðs1 k s2Þ; daRðs2 k s1Þ [Daðs2 k s1Þ;
which is consistent with the claim of Theorem 13. Based

on the previous results, we see that the K–L divergence

Daðs k tÞ and the R-norm divergence daRðs k tÞ are not

symmetrical.

Definition 10 Let a ¼ ðx1; x2; . . .; xnÞ; and b ¼
ðy1; y2; . . .; ymÞ be two partitions in a given product MV-

algebra ðA; � Þ: Then we define the conditional R-norm

divergence of states s; t 2 S ðAÞ with respect to b
assuming a realization of a; for R 2 ð0; 1Þ [ ð1; 1Þ; as

the number:
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d
b=a
R ðs k tÞ ¼ R

R� 1

Xn

i¼1

Xm

j¼1

sðxi � yjÞRtðxi � yjÞ1�R

" #1
R

0
@

�
Xn

i¼1

sðxiÞRtðxiÞ1�R

" #1
R

1

A:

Theorem 14 Let a; b be two partitions in a given product

MV-algebra ðA; � Þ: Then

d
a_b
R ðs k tÞ ¼ daRðs k tÞ þ d

b=a
R ðs k tÞ:

Proof Assume that a ¼ ðx1; x2; . . .; xnÞ; b ¼
ðy1; y2; . . .; ymÞ: Then we have:

daRðs k tÞ þ d
b=a
R ðs k tÞ ¼ R

R� 1

Xn

i¼1

sðxiÞRtðxiÞ1�R

" #1
R

�1

0

@

1

A

þ R

R� 1

Xn

i¼1

Xm

j¼1

sðxi � yjÞRtðxi � yjÞ1�R

" #1
R

0

@

�
Xn

i¼1

sðxiÞRtðxiÞ1�R

" #1
R

1

A

¼ R

R� 1

Xn

i¼1

Xm

j¼1

sðxi � yjÞRtðxi � yjÞ1�R

" #1
R

�1

0

@

1

A ¼ d
a_b
R ðs k tÞ:

h

Finally, we prove that the R-norm divergence is a con-

vex function on the family S ðAÞ:

Theorem 15 Let a be a partition in a product MV-algebra

ðA; � Þ: Then, for every s1; s2; t 2 S ðAÞ; and for every

real number k 2 ½0; 1�; the following inequality holds:

daRðks1 þ ð1 � kÞs2 k tÞ� kdaRðs1 k tÞ þ ð1 � kÞdaRðs2 k tÞ:
ð15Þ

Proof Assume that a ¼ ðx1; x2; . . .; xnÞ and k 2 ½0; 1�: Put-

ting ai ¼ ks1ðxiÞtðxiÞ
1�R
R ; and bi ¼ ð1 � kÞs2ðxiÞtðxiÞ

1�R
R ; i ¼

1; 2; . . .; n; in the Minkowski inequality, we get for R[ 1:

Xn

i¼1

ðks1ðxiÞ þ ð1 � kÞs2ðxiÞÞRtðxiÞ1�R

" #1
R

¼
Xn

i¼1

ðks1ðxiÞ þ ð1 � kÞs2ðxiÞÞtðxiÞ
1�R
R

� �R
" #1

R

¼
Xn

i¼1

ks1ðxiÞtðxiÞ
1�R
R þ ð1 � kÞs2ðxiÞtðxiÞ

1�R
R

� �R
" #1

R

�
Xn

i¼1

ks1ðxiÞtðxiÞ
1�R
R

� �R
" #1

R

þ
Xn

i¼1

ð1 � kÞs2ðxiÞtðxiÞ
1�R
R

� �R
" #1

R

¼ k
Xn

i¼1

s1ðxiÞRtðxiÞ1�R

" #1
R

þð1 � kÞ
Xn

i¼1

s2ðxiÞRtðxiÞ1�R

" #1
R

;

and for 0\R\1:

Xn

i¼1

ðks1ðxiÞþð1�kÞs2ðxiÞÞRtðxiÞ1�R

" #1
R

	k
Xn

i¼1

s1ðxiÞRtðxiÞ1�R

" #1
R

þð1�kÞ
Xn

i¼1

s2ðxiÞRtðxiÞ1�R

" #1
R

:

This means that the function s 7!
Pn

i¼1 sðxiÞ
R
tðxiÞ1�R

h i1
R

is convex in s for R[ 1; and concave in s for 0\R\1:
The same applies for the function

s 7!
Pn

i¼1 sðxiÞ
R
tðxiÞ1�R

h i1
R�1: Since R

R�1
[ 0 for R[ 1;

and R
R�1

\0 for 0\R\1; we conclude that the function

s 7!daRðs k tÞ is convex on the family S ðAÞ; which means

that the inequality (15) holds. h

5 Conclusions

In the paper, we have extended the results concerning the

Shannon entropy and K–L divergence in product MV-al-

gebras to the case of R-norm entropy and R-norm diver-

gence. We introduced the notion of R-norm entropy of

finite partitions in product MV-algebras and derived its

basic properties. In addition, we introduced the notion of R-

norm divergence in product MV-algebras and we proved

basic properties of this quantity. In particular, it was shown

that the K–L divergence and Shannon’s entropy of parti-

tions in a given product MV-algebra can be obtained as the

limits of their R-norm divergence and R-norm entropy,

respectively. We have provided some numerical examples

to illustrate the results as well. As mentioned above, the

full tribe of fuzzy sets represents a special case of product

MV-algebras; so the obtained results can therefore be

immediately applied to this important case of fuzzy sets.
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