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R-peak detector stress test with a new noisy

ECG database reveals significant performance

differences amongst popular detectors

Bernd Porr∗& Luis Howell†

Abstract

The R peak detection of an ECG signal is the basis of virtually
any further processing and any error caused by this detection will
propagate to further processing stages. Despite this, R peak detection
algorithms and annotated databases often allow large error tolerances
around 10%, masking any error introduced. In this paper we have re-
visited popular ECG R peak detection algorithms by applying sample
precision error margins. For this purpose we have created a new open
access ECG database with sample precision labelling of both standard
Einthoven I, II, III leads and from a chest strap. 25 subjects were
recorded and filmed while sitting, solving a maths test, operating a
handbike, walking and jogging. Our results show that using an error
margin with sample precision, common R peak detection algorithms
perform much worse than previously reported. In addition, there are
significant performance differences between detectors which can have
detrimental effects on applications such as heartrate variability, thus
leading to meaningless results.

1 Introduction

Heartbeat detection is the first processing step when calculating heart para-
meters. The simplest and most straightforward measure is heart rate which
can be calculated by taking the difference between two R peak timestamps,
mathematically the operation of a derivative. However, derivatives amplify
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noise and thus errors in the R-peak detection will lead to an even larger
error in the heart rate. Such error is further amplified when taking the
2nd derivative between successive heart rate readings for calculating heart
rate variability (HRV). This calls for narrow error margins. However, to our
knowledge the impact on temporal precision has not been investigated sys-
tematically (or statistically) for ECG detection. In this paper we are going
to address this given its impact on any further processing.

In terms of detectors, the earliest ones by Pan and Tompkins [1985],
Englese and Zeelenberg [1979] used a combination of digital filters and dif-
ferentiators. In the 1990’s and early 2000’s a variety of new techniques were
utilised: filter banks [Afonso et al., 1999], the Hilbert transform [Benitez
et al., 2000] and wavelet transforms [Cuiwei Li et al., 1995, Martinez et al.,
2004]. Most recently, machine learning has begun to be used [Yildirim, 2018].

Figure 1: MITDB heartbeat annotations (dots) not located on R-peaks (record
107).

In order to benchmark a detector one needs an ECG database with an-
notated ECG R peaks. Almost all published research on heartbeat detection
algorithms uses the MIT-BIH Arrhythmia Database (MITDB) [Goldberger
et al., 2000, Moody and Mark, 2001] for testing. This database contains 48
ambulatory, 30-minute-long, annotated ECG recordings, 25 of which contain
less common arrhythmias. The recordings have a sampling rate of 360 Hz
with an 11 bit resolution over a 10 mV range. Although it has become the
standard for detector evaluation, the almost exclusive use of this database
poses an issue due to its two main shortcomings:

1. Very few examples of motion artefacts. The work by Benitez et al.
[2000], Kalidas and Tamil [2017], Chan et al. [2017] tried to highlight
noise resilience using only small sections (3 − 10 s) of a few select
records. As these noisy sections make up such a small proportion of
the database, they have very little impact on the overall results.

2. Inconsistent beat annotations which are often not located on the R-
peak (Fig. 1). This poses a serious problem when benchmarking the
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detectors because it introduces a temporal jitter in the R-peak temporal
time-stamps.

The gold standard of measuring R-peak detector performance is sensitivity.
To calculate the sensitivity of the detectors one needs to specify a tolerance
when comparing algorithm detections to the ground truth. The MIT Labor-
atory for Computational Physiology has a software library [Xie and Dubiel,
2018] for working with PhysioNet [Goldberger et al., 2000, Moody and Mark,
2001] databases such as the MITDB which internally specifies a tolerance and
is widely used (often implicitly):

The default tolerance is a tenth of the sampling rate.

At a sampling rate of 250 Hz this results in an error tolerance of 40 ms and
at an average heart rate variability of 50 ms [Shaffer and Ginsberg, 2017],
this renders any HRV readings meaningless.

Of the current thirty-three ECG databases on PhysioNet, two aim to
provide examples of noisy ECG signals, however, both have flaws which limit
their usefulness. The MIT-BIH Noise Stress Test Database (NSTDB) [Moody
et al., 1984] features a 30-minute recording of noise typical of electrode motion
artefacts and uses a script to add this on top of clean recordings from the
MITDB. This has the advantage of being able to assess the effect of varying
amounts of noise on the same signal. However, it has the disadvantages of
using the inconsistent annotations of the MITDB and is not representative
of a realistic recording as it is a synthesised noisy signal with a static level of
noise. The other database, Motion Artefact Contaminated ECG Database
[Behravan et al., 2015], consists of 27 recordings of a single subject standing,
walking and performing a single jump. As this database features a small
number of recordings from only one subject and is not annotated, it does not
provide much use for detector evaluation.

In this paper we are presenting a new open access ECG database [Howell
and Porr, 2018] from 25 subjects who performed different tasks such as sit-
ting, performing a maths test, walking on a treadmill, using a hand-bike and
jogging. ECGs were simultaneously recorded from both the Einthoven leads
and from a chest strap. In addition, X/Y/Z acceleration and video footage
was recorded to be able to attribute artefacts and which can potentially be
used to counteract these. All ECGs were then annotated at sample preci-
sion allowing benchmarking of the different R-peak detectors at the highest
possible precision. Having a database with increasing noise levels and strict
timing requirements allows us to then determine which detector performs
best and highlights the consequences of poor detection. This is particularly
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relevant for applications such as heart rate variability where 2nd derivat-
ive quantities will be most susceptible to R peak jitter. This instructional
and practical example will then inform us if sensitivity is actually a useful
measure to evaluate R peak detectors.

The paper is structured as follows: first we describe the detectors, then we
present the new database and finally we will benchmark the detectors against
the different activities and recording techniques. As an application, we look
into a measure of heart rate variability and determine how it is affected by
two different detectors and recording techniques.

2 Methods

2.1 Glasgow University Database

The GUDB consists of two-minute ECG recordings from 25 subjects each
performing five different tasks, for a total of 125 records. The tasks were
chosen to be repeatable and representative of common, realistic scenarios.
The tasks were as follows:

• sitting

• using a tablet to perform a maths test

• walking on a treadmill

• using a hand-bike

• jogging

Where the participant consented (24 out of the 25), a video synchronised
to the data was recorded for each task. This video allows database users to
see exactly how the movement was performed for each ECG recording and
for any artefacts in the data to be identified. In addition the acceleration
of the torso was recorded. With the exception of the most heavily noise
contaminated records, all ECGs were annotated with high precision beat
locations. The participants were all over the age of 18 and had no known
cardiovascular conditions. The database is available through the University
of Glasgow’s open access research data repository [Howell and Porr, 2018].
The study was approved by the University of Glasgow ethics committee.
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Figure 2: A) Wiring of the two two channel wireless biosignal amplifiers. B)
Photo of the chest strap and wiring of the amplifier. The GND was placed on the
shoulder. Comparison between chest strap (C) and Einthoven recording (D) while
subject was jogging.

2.1.1 Equipment

The ECG signals were recorded using an Attys Bluetooth data acquisition
board (Glasgow Neuro LTD, Glasgow). This board has a sampling rate of
250 Hz and a resolution of 24-bit over a range of ±2.42 V. As this device
is wireless, it increases electrical isolation and allows a moving subject to
be recorded easily without the need of a cumbersome tether. The Attys
features two analogue recording channels, one through an amplifier and the
other through a differential amplifier. Two Attys were used at the same
time to record different configurations representing a best and worst-case
recording setup. This allows the impact of recording setup on signal noise to
be investigated.

The best-case setup uses an Attys mounted on an elastic electrode chest
strap (Amazon, UK), connected with short cables zip tied together (Fig. 2A,B).
This configuration minimises the effect of cable movement artefacts as much
as possible and is worn tightly on the subject to prevent the electrodes from
moving. As the chest strap is worn high around the chest, the electrodes are
approximately in the same location as V1 and V2 in the standard six elec-
trode chest configuration [Macfarlane and Coleman, 1995]. The left electrode
on the chest strap is connected to the positive terminal of the differential
amplifier and the right electrode is connected to the negative. The GND
terminal was connected to a silver chloride electrode (Pulse Medical, UK) on
the right shoulder. The second channel of the Attys records the switch signal
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used to synchronise the data with the video. The switch (Fig. 2A) is worn
on a belt around the waist and when switched produces an audible click and
shorts channel two to GND. The circuit diagram configuration can be seen
in Fig. 2A.

The worse-case configuration uses the second Attys connected to stand-
ard ECG electrodes (Pulse Medical, UK) with loose cables. The positive
terminal of the differential amplifier is connected to the left hip, the negative
terminal to the right shoulder and the GND terminal to the left shoulder.
The Attys is put into ECG mode where the positive terminal of the CH1 dif-
ferential amplifier is connected internally to the CH2 amplifier input. This
configuration allows two ECG signals to be recorded using only three cables.
CH1 records Einthoven II between the left hip and right shoulder and CH2
records Einthoven III between the left hip and GND on the left shoulder.
The circuit diagram for this configuration can be seen in Figure 2A.

Having introduced the the best and worse-case measurement situations,
we show the corresponding raw signals as shown in Fig. 2C, D when the
subject is jogging. The chest strap recording remains largely noise free while
the Einthoven signal has significant noise contamination.

2.1.2 Protocol

Before the experiment begins, the participant will read the information sheet
and sign the consent form (see Howell and Porr 2018), opting in or out
of the video recording. The recording equipment is then connected to the
participant and the experiment runs as follows:

1. 120 second ECG recording, sitting down

2. 120 second ECG recording, timed maths questions on a tablet

3. 120 second break

4. 120 second ECG recording, walking on a treadmill at 2 kph

5. 120 second break

6. 120 second ECG recording, using a hand bike

7. 120 second break

8. 120 second ECG recording, jogging on a treadmill at 7 kph

9. Electrodes and chest strap will be removed from participant
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2.1.3 Post-processing

To annotate the data with heartbeat locations, a Python script was created
which uses a Matplotlib [Hunter, 2007] interactive plot. An ECG data file is
loaded into the plot and ran through a heartbeat detection algorithm (eng-
zee segmenter from the BioSPPy library [Carreiras et al., 2018]) to provide
an initial estimation of R-peak locations. This estimation is then manually
inspected to remove any false positives and add any missing R-peaks. Where
there was too much noise to reliably annotate the entire recording, no an-
notation file was made. Of the 125 recordings, 2 chest strap and 19 loose
cable recordings were unable to be annotated, this mostly occurred in the
jogging scenario. The annotation sample locations are saved to a .tsv file
when the plot is closed. This is performed for both the chest strap ECG and
the Einthoven II loose cable recording.

2.2 MITDB

The MITDB records are loaded using the WFDB Python library [Xie and
Dubiel, 2018], only the first channel is used which is modified limb lead II
(MLII). The MITDB annotations contain both beat labels and rhythm labels,
using the PhysioBank annotation codes [PhysioNet, 2016], the rhythm labels
are removed.

2.3 Detector Software Implementation

The algorithms chosen represent popular heartbeat detectors as well as a
range of different techniques. The main criteria for selection was that the
algorithm could be implemented in a real time system. All algorithms were
implemented in Python, code can be found at Howell and Porr [2019].

2.3.1 Pan and Tompkins

The algorithm by Pan and Tompkins [1985] pre-processes the ECG signal be-
fore peak detection to reduce noise and emphasise the QRS complex (Fig. 3A-
E). The first step is a bandpass filter with a passband of 5− 15 Hz, this will
remove the DC offset, baseline wander, 50 Hz power line interference and
reduce the amplitude of T-waves and some movement noise. This filter is
implemented as a first order Butterworth IIR filter. After the bandpass filter,
the signal is then differentiated, effectively a high-pass filter to highlight the
sharp slopes of the QRS complex. To further emphasise the QRS complex,
the signal is then squared, this also has the effect of making all points posit-
ive. The final processing step is a moving window average with a window of
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Figure 3: ECG processing steps for the Pan and Tompkins algorithm (A-E) and
the Hamilton algorithm (F-J).

150 ms. This window was chosen to match the width of the widest possible
QRS complex.

Peaks at least 300 ms apart are identified in the pre-processed signal
(Fig. 3E) and classified as noise or a QRS complex depending on an adaptive
threshold. This threshold is calculated as

NPKI = 0.125 · PEAKI + 0.875 ·NPKI (1)

SPKI = 0.125 · PEAKI + 0.875 · SPKI (2)

THRESHOLD = NPKI + 0.25 · (SPKI −NPKI) (3)

where PEAKI is the most recently detected peak of that type. NPKI

is an estimate of the current noise peak and SPKI is an estimate of the
current QRS peak. A peak is classified as a QRS complex if its amplitude
is greater than that of the adaptive threshold otherwise it is classified as
noise. To identify any QRS complexes which have potentially been missed,
the average interval from the last nine QRS peaks is calculated. If the interval
of a detected QRS peak is greater than 166 % of the average interval, it is
assumed a QRS peak has been missed. To find this peak, the interval is
scanned again with the threshold halved. If the newly detected peak exceeds
the minimum interval criteria, it is added to the QRS peaks.

2.3.2 Hamilton

The method by Hamilton [2002] is based on the work by Pan and Tomp-
kins [1985] (section 2.3.1) but makes alterations to the pre-processing stage
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(Figure 3F-J). It differs by using a passband of 8− 16 Hz, rectifying the dif-
ferentiated signal instead of squaring it and using an 80 ms moving average
window over 150 ms.

QRS detection is based on three rules: Peaks must be at least 300 ms from
the last detected R-peak, if a peak amplitude is above the detection threshold
it is classified as a QRS complex and if the interval between two detected
peaks exceeds 1.5 times the average RR interval, a QRS peak has been missed.
Missed peaks must be at least half the detection threshold and occur at least
360 ms after the last detection to classify as a QRS complex. When a peak is
detected, if its amplitude is greater than that of the detection threshold, its
value is added to a buffer containing the last 8 QRS peak amplitudes. If its
amplitude is lower, its value is added to a buffer containing the last 8 noise
peak values. The mean of these buffers gives the average QRS peak and the
average noise peak. Using these average peak values, the detection threshold
for an R peak thres is calculated as:

thres = avg noise peak+ 0.45 · (avg QRS peak− avg noise peak) (4)

Figure 4: ECG processing steps for the Christov algorithm (A-E). F) illustrates
the adaptive thresholds for the Christov algorithm on the pre-processed signal.
Solid red: overall threshold MFR, dashed blue: steep-slope threshold M, dashed
green: integrating threshold F, dashed magenta: beat expectation threshold R,
red dot: QRS detection.

2.3.3 Christov

The method by Christov [2004] filters the ECG through a series of moving
averages to pre-process the signal (Figure 4A-E), a combination of adaptive
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thresholds is then used for QRS detection. The first moving average filter
is used to remove any power-line interference. It is implemented as an FIR
filter where the number of coefficients is equal to the number of samples in a
50 Hz period (20 ms). Each coefficient has the value of 1

number of coefficients
. The

second moving average is implemented in the same way but with a period of
28 ms to reduce EMG noise. To emphasise the QRS complexes, the absolute
value of the differential is then taken. A final moving average filter is used
at a period of 40 ms to reduce noise amplified by the differentiation process.

Central to this algorithm is a sophisticated interplay of three thresholds:
to identify QRS complexes, the pre-processed signal Y is compared to a
threshold comprised of three independent adaptive thresholds: a steep-slope
threshold M , an integrating threshold F and a beat expectation threshold
R. We now define the different thresholds.

For the first five seconds of the signal, the steep-slope threshold, M , is
calculated as M = 0.6 ·max(Y ). During this period multiple QRS complexes
should be detected. After this initial period, a new steep-slope threshold is
calculated as 0.6·max(Y ) in the 200 ms after a QRS detection. In the 200 ms
after a QRS detection no beat can be detected. This new value is added to
a buffer of 5 values and the M threshold is calculated as the average of the
buffer. In the interval 200−1200 ms after a QRS complex has been detected,
M is linearly decreased reaching a final value of 60 % of its starting value.

The purpose of the integrating threshold, F , is to increase the overall
threshold when EMG noise is present in the signal, thereby reducing false
positive detections. The integrating threshold is updated for every sample
by adding the difference between the maximum value of Y in the most recent
50 ms and the maximum value of Y in the earliest 50 ms of the past 350 ms.
A weighting coefficient of 1

150
is used:

F = F+
max(Ylatest 50 ms in 350 ms interv)−max(Yearliest 50 ms in 350 ms interv)

150
(5)

The beat expectation threshold, R, is intended to predict when a beat is
going to occur and lower the threshold accordingly. When a beat is detected,
the beat interval is stored in a buffer with four previous intervals and the
buffer average, Rm, is calculated. In the interval between a detected beat and
+2

3
Rm, the beat expectation threshold is equal to zero. As a beat is expected

in the period 2

3
Rm to Rm, the R threshold decreases by 1.4 times less than

the M threshold reduction. After the period Rm, the decrease stops.
The overall threshold, MFR, is calculated as the sum of the three inde-

pendent thresholds, MFR = M + F +R (Figure 4F).
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Figure 5: A) ECG processing steps of the algorithm by Elgendi et al. [2010]. B)
R-peak detection using the two moving average detectors.

2.3.4 Elgendi et al

Elgendi et al. [2010] uses a bandpass filter and two moving averages to
segment the ECG signal into blocks containing potential QRS complexes
(Fig. 5). The ECG signal is filtered using a second order Butterworth IIR
filter with a passband of 8− 20 Hz (Fig. 5B). The first moving average has a
window of 120 ms to match the approximate duration of a QRS complex. A
wider window of 600 ms is used for the second moving average to match the
approximate duration of a complete heartbeat. Both moving averages are
performed on the rectified bandpass filtered signal. Sections of the filtered
ECG where the amplitude of the first moving average is higher than that of
the second are marked as blocks containing a potential heartbeat (Figure 5C,
red square wave). Blocks with a width of less than 80 ms are ignored as this
is smaller than a QRS complex. The maximum value of the filtered ECG
in each block is then stored as a detected QRS. Detections which follow the
previous one by less than 300 ms are removed.

2.3.5 Kalidas and Tamil

The method by Kalidas and Tamil 2017, Fig. 6 is based on the work by Pan
and Tompkins [1985] (section 2.3.1) but uses the Stationary Wavelet Trans-
form (SWT) to remove noise and emphasise the QRS complexes instead of
a bandpass filter (Fig. 6B). The Stationary Wavelet Transform is a method
of decomposing a signal into uniform frequency bands using a mother wave-
let. In this algorithm, the SWT is performed on the ECG signal using the
Daubechies 3 wavelet (Fig. 6F). A SWT level of three was selected based on
experimental detection results. As shown by the Fourier transform of the
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Figure 6: A-D) ECG processing steps for the algorithm by Kalidas and Tamil
[2017] E) Frequency spectrum of 250 Hz sampling rate unfiltered ECG (blue) and
ECG after level 3 SWT (orange). F) Daubechies 3 wavelet.

level 3 SWT (Fig. 6E), for a sampling rate of 250 Hz the frequency spec-
trum is centred around 20 Hz with a width of approximately 20 Hz, roughly
matching the QRS frequencies. After the SWT has been calculated, detailed
coefficients are extracted and then squared. In the original paper, a moving
average was performed on the squared signal, however, it was found that us-
ing a bandpass filter instead significantly increased sensitivity and accuracy.
Peak detection on the bandpass signal is then identical to that of Pan and
Tompkins [1985].

2.3.6 Engelse and Zeelenberg with modifications by Lourenco et
al (Engzee Mod)

Lourenço et al. [2012] expanded on the work by Englese and Zeelenberg
[1979] by adapting their algorithm to work in real time and replacing the
fixed threshold with an adaptive one. The first pre-processing step is an IIR
band-stop filter at 48 − 52 Hz to remove any powerline interference. The
signal is then differentiated

y[n] = x[n]− x[n− 4] (6)

and passed through a five tap FIR windowed smoothing filter with the coef-
ficients h = [1, 4, 6, 4, 1].

QRS detection is based on two conditions, the first of which is peak de-
tection. The adaptive threshold is based on the work by Christov [2004] and
uses the steep-slope threshold, M. Refer to section 2.3.3 for how this threshold
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is obtained. The second condition is that within 160 ms of a peak being de-
tected there are at least 10 ms of consecutive points with an amplitude of
less than −M . If this condition is met, the unfiltered signal is scanned in a
window between where the peak was detected and after the 10 ms of con-
secutive points. The maximum value in this window is determined to be the
R-peak.

2.3.7 Matched Filter

This method uses a matched filter to match an ECG signal to a QRS tem-
plate, outputting a pulse for a detection. In our case a QRS template at
both 250 and 360 Hz is chosen from motion free ECG recordings. The ECG
recording is filtered before template selection to remove the DC offset and
power-line interference. Each template is saved in a csv file.

For detection, the ECG signal is first filtered using a fourth order IIR
bandpass filter with a passband of 0.1−48 Hz to remove DC and 50 Hz power-
line noise. Based on the sampling rate, the corresponding template is loaded
and then time reversed. Using the time reversed template as coefficients, the
pre-filtered ECG signal is processed using an FIR filter. The output of this
FIR filter is then squared to increase the signal to noise ratio. The method by
Pan and Tompkins [1985] (section 2.3.1) is performed on the squared signal
to detect the R-peaks.

2.4 Evaluating Detectors

To evaluate the detectors, a script was used to compare each algorithm’s
detected R-peaks to the annotation locations. For the MITDB, all 48 re-
cords were tested. For the Glasgow University Database, all recordings with
annotations were tested: 123 for the chest strap and 106 for the loose cable
setup. A detection tolerance of zero was used for both databases, where
only the exact annotation location was accepted as a true positive detection.
Note that all detectors delay the signals so that their R-peak timestamps
will be always later. In order to be able to do sample precision evaluation we
subtracted the median delay from the true R peak. The median delay was
calculated separately for every subject, activity and measurement protocol as
this will be different each time. The performance of the detector algorithms
was compared using sensitivity which is the proportion of the total number
of R-peaks that were correctly detected:

Se =
TP

TP + FN
(7)
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where TP is the number of true R peak detections and FN is the number of
false negative ones.

The sensitivities for sitting, jogging, Einthoven, chest strap and the dif-
ferent detectors are now compared with the help of the Wilcoxon rank test.
Valid p values need be based on at least 20 different sensitivity pairs com-
paring two conditions. Alpha level is set to 0.05.

2.4.1 Heart rate variability

To have a practical application for precise R peak detection and to test how
the results above impact on a real application we calculated the heart rate
variability for the conditions “sitting” and “maths test”. We test if the maths
test significantly impacts on the normalised root mean square differences of
successive heart rates (RMSSD). This is a popular measure in HRV analysis
and is based on the 2nd derivative of the R peak time stamps and thus will
heavily rely on a precise timing with any jitter changing the result. We
use the normalised RMSSD (nRMSSD) to eliminate its dependency on the
heartrate. We test “sitting” against “maths” nRMSSD with the help of the
Wilcoxon rank test for the three conditions:

1. Ground truth: nRMSSD based on labelled R peaks

2. Wavelet detector [Kalidas and Tamil, 2017] based R timings and res-
ulting nRMSSD

3. Lourenço et al. [2012] detector derived R timings and resulting nRMSSD

We apply these two detectors to both chest strap and Einthoven so that we
have five different comparisons where an alpha level of 5% indicates which
ones are significant. The statistical test is the Wilcoxon rank test which
counts the occurrences when the nRMSSD is larger or smaller between the
nRMSSD readings from the different subjects. Note that this exercise is
intended to show different noise levels in a realistic experimental setting
where sitting still will introduce less noise than doing the maths test on the
tablet. If maths really stresses out a person or rather sitting still in a lab
environment is not of relevance here.

3 Results

3.1 Glasgow University Database

Figure 7 shows the results of the University of Glasgow Database for sitting
(A) and jogging (B) comparing the different detectors and the two electrode
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Figure 7: Detector results on the Glasgow University Database for chest strap and
Einthoven recordings while sitting (A) and jogging (B).

configurations: chest strap with V2-V1 and Einthoven II. Qualitatively it
can be seen that the detectors by Engzee, Elgendi, Kalidas and the matched
filter perform best while Christov, Hamilton and Pan Tompkins perform
worst. Amongst the better performing detectors the Engzee detector stands
out with close to 100 % sensitivity. This is the only detector which performs a
peak search on the ECG signal and is thus more computationally expensive
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than the other ones. We are now investigating the different detectors by
comparing their sensitivities to find significant differences. The following
statistical tests have been done by comparing pairs of sensitivities with the
Wilcoxon rank test where the minimal number of pairs had to be 20. Under
Einthoven/jogging this condition could not be reached and the results have
been excluded. Similarly the detector by Christov has been performing so
badly that not enough sensitivity pairs were available. A p-value of less than
0.05 indicates that the sensitivities are significantly different. All the values
in the tables below have been obtained with the Wilcoxon rank test.

3.1.1 Sitting vs jogging

As a first test we had a look at how noise from jogging compared to sitting
degrades the sensitivity of the detector. Because Einthoven was too noisy we
only compare the results from the chest strap. These are the p-values testing
for a significant differences between sitting vs jogging:

Elgendi Matched Kalidas Engzee Christov Hamilton Pan
0.00* 0.03* 0.00* 0.02* — 0.00* 0.00*

Overall there is a significant difference between just sitting and jogging. All
detectors perform significantly worse while jogging. Note that the Christov
detector has performed so badly that sensitivity readings could not be cal-
culated for most subjects.

3.1.2 Sitting

The lowest noise levels are expected to be while sitting on a chair. We are
going to first compare the Einthoven leads with the chest strap and then
compare the detectors for both Einthoven and the chest strap.

Einthoven vs chest strap As a first step we investigate how the electrode
configurations (Einthoven vs chest strap) alter the sensitivity and check which
detectors are most susceptible to it:

Elgendi Matched Kalidas Engzee Christov Hamilton Pan
0.57 0.17 0.64 0.06 — 0.08 0.01*

The p-values above show that there is no significant difference between an
Einthoven recording and that from a chest strap – apart from the detector
by Pan and Tompkins [1985]. This is expected as during sitting the muscle
and movement artefacts will be low and thus even the Einthoven recording
with its loose cables has no negative impact.
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Einthoven II Let’s now compare the different detectors against each other
when recording Einthoven II while sitting:

Elgendi Matched Kalidas Engzee Christov Hamilton Pan
Elgendi — 0.07 0.75 0.00* — 0.00* 0.00*
Matched 0.07 — 0.10 0.00* — 0.01* 0.00*
Kalidas 0.75 0.10 — 0.00* — 0.00* 0.00*
Engzee 0.00* 0.00* 0.00* — — 0.00* 0.00*
Christov — — — — — — —
Hamilton 0.00* 0.01* 0.00* 0.00* — — 0.07
Pan 0.00* 0.00* 0.00* 0.00* — 0.07 —

The above p-values confirm what has been already observed qualitatively: the
detectors by Pan and Tompkins [1985] and Hamilton [2002] are significantly
worse than our best performers, in particular Engzee [Lourenço et al., 2012]
but also Elgendi et al. [2010], machted filter and Kalidas and Tamil [2017].

Chest strap Instead of using the standard Einthoven leads one can use
the chest strap offering less noise, even while sitting.

Elgendi Matched Kalidas Engzee Christov Hamilton Pan
Elgendi — 0.84 0.38 0.03* — 0.07 0.00*
Matched 0.84 — 0.35 0.02* — 0.10 0.00*
Kalidas 0.38 0.35 — 0.02* — 0.00* 0.00*
Engzee 0.03* 0.02* 0.02* — — 0.00* 0.00*
Christov — — — — — — —
Hamilton 0.07 0.10 0.00* 0.00* — — 0.07
Pan 0.00* 0.00* 0.00* 0.00* — 0.07 —

The p-values above reveal that at a sensitivity of just 80 % the detector
by Engzee [Lourenço et al., 2012] is still significantly better than any other
detector. Less well performing at about 65 % are Elgendi et al. [2010], the
matched filter and Kalidas and Tamil [2017]. There is no significant difference
between these three.

3.2 Jogging

We now move on to jogging and investigate how noise impacts on the per-
formance of the detectors.
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3.2.1 Einthoven

Most of the Einthoven recordings while jogging are too noisy to allow any
labelling of the R peaks and, thus, we have no statistical results. Note that
we could have taken the labelling from the chest strap as a fall-back however
we decided against it because of the substantially different shapes of the
R-peaks between chest and Einthoven leads.

3.2.2 Chest strap

As shown in the introduction, the chest strap offers much less noise and the
p-values comparing the different detectors are:

Elgendi Matched Kalidas Engzee Christov Hamilton Pan
Elgendi — 0.01* 0.36 0.00* — 0.00* 0.00*
Matched 0.01* — 0.00* 0.01* — 0.00* 0.00*
Kalidas 0.36 0.00* — 0.00* — 0.01* 0.00*
Engzee 0.00* 0.01* 0.00* — — 0.00* 0.00*
Christov — — — — — — —
Hamilton 0.00* 0.00* 0.01* 0.00* — — 0.04*
Pan 0.00* 0.00* 0.00* 0.00* — 0.04* —

While the detector by Engzee [Lourenço et al., 2012] is significantly better
than any other detector it shows that with a standard deviation of 50 %
it is not usable for serious applications. The next section about heart rate
variability will test the difference between Engzee [Lourenço et al., 2012] and
Kalidas and Tamil [2017] in a real application.

Summary of the GUDB results In summary, the Engzee detector [Lourenço
et al., 2012] performs significantly better than the other detectors. In the
mid-field we have Elgendi et al. [2010], Kalidas and Tamil [2017] and the
matched filter. The detectors by Pan and Tompkins [1985] and Hamilton
[2002] are significantly worse compared to the other ones. The stellar per-
formance of the Engzee detector [Lourenço et al., 2012] might have its origin
in its precise R peak search which is good in noise free environments but
risky in noisy ones. However, the mid field seems to be less susceptible to
noise because they bandpass filter the ECG prior to detection.

Comparing the chest strap and loose cable results, it becomes clear that
the recording setup is as important as the detector algorithm used. If the
subject is going to remain stationary for the entirety of the recording, the
Einthoven II setup will provide good results. However, if any movement is
planned, it is crucial to choose a setup which reduces cable movement, an
electrode chest strap has been shown to be very effective in this regard.
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Figure 8: Detector sensitivities on the MITDB.

3.3 MITDB

As predicted, when using an evaluation tolerance of 0, the inaccurate annota-
tions of the MITDB cause a reduction in sensitivity (Figure 8). However,
the size of this reduction was far greater than expected with no detector
achieving over 32% sensitivity.

A detailed comparison between the detectors reveals consistently with
our database that Elgendi et al. [2010] and the matched filter perform sig-
nificantly best. The wavelet detector [Kalidas and Tamil, 2017] here is sig-
nificantly worse than Elgendi et al. [2010] but not compared to the matched
filter:

Elgendi Matched Kalidas Engzee Christov Hamilton Pan
Elgendi — 0.39 0.03* 0.91 0.00* 0.00* 0.00*
Matched 0.39 — 0.17 0.84 0.00* 0.00* 0.00*
Kalidas 0.03* 0.17 — 0.04* 0.00* 0.03* 0.01*
Engzee 0.91 0.84 0.04* — 0.00* 0.00* 0.00*
Christov 0.00* 0.00* 0.00* 0.00* — 0.02* 0.03*
Hamilton 0.00* 0.00* 0.03* 0.00* 0.02* — 0.91
Pan 0.00* 0.00* 0.01* 0.00* 0.03* 0.91 —

Overall the results from the MIT database confirm our results although on
a much lower sensitivity level, probably because of the erroneous annotations.
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However, overall Elgendi et al. [2010], the matched filter, the stationary
wavelet detector [Kalidas and Tamil, 2017] and Engzee [Lourenço et al., 2012]
appear again as the best performing detectors.

Figure 9: Heartrate variability test between sitting and maths test using different
detectors and both the chest leads and Einthoven. A) normalised RMSSD for every
subject for the maths test and just sitting B) Ground truth between maths test and
sitting. C) Chest strap ECG analysed with the wavelet detector. D) Chest strap
ECG analysed with the Pan Tompkins detector. E) Einthoven II analysed with the
wavelet detector. F) Einthoven II analysed with the Pan Tompkins detector. None
of the maths vs sitting tests are significant but the nRMSSDs of the Pan Tompkins
based results are significantly different to both the wavelet detector results and the
ground truth.

3.4 Heart rate variability

Fig. 9 shows the results of the heart rate variability test where panel A shows
the individual nRMSSD readings from the different subjects for both sitting
and maths. These were calculated using the annotated sample-precise time
stamps and are thus the ground truth which will be compared to the different
nRMSSDs obtained from different detectors. At an alpha of 5%, this ground
truth reveals a significant difference of the nRMSSDs between sitting and
maths test (Fig. 9B).
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Now let’s look at the results using the actual detectors. When using
a chest strap (Fig. 9C-D), the wavelet detector [Kalidas and Tamil, 2017]
reproduces the slight decrease of the nRMSSD during the maths test and this
is also significant. Also the results of the wavelet detector based nRMSSDs
are significantly identical to the ground truth. However, the Engzee detector
[Lourenço et al., 2012] has significant problems against the ground truth and
generates very large nRMSSD values and thus cannot be recommended. This
is most likely due to the way the Engzee detector determines the final R peak
position namely trying to find the true maximum in the ECG signal, most
likely ending up in local maxima within its search window.

When using the Einthoven leads, the wavelet detector [Kalidas and Tamil,
2017] performs perfectly by also being significant between maths test and sit-
ting and generating significantly identical nRMSSD readings for both sitting
and maths test. However, the Engzee detector [Lourenço et al., 2012] fails
again.

This shows that sensitivity readings themselves need to be taken with
caution: in the previous section the Engzee detector was clearly standing out
as the best detector at about 99 % sensitivity. However, here we see that the
detector using the stationary wavelet transform with about 60 % sensitivity
provides much better performance. Most likely the reason is that the wavelet
transform very effectively removes noise because of optimal bandpass filtering
while the Engzee algorithm operates on the unfiltered ECG to detect the R
peak and thus is highly susceptible to noise.

4 Discussion

This work was undertaken in response to the apparent lack of research into
how realistic movement noise effects the performance of ECG heartbeat de-
tection algorithms. To provide a dataset for evaluating the detectors and a
resource for future research, an open access database of ECG recordings was
created [Howell and Porr, 2018]. This database consists of 125 recordings of
realistic scenarios, the majority of which have been videoed and annotated
with high precision. Seven real-time heartbeat detection algorithms were
implemented in Python to be evaluated, representing a range of popular
techniques [Howell and Porr, 2019].

In addition to evaluating these algorithms on the new database, they were
also tested on the most popular existing database, the MIT-BIH Arrhythmia
Database [Goldberger et al., 2000, Moody and Mark, 2001]. This database
has two main deficiencies: very few examples of noisy ECGs and inaccurate
annotations. These inaccurate annotations produced very low sensitivity
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results, below 35% when using a detection tolerance of 0. This is particularly
troubling when almost all research papers on the subject report sensitivities
upwards of 99%. Almost perfect results like these using the MIT database
were all obtained using large tolerances, producing misleading and unreliable
results. This, and the lack of noisy ECGs make a strong argument for the
need for a new standard ECG database.

When the same detectors were tested on the new database, the majority
were able to achieve above 60% sensitivity as a result of the high precision
annotations. A comparison of the two recording setups used in the new
database showed that an electrode chest strap is a very effective method
of reducing noise while the subject is moving. Using the chest strap, the
reduction in performance as a result of movement noise is minor.

Evaluating the algorithms across the two databases revealed that when
the ECG signal is ideal, there is very little difference in performance between
the detectors. The performance of the detectors then drops and diverges as
the ECG signal becomes noisy. This highlights the significant opportunity for
development and further research in this area. It is hoped that the database
created here can help spur this future development by providing a high-
quality dataset for testing.

Table 1: Comparison of claimed and tested sensitivities for the MITDB

Detector Cited
Tolerance
(ms)

Stat.
tests

Cited
MITDB
Sens-
itivity
(%)

Our
MITDB
Sens-
itivity
(%)

Pan and Tompkins [1985] Not stated No 99.30 12.85
Hamilton [2002] Not stated No 99.80 13.86
Elgendi et al. [2010] Not stated No 98.31 30.50
Matched Filter N/A N/A N/A 27.95
Lourenço et al. [2012] 10% of RR No 96.50∗ 28.92
Christov [2004] 60+ No 99.69 3.92
Kalidas and Tamil [2017] Not stated No 99.88 21.86

∗own ECG database and performance not measured against annotations

Table 1 shows the results reported by different original publications of
R peak detectors. All but one have used the MIT-BIH database for bench-
marking. We will quickly revisit the different results.

Pan and Tompkins [1985] were one of the first who developed a real-time
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QRS detection algorithm which was written in assembly language on a Z80
microprocessor to be able to cope with the filtering demands. The perform-
ance was analysed by playing tapes of ECG recordings from the MIT/BIH
database which were turned into digital signals, processed in the Z80 pro-
cessor and then turned back into analogue signals for comparison to the
annotations. Coincidence between the detected R peak and the annotations
was done by visual inspection so that a precise jitter tolerance couldn’t be
given. Overall Pan and Tompkins [1985] reports a sensitivity of 99.3 % which
is in stark contrast to our findings of 13.13 %.

Hamilton [2002] had in mind an open source R peak detector with a high
sensitivity which is a further development of the detector proposed by Pan
and Tompkins [1985]. In order to be able to run it even on a microcontroller,
Hamilton [2002] also presented a stripped down version of their full detector
implementation, omitting certain QRS detection rules. For their original
detector they report a sensitivity of 99.74 % and for the microcontroller
version one of 99.80 %. The sensitivities were not compared to other detectors
nor a statistical analysis has been performed. The authors state that the
detectors perform comparably. The jitter tolerance is not mentioned in the
paper. However we report a sensitivity of just 14.79 % which is virtually
identical to the original algorithm by Pan and Tompkins [1985].

The work by Elgendi et al. [2010] aimed to optimise the bandpass filter
frequencies used for the R-peak detection. Different frequency bands were
benchmarked and the 8-20 Hz band was chosen to be optimal having the
highest sensitivity. However all sensitivities, even the sub-optimal ones vary
only between 92.66% and 98.31% where some deviate less than one percent.
There is no statistical analysis in the paper stating which band is significantly
better than another one. A temporal tolerance is not given. However, com-
pared to our result at zero jitter tolerance at 32.53 % their tolerance used
must have been substantially larger reporting such high sensitivity values.
Given the lack of statistical tests in the paper and the omission of the toler-
ance render the recommendations towards cut-off frequencies questionable.

Christov [2004] starts off not just with Einthoven I but creates a complex
lead combining the derivatives from all standard 12 leads. This is then sent
through various thresholds to detect the R peaks. Christov [2004] achieved a
sensitivity of 99.96 % at a tolerance of 60 ms with larger temporal differences
allowed – if approved by an independent expert. However our results at
sample precision tolerance yields just 3.92 %. The article has no discussion
section and thus does not compare its results to other approaches and has
no statistical evaluations. In the conclusion section the author claims that:
“The statistical indices are higher than, or comparable to those, cited in the
scientific literature.” [Christov, 2004].
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Similar to Christov [2004], taking the derivative of the ECG signal is
the central idea by Englese and Zeelenberg [1979] which is then turned into
a real-time version by Lourenço et al. [2012] using an adaptive threshold.
The paper then compares the real-time version with the previous off-line
version and the detector by Christov [2004]. This paper does not use the
MIT-DB database because the authors recorded their own ECGs. They
also devised a different performance measure: the deviation from the mean
RR interval needs to be less than 10 % for individual RR pairs or in other
words: the heartrate needs to be within normal limits of the resting heartrate
variability [Shaffer and Ginsberg, 2017]. Their online algorithms lead to
average valid RR intervals between 84.5 % and 96.5 % depending on on- or
offline algorithms, use of electrodes, the algorithm itself and filtering. These
high readings are expected because their criterion will most likely detect only
crude deviations from RR intervals, for example a missed beat which then
results in twice the length or an additional spurious detection which results in
a very short RR interval. Even more important is that this measure does not
compare against the ground truth of RR intervals and only looks at the self
consistency of the RR intervals – which might have been wrong in relation
to the annotations in the 1st place. However, sensitivity actually compares
ground truth with the detector output. Here, we have a similar sensitivity to
other detectors at 28.92 %. There is no statistical test which of these results
differ significantly but could have been easily performed with the reasonably
large number of subjects (N = 62).

In contrast to any other paper above Kalidas and Tamil [2017] employed
the stationary wavelet transform to filter the ECG which resulted in a high
sensitivity in their paper of 99.88 %. However, also the cited sensitivities
of their competitors are in the 99 % band and thus render the comparison
useless. Neither a statistical significance test nor the detection tolerance is
published. However, given our calculated sensitivity of 22.34 % compared to
their 99.88 %, it suggests that again a large temporal jitter was permitted,
however the exact margin is not mentioned in the text.

Overall, with virtually every paper reporting very high sensitivities of
98 % or more is not helpful at all and have only been possible because of
high temporal tolerances of probably 100 ms or even more. In addition the
sole use of the MIT-BIH database with mostly artefact free ECGs again
overestimate the performance of these algorithms. These factors combined
grossly overestimate the performances of the algorithms and thus making a
comparison impossible.

The results from the heartrate variability example show that sensitivity
itself is a poor measure of performance because it is just a binary value if
an R-peak has been detected within a time frame or not. However, given
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that both heartrate and heartrate variability operate on the 1st and 2nd
derivatives of the R peak timestamps a new performance measure should
reflect the temporal jitter between the R peak time stamps, for example by
measuring the standard deviation between the true R peak positions and the
actual R peak positions.
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