
1

R-PointHop: A Green, Accurate, and Unsupervised
Point Cloud Registration Method

Pranav Kadam, Student Member, IEEE, Min Zhang, Shan Liu, Senior Member, IEEE,
and C.-C. Jay Kuo, Fellow, IEEE

Abstract—Inspired by the recent PointHop classification
method, an unsupervised 3D point cloud registration method,
called R-PointHop, is proposed in this work. R-PointHop first
determines a local reference frame (LRF) for every point us-
ing its nearest neighbors and finds local attributes. Next, R-
PointHop obtains local-to-global hierarchical features by point
downsampling, neighborhood expansion, attribute construction
and dimensionality reduction steps. Thus, point correspondences
are built in hierarchical feature space using the nearest neighbor
rule. Afterwards, a subset of salient points with good correspon-
dence is selected to estimate the 3D transformation. The use
of the LRF allows for invariance of the hierarchical features
of points with respect to rotation and translation, thus making
R-PointHop more robust at building point correspondence, even
when the rotation angles are large. Experiments are conducted on
the 3DMatch, ModelNet40, and Stanford Bunny datasets, which
demonstrate the effectiveness of R-PointHop for 3D point cloud
registration. R-PointHop’s model size and training time are an
order of magnitude smaller than those of deep learning methods,
and its registration errors are smaller, making it a green and
accurate solution. Our codes are available on GitHub 1.

Index Terms—Point cloud registration, rotation invariance,
local reference frame (LRF), 3D feature descriptor

I. INTRODUCTION

REGISTRATION is a key step in many applications of
point clouds. Given a pair of point cloud scans, registra-

tion attempts to find a rigid transformation for their optimal
alignment. Multiple point cloud scans can be registered to
get a complete 3D scene of the environment. With the rapid
development reduction in cost of 3D scanning devices such
as LiDAR, point cloud processing has been on the rise.
The quality of registration directly affects downstream tasks,
including classification, segmentation, object detection, pose
estimation, and odometry. These tasks are commonly encoun-
tered in autonomous driving, robotics, computer graphics,
localization, AR/VR, and so on. Point cloud registration is
an active research topic. The current focus is on development
of learning models for registration that can handle challenges

Pranav Kadam is with the Ming Hsieh Department of Electrical and
Computer Engineering, University of Southern California, CA, 90089, USA,
e-mail: prIEEEanavka@usc.edu.

Min Zhang is with the Ming Hsieh Department of Electrical and Computer
Engineering, University of Southern California, CA, 90089, USA, e-mail:
zhan980@usc.edu.

Shan Liu is with Tencent Media Lab, Tencent America, 2747 Park Blvd,
Palo Alto, CA, 94306 USA, email: shanl@tencent.com.

C.-C. Jay Kuo is with the Ming Hsieh Department of Electrical and
Computer Engineering, University of Southern California, CA, 90089, USA,
e-mail: cckuo@sipi.usc.edu.

1https://github.com/pranavkdm/R-PointHop

such as noise, varying point densities, outliers, occlusions, and
partial views.

The correspondence problem exists in quite a few computer
vision tasks. From the viewpoint of 2D images, the interest
lies in finding matching pixels or regions between multiple
images. These correspondences can be used for image stitching
to generate a panorama [1], [2], 3D reconstruction, or structure
from motion (SfM) [3], [4], [5]. 2D descriptors are often
extracted using the scale-invariant feature transform (SIFT) [6]
or speeded-up robust features (SURF) [7] algorithms. These
methods are effective in building correspondence between
pixels of different images. Similarly, in the context of 3D point
clouds, geometric registration based on point correspondence
is popular. The most common methods include the classical
iterative closest point (ICP) [8] and its derivatives [9], [10].
Correspondence-aided odometry and mapping has also been
demonstrated for 3D point clouds [11].

To develop an accurate 3D correspondence solution, it is es-
sential to achieve good point feature representation. Desirable
properties for point features include: 1) robustness to noise,
outliers and the point density, 2) invariance under rigid motion,
and 3) global context awareness. Earlier solutions, e.g., [12],
[13], have used 3D descriptors to capture local geometric
properties such as surface normals, tangents and curvatures.
These primitive descriptors are derived based on the first-
or higher-order statistics of neighboring points, histogram,
angles, etc. The recent trend is to learn features from an end-
to-end optimization setting with deep neural networks (DNNs)
and build correspondences accordingly. To this end, we pro-
pose a new method, called R-PointHop2, to learn features
in an unsupervised manner for point correspondence. These
correspondences are then used to find the 3D transformation
for registration.

Supervised learning via DNNs has revolutionized the field
of 3D point cloud processing. PointNet [16] is the first well
known DNN solution that uses learned features for point cloud
classification and semantic segmentation. Several follow-up
works [17], [18], [19] have reinforced the belief that large-
scale point cloud processing can benefit from deep learning.
Researchers have developed a large number of DNNs for
various 3D vision tasks including correspondence [20], [21],
[22] and registration [23], [24], [25]. These methods formulate
registration as a supervised learning problem and solve it using
end-to-end optimization.

2The acronym indicates a point cloud registration method built upon
features learned by PointHop [14] or PointHop++[15]

ar
X

iv
:2

10
3.

08
12

9v
3

 [
cs

.C
V

]
 1

4
M

ar
 2

02
2

https://github.com/pranavkdm/R-PointHop

2

Different forms of supervision have been adopted in deep
learning, including ground truth transformations, valid and
invalid correspondence pairs, and object labels. On one hand,
it is difficult and/or expensive to obtain these labels in real
world applications, while on the other, unsupervised learning
and model-free methods fail to match the performance of
deep learning methods, especially for complex point cloud
sets. A question of interest is whether the performance gain
is due to a large number of unlabeled data, data labeling,
or both of them. Other concerns in real world applications
are model complexity (in terms of memory requirement)
and computational complexity (in terms of training/inference
time). Deep learning methods often run on GPUs since they
demand larger model sizes and longer training/inference time.
Point cloud processing using deep learning is no exception. It
is desirable to look for a green solution that consumes much
less power. This implies a method with a smaller model size
and less training/inference time, yet, whose performance is on
par with that of DNNs.

Two green point cloud classification methods have been
proposed before, namely the PointHop method [14] and the
PointHop++ method [15]. Both methods extract point cloud
features in a one-pass feedforward manner without any label
information. These features were fed into a classifier such as
random forest (RF) or support vector machine (SVM) for point
cloud classification. The salient points analysis SPA method
[26] extends PointHop++ for 3D registration. These methods
are designed based on the successive subspace learning (SSL)
framework. SSL offers a promising direction for point cloud
research due to its interpretability, small model size, low
training/inference time, and good performance. PointHop and
PointHop++ assume that objects are aligned in a canonical
frame before processing. This assumption does not hold in
general and 3D registration is usually needed as a pre-
processing step. Note that SPA may fail to align two point
clouds that are related to each other with larger rotation angles,
since it derives its features using PointHop++.

To address the shortcomings of SPA, R-PointHop offers a
new way of extracting point features that are invariant to point
cloud rotation and translation. Rotation invariance is achieved
by considering a local reference frame (LRF) defined at each
point. This enables R-PointHop to find robust point corre-
spondences even when the rotation angle is large. Besides,
R-PointHop covers partial-to-partial registration which is often
encountered in real world problems. In contrast, SPA does not
account for partial registration, thus, limiting its application
scope. Furthermore, it is observed that point cloud features
of similar local structures are clustered closely in the feature
space. This indicates that R-PointHop features could be used
as 3D local descriptors and applied to a wide range of tasks
that go beyond 3D registration.

The main contributions of this work are summarized below.
• An unsupervised feature learning method, called R-

PointHop is proposed. R-PointHop learns point features
that are invariant to point cloud rotation and translation.

• The effectiveness of the proposed features for geometric
registration task is demonstrated through a series of ex-
periments on indoor point cloud scans as well as synthetic

and real-world models.
• Emphasis is given to designing a green solution that

has a smaller model size, lower memory consumption,
and reduced training time as compared to state-of-the-art
methods.

The rest of this paper is organized as follows. Related work
is reviewed in Sec. II, where both model-free and learning-
based methods for 3D correspondence are examined. The SSL
framework, which forms the basis for R-PointHop, is also
discussed. The R-PointHop method is proposed in Sec. III.
It consists of the local reference frame (LRF) computation,
attribute construction, and multi-hop feature learning. Corre-
spondence selection is also discussed. Experimental results
on the 3DMatch [20], ModelNet40 [27] and Stanford Bunny
dataset [28], [29], [30] are reported in Sec. IV. In Sec. V,
additional discussion on the role of supervision in the point
cloud registration is provided. We also examine the limitation
of R-PointHop. Finally, concluding remarks are given in Sec.
VI.

II. REVIEW OF RELATED WORK

A. Classical Model-Free Methods

Classical registration methods such as the iterative closest
point (ICP) method and its variants (e.g., Point-to-plane ICP
[9], Generalized-ICP [10], Go-ICP [31], etc.) have been used
in point cloud registration for a long while. For every point
in one point cloud, ICP first finds its closest point in the
other point cloud. Then, point correspondences are used to
estimate the transformation that minimizes the mean squared
error between the 3D coordinates of matched points. Since
ICP is local by nature, it works well only when the optimal
transformation is close to the initial alignment. Go-ICP uses
a Branch-n-Bound (BnB) module to search for a globally
optimal solution. Various modifications of ICP are summarized
and compared in [32]. The Fast Global Registration method
[33] conducts global registration of partially overlapping sur-
faces without an initial alignment. It uses FPFH [34] feature.
Meanwhile, Teaser [35], [36] uses truncated least squares to
handle scale, rotation and translation. The above-mentioned
methods are model-free. They use handcrafted features and
solve an optimization problem.

B. Local Geometric Descriptors

SIFT [6] and SURF [7] are well known 2D keypoint
descriptors. Similarly, some local geometric properties (e.g.,
eigen decomposition, surface normals, signatures, curvatures,
histograms, and angles) can be used to describe points in 3D
point clouds. SHOT [12] is a 3D descriptor based on the
histogram of point normals in a local support region. Spin-
images [13] is a local surface representation comprising of
oriented points and their images. FPFH [34] combines 3D
coordinates and surface normals of k nearest neighbors of
a point. USC [37] is a modification of SHOT. The initial
idea of R-PointHop was inspired by these unsupervised local
descriptors. However, two additional ideas are added to make
the local geometrical descriptors more powerful. First, the
target descriptor is learned from training samples rather than

3

being defined by a set of pre-determined rules. Second, it
has multi-scale representation capability. To meet the first
criterion, we introduce principal component analysis (PCA)
for feature extraction, which is data driven. To meet the
second criterion, features in R-PointHop are learned in a
multi-hop manner, where the neighborhood size grows as the
number of hops increases. This allows the derivation of multi-
scale descriptors centered at a point so that the short-, mid-
and long-range neighborhood information can be captured
simultaneously.

C. Deep Learning Methods

Several deep learning methods have been proposed for point
cloud classification, segmentation and registration tasks in
recent years. PointNet [16], PointNet++ [17] and DGCNN [18]
are well known networks in this field, and most learning-based
registration methods use them as the backbone. Deep Closest
Point (DCP) [23] exploits point features learned from DGCNN
and uses a transformer to learn contextual information between
features of two point clouds to be registered. A differentiable
SVD module is designed to predict the rotation in an end-
to-end manner. PR-Net [38] extends DCP for registration
of partial point clouds through an action-critic closest point
module. PointNetLK [25] uses the globally pooled features
learned by PointNet and employs the Lucas-Kanade (LK)
algorithm [39] to conduct registration in an iterative manner.
In contrast with DCP, PointNetLK does not demand explicit
point correspondences and instead uses an iterative LK algo-
rithm. Both DCP and PointNetLK use ground truth rotation
matrices and translation vectors to train end-to-end networks.
Another approach is to optimize an end-to-end network that
finds 3D correspondences, where supervision is provided in
terms of valid and invalid correspondence pairs. CORSAIR
[40] combines global shape embedding with local point-wise
features to simultaneously retrieve and register point cloud
objects. 3DMatch [20] uses point correspondences available
from RGBD reconstruction datasets to train a siamese 3D
CNN. PPFNet [21] finds a local point pair feature embedding,
which is followed by PointNet to learn point features for corre-
spondence. DeepMapping [41] uses a deep network to register
multiple point clouds to a global reference frame. 3DSmooth-
Net [42] uses Gaussian smoothing to voxelize points in the
neighborhood, followed by a Siamese deep network to learn
local point descriptors. 3DFeat-Net [43] uses weak supervision
to learn correspondences from GPS/INS tagged point clouds.
UnsupervisedR&R [44] in an unsupervised method that uses
differentiable alignment and rendering. These methods are
usually coupled with random sample consensus (RANSAC)
[45] for robust geometric registration. Deep learning methods
can yield 3D point descriptors as a byproduct. Yet, they are
mainly optimized for a single task, such as, classification,
segmentation or registration. Furthermore, they tend not to
expand the point neighborhood successively.

D. Successive Subspace Learning (SSL)

The successive subspace learning (SSL) paradigm was in-
troduced for point cloud classification (called PointHop) in

[14] and for image classification (called PixelHop) in [46],
respectively. The idea was originated from the Saab (succes-
sive approximation with adjusted bias) transform, which is a
variant of principal component analysis (PCA), in [47]. The
Saab transform adds a bias term to the PCA transform to
address the sign confusion problem when multiple PCA stages
are in cascade.

PointHop uses the statistics of 3D points to learn point cloud
features in an unsupervised one-pass manner. This procedure
is summarized as follows. First, the attributes of a local point
are constructed based on the distribution of points in its local
neighborhood. All point attributes from the training data are
collected and their covariance matrix is analyzed to define
the Saab transform at the first PointHop unit. This process is
repeated, which leads to multiple PointHop units. The corre-
sponding receptive field grows as the hop number increases.
Later, the channel-wise Saab (c/w Saab) transform was intro-
duced in PointHop++ [15]. The c/w Saab transform is more
effective than the Saab transform with regard to computational
complexity and storage complexity (i.e., model size). Features
at different hop units of PointHop (or PointHop++) are pooled
to obtain the global feature vector and fed to a classifier for
the classification task. Furthermore, UFF [48] extended this
framework for point cloud part-segmentation. PointHop and
PointHop++ consist of two modules: 1) unsupervised feature
extraction and 2) supervised learning for classification. The
proposed R-PointHop method leverages the first module for
the registration task.

Another closely related work is the salient points analysis
(SPA) method [26]. It is an unsupervised point cloud registra-
tion method. SPA selects a set of salient points based on the
PCA in local neighborhood of points and uses PointHop++ to
learn point features and build correspondence among salient
points for transformation estimation. However, SPA ignores
the long-range neighborhood information in the salient point
selection process. An inconsistent choice of salient points may
lead to incorrect registration. Also, selected salient points may
not provide a clue on which points to match when there is only
a partial overlap between the two point clouds. In R-PointHop,
we address these shortcomings by using both short- and long-
range features to decide proper correspondences.

E. Rotation-Invariant Features

Rotation-invariant features do not change when the point
cloud undergoes any external rotation. These features are
desirable for robust 3D correspondence. They are also useful
for other tasks (e.g., classification and segmentation) in pres-
ence of different viewpoints. Several earlier methods used the
local reference frame (LRF) to design 3D descriptors that are
invariant under rotation. The LRF idea lies in the adoption of
properties (e.g., distances, angles, principal components, etc.)
that are preserved under rigid transformations. Comparison
of several LRF designs is given in [49]. Modern learning-
based methods handle rotation invariance in different ways. A
naive approach is to augment the training data by rotating
point clouds by an arbitrary amount. Although it helps a
model learn from samples with different rotations during

4

Fig. 1. The system diagram of the proposed R-PointHop method, which consists of three modules: 1) feature learning, 2) point correspondence, and 3)
transformation estimation.

training, it does not guarantee rotation invariance explicitly.
Other methods bring point clouds to a canonical frame before
further processing. There exist separate networks for pre-
alignment. The spatial transformer network (STN) [50] can
align images to a canonical form. The T-Net module in
PointNet is another example that predicts a transformation to
align a point cloud before feature learning. IT-Net [51] aligns
point clouds to a canonical form using an iterative network.
The plane of symmetry in objects is detected in [52]. It gives
three axes which represent the 3D object in canonical form.
Another approach is to design a convolution operator that
is invariant under rotation [53], [54]. The PPF-FoldNet [22]
learns rotation-invariant features for point correspondence.

PointHop and PointHop++ both use pre-aligned point clouds
to learn features which are not rotation-invariant. SPA [26]
fails in registration when the rotation angles are larger, be-
cause it is derived from PointHop++ and does not take
rotation-invariance into consideration. Similarly, PointHop and
PointHop++ do not perform well in the classification task if
an object is not pre-aligned. Here, we solve this alignment
problem by learning rotation-invariant features in an unsu-
pervised manner. We will show in Sec. IV that R-PointHop
outperforms SPA by a large margin. It also makes PointHop
and PointHop++ more robust with regard to point cloud
classification becuase it can pre-align 3D point clouds to a
canonical form.

III. PROPOSED R-POINTHOP METHOD

The point cloud registration problem is to find a rigid trans-
formation (including rotation and translation) that optimally
aligns two point clouds, where one is the target point cloud
denoted by F ∈ R3 and the other is the source point cloud

denoted by G ∈ R3. The source is obtained by applying an
unknown rotation and translation to the target. The rotation can
be expressed in form of a rotation matrix, R ∈ SO(3), where
SO(3) is a special orthogonal group (i.e. a 3D rotation group
in the Euclidean space). The translation vector, t ∈ R3, defines
the same displacement vector for all points in the 3D space.
Given F and G, the goal is to find an optimal R∗ ∈ SO(3)
and translation t∗ ∈ R3 that minimize the mean squared error
between matching points given by

E(R, t) =
1

N

N−1∑
i=0

‖R∗f i + t∗ − gi‖2, (1)

where (fi,gi) denotes a pair of N selected matching points.
Although the actual number of points in each point could
be larger than N , the error is defined over the N matching
points for convenience. The system diagram of the proposed
R-PointHop method is shown in Fig. 1. It contains three main
modules: 1) feature learning, 2) point correspondence, and 3)
transformation estimation. These modules are detailed below.

A. Feature Learning

In the feature extraction process, a D-dimensional feature
vector is learned for every point in a hierarchical manner. The
feature learning function, g(·), takes input points of dimension
D0 and outputs points with feature dimension D. Here, D0

represents 3D point coordinates along with optional point
properties like the surface normal, color, etc. Stage h in the
hierarchical feature learning process (or h-th hop) is a function
gh(·) that takes the point feature of the previous hop of
dimension Dh−1 and outputs feature of dimension Dh.

5

Fig. 2. Illustration of the local reference frame (LRF). The top-left sub figure
shows the query point (marked in red) and the XYZ coordinate axes. The top-
right sub figure shows the nearest K neighbors of the query point (marked
in red). The bottom-left sub figure shows the three eigenvectors of the local
PCA of the 3D coordinates of points in the marked neighborhood. The bottom
right sub figure shows the LRF of the query point.

To find feature fi,h of the i-th point in the h-th hop, the input
to gh(·) includes point coordinates xi, features of the i-th point
from the previous hop fi,h−1, coordinates of K neighboring
points xj in hop h, features of neighboring points fj,h−1 from
previous hop, and a reference frame F . Thus, fi,h is given by

fi,h = gh(xi, xj , fi,h−1, fj,h−1, F) (2)

There are several choices of gh(·), which can be determined
based on whether the goal is to learn a local or global feature.
For R-PointHop, we choose gh(·) such that

fi,h = gh(xj − xi, fi,h−1, fj,h−1, LRF (xi, xj)), (3)

where LRF (xi, xj) is the local reference frame centered at xi

(see Sec. III-A1 below). This choice of gh(·) encodes only the
local patch information and loses the global shape structure. In
contrast, the PointHop and SPA learning functions are given
by

fi,h = gh(xj , fi,h−1, fj,h−1, XY Z), (4)

where XY Z denotes that points are always expressed in the
original frame of reference. Although this learning function
captures the global shape structure as the spatial locations
of the neighborhood patches xj are preserved, it limits the
registration performance in presence of a large rotation angle.

Instead, R-PointHop keeps the local position information
with LRF. This is desired for registration, since matching
points (or patches), which could be spatially far apart, are
still close in the feature space now. In contrast, the global
position information is vital for the classification task since
we are interested in how different local patches connect to
other patches that form the overall shape. Thus, the use of the
global coordinates in the classification problem is justified.

1) Local Reference Frame (LRF): The Principal Compo-
nents Analysis (PCA) of the 3D coordinates of points in
a local neighborhood provides insight into the local surface
structure. The third eigenvector of the PCA can be taken as
a rough estimate of the surface normal. Although the local
PCA computation was used in SPA [26] to select salient
points, SPA pays more attention to the eigenvalue rather than
the eigenvector. Since the local PCA centered at a point is
invariant under a rotation of the point cloud, the local PCA of
true corresponding points should be similar. This observation
serves as the basis to derive the local reference frame (LRF)
for every point. That is, we consider K nearest neighbors of
a point and conduct the PCA on their 3D coordinates. This
results in three mutually orthogonal eigenvectors. They are
sorted in a decreasing order of the associated variances (or
eigenvalues). We use X , Y , Z as a convention to represent
the original reference in which the point clouds are defined.
For the LRF, we use P, Q, R to label the three axes
corresponding to the three eigenvectors of largest, middle,
and smallest eigenvalues. The eigenvectors come with a sign
ambiguity problem since the negative of an eigenvector is still
an eigenvector. There are various methods to tackle the sign
ambiguity problem. The distribution of neighboring points at
every hop is exploited in our work to handle this ambiguity and
is be discussed later. Then, we can define positive eigenvectors
(p+, q+, r+) and negative eigenvectors (p−, q−, r−) for
each point. They are unique and serve as the LRF for every
point. An example is illustrated in Fig. 2.

2) Constructing Point Attributes: To construct the attributes
of a target point, we find its K nearest neighbors. They can
be the same as those in the previous step or in a larger
neighborhood depending on the point density and the total
number of points. For each point in the neighborhood, we
transform its XYZ coordinates to the LRF of the target point.
The eigenvectors (p+, q+, r+) are used as default axes.
To address the sign ambiguity of each axis individually, we
consider the 1D coordinates of K points of an axis, find the
median point and calculate the first-order moment about the
median point. Initially, we can assign p+ or p− arbitrarily. The
first-order left and right moments are given, respectively, by

M l
p =

∑
i

|pi − pm| ∀ pi < pm, (5)

Mr
p =

∑
i

|pi − pm| ∀ pi > pm, (6)

where pi is the 1D coordinates of point i projected to p+ and
pm is the projected value of the median point. If Mr

p > M l
p,

we retain original assignment of p+/p−. Otherwise, we swap
the assignment to ensure the direction with the larger first-
order moment is the positive axis. This can be implemented
by post-multiplying the local data matrix of dimension K × 3
with a diagonal reflection matrix, R′ ∈ R3×3, whose diagonal
elements are either 1 or −1 depending on the chosen sign.
That is,

R′ii =

{
1, if M l

i < Mr
i ,

−1, otherwise,
(7)

6

Fig. 3. Illustration of point attribute construction. First, the K nearest neighbors of a target point are fetched, and they are projected to its LRF. Next, the
sign ambiguity is resolved using a proper reflection matrix. Afterwards, the LRF is partitioned into eight octants and the mean of points in every octant is
calculated. Finally, the mean coordinates are concatenated to get a 24-D attribute vector.

and
R′ij = 0, if i 6= j. (8)

Here, we deliberately use R′ for the reflection matrix in above
so as to avoid confusion with the rotation matrix R. The 3D
space of the K nearest neighbor points is partitioned into eight
octants of the LRF, centered at the target point. For each
octant, we calculate the mean of all the 3D coordinates of
points in that octant and concatenate all eight means to get
a 24D vector, which is the attributes of the target point. The
same process is conducted on all points in the point cloud. The
octant partitioning and grouping is similar to that of PointHop,
but the difference lies in the use of the LRF in R-PointHop.
The attribute construction process is illustrated in Fig. 3.

3) Multi-hop Features: The 24D attributes of all points
of point clouds from the training set are collected, and the
Saab transform [15] is conducted to obtain a 24D spectral
representation. This is the output of hop #1. We compute
the energy of each node as done in [15] and pass the nodes
of energy greater than threshold T to the next hop and
discard the nodes of energy smaller than threshold T . In
PointHop++, the nodes with energy less than threshold T
are collected as leaf nodes. Here, we discard them to avoid
mismatched correspondences. This is because hop #1 features
carry more local structure information which may be similar
in different regions of the point cloud. Proceeding to the next
hop, the point cloud is downsampled using the Farthest Point
Sampling (FPS). FPS ensures that the structure of the point
cloud is preserved after downsampling. It also helps reduce
computations and grow the receptive field quickly. At hop #2,
the attribute construction process is repeated at every node
passed on from hop #1. Since these features are uncorrelated,
we can handle them separately and apply the channel-wise
Saab transform [15] starting from hop #2 and beyond. Each
dimension is treated as a node in the feature tree in the
channel-wise Saab transform. The K nearest neighbors of a
target point at hop #2 are found, which are different from
hop #1 neighbors due to the downsampling operation. They
are represented using the LRF of the target point found in
the first step. Since the set of K nearest neighbor points
has changed, we have to decide the appropriate sign again.
The LRF is partitioned into eight octants, in each of which
we take the mean of the 1D feature of all points in that
octant. The eight means are concatenated to get 8D hop #2

attributes for a node. All the point attributes are collected and
the channel-wise Saab transform is used to get the 8D spectral
representation. This process is repeated for all nodes at hop #2.
The multi-hop learning process continues for four hops. All 1D
spectral components at the end of hop #4 are concatenated the
get the feature vector of a point. The final feature dimension
depends on the choice of different parameters including the
neighborhood size, number of points to be downsampled at
every hop, and the energy threshold for channel-wise Saab
transform. These parameters can be different at different hops.
A set of model parameters will be presented in Sec. IV.

The rotation/translation invariance property of R-PointHop
comes from the use of the Local Reference Frame (LRF).
The LRF is derived by applying PCA to points in a lo-
cal neighborhood. In the attribute building step, we collect
points in a local neighborhood and project them onto the
local coordinate system. This ensures that when the point
cloud undergoes any rotation or translation, the coordinates of
neighboring points remain the same since the LRF also rotates
and translates accordingly. In subsequent stages, we keep
projecting the neighboring points onto the LRF to ensure the
rotation/translation invariance property is preserved at every
stage.

B. Establishing Point Correspondences

The trained R-PointHop model is used to extract features
from the target and the source point clouds. A feature distance
matrix is calculated whose ijth element is the l2 distance
between the feature of the ith point in the target and the jth

point in the source. The minimum value along the ith row
gives the point in the source which is closest to the ith point in
the target in the feature space. These pairs of points nearest in
the feature space are used as an initial set of correspondences.
Next, we select a subset of good correspondences. To do
so, the correspondences are first ordered in the increasing
l2 distance between features of matching points. Top M1

correspondences are selected using this criterion. We use the
ratio test to further select a smaller set of M2 correspondences.
That is, the distance to the second nearest neighbor is found
as the second minima along the row in the distance matrix.
The ratio between the distance to the first neighbor and that
to the second neighbor is calculated. A smaller ratio indicates
a higher confidence of match. Top M2 correspondences are

7

Fig. 4. Correspondences found using R-PointHop, where the source point cloud is shown in red and the target is shown in blue.

selected using the ratio test. These points are used to find
the rotation and translation. Instead of choosing M1 and M2

points explicitly, we can alternatively set two thresholds t1 and
t2, where t1 is for the minimum l2 distance between matching
features and t2 for the minimum ratio. These hyper-parameters
are selected empirically in our experiments. It is worthwhile
to comment that SPA [26] presented an analogous method
to select a subset of correspondences. The main difference
between R-PointHop and SPA lies in the fact that SPA uses
local PCA only to find salient points in the point cloud. It
ignores the rich multi-hop spectral information. In contrast,
R-PointHop uses multi-hop features to select a high-quality
subset of correspondences.

C. Estimating Transformation

The ordered pairs of corresponding points (fi,gi) are used
to estimate the optimal rotation R∗ and translation t∗ that
minimizes the error function as given in Eq. (1). A closed-
form solution to this optimization problem was given in
[55]. It can be solved numerically using the singular value
decomposition (SVD) of the data covariance matrix. The
procedure is summarized below.

1) Find the mean point coordinates from the correspon-
dences by

f̄ =
1

N

N−1∑
i=0

fi, ḡ =
1

N

N−1∑
i=0

gi. (9)

Then, compute the covariance matrix

Cov(F,G) =

N−1∑
i=0

(fi − f̄)(gi − ḡ)T . (10)

2) Conduct SVD on the covariance matrix

Cov(F,G) = USV T , (11)

where U is the matrix of left singular vectors, S is the
diagonal matrix containing singular values and V is the
matrix of right singular vectors. In this case, U, S, and
V are 3× 3 matrices.

3) The optimal rotation matrix R∗ is given by

R∗ = V UT . (12)

The optimal translation vector t∗ can be found using R∗

and the means x̄ and ȳ:

t∗ = −R∗f̄ + ḡ, (13)

R∗ and t∗ are then used to align the source with the
target.

Finally, the aligned source point cloud (G′) is given by

G′ = R∗T (G− t∗), (14)

where R∗T is the transpose of R∗ which applies the inverse
transformation. Unlike SPA which iteratively aligns the source
to target, R-PointHop is not iterative and point cloud registra-
tion is completed in one run.

IV. EXPERIMENTAL RESULTS

Experiments are performed on point clouds of indoor scenes
and 3D objects. We begin our discussion with indoor scene
registration.

A. Indoor Scene Registration

We trained and evaluated R-PointHop on indoor point cloud
scans from the 3DMatch dataset [20]. This dataset is an
ensemble of several RGB-D reconstruction datasets such as
7-Scenes [56] and SUN3D [57]. The dataset comprises of
various indoor scenes such as bedroom, kitchen, office, lab,
and hotel. There are 62 scenes in total, which are split into
54 training scenes and 8 testing scenes. Each scene is further
divided into various partial overlapping point clouds consisting
of 200-700K points.

During training and evaluations, 2,048 points are randomly
sampled from each point cloud scan. By inspecting several
examples visually, randomly selected points roughly span
the entire set and, hence, computationally intensive sampling
schemes such as FPS can be avoided. 256 neighboring points
are used to determine the LRF. We append point coordinates
with the surface normal and geometric features (e.g., linearity,

8

Fig. 5. Registration of indoor point clouds from 3DMatch dataset: point clouds from 7-Scenes (the left two) and point clouds from SUN3D (the right two))
.

planarity, sphericity, eigen entropy, etc. [58]) obtained from
eigenvalues of local PCA as point attributes. Since local PCA
is already performed in the LRF computation, their eigenvalues
are readily available. Furthermore, we use RANSAC [45]
to estimate the transformation. Some successful registration
results are shown in Fig. 5.

We compare R-PointHop with 3DMatch [20] and PPFNet
[21] since they are among early supervised deep learning
methods developed for indoor scene registration. Furthermore,
several model-free methods such as SHOT [12], Spin Images
[13] and FPFH [34] are also included for performance bench-
marking. All methods are evaluated based on 2048 sampled
points for fair comparison. By following the evaluation method
given by [59], we report the average recall and precision on the
test set. The results are summarized in Table I. As shown in
the table, R-PointHop offers the highest recall and precision.
It outperforms model-free methods by a significant margin. Its
performance is slightly superior to that of PPFNet.

TABLE I
REGISTRATION PERFORMANCE COMPARISON ON THE 3DMATCH DATASET.

Method Recall Precision
SHOT [12] 0.27 0.17

Spin Images [13] 0.34 0.18

FPFH [34] 0.41 0.21

3DMatch [20] 0.63 0.24

PPFNet [21] 0.71 0.26
R-PointHop 0.72 0.26

B. Object Registration

Next, we trained R-PointHop on the ModelNet40 dataset
[27]. It is a synthetic dataset consisting of 40 categories of
CAD models of common objects such as car, chair, table,
airplane, and person. It comprises 12,308 point cloud models
in total, which are split into 9840 training models and 2468
testing models. Every point cloud model consists of 2,048
points. The point clouds are normalized to fit within a unit
sphere. For the task of 3D registration, we follow the same
experimental setup as DCP [23] and PR-Net [38] for fairness.

The following set of parameters are chosen as the default
of R-PointHop for object registration.

• Number of initial points: 1,024 points (randomly sampled
from the original 2,048 points)

• Point Attributes: point coordinates only3

• Neighborhood size for finding LRF: 64 nearest neighbors
• Number of points in each hop: 1024, 768, 512, 384
• Neighborhood size in each hop: 64, 32, 48, 48
• Energy threshold: 0.001
• Number of top correspondences selected: 256
• Number of correspondences selected after the ratio test:

128
We compare R-PointHop with the following six methods:
• three model-free methods

ICP [8], Go-ICP [31] and FGR [33].
• two supervised-learning-based methods

PointNetLK [25] and DCP [23].
• one unsupervised-learning-based method

SPA [26].
For ICP, Go-ICP and FGR we use the open-source implemen-
tation in Open3D library [60].

In Secs. IV-B1-IV-B5, we apply a random rotation to the
target point cloud about its three coordinate axes. Each rotation
angle is uniformly sampled in [0◦, 45◦]. Then, a random
uniform translation in [−0.5, 0.5] is applied along the three
axes to get the source point cloud. For training, only the
target point clouds are used. We report the Mean Square
Error (MSE), the Root Mean Square Error (RMSE) and the
Mean Absolute Error (MAE) between the ground truth and
the predicted rotation angles and the predicted translation
vector. In Sec. IV-B5, we align real world point clouds from
the Stanford 3D scanning repository [28], [29], [30]. In Sec.
IV-B6, we show that R-PointHop can be used for global
registration as well as an initialization for ICP. In Sec. IV-B7,
we explain the use of R-PointHop as a general 3D point
descriptor.

1) Registration on Unseen Data: In this experiment, we
trained R-PointHop from training samples of all 40 classes. For
evaluation, registration was performed on point clouds from
the test data are used. The results are reported in Table II. We
see that R-PointHop clearly outperforms all six benchmarking
methods. Two sets of target and source point clouds and their
registered results are shown in the first two columns of Fig.
6. To plot point clouds, we use the Open3D library [60].

2) Registration on Unseen Classes: We derive R-PointHop
only from the first 20 classes of the ModelNet40 dataset.
For registration, test samples from the remaining 20 classes

3Although the surface normal and geometric features were included for
indoor registration, they are removed in the context of object registration.

9

Fig. 6. Registration of seven point clouds from the ModelNet40 dataset using R-PointHop. The first row shows source point clouds (in black) and their target
point clouds (in red), respectively. The second row shows registration results. Both the source and the target are complete point clouds in columns #1 and #2.
The source in columns #3-#5 contains only part of the target. Both the source and the target are partial in columns #6 and #7.

Fig. 7. Registration of point clouds from the Stanford 3D scanning repository, where the objects are (from left to right): drill bit, armadillo, Buddha, dragon
and bunny. The top row shows input point clouds while the bottom row shows the registered output.

TABLE II
REGISTRATION ON UNSEEN POINT CLOUDS

Method
MSE
(R)

RMSE
(R)

MAE
(R)

MSE
(t)

RMSE
(t)

MAE
(t)

ICP [8] 451.11 21.24 17.69 0.049701 0.222937 0.184111

Go-ICP [31] 140.47 11.85 2.59 0.00659 0.025665 0.007092

FGR [33] 87.66 9.36 1.99 0.000194 0.013939 0.002839

PointNetLK [25] 227.87 15.09 4.23 0.000487 0.022065 0.005405

DCP [23] 1.31 1.14 0.77 0.000003 0.001786 0.001195

SPA [26] 318.41 17.84 5.43 0.000022 0.004690 0.003261

R-PointHop 0.12 0.34 0.24 0.000000 0.000374 0.000295

are used. As shown in Table III, R-PointHop can generalize
well on unseen classes. PointNetLK and DCP have relatively
larger errors as compared to their errors in Table II. This
indicates that the use of object labels makes these methods
biased to the seen categories. For the first three methods, the
results are comparable with those in Table II as there is no
training involved. For SPA and R-PointHop, their errors are
similar to those of unseen object classes. This demonstrates the
advantage of unsupervised learning methods for registration of
unseen classes.

TABLE III
REGISTRATION ON UNSEEN CLASSES

Method
MSE
(R)

RMSE
(R)

MAE
(R)

MSE
(t)

RMSE
(t)

MAE
(t)

ICP [8] 467.37 21.62 17.87 0.049722 0.222831 0.186243

Go-ICP [31] 192.25 13.86 2.91 0.000491 0.022154 0.006219

FGR [33] 97.00 9.84 1.44 0.000182 0.013503 0.002231

PointNetLK [25] 306.32 17.50 5.28 0.000784 0.028007 0.007203

DCP [23] 9.92 3.15 2.01 0.000025 0.005039 0.003703

SPA [26] 354.57 18.83 6.97 0.000026 0.005120 0.004211

R-PointHop 0.12 0.34 0.25 0.000000 0.000387 0.000298

3) Registration on Noisy Data: In this experiment, we
were interested in aligning a noisy source point cloud with
a target that is free from noise. A Gaussian noise with zero
mean and standard deviation of 0.01 was added to the source.
The registration results are presented in Table IV. The results
demonstrate that R-PointHop is robust to Gaussian noise. A
fine alignment step using ICP can further reduce the error. In
other words, R-PointHop can act as a coarse alignment method
in presence of noise.

10

TABLE IV
REGISTRATION ON NOISY POINT CLOUDS

Method
MSE
(R)

RMSE
(R)

MAE
(R)

MSE
(t)

RMSE
(t)

MAE
(t)

ICP [8] 558.38 23.63 19.12 0.058166 0.241178 0.206283

Go-ICP [31] 131.18 11.45 2.53 0.000531 0.023051 0.004192

FGR [33] 607.69 24.65 10.05 0.011876 0.108977 0.027393

PointNetLK [25] 256.15 16.00 4.59 0.000465 0.021558 0.005652

DCP [23] 1.17 1.08 0.74 0.000002 0.001500 0.001053

SPA [26] 331.73 18.21 6.28 0.000462 0.021511 0.004100

R-PointHop 7.73 2.78 0.98 0.000001 0.000874 0.003748

R-PointHop + ICP 1.16 1.08 0.21 0.000001 0.000744 0.001002

Fig. 8. Registration on the Stanford Bunny dataset: the source and the target
point clouds (left) and the registered result (right).

4) Registration on Partial Data: Registration of partial
point clouds is common in practical scenarios. We considered
the cases where the source and target have only a subset
of points in common. To generate a partial point cloud, we
selected a point at random and found its N nearest neighbors.
We set N to be 3/4th of the total number of points in the
point cloud. In our experiment, the initial point cloud has
1,024 points, and so the number of points in the partial point
cloud is 768. The number overlapping points are between the
source and target is thereby random between 512 and 768.
The results of partial-to-partial registration are presented in
Table V. They are shown under two scenarios: 1) registration
on unseen point clouds and 2) registration on unseen classes.
R-PointHop gives the best performance in the registration of
partial data too. A critical element in registering partial point
clouds is to find correspondences between overlapping points.
R-PointHop handles it in the same way as those presented in
Secs. IV-B1-IV-B3 because of the use of effective R-PointHop
features to select good correspondences. Furthermore, we
show the effectiveness of using the ratio test to filter out bad
correspondences. The row of R-PointHop* in Table V shows
the errors when the ratio test is removed. The errors are higher
than those with the ratio test. Some results on partial data
registration are shown in Fig. 6, where columns 3, 4 and 5
show the results where only the source is partial and columns
6 and 7 show the results where both the source and the target
are partial.

5) Test on Real World Data: We next tested R-PointHop
on 3D point clouds from the Stanford Bunny dataset [28].
It consists of 10 point cloud scans. Typically, each scan
contains more than 100k points. In contrast with the synthetic
ModelNet40 dataset, it is a real world dataset. We apply a

random spatial transformation to generate the source point
clouds. For registration, we select 2,048 points randomly
so that they are evenly spanned across the object. The R-
PointHop derived from all 40 classes of ModelNet40 is used
for feature extraction. For DCP, we use their model trained
on ModelNet40 and test on the Bunny dataset. We compare
R-PointHop with other methods and show the results in Table
VI. One representative registration result is also shown in Fig.
8. Table VI shows that R-PointHop derived from ModelNet40
can be generalized to the Bunny dataset well. In contrast, DCP
does not perform so well on the Bunny dataset as compared
with ModelNet40. We further experiment on point clouds from
the Stanford 3D scanning repository, which has a collection
of several categories of objects including Bunny, Buddha [29],
Dragon [29], and Armadillo [30]. Some input scans and their
corresponding registered results are shown in Fig. 7.

6) Local vs. Global Registration: ICP is local in nature
and works only when the optimal alignment is close to the
initial alignment. In this case, R-PointHop can be used as
an initialization for ICP. That is, R-PointHop can be used to
obtain the initial global alignment, after which ICP can be used
to achieve a tighter alignment. To demonstrate this property,
we plot the mean absolute error (MAE) and the root mean
squared error (RMSE) for rotation and translation against the
maximum rotation angle in Fig. 9. As shown in the figure,
as the maximum rotation angle increases, the MAE and the
RMSE for ICP increase steadily. In contrast, the RMSE and
the MAE of R-PointHop are very stable, reflecting the global
registration power of R-PointHop. In Fig. 10, we show three
registration results: 1) using ICP alone, 2) using R-PointHop
alone, and 3) R-PointHop followed by ICP. We can obtain
slightly better results in the third case as compared to the
second case. However, without initializing with R-PointHop,
ICP fails to align well.

7) 3D Descriptor: Fig. 11 shows the t-SNE plot of some
point features obtained by R-PointHop. It is observed that the
points of a similar local structure are close to each other,
irrespective of their spatial locations in the 3D point cloud
model as well as whether they belong to the same object or
the same class. To give an example, we show two point cloud
models of a table and a chair in the left. The points on their
legs have a similar neighborhood structure and their features
are closer in the t-SNE embedding space. This demonstrates
the capability of R-PointHop as a general 3D descriptor. As an
application, we show the registration of two different objects
of the same object class in Fig. 12, which has two different
airplanes and cars. Although the objects are different, we can
still align them reasonably well. This is because points in sim-
ilar semantic regions are selected as correspondences. Apart
from 3D correspondence and registration, the 3D descriptor
can be used for a variety of applications such as point cloud
retrieval, which can be a future extension of this work.

C. Ablation Study

The effects of the model parameters, ratio test and use of
RANSAC on the object registration performance are discussed
in this subsection. We report the mean absolute errors using

11

TABLE V
REGISTRATION ON PARTIAL POINT CLOUDS (R-POINTHOP* INDICATES CHOOSING CORRESPONDENCES WITHOUT THE RATIO TEST).

Registration errors on unseen objects Registration errors on unseen classes

Method
MSE
(R)

RMSE
(R)

MAE
(R)

MSE
(t)

RMSE
(t)

MAE
(t)

MSE
(R)

RMSE
(R)

MAE
(R)

MSE
(t)

RMSE
(t)

MAE
(t)

ICP [8] 1134.55 33.68 25.05 0.0856 0.2930 0.2500 1217.62 34.89 25.46 0.0860 0.293 0.251

Go-ICP [31] 195.99 13.99 3.17 0.0011 0.0330 0.0120 157.07 12.53 2.94 0.0009 0.031 0.010

FGR [33] 126.29 11.24 2.83 0.0009 0.0300 0.0080 98.64 9.93 1.95 0.0014 0.038 0.007

PointNetLK [25] 280.04 16.74 7.55 0.0020 0.0450 0.0250 526.40 22.94 9.66 0.0037 0.061 0.033

DCP [23] 45.01 6.71 4.45 0.0007 0.0270 0.0200 95.43 9.77 6.95 0.0010 0.034 0.025

PR-Net [38] 10.24 3.12 1.45 0.0003 0.0160 0.0100 15.62 3.95 1.71 0.0003 0.017 0.011

R-PointHop* 3.58 1.89 0.58 0.0002 0.0150 0.0008 3.75 1.94 0.58 0.0002 0.0151 0.0008

R-PointHop 2.75 1.66 0.35 0.0002 0.0149 0.0008 2.53 1.59 0.37 0.0002 0.0148 0.0008

Fig. 9. (From left to right) The plots of the maximum rotation angle versus the root mean square rotation error, the mean absolute rotation error, the root
mean square translation error, and the mean absolute translation error.

TABLE VI
REGISTRATION ON THE STANFORD BUNNY DATASET

Method
MSE
(R)

RMSE
(R)

MAE
(R)

MSE
(t)

RMSE
(t)

MAE
(t)

ICP [8] 177.35 13.32 10.72 0.0024 0.0492 0.0242

Go-ICP [31] 166.85 12.92 4.52 0.0018 0.0429 0.0282

FGR [33] 3.98 1.99 1.49 0.0397 0.1993 0.1658

DCP [23] 41.45 6.44 4.78 0.0016 0.0406 0.0374

R-PointHop 2.21 1.49 1.09 0.0013 0.0361 0.0269

Fig. 10. (From left to right) The source and target point clouds to be aligned,
registration with ICP only, with R-PointHop only, with R-PointHop followed
by ICP.

different input point numbers and neighborhood sizes of
LRF in the first section of Table VII. The error values are
comparable for different numbers of input points and LRF
neighborhood sizes. The performance slightly drops when 512
points are used. Hence, we fix 2048 points and set the neigh-
borhood size of LRF to 128 in following experiments. Next,
we consider various degree of partial overlaps and the effect of
adding noise of three levels in the second and the third sections
of Table VII, respectively. For partial registration, the error
increases as the maximum overlapping region decreases. We
see consistent improvement with the ratio test and RANSAC.
Similarly, the performance improves after inclusion of the ratio
test and RANSAC for registration with noise.

To gain further insights into the difference between simple
object point clouds and complex indoor point clouds, we
remove the surface normal and geometric features and use only
point coordinates for indoor registration. This leads to a sharp
decrease in performance, to an average recall and precision of
0.39 and 0.19, respectively. Clearly, the use of point coordi-
nates is not sufficient for the registration of complex indoor
point clouds. We also reduce the LRF neighborhood size for
indoor point clouds and see whether 64 or 128 neighbors could
give similar performance as observed in object registration.
Again, there is some performance degradation, and the best
results are achieved with 256 neighbors. This is attributed to
the fact that the more the number of points used to find the
LRF, the more stable the local PCA against small perturbations
and noise. In other words, the optimal point attributes and
the hyper-parameter settings are different for registering object

12

Fig. 11. The t-SNE plot of point features, where a different number indicates a different object class of points. Some points are highlighted and their 3D
location in the point cloud is shown. Features of points with a similar local neighborhood are clustered together despite of differences in their 3D coordinates.

TABLE VII
ABLATION STUDY ON OBJECT REGISTRATION.

Input points LRF Partial overlap Noise std. Ratio test RANSAC MAE(R) MAE(t)
1024 64 0.24 0.000301
1024 32 0.25 0.000314
2048 128 X 0.24 0.000297
2048 64 X 0.24 0.000300
1024 64 X 0.24 0.000295
512 32 X 0.29 0.000546

1536 96 75% 0.56 0.000856
1024 64 50% 2.41 0.001340
512 32 25% 8.67 0.031237

1536 96 75% X X 0.31 0.000824
1024 64 50% X X 0.87 0.001339
512 32 25% X X 6.69 0.031202

2048 128 0.01 0.99 0.003752
2048 128 0.05 1.43 0.004138
2048 128 0.1 2.81 0.007123
2048 128 0.01 X X 0.88 0.003711
2048 128 0.05 X X 1.37 0.004122
2048 128 0.1 X X 2.74 0.007093

13

Fig. 12. Registration of two point cloud models, where the first two columns
are input point clouds and the third column is the output after registration.

and indoor scene point clouds.

D. Toward Green Learning

One shortcoming of deep learning methods is that they tend
to have a large model size, which make them difficult to
deploy on mobile devices. Moreover, recent studies indicate
that training deep learning models has a large carbon foot-
print. Along with the environmental impact, expensive GPU
resources are needed to successfully train these networks in
reasonable time. The need to search for an environmental
friendly green solution to different AI tasks, or green AI [61],
is on the rise. Although the use of efficiency (training time,
model size etc.) as an evaluation criterion along with the usual
performance measures was emphasized in [61], no specific
green models were presented.

R-PointHop offers a green solution in terms of a smaller
model size and training time as compared with deep-learning-
based methods. We trained PointNetLK and DCP methods us-
ing the open source codes provided with the default parameters
set by authors. We compare the training complexity below.

• DCP took about 27.7 hours to train using eight NVIDIA
Quadro M6000 GPUs.

• PointNetLK took approximately 40 minutes to train one
epoch using one GPU while the default training setting
is 200 epochs. Thus, the total training time was 133.33
hours.

• R-PointHop took only 40 minutes to train all model
parameters using an Intel(R) Xeon(R) CPU E5-2620 v3
at 2.40GHz.

The inference time of all methods was comparable. How-
ever, since ICP, Go-ICP, SPA, and PointNetLK are iterative
methods, their inference time is a function of the iteration
number. We observe that the required iteration number varies
from model to model.

The model size of R-PointHop is only 200kB compared
to 630kB for PointNetLK and 21.3MB of DCP. The use of
transformer makes the model size of DCP significantly larger.
Although the model free methods are most favorable in terms
of model sizes and training time, their registration performance
is much worse. Thus, R-PointHop offers a good balance when
all factors are considered.

V. DISCUSSION

A. Role of Supervision

To determine whether the performance gain using super-
vised deep learning is due to large unlabeled data, data
labeling, or both, we split experiments on ModelNet40 into
two parts (i.e., tests on seen and unseen object classes) as
a case study. Some supervised learning methods performed
poorer on unseen classes (see Tables II, III, and IV), which
indicates that they learn object categories indirectly, even
though their supervision uses ground truth rotation/translation
values without class labels. This behavior is not surprising
since the two benchmark methods, PointNetLK and Deep
Closest Point (DCP). are derived from PointNet and DGCNN,
respectively, which were designed for point cloud classifica-
tion. In contrast, our feature extraction is rooted in PointHop,
which is unsupervised and task-agnostic. Our model does not
know the downstream task. Hence, it can generalize well to
unseen classes. To show this point furthermore, we use the R-
PointHop model learned from ModelNet40 and evaluate it on
the Stanford bunny model. Its performance gap is smaller than
those of supervised learning methods. These experiments indi-
cate that the performance gain of supervised learning methods
is somehow limited to similar instances of point clouds that the
models have already seen and their generalization capability
to unseen classes is weaker.

B. Limitations of R-PointHop

In general, we see that R-PointHop works extremely well for
the object registration case and also matches the performance
with PPFNet for indoor registration. However, there exist some
recent exemplary networks (e.g., [42]) that have a higher
recall on the 3DMatch dataset. The eight octant partitioning
operation in the feature construction step fails to encode
better local structure information for point clouds from this
dataset. Since R-PointHop is based on successive aggregation
of local neighborhood information, an initial set of attributes
that captures better local neighborhood structure can help
improve the performance. One such choice could be the FPFH
descriptor.

For ModelNet40, we see that the performance of R-
PointHop degrades when the amount of overlap reduces or
the amount of noise increases. One reason is the stability of
LRF. It is observed that a larger neighborhood number tends to
compensate for noise and surface variations in our experiments
on the 3DMatch dataset. However, when the number of points
in a dataset is small, we cannot opt for more points in finding
LRF. Although RANSAC offers a more robust solution, a fine
alignment step may be necessary. That is, some ICP iterations
may achieve a tighter alignment.

VI. CONCLUSION AND FUTURE WORK

An unsupervised 3D registration method, called R-
PointHop, was proposed in this work. R-PointHop extracts
point features of varying neighborhood sizes in a one-pass
manner, where the neighborhood size grows as the number of
hop increases. Features extracted by R-PointHop are invariant

14

with respect to rotation and translation due to the use of
the local reference frame (LRF). This enables R-PointHop
to find corresponding pairs accurately in presence of partial
point clouds and larger rotation angles. It was shown by
experimental results that R-PointHop offers the state-of-the-
art performance in point cloud registration. Furthermore, its
training time and model size are less than those of deep
learning methods by an order of magnitude.

It is worth noting that R-PointHop does not follow the end-
to-end optimization framework as adopted by deep learning
methods nowadays. This choice makes R-PointHop a green
solution. Also, it is typical that supervised learning methods
outperforms unsupervised learning methods. But, our work
shows that ground truth transformations are not necessary in
the point cloud registration problem.

It appears that the usage of extracted features is not confined
to the registration problem. These features may be used as a
general 3D point descriptor. We would like to explore this idea
and check the usefulness of R-PointHop as a 3D descriptor
on large scale point clouds in the future. It is also interesting
to extend the proposed solution to the more challenging task
of LiDAR odometry. The incremental motion of the object
can potentially be estimated using R-PointHop by finding the
point correspondences between consecutive point cloud scans.
Furthermore, another application of the proposed solution
can be simultaneous object retrieval and registration, where
a similar object to a query object can be retrieved from a
database and aligned to it.

APPENDIX
CHANNEL-WISE SAAB TRANSFORM

The Saab transform [47] is derived from the Principal Com-
ponents Analysis (PCA). It adds a bias term that annihilates
the need for a non-linear activation function when multiple
PCA transforms are cascaded. The transform can be further
modified by applying the Saab transform to each channel
separately by exploiting the channel decoupling property. It
is termed as the channel-wise (c/w) Saab transform [15]. The
model size of the c/w Saab transform is significantly smaller
than that of the Saab transform. The c/w Saab transform is
described below.

Initially, the standard Saab transform is performed in the
first hop. The output Saab coefficients are given by

yk =

N−1∑
n=0

ak,nvn+bk = aTk v+bk, k = 0, 1, · · · ,K−1, (15)

where, v = [v0, v1, · · · , vN−1]T is the N -dimensional
input vector, yk is the k-th Saab coefficient, ak =
[ak,0, ak,1, · · · , ak,N−1]T is the weight vector, and bk is the
bias term.

For the DC Saab filter (k = 0), the weight is given by

a0 =
1√
N

[1, 1, · · · , 1]T . (16)

The DC component is obtained by projecting v onto the DC
filter as

vDC =
1√
N

N∑
n=0

vn. (17)

The AC component is given by

vAC = v − vDC. (18)

The AC Saab filters a1, · · · , aK are obtained by performing
PCA on the AC component vAC . The first K − 1 principal
components are selected as the AC filters. Finally, the bias
term bk is selected such that

bk ≥ max
v
‖v‖, k = 0, · · · ,K − 1. (19)

This choice of bk guarantees that yk is always non-negative,
thereby removing the need of a non-linear activation like
ReLU.

Since the Saab transform is a variant of PCA, the Saab
coefficients are weakly correlated. Due to the weak spectral
correlations, the joint spatial-spectral tensor of dimension K
at the input of the second hop is decomposed into K spectral
tensors. Later, the Saab transform is performed on each of the
K spectral channels separately. Due to this nature, it is called
the channel-wise (c/w) Saab transform.

The multi-hop feature learning process then leads to the
feature tree representation, where each node of the tree corre-
sponds to one spectral component. The spectral components
at the output of the first hop are the children of the root
node. Every node in the tree is associated with an energy.
The energy of every child node is the product of the energy
of its parent node and its normalized energy with respect to all
its siblings. An energy threshold T is a hyperparameter that
decides whether the node goes to the next hop or not. Nodes
with energies greater than T are passed on to the next hop.
These nodes are called as intermediate nodes. Meanwhile, the
nodes with energies less than T are collected as leaf nodes.
Each leaf node represents a single feature dimension and the
components of all the leaf nodes are concatenated to obtain
the output feature.

ACKNOWLEDGMENT

This work was supported by a research grant from Tencent
Media Lab.

REFERENCES

[1] M. Brown and D. G. Lowe, “Automatic panoramic image stitching using
invariant features,” International journal of computer vision, vol. 74,
no. 1, pp. 59–73, 2007.

[2] L. Juan and G. Oubong, “Surf applied in panorama image stitching,”
in 2010 2nd international conference on image processing theory, tools
and applications. IEEE, 2010, pp. 495–499.

[3] A. Geiger, J. Ziegler, and C. Stiller, “Stereoscan: Dense 3d reconstruc-
tion in real-time,” in 2011 IEEE intelligent vehicles symposium (IV).
Ieee, 2011, pp. 963–968.

[4] E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, and P. Sayd, “Real
time localization and 3d reconstruction,” in 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’06),
vol. 1. IEEE, 2006, pp. 363–370.

[5] J. L. Schonberger and J.-M. Frahm, “Structure-from-motion revisited,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 4104–4113.

[6] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International journal of computer vision, vol. 60, no. 2, pp. 91–110,
2004.

[7] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust
features,” in European conference on computer vision. Springer, 2006,
pp. 404–417.

15

[8] P. J. Besl and N. D. McKay, “Method for registration of 3-d shapes,”
in Sensor fusion IV: control paradigms and data structures, vol. 1611.
International Society for Optics and Photonics, 1992, pp. 586–606.

[9] Y. Chen and G. Medioni, “Object modelling by registration of multiple
range images,” Image and vision computing, vol. 10, no. 3, pp. 145–155,
1992.

[10] A. Segal, D. Haehnel, and S. Thrun, “Generalized-icp.” in Robotics:
science and systems, vol. 2, no. 4. Seattle, WA, 2009, p. 435.

[11] J. Zhang and S. Singh, “Loam: Lidar odometry and mapping in real-
time.” in Robotics: Science and Systems, vol. 2, no. 9, 2014.

[12] F. Tombari, S. Salti, and L. Di Stefano, “Unique signatures of histograms
for local surface description,” in European conference on computer
vision. Springer, 2010, pp. 356–369.

[13] A. E. Johnson, “Spin-images: a representation for 3-d surface matching,”
1997.

[14] M. Zhang, H. You, P. Kadam, S. Liu, and C.-C. J. Kuo, “Pointhop:
An explainable machine learning method for point cloud classification,”
IEEE Transactions on Multimedia, 2020.

[15] M. Zhang, Y. Wang, P. Kadam, S. Liu, and C. . C. Jay Kuo, “Pointhop++:
A lightweight learning model on point sets for 3d classification,” in 2020
IEEE International Conference on Image Processing (ICIP), 2020, pp.
3319–3323.

[16] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on
point sets for 3d classification and segmentation,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 652–660.

[17] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical
feature learning on point sets in a metric space,” Advances in neural
information processing systems, vol. 30, pp. 5099–5108, 2017.

[18] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M.
Solomon, “Dynamic graph cnn for learning on point clouds,” Acm
Transactions On Graphics (tog), vol. 38, no. 5, pp. 1–12, 2019.

[19] Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen, “Pointcnn: Con-
volution on x-transformed points,” in Advances in neural information
processing systems, 2018, pp. 820–830.

[20] A. Zeng, S. Song, M. Nießner, M. Fisher, J. Xiao, and T. Funkhouser,
“3dmatch: Learning local geometric descriptors from rgb-d reconstruc-
tions,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2017, pp. 1802–1811.

[21] H. Deng, T. Birdal, and S. Ilic, “Ppfnet: Global context aware local
features for robust 3d point matching,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp. 195–
205.

[22] ——, “Ppf-foldnet: Unsupervised learning of rotation invariant 3d local
descriptors,” in Proceedings of the European Conference on Computer
Vision (ECCV), 2018, pp. 602–618.

[23] Y. Wang and J. M. Solomon, “Deep closest point: Learning repre-
sentations for point cloud registration,” in Proceedings of the IEEE
International Conference on Computer Vision, 2019, pp. 3523–3532.

[24] C. Choy, W. Dong, and V. Koltun, “Deep global registration,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020, pp. 2514–2523.

[25] Y. Aoki, H. Goforth, R. A. Srivatsan, and S. Lucey, “Pointnetlk: Robust
& efficient point cloud registration using pointnet,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2019,
pp. 7163–7172.

[26] P. Kadam, M. Zhang, S. Liu, and C.-C. J. Kuo, “Unsupervised point
cloud registration via salient points analysis (spa),” in 2020 IEEE Inter-
national Conference on Visual Communications and Image Processing
(VCIP). IEEE, 2020, pp. 5–8.

[27] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3d
shapenets: A deep representation for volumetric shapes,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2015, pp. 1912–1920.

[28] G. Turk and M. Levoy, “Zippered polygon meshes from range images,”
in Proceedings of the 21st annual conference on Computer graphics and
interactive techniques, 1994, pp. 311–318.

[29] B. Curless and M. Levoy, “A volumetric method for building complex
models from range images,” in Proceedings of the 23rd annual confer-
ence on Computer graphics and interactive techniques, 1996, pp. 303–
312.

[30] V. Krishnamurthy and M. Levoy, “Fitting smooth surfaces to dense
polygon meshes,” in Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques, 1996, pp. 313–324.

[31] J. Yang, H. Li, D. Campbell, and Y. Jia, “Go-icp: A globally optimal
solution to 3d icp point-set registration,” IEEE transactions on pattern
analysis and machine intelligence, vol. 38, no. 11, pp. 2241–2254, 2015.

[32] S. Rusinkiewicz and M. Levoy, “Efficient variants of the icp algorithm,”
in Proceedings third international conference on 3-D digital imaging
and modeling. IEEE, 2001, pp. 145–152.

[33] Q.-Y. Zhou, J. Park, and V. Koltun, “Fast global registration,” in
European Conference on Computer Vision. Springer, 2016, pp. 766–
782.

[34] R. B. Rusu, N. Blodow, and M. Beetz, “Fast point feature histograms
(fpfh) for 3d registration,” in 2009 IEEE international conference on
robotics and automation. IEEE, 2009, pp. 3212–3217.

[35] H. Yang, J. Shi, and L. Carlone, “Teaser: Fast and certifiable point cloud
registration,” IEEE Transactions on Robotics, pp. 1–20, 2020.

[36] H. Yang and L. Carlone, “A polynomial-time solution for robust reg-
istration with extreme outlier rates,” arXiv preprint arXiv:1903.08588,
2019.

[37] F. Tombari, S. Salti, and L. Di Stefano, “Unique shape context for 3d
data description,” in Proceedings of the ACM workshop on 3D object
retrieval, 2010, pp. 57–62.

[38] Y. Wang and J. M. Solomon, “Prnet: Self-supervised learning for partial-
to-partial registration,” in Advances in neural information processing
systems, 2019, pp. 8814–8826.

[39] B. D. Lucas, T. Kanade et al., “An iterative image registration technique
with an application to stereo vision,” 1981.

[40] T. Zhao, Q. Feng, S. Jadhav, and N. Atanasov, “Corsair: Convolu-
tional object retrieval and symmetry-aided registration,” arXiv preprint
arXiv:2103.06911, 2021.

[41] L. Ding and C. Feng, “Deepmapping: Unsupervised map estimation from
multiple point clouds,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019, pp. 8650–8659.

[42] Z. Gojcic, C. Zhou, J. D. Wegner, and A. Wieser, “The perfect match: 3d
point cloud matching with smoothed densities,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 5545–5554.

[43] Z. J. Yew and G. H. Lee, “3dfeat-net: Weakly supervised local 3d
features for point cloud registration,” in Proceedings of the European
Conference on Computer Vision (ECCV), 2018, pp. 607–623.

[44] M. El Banani, L. Gao, and J. Johnson, “Unsupervisedr&r: Unsupervised
point cloud registration via differentiable rendering,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 7129–7139.

[45] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography,” Communications of the ACM, vol. 24, no. 6, pp. 381–395,
1981.

[46] Y. Chen and C.-C. J. Kuo, “Pixelhop: A successive subspace learning
(ssl) method for object recognition,” Journal of Visual Communication
and Image Representation, p. 102749, 2020.

[47] C.-C. J. Kuo, M. Zhang, S. Li, J. Duan, and Y. Chen, “Interpretable
convolutional neural networks via feedforward design,” Journal of Visual
Communication and Image Representation, vol. 60, pp. 346–359, 2019.

[48] M. Zhang, P. Kadam, S. Liu, and C.-C. J. Kuo, “Unsupervised feedfor-
ward feature (uff) learning for point cloud classification and segmenta-
tion,” in 2020 IEEE International Conference on Visual Communications
and Image Processing (VCIP). IEEE, 2020, pp. 144–147.

[49] J. Yang, S. Quan, P. Wang, and Y. Zhang, “Evaluating local geometric
feature representations for 3d rigid data matching,” IEEE Transactions
on Image Processing, vol. 29, pp. 2522–2535, 2019.

[50] M. Jaderberg, K. Simonyan, A. Zisserman et al., “Spatial transformer
networks,” Advances in neural information processing systems, vol. 28,
pp. 2017–2025, 2015.

[51] W. Yuan, D. Held, C. Mertz, and M. Hebert, “Iterative transformer
network for 3d point cloud,” arXiv preprint arXiv:1811.11209, 2018.

[52] R. Nagar and S. Raman, “Detecting approximate reflection symmetry
in a point set using optimization on manifold,” IEEE Transactions on
Signal Processing, vol. 67, no. 6, pp. 1582–1595, 2019.

[53] Z. Zhang, B.-S. Hua, D. W. Rosen, and S.-K. Yeung, “Rotation invariant
convolutions for 3d point clouds deep learning,” in 2019 International
Conference on 3D Vision (3DV). IEEE, 2019, pp. 204–213.

[54] Y. Rao, J. Lu, and J. Zhou, “Spherical fractal convolutional neural
networks for point cloud recognition,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp. 452–
460.

[55] P. H. Schönemann, “A generalized solution of the orthogonal procrustes
problem,” Psychometrika, vol. 31, no. 1, pp. 1–10, 1966.

[56] J. Shotton, B. Glocker, C. Zach, S. Izadi, A. Criminisi, and A. Fitzgib-
bon, “Scene coordinate regression forests for camera relocalization in
rgb-d images,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2013, pp. 2930–2937.

16

[57] J. Xiao, A. Owens, and A. Torralba, “Sun3d: A database of big spaces
reconstructed using sfm and object labels,” in Proceedings of the IEEE
international conference on computer vision, 2013, pp. 1625–1632.

[58] T. Hackel, J. D. Wegner, and K. Schindler, “Fast semantic segmentation
of 3d point clouds with strongly varying density,” ISPRS annals of the
photogrammetry, remote sensing and spatial information sciences, vol. 3,
pp. 177–184, 2016.

[59] S. Choi, Q.-Y. Zhou, and V. Koltun, “Robust reconstruction of indoor
scenes,” in IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2015.

[60] Q.-Y. Zhou, J. Park, and V. Koltun, “Open3D: A modern library for 3D
data processing,” arXiv:1801.09847, 2018.

[61] R. Schwartz, J. Dodge, N. A. Smith, and O. Etzioni, “Green ai,” arXiv
preprint arXiv:1907.10597, 2019.

Pranav Kadam received his MS degree in Elec-
trical Engineering from the University of Southern
California, Los Angeles, USA in 2020, and the
Bachelor’s degree in Electronics and Telecommu-
nication Engineering from Savitribai Phule Pune
University, Pune, India in 2018. He is currently
pursuing the PhD degree in Electrical Engineering
from the University of Southern California. He is
actively involved in research and development of
methods for point cloud analysis and processing.
His research interests include 3D computer vision,

machine learning, and perception.

Min Zhang received her B.E. degree from the
School of Science, Nanjing University of Science
and Technology, Nanjing, China and her M.S. degree
from the Viterbi School of Engineering, University
of Southern California, Los Angeles, US, in 2017
and 2019, respectively. She is currently working
toward the Ph.D. degree from University of Southern
California. Her research interests include 3D Vision
and Machine Learning.

Shan Liu (M’01-SM’11) received the B.Eng. degree
in electronic engineering from Tsinghua University,
the M.S. and Ph.D. degrees in electrical engineering
from the University of Southern California, respec-
tively. She is a Distinguished Scientist at Tencent and
General Manager of Tencent Media Lab. She was
formerly Director of Media Technology Division at
MediaTek USA. She was also formerly with MERL
and Sony, etc. She has been an active contributor
to international standards for more than a decade
and has numerous technical proposals adopted into

various standards, such as VVC, HEVC, OMAF, DASH, MMT and PCC.
She was an Editor of H.265/HEVC SCC and H.266/VVC standards. She is
an APSIPA Distinguished Industry Leader and a vice chair of IEEE Data
Compression Standards Committee. She received the Best AE Award from
IEEE TCSVT in 2019 and 2020. She holds more than 300 granted US
patents. Her research interests include audio-visual, volumetric, immersive
and emerging media compression, intelligence, transport and systems.

C.-C. Jay Kuo (F’99) received the B.S. degree
in electrical engineering from the National Taiwan
University, Taipei, Taiwan, in 1980, and the M.S.
and Ph.D. degrees in electrical engineering from the
Massachusetts Institute of Technology, Cambridge,
in 1985 and 1987, respectively. He is currently the
Director of the Multimedia Communications Lab-
oratory and a Distinguished Professor of electrical
engineering and computer science at the University
of Southern California, Los Angeles. His research
interests include digital image/video analysis and

modeling, multimedia data compression, communication and networking, and
biological signal/image processing. He is the coauthor of about 280 journal
papers, 940 conference papers and 14 books. Dr. Kuo is a Fellow of the
American Association for the Advancement of Science (AAAS) and The
International Society for Optical Engineers (SPIE).

