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We prove that certain (discrete time) probabilistic automata which
can be absorbed in a “null state” have a normalized quasi-stationary dis-
tribution (when restricted to the states other than the null state). We also
show that the conditional distribution of these systems, given that they
are not absorbed before time n, converges to an honest probability distri-
bution; this limit distribution is concentrated on the configurations with
only finitely many “active or occupied” sites.

A simple example to which our results apply is the discrete time version
of the subcritical contact process on Zd or oriented percolation on Zd (for
any d ≥ 1) as seen from the “leftmost particle.” For this and some related
models we prove in addition a central limit theorem for n−1/2 times the
position of the leftmost particle (conditioned on survival until time n).

The basic tool is to prove that our systems are R-positive-recurrent.

1. Introduction and principal results. Let �Xn�n≥0 be a Markov chain
on a countable state space S, with an absorbing state s0. We shall deal ex-
clusively with the discrete time case in this paper, but we believe that all the
results and proofs have analogues in the continuous time case. We shall write
S0 for S \ �s0�. As usual, we denote the probability measure governing X?
when conditioned to start at X0 = x by Px. Then for any probability measure
ν on S,

Pν =
∑
x∈S

ν�x�Px = νP

is the measure which governsX? when the initial distribution is ν. LetEx and
Eν denote expectation with respect to Px and Pν, respectively. The transition
probabilities are

�1:1� P�x;y� = Px�X1 = y� and Pn�x;y� = Px�Xn = y�:

It is convenient to introduce the restriction P̂ of P to S0 × S0. Because s0 is
absorbing, we then also have

�P̂�n�x;y� = Px�Xn = y� = Pn�x;y� for x;y ∈ S0:
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Throughout we assume that

�1:2� P̂ is irreducible; that is, for all x;y ∈ S0 there exists an
n = n�x;y� with Pn�x;y� > 0.

The absorption time is

�1:3� T = T�s0� = inf�n ≥ 0: Xn = s0�

and we assume that absorption is certain. This means that for some x ∈ S0
(and hence all x)

�1:4� Px�T <∞� = 1:

The fact that s0 is absorbing means of course that

�1:5� Xn = s0 for all n ≥ T and Pn�s0; x� = δ�s0; x�; n ≥ 0:

A normalized quasi-stationary distribution for X is a probability measure ν
on S0 which satisfies the invariance condition

�1:6� νP̂n = r�n�ν;

where, necessarily,

�1:7� r�n� =
∑
y∈S0

νP̂n�y� = Pν�T > n�:

Note that these distributions are conditionally invariant, in the sense that

Pν�Xn = y�T > n� = ν�y� for all y ∈ S0:

A normalized quasi-stationary distribution ν0 is called minimal if

�1:8� Eν0
T = inf�EνT: ν a normalized quasi-stationary distribution�:

The interest in normalized quasi-stationary distributions arises from the fact
that if for some initial distribution ν on S0,

�1:9� Pν�Xn = y�
Pν�T > n�

→ µ�y�; y ∈ S0;

for some probability distribution µ on S0, then µ is necessarily a normal-
ized quasi-stationary distribution. [See Seneta and Vere-Jones (1966), Theo-
rem 4.1]. If the limit in (1.9) exists, we shall call it a Yaglom limit, because
Yaglom (1947) proved the existence of this limit for subcritical branching pro-
cesses (when ν is concentrated on one point x). Such a limit µ is also called
a conditional limit distribution in the literature. There is an extensive litera-
ture discussing the existence of normalized quasi-stationary distributions and
the Yaglom limit; see Ferrari, Kesten, Martı́nez and Picco (1995) for some ref-
erences. An additional recent reference is Roberts and Jacka (1994). Recently,
Ferrari, Kesten, Martı́nez and Picco (1995) gave a necessary and sufficient
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condition for the existence of a normalized quasi-stationary distribution for
chains X? which satisfy, in addition to (1.2) and (1.4), the condition

�1:10� lim
x→∞

Px�T ≤ t� = 0 for all fixed t <∞:

This of course means that for all t < ∞ and ε > 0, Px�T ≤ t� ≤ ε for all
but finitely many x. [Actually Ferrari, Kesten, Martı́nez and Picco (1995) deal
with the continuous time case, but their results carry over to discrete time;
see Kesten (1995), Theorem A, for a statement of the discrete time result.] Un-
fortunately, (1.10) is rarely fulfilled for chains X? which describe interacting
particles which also have a spatial position or which can be of infinitely many
types. The absorbing state is the state in which no particle is present. Typi-
cally in such models, the probability of absorption in unit time from any of the
infinitely many states in which only one particle is present is bounded away
from 0–infinitely many states, because the single particle can have infinitely
many positions or types; the above phenomenon occurs if the probability for
a particle to die in one time unit is uniformly bounded away from 0. A simple
special example (which was, in fact, the principal motivation for this paper) is
the subcritical contact process or oriented percolation on Zd as seen from the
“leftmost” particle (with state space S a certain collection of finite subsets of
Zd containing �0�, plus the empty set). Our aim here is to prove the existence
of a normalized quasi-stationary distribution and a Yaglom limit for a class
of interacting particle systems and probabilistic automata which includes ori-
ented percolation on Zd, d ≥ 1. This will be done by proving those chains
R-positive-recurrent. (A more detailed description of some of these examples
and the role of the leftmost particle is given before the statement of Theorem
2 below; full details are in Section 4.) Pakes (1995) investigated some other
examples in which (1.10) may fail.

We remind the reader of some basic facts which hold solely under the as-
sumption (1.2) [see Vere-Jones (1967)]:

�1:11� The period p x= g.c.d. �n: P̂n�x; x� > 0� is finite and is the same
for all x ∈ S0;

�1:12�

S0 can be decomposed into p disjoint subclasses S0;0; : : : ; S0; p−1
so that P̂�x;y� > 0 only if x ∈ S0; j; y ∈ S0; j+1 for some 0 ≤
j ≤ p − 1 (here and in the sequel we take S0; j1

= S0; j2
when

j1 ≡ j2�modp�; the S0; j are referred to as the cyclically moving
subclasses or periodic subclasses);

�1:13� if x ∈ S0; i and y ∈ S0; j, then 1/R x= limn→∞�P̂np+j−i�x;y��1/np
exists and the value of R is independent of x; y; i and j;

�1:14� 1 ≤ R <∞:
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The chain X? and P̂ are called R-recurrent if for some x ∈ S0,

�1:15�
∞∑
n=0

RnpP̂np�x; x� = ∞;

and it is called R-positive-recurrent if, in addition, for some x ∈ S0,

�1:16� lim sup
n→∞

RnpP̂np�x; x� > 0:

Again (1.15) and (1.16) either hold for all x in S0 simultaneously or for no x.
If (1.15) and (1.16) hold, then there exist functions f: S0 → �0;∞�; µ: S0 →
�0;∞� which satisfy

�1:17� P̂nf�x� =
∑
y∈S0

P̂n�x;y�f�y� = R−nf�x�; x ∈ S0; n ≥ 0;

�1:18� µP̂n�y� =
∑
x∈S0

µ�x�P̂n�x;y� = R−nµ�y�; y ∈ S0; n ≥ 0;

�1:19�
∑

x∈S0;j

f�x�µ�x� = 1; 0 ≤ j ≤ p− 1;
∑
x∈S0

f�x�µ�x� = p

and for x ∈ S0; i; y ∈ S0; j for some 0 ≤ i; j ≤ p− 1,

�1:20� lim
n→∞

Rnp+j−iP̂np+j−i�x;y� = f�x�µ�y�:

The functions f and µ are uniquely determined up to multiplicative constants
by (1.17) and (1.18). Equation (1.18) does not say that µ is a (multiple of a)
normalized quasi-stationary distribution, because

∑
x∈S0

µ�x� may diverge. In
order to obtain a normalized quasi-stationary distribution and for the Yaglom
limit relation (1.9) we need

�1:21�
∑
x∈S0

µ�x� <∞

[see Seneta and Vere-Jones (1966), Theorem 3.1]. It is an important step in
our proof to show that (1.21) indeed holds under the conditions of Theorem 1
below, which is our principal result.

Theorem 1. Assume that the Markov chain �Xn�n≥0 satisfies (1.2) and
(1.4) as well as the following conditions:

�1:22�
there exist a nonempty set U1 ⊂ S0; an ε0 > 0 and a constant
C1 such that for all x ∈ U1 and all n ≥ 0; Px�T > n; but
Xl /∈ U1 for all 1 ≤ l ≤ n� ≤ C1�R+ ε0�−n;

�1:23� there exist a state x0 ∈ U1 and a constant C2 such that for
all x ∈ U1 and n ≥ 0; Px�T > n� ≤ C2Px0

�T > n�
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and

�1:24�
there exist a finite set U2 ⊂ S0 and constants 0 ≤ n0 <
∞; C3 > 0; such that for all x ∈ U1; Px�Xn ∈ U2 for some
n ≤ n0� ≥ C3.

Then X? is R-positive-recurrent, so that (1.17)–(1.20) hold for p = period of P̂
and some strictly positive functions f and µ. Moreover, (1.21) is satisfied and

�1:25� µ̃�x� x= µ�x�∑
y∈S0

µ�y� ; x ∈ S0;

defines a minimal quasi-stationary distribution forX?. Also, if S0;0; : : : ; S0; p−1

are the cyclically moving subclasses as in (1.12), and x ∈ S0; i; then

�1:26� lim
n→∞

n≡j �modp�

RnPx�T > n� = f�x�
∑

y∈S0; i+j

µ�y�

and for x ∈ S0; i; y ∈ S0; j;

�1:27� lim
n→∞

n≡j−i �modp�

Px�Xn = y�T > n� =
µ�y�∑

v∈S0; j
µ�v� :

Finally, for each x ∈ S0 there exist an η�x� > 0 and a C4�x� <∞ such that

�1:28� Px�Xnp = x; but Xs 6= x for 1 ≤ s ≤ np− 1� ≤ C4�x�
1

�R+ η�x��n :

Remark 1. Equation (1.27) can be easily generalized to give convergence
of finite-dimensional distributions. That is, for 0 < s1 < · · · < sl, x ∈ S0; i,
y1 ∈ S0; j1

; : : : ; yl ∈ S0; jl it holds that

�1:29�
lim
n→∞

Px
{
X�srn�p+jr−i = yr; 1 ≤ r ≤ l

∣∣T > �sln�p+ jl − i
}

= µ�yl�∑
v∈S0; jl

µ�v�
l−1∏
r=1

�f�yr�µ�yr��:

Remark 2. A consequence of (1.29) and (1.19) is that for all ε > 0 and
0 < s ≤ 1, there exists a finite set S�ε; s� ⊂ S such that for all x ∈ S0,

lim
n→∞

Px
{
X�sn� ∈ S�ε; s��T > n

}
≥ 1− ε:

In other words, when conditioned on no absorption until time n, then the
chain X? tends to spend “most of its time near s0.” This contrasts with some
of the examples in Ferrari, Kesten, Martı́nez and Picco (1995). For example,
let X̃n be the absorbing random walk on Z+ with 0 as absorbing state and
which moves from x ≥ 1 to x + 1 or x − 1 with probability p and q = 1 − p,
respectively, with 0 < p < 1

2 . Then �n−1/2X̃�sn��0≤s≤1 conditioned on T > n
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essentially behaves like a positive Brownian excursion (scaled so that it has
length 1). In particular, for fixed 0 < s < 1;

Px
{∣∣X̃�sn� < ε

√
n
∣∣T > n

}

can be made small uniformly in n, by taking ε small. Thus X̃ conditioned on
T > n spends most of its time far away from the absorbing state 0.

Theorem 1 has some value only if its hypotheses can be verified without
too much trouble for a reasonable class of examples. The hypothesis which
looks the most troubling is (1.22). The next theorem shows that this actually
follows directly from known results in many instances of so-called probabilistic
cellular automata, which are similar to the subcritical contact process. We
begin with a Markov chain �X̃n�n≥0 on a countable state space

�1:30� S̃ = S̃d;κ which is a subset of the collection of all functions
x: Zd→ �0;1; : : : ; κ− 1� with x�z� 6= 0 for only finitely many z:

Here κ ≥ 2 is some fixed integer. Note that Zd can be replaced by other
lattices and this should indeed be done to treat the usual oriented percolation.
For simplicity we restrict ourselves here to the state space (1.30). Let the state
0 with all components equal to 0 be the absorbing state. Thus

�1:31� P
{
X̃n = x�X̃0 = 0

}
= δ�0; x�; n ≥ 0; x ∈ S̃:

The space S̃ and the transition probabilities have to be such that

�1:32� the transition probability matrix is irreducible on S̃0 = S̃ \ �0�:

(It is for this reason that S̃ may have to be taken only as a subset of

�x ∈ �0;1; : : : ; κ− 1�Zd : x�z� 6= 0 for only finitely many z�;

rather than the full set.) We further impose the following fairly common con-
ditions on the transition probabilities:

�1:33�
Translation invariance: P�X̃1 = y ⊕ u�X̃0 = x ⊕ u� =
P�X̃1 = y�X̃0 = x� for all u ∈ Zd, where the state x⊕ u is
specified by �x⊕u��z� = x�z+u�; z ∈ Zd, and similarly for
y⊕ u;

�1:34� Independence of coordinates: Conditionally on X̃0; : : : ; X̃n,
the coordinates �X̃n+1�z�: z ∈ Zd� of X̃n+1 are independent;

�1:35�
Finite range: There exists some ρ < ∞ such that the con-
ditional distribution of X̃n+1�z�, given X̃n, depends only on
X̃n�z′� for �z′ − z�2 ≤ ρ.
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It is trivial to check that the discrete time version of the contact process
and oriented percolation (see Section 4) satisfy (1.31)–(1.35) for κ = 2. In
analogy with the terminology for that chain we shall call sites z with x�z� = 0
�6= 0� vacant (and occupied, respectively) in state x. It is convenient to think
of a particle sitting at each occupied site, the particle having one of the types
1; : : : ; κ− 1. The chain X̃? then describes motion, birth, death and change of
type of a finite system of particles.

Theorem 1 will not apply to X̃ itself. As illustrated by oriented percolation,
we cannot expect the limit in (1.27) to have a nonzero value because the occu-
pied sites of X̃n will wander all over the space Zd (even under the condition
�T > n�). Also condition (1.24) will fail because particles cannot jump in fixed
time n0 from far away to a site which is occupied in one of the finitely many
states in U2. Theorem 1 will only apply to the relative positions of the occu-
pied sites. To make this precise, let ξ�n� = �ξ1�n�; : : : ; ξν�n�� be the occupied
sites at time n, that is the sites in Zd with X̃n�ξi�n�� 6= 0. Here ν = ν�n� is
random. If no sites are occupied at time n, we take ν�n� = 0, ξ�n� = φ. If
ν > 0, the order of the ξi�n� is arbitrary, except that we take ξ1 to be the
first among ξ1; : : : ; ξν in the lexicographical ordering on Zd. We call ξ1�n� the
leftmost occupied position at time n. Finally define

�1:36� Xn =
{

0; if ν�n� = 0;

X̃n ⊕ �−ξ1�n��:

Thus Xn�z� = j precisely when X̃n�z+ ξ1�n�� = j. From the translation in-
variance (1.33) it is not hard to see that �Xn�n≥0 is again a Markov chain
(this is the only place where translation invariance is strictly needed). The
state space S of the X-chain is of the same form as that of X̃. Only Xn�0� 6= 0
whenever Xn 6= 0, and Xn�z� 6= 0 can only occur at a z, which comes after 0
in the lexicographical ordering of Zd. The absorbing state for X? is again 0.

Here are some final definitions. For x ∈ S̃ or x ∈ S,

�1:37�
�x� = number of occupied sites in x

= number of z ∈ Zd with x�z� 6= 0:

The use of the same symbol � � for points in S̃ and in S will not lead to any
serious confusion, since in both cases �x� represents the number of occupied
sites. For similar reasons we shall use T for the absorption time of X̃ and of
X. The process �X̃n� is called strongly subcritical if

�1:38� nd sup
x∈S̃
z∈Zd

Px�X̃n�z� 6= 0� → 0 as n→∞:

Theorem 2. Let X̃ be a Markov chain on the space S̃ of (1.30) whose tran-
sition probabilities satisfy (1.31)–(1.35). Let Xn be defined by (1.36). Assume
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that �X̃n� is strongly subcritical. Then for each γ > 0 there exists a K < ∞
and a C5 = C5�γ� <∞ such that for all x with �x� ≤K;

�1:39� Px�T > n; but �Xl� > K for all 1 ≤ l ≤ n� ≤ C5γ
n; n ≥ 0:

Clearly (1.39) gives us (1.22) with U1 = �x: �x� ≤K� by taking γ < R−1, say
γ = �R+ 1�−1. Thus, Theorem 2 reduces checking (1.22) to checking that our
process is strongly subcritical. For some processes it is known that if they die
out w.p.1 [i.e., satisfy (1.4)], then they are automatically strongly subcritical.
In other examples it should be possible to use a Peierls argument or simple
comparisons with other chains to show that the chain X? is strongly subcrit-
ical, at least for certain choices of the transition probabilities. (See also the
discussion at the end of Example A in Section 4.) Condition (1.24) is usually
innocuous; as illustrated in the proof of Proposition 1, it just depends on proba-
bilities of particles disappearing being bounded away from 0. Condition (1.23),
which is trivial for the contact process or oriented percolation (see Remark 8
in Section 4), turns out to be nontrivial in general. We verify it in Section 4 for
some chains of the form described above. For the special case of the discrete
time contact process or oriented percolation, all hypotheses are verified in this
same section.

Finally, in Section 5 we derive a central limit theorem for the absolute loca-
tion of the occupied sites in the X̃-chain. The conclusion of Theorem 1 tells us
that Xn, conditioned on �T > n�, has a limit distribution. Thus, for Xn as in
(1.36), this tells us that the number of particles and their distances to the left-
most occupied position ξ1�n� are tight (under the condition �T > n�). However,
the absolute position of the occupied set, by which we simply mean ξ1�n� itself,
will not be tight without normalization. In fact our last theorem shows that
ξ1�n�/

√
n is usually asymptotically normally distributed and independent of

Xn (still under the condition �T > n�). This result follows almost immediately
from standard central limit theorems for recurrent Markov chains, by means
of the strong recurrence result (1.28).

Theorem 3. Let �Xn� be defined by (1.36) for a chain X̃? with rates sat-
isfying (1.31)–(1.35). Assume that (1.22)–(1.24) are satisfied. Then there exist
an M ∈ Rd and a d× d matrix 6 such that

�1:40�
ξ1�n� − nM√

n
conditioned on �T > n� converges in

distribution to N�0; 6�:

More generally let p be the period of �the restriction to S0 of � X? and let
S0;0; : : : ; S0; p−1 be the cyclically moving subclasses in S0 [cf. (1.12)]. Then, for
0 < s1 < s2 < · · · < sl; x ∈ S0; i; y1 ∈ S0; j1

; : : : ; yl ∈ S0; jl and γ1; : : : ; γl ∈
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R; w ∈ Zd; as n→∞;

�1:41�

P

{
ξ1��srn�p+ jr − i� − srnpM√

np
≤ γr; X�srn�p+jr−i = yr; 1 ≤ r ≤ l

∣∣∣∣

X0 = x; ξ1�0� = w; T > �sln�p+ jl − i
}

→ P�Gsr
≤ γr; 1 ≤ r ≤ l� µ�yl�∑

v∈S0; jl
µ�v�

l−1∏
r=1

�f�yr�µ�yr��;

where �Gt�t≥0 is a d-dimensional Gaussian process with mean zero, G0 = 0
and covariance function

E�GsG
∗
t� = �s ∧ t�6

�G∗ is the transpose of the column vector G�. In particular this result is valid
for the subcritical discrete time contact process �site or bond version� on Zd
with M = 0; 6 = σ2 × �identitymatrixofdimensiond� for some σ2 > 0.

If 6 is the zero matrix, then (1.41) means that for all ε > 0,

P

{�ξ1��srn�p+ jr − i� − srnpM�√
n

≤ ε; X�srn�p+jr−i = yr; 1 ≤ r ≤ l
∣∣∣∣

X0 = x; ξ1�0� = w; T > �sln�p+ jl − i
}

→ µ�yl�∑
v∈S0; jl

µ�v�
l−1∏
r=1

�f�yr�µ�yr��:

Remark 3. Note that the condition X0 = x, ξ1�0� = w fixes the full state
of X̃0. If X0 = x and ξ1�0� = w, then X̃0�z� = x�z−w�.

Remark 4. Some more information on M and 6 is given in (5.12), (5.13)
and succeeding lines.

Remark 5. A central limit theorem for oriented percolation (in a Fourier
form) was proven before by Nguyen and Yang (1995). They used lace expan-
sions, which only work in high dimension and seem to be restricted to oriented
percolation. It would be difficult to extend their method to the more general
class of processes described before Theorem 2. On the other hand, Nguyen and
Yang also treat the critical oriented percolation in addition to the subcritical
one. Our method does not apply at all to the critical case.

For the more difficult case of ordinary, unoriented percolation, a related—
but slightly different—central limit result was first proved in Campanino,
Chayes and Chayes (1991).
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Remark 6. It is not difficult to extend the limit theorem (1.41) for the
finite-dimensional distributions of �ξ1��sn��/

√
n�s≥0 conditioned on �T > n�

to a full invariance principle (of the ξ1 coordinate only, though).

2. R-positive-recurrence. In this section we shall prove Theorem 1 for
general absorbing Markov chains. Equations (1.2), (1.4) and (1.22)–(1.24) will
be in force throughout this section.

Here is a brief outline of the proof. Fix a state y0. Condition (1.22) [in
conjunction with (1.13)] says more or less that, conditionally on T > n, the
chain cannot stay away from U1 too long. This will be used to show that
in fact X? will visit U1 at a time near n, with a probability bounded away
from 0. By (1.24), X? will then also visit U2 and even y0 at a time near n,
with a probability bounded away from 0. We will actually show that even the
probability for Xk = y0 and Xn = y0 is on the average (over k ∈ �0; n�) not too
small, still under the condition �T > n�. A little renewal theory then shows
that X? must be R-positive-recurrent (see Lemma 5). As already stated, Vere-
Jones’ results then show that there exist f and µ satisfying (1.17)–(1.20). One
can therefore introduce the honest transition probability matrix

P∗�x;y� = RP�x;y�f�y�
f�x� ; x; y ∈ S0:

This is positive-recurrent. From the fact that �Xn = y0� has not too small a
probability, we will obtain that Py0

�T > n� is of the same order as Pn�y0; y0�.
Using P∗ and a Markov chainX∗ with this transition probability quickly leads
to (1.21), (1.26) and (1.27).

To prove (1.28) we appeal to the hypothesis (1.23). Specifically, this is used
to show that the function f is bounded on U1. This will allow us to reduce
(1.28) to fairly standard exponential bounds or large deviation estimates for
the chain X∗ (these no longer involve R).

The above steps are separated into various lemmas. The R-positive-
recurrence and (1.17)–(1.20) are proven in Lemma 5; the fact that the µ̃ of
(1.25) is a minimal quasi-stationary distribution is in Lemma 7. Finally, (1.21)
and (1.26)–(1.28) are proven in Lemmas 6 and 8. We carry out the proof only
for the aperiodic case �p = 1�; the extension to general p is routine.

Throughout Di will stand for a strictly positive, finite constant whose value
is of no significance to us; the same symbol Di may represent a different
constant in different proofs, but we will not vary the value of Di in a single
lemma. Also C1;C2; : : : will be constants in �0;∞�, but they maintain the same
value throughout this section.

We begin with a simple reduction, based merely on the irreducibility as-
sumption (1.2), which is not strictly needed, but which simplifies the formulae.

Lemma 1. For any fixed y0 ∈ S0 we may assume that U2 consists of y0
only and that the x0 of (1.23) equals y0. �In particular we may assume that
U1 contains y0:�
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Proof. Fix y0 ∈ S0. By the irreducibility of P̂ and the finiteness of U2
there exists an m0 <∞ and a D1 > 0 such that for all y ∈ U2,

�2:1� Pk�y;y0� ≥ D1 for some 0 ≤ k ≤m0:

Then, by (1.24), for x ∈ U1

Px�Xn = y0 for some n ≤ n0 +m0�

≥
n0∑
j=0

∑
y∈U2

Px�X? first visits U2 at time j; Xj = y�

×Py�Xk = y0 for some k ≤m0�

≥ D1

n0∑
j=0

Px�X? first visits U2 at time j� ≥ D1C3:

Thus, by replacing C3 by D1C3 and n0 by n0+m0, we may assume (1.24) valid
with U2 = �y0�.

Next we compare Px1
�T > n� and Py1

�T > n� for arbitrary x1; y1 ∈ S0.
These two probabilities will be of the same order. Indeed, there exists a k =
k�x1; y1� so that

Pk�y1; x1� > 0:

Since Xk = x1 ∈ S0 implies T > k, we also have

�2:2�
Py1
�T > n� ≥ Pk�y1; x1�Px1

�T > n− k�
≥ Pk�y1; x1�Px1

�T > n�:

In particular, if y0 is any fixed state, then the inequality in (1.23) will continue
to hold (with a suitable change in C2) if we replace x0 by y0. However, (1.23)
in its original form required that x0 ∈ U1, and y0 may not belong to U1.
In the latter case we simply add y0 to U1 and verify that (1.22) and (1.24)
remain valid after this enlargement of U1. To verify (1.22) we note that the
irreducibility of P̂ shows that if y0 does not belong to U1, then there exists
some k > 0 and some y ∈ U1, such that

Py�Xk = y0; Xl /∈ U1 for 1 ≤ l ≤ k� > 0:

Moreover,

Py�T > n+ k; but Xl /∈ U1 for all 1 ≤ l ≤ n+ k�
≥ Py�Xk = y0; Xl /∈ U1 for 1 ≤ l ≤ k�
×Py0

�T > n; but Xl /∈ U1 for all 1 ≤ l ≤ n�:
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The first factor in the right-hand side is strictly positive, and the left-hand
side is at most C1�R+ε0�−n. Thus (1.22) also holds for x = y0 (after a suitable
change of C1). Now adding y0 to U1 can only help for the inequality in (1.22).

Equation (1.24) holds automatically, because if the inequality holds for x ∈
U1 and for x = y0, then it holds for x ∈ U1 ∪ �y0�. 2

From now on we assume that U2 is a singleton, say U2 = �y0�, and that
this y0 belongs to U1 and that x0 in (1.23) equals y0.

Lemma 2. There exist a constant C6>0 and, for all x∈U1; an n1=n1�x�<
∞ such that

�2:3�
n∑
k=0

Px�Xk = y0�T > n� ≥ C6n; n ≥ n1:

Proof. For n0 as in (1.24) and k ≤ n− n0 one has

n0∑
l=0

Px�Xk+l = y0�T > n�

≥ 1
Px�T > n�

∑
u∈U1

Pk�x;u�
n0∑
l=0

Pl�u;y0�Py0
�T > n− k�

≥ C3C
−1
2

∑
u∈U1

Pk�x;u�Pu�T > n− k�
Px�T > n�

[by (1.23) and (1.24)]

= C3C
−1
2 Px�Xk ∈ U1�T > n�:

It therefore suffices to prove that for some D1 > 0,

�2:4�
n∑
k=0

Px�Xk ∈ U1�T > n� ≥ D1n; x ∈ U1; n ≥ n1:

Now, let 0 ≤ σ0 < σ1 < · · · be the successive times at which X? visits U1 and
define

λ�n� = max�j: σj ≤ n�:

We shall take X0 = x ∈ U1 so that σ0 = 0 and λ�n� will be well defined;
λ�n� + 1 will be the number of visits by X? to U1 during �0; n�. We define

Fk = σ-field generated by X0; : : : ;Xk:
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Then, conditionally on Fσj
; σj+1 − σj has a defective distribution, which

satisfies on the event �σj <∞; Xσj
= y� with y ∈ U1,

�2:5�

Px�r < σj+1 − σj <∞�Fσj
�

= Py�r < σ1 <∞�
= Py�Xl /∈ U1 for 1 ≤ l ≤ r; but Xk returns to U1 for some k > r�
≤ Py�T > r; but Xl /∈ U1 for 1 ≤ l ≤ r� ≤ C1�R+ ε0�−r

[by (1.22)]. Consequently, for any θ ≥ 0 with eθ < R+ ε0, on the event �σj <
∞�,

∞∑
r=1

eθrPx�σj+1 − σj = r�Fσj
�

≤ eθ + �eθ − 1�
∞∑
r=1

eθrPx�r < σj+1 − σj <∞�Fσj
�

≤ D2�θ�

for some 1 < D2�θ� <∞. It follows that

�2:6�

Px�jth return to U1 occurs at time r�
= Px�σj = r�

≤ e−rθEx

{
exp

(j−1∑
i=0

θ�σi+1 − σi�
)
y σj <∞

}

≤ e−rθ�D2�θ��j:

We use this to prove that for some α > 0 (independent of x ∈ U1) and n1,

�2:7� Px�λ�n� ≤ αn�T > n� ≤ 1
2 ; x ∈ U1; n ≥ n1;

which in turn will imply

n∑
k=0

Px�Xk ∈ U1�T > n�

= Ex�number of visits by X? during �0; n� to U1�T > n�
≥ Ex�λ�n��T > n� ≥ αnPx�λ�n� > αn�T > n� ≥ 1

2αn:
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Thus (2.4), and hence the lemma, will follow from (2.7). However, for x ∈ U1,
by a standard last exit decomposition,

�2:8�

Px�λ�n� ≤ αn; T > n�

=
∑

0≤j≤αn

n∑
r=0

∑
y∈U1

Px�λ�n� = j; σλ�n� = r; Xr = y; T > n�

=
∑

0≤j≤αn

n∑
r=0

∑
y∈U1

Px�σj = r; Xr = y�

×Py�T > n− r; but Xl /∈ U1 for 1 ≤ l ≤ n− r�

≤
∑

0≤j≤αn

n∑
r=0

Px�σj = r�C1�R+ ε0�−n+r [by (1.22)]

≤ C1
∑

0≤j≤αn

n∑
r=0

e−rθ�D2�θ��j�R+ ε0�−n+r

≤ D3�θ��D2�θ��αn�R+ ε0�−n
n∑
r=0

��R+ ε0�e−θ�r:

Now choose θ > 0 such that eθ = R+ 7
8ε0, and then α > 0 so small that

�D2�θ��αe−θ ≤
(
R+ 3

4ε0
)−1
:

We then find that the left-hand side of (2.7) is at most

�2:9� D4�θ�
(
R+ 3

4ε0
)−n�Px�T > n��−1:

On the other hand, for x ∈ S0 there exists an n1 <∞ such that

�2:10� Px�T > n� ≥ P̂n�x; x� ≥
(
R+ ε0

2

)−n
; n ≥ n1;

by virtue of (1.13) (recall that we took p = 1). Equations (2.8)–(2.10) show
that if n1 is chosen large enough, also

�2:11� Px�λ�n� ≤ αn�T > n� ≤ D4�θ�
(
R+ ε0/2
R+ 3ε0/4

)n
≤ 1

2
; n ≥ n1;

as desired. 2

The preceding lemma showed that there is a reasonable chance for the
“average” k that Xk = y0. We now show that �Xk ∈ U1 for some k “close to
n”� has a high probability (all this conditioned on �T > n�).

Lemma 3. For every η > 0 and x ∈ U1 there exist m0 = m0�x;η� and
n2 = n2�x;η� <∞ such that

�2:12� Px�Xl /∈ U1 for all n−m0 ≤ l ≤ n�T > n� ≤ η; n ≥ n2:
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Proof. Take n1�x� as in (2.10). Then for any x ∈ U1, y ∈ S0 and p ≥ n1�x�

�2:13�
Px�T > n� ≥ Pp�x; x�Px�T > n− p�

≥
(
R+ ε0

2

)−p
Px�T > n− p�

and for m ≥ n1�x�,
Px�T > n; last visit to U1 by X? occurs before time n−m�

=
n−m−1∑
r=0

Px�Xr ∈ U1;Xl /∈ U1 for r < l ≤ n;T > n�

=
n−m−1∑
r=0

∑
y∈U1

Pr�x;y�Py�Xl /∈ U1 for 1 ≤ l ≤ n− r;T > n− r�

≤
n∑

p=m+1

∑
y∈U1

Pn−p�x;y�C1�R+ ε0�−p [by (1.22)]

≤ C1

n∑
p=m+1

Px�T > n− p��R+ ε0�−p

�because Xn−p = y ∈ U1 implies T > n− p�

≤ D1

(
R+ �ε0/2�
R+ ε0

)m
Px�T > n� [by (2.13)]:

Thus, for any η > 0, we can fix m0 = m0�x;η� such that for all large n, say
n ≥ n2�x;η�, (2.12) holds. 2

We now combine Lemmas 2 and 3 to get our first real recurrence statement.

Lemma 4. There exist constants C7 > 0 and n3 <∞ such that for n ≥ n3;

�2:14�
n∑
k=0

Py0
�Xk = y0 and Xn = y0�T > n� ≥ C7n:

Proof. We start from (2.3) with x = y0 ∈ U1. We now take η = C6/4 and
subtract from (2.3) the following consequence of (2.12):

n∑
k=0

Py0
�Xl /∈ U1 for all n−m0 ≤ l ≤ n�T > n�

≤ η�n+ 1� ≤ 1
2C6n; n ≥ n2�y0; η� + 2

�m0 =m0�y0; η��. We obtain that for n ≥ n1�y0� ∨ �n2�y0; η� + 2�,

�2:15�

n∑
k=0

Py0
�Xk = y0 and Xl ∈ U1 for some n−m0 ≤ l ≤ n�T > n�

≥ 1
2C6n:
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The value of Xn is still unspecified in (2.15) and we must now make Xn

itself equal to y0. First we note that there exist an r and a D1 > 0 so that

�2:16� Pq�y;y0� ≥ D1 for all y ∈ U1 and r ≤ q ≤ r+m0:

This is so because, by (1.13), there exist an s and a D2 > 0 such that

Pq�y0; y0� ≥ D2 for all q with s ≤ q ≤ s+ n0 +m0:

Thus for y ∈ U1, s+ n0 ≤ q ≤ s+ n0 +m0,

Pq�y;y0� ≥
n0∑
l=0

Py� first visit to y0 occurs at time l�Pq−l�y0; y0�

≥ D2

n0∑
l=0

Py� first visit to y0 occurs at time l� ≥ D2C3:

This is (2.16) for r = s + n0 and D1 = D2C3. Finally, (2.15) and (2.16) show
that

�2:17�

n∑
k=0

Py0
�Xk = y0; Xn+r = y0�

≥
n∑
k=0

n∑
l=n−m0

∑
y∈U1

Py0
�Xk = y0; first visit to U1

at or after time n−m0

is at time l and Xl = y�Pn+r−l�y;y0�

≥ D1

n∑
k=0

Py0
�Xk = y0; Xl ∈ U1 for some n−m0 ≤ l ≤ n�

≥ 1
2D1C6nPy0

�T > n� ≥ 1
2D1C6nPy0

�T > n+ r�:

Short of replacing n + r by n, this is (2.14) with C7 = 1
4D1C6 and n3 =

�n1 ∨ n2 ∨ r� + 2. 2

Lemma 5. The transition probability matrix P̂ is R-positive-recurrent and
there exist strictly positive functions f;µ: S0 → �0;∞� which satisfy (1.17)–
(1.20). Up to multiplicative constants, f and µ are unique.

Proof. Define

gn = Py0
�Xn = y0; Xr 6= y0 for 1 ≤ r ≤ n− 1�

and

L =
∞∑
n=1

gnR
n:
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Then, by Vere-Jones [(1967), Theorem C], L ≤ 1, and P̂ is not R-recurrent is
equivalent to

�2:18� L < 1:

We begin by proving that (2.18) is not consistent with (2.14). To see this, note
that (2.14) implies

�2:19�

n∑
k=0

P̂k�y0; y0�P̂n−k�y0; y0� ≥ C7nPy0
�T > n�

≥ C7nP̂
n�y0; y0�; n ≥ n3

(again because Xn = y0 ∈ S0 implies T > n). Next introduce i.i.d. random
variables Y;Y1;Y2; : : : with the distribution

�2:20�
P�Y = n� = g∗n x= gnRn; 1 ≤ n <∞;
P�Y = ∞� = 1−L:

[This is really a distribution by the definition of L and (2.18).] Under (2.18)
the mass of this distribution on ∞ is strictly positive. Now set

Tl =
l∑

j=1

Yj

and observe that

Py0
�Xk = y0�Xn = y0� =

P̂k�y0; y0�P̂n−k�y0; y0�
P̂n�y0; y0�

= R
kP̂k�y0; y0�Rn−kP̂n−k�y0; y0�

RnP̂n�y0; y0�

= P�k equals some Tl�P�n− k equals some Tl�
P�n equals some Tl�

= P�k equals some Tl�n equals some Tl�:

Therefore, (2.19) shows that for n ≥ n3;

C7n ≤
n∑
k=0

P̂k�y0; y0�P̂n−k�y0; y0�
P̂n�y0; y0�

= E�number of Tl in �0; n�
∣∣n equals some Tl�

≤ 1
2
C7n+ �n+ 1�P

{
number of Tl in �0; n� exceeds

1
2
C7n

∣∣

n equals some Tl

}
:
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However, for any η > 0,

P�n equals some Tl� = RnP̂n�y0; y0� ≥ �1− η�n

for large n, by virtue of (1.13). Therefore

�2:21�
P
{
number of Tl in �0; n� exceeds 1

2C7n
}

≥ 1
4C7P�n equals some Tl� ≥ 1

4C7�1− η�n

for all large n. This, however, is impossible if

LC7/2 < 1− η;
because

P
{
number of Tl in �0; n� exceeds 1

2C7n
}

≤ P�Yj <∞ for j ≤ 1
2C7n+ 1� ≤ LC7n/2:

This is the required contradiction and we conclude that L = 1 and that P̂ is
R-recurrent.

Next we show that P̂ is R-positive-recurrent. Multiply (2.19) by snRn and
sum over n. If we write

U�s� =
∞∑
n=0

P̂n�y0; y0�snRn;

we obtain

�2:22� U2�s� ≥ C7sU
′�s� −C7�n3 + 1�2Rn3; 0 ≤ s < 1

[the C7�n3 + 1�2Rn3 is needed because (2.19) holds only for n ≥ n3]. Now the
R-recurrence of P̂ simply says that

U�1� =
∞∑
0

RnP̂n�y0; y0� = ∞:

Therefore, for 1
2 ≤ t < 1 and some D1 <∞,

1
U�t� =

1
U�t� − lim

s↑1
1

U�s� =
∫ 1

t

U′�s�
U2�s� ds ≤ D1�1− t�:

Consequently,

U�t� ≥ 1
D1�1− t�

as t ↑ 1

and necessarily

lim sup
n→∞

RnP̂n�y0; y0� > 0;

which gives R-positive-recurrence.
The existence of f and µ which satisfy (1.17)–(1.20) and their uniqueness up

to multiplicative constants is now guaranteed by Vere-Jones [(1967), Theorem
4.1 and Corollary on page 375]. 2
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Lemma 6. The f and µ of Lemma 5 satisfy (1.21), (1.26) and (1.27).

Proof. Assume that (1.21) fails, so that
∑
y∈S0

µ�y� = ∞:

Then, by (1.20) and Fatou’s lemma

lim inf
n→∞

RnPy0
�T > n� = lim inf

n→∞

∑
y∈S0

RnPy0
�Xn = y� ≥ f�y0�

∑
y∈S0

µ�y� = ∞:

This, however, is not posible, since (2.14) implies that for n ≥ n3,

C7
n

n+ 1
≤ 1
n+ 1

n∑
k=0

Py0
�Xk = y0; Xn = y0�T > n�

≤ Pn�y0; y0�
Py0
�T > n� =

RnPn�y0; y0�
RnPy0

�T > n�

∼ f�y0�µ�y0�
RnPy0

�T > n� [by (1.20)].

Thus (1.21) must hold.
Equation (1.26) now follows from the dominated convergence theorem. In-

deed, by (1.18),

µ�x�P̂n�x;y� ≤ µP̂n�y� = R−nµ�y�
so that

RnP̂n�x;y� ≤ µ�y�
µ�x� :

Thus, by (1.20),

lim
n→∞

RnPx�T > n� = lim
n→∞

∑
y∈S0

RnP̂n�x;y� = f�x�
∑
y∈S0

µ�y�:

Finally, (1.27) is immediate from (1.26) and (1.20). 2

Lemma 7. The measure µ̃; as defined in (1.25), is the unique minimal nor-
malized quasi-stationary distribution.

Proof. Clearly µ̃�S0� = 1. Moreover, by (1.18),

µ̃P̂n = R−nµ̃ ;
so that µ is a normalized quasi-stationary distribution.

To show the minimality of µ̃, observe that for any normalized quasi-
stationary distribution ν, (1.6) implies

r�n+m� = r�n�r�m� and r�n� = �r�1��n
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and hence, by virtue of (1.7),

Pν�T > n� = �Pν�T > 1��n;

EνT =
∞∑
n=0

Pν�T > n� = �1−Pν�T > 1��−1:

Thus, in the set of normalized quasi-stationary distributions the expected ab-
sorption times are ordered in the same way as Pν�T > 1�, and a normalized
quasi-stationary distribution µ̃ is minimal if and only if Pν�T > 1� is mini-
mized for ν = µ̃. However, (1.6) implies that r�1� = P̂ν�T > 1� [cf. (1.7)], so
that it suffices for the lemma to show that

�2:23� r�1� ≥ R−1 for any normalized quasi-stationary distribution ν:

However, (2.23) follows from (1.13) and

P̂n�x;y� ≤ �r�1��n ν�y�
ν�x�

[cf. (1.6) and (1.7)].
Finally, there is only one minimal normalized quasi-stationary distribution

because the solution of (1.18) is unique, up to a multiplicative constant [see
Vere-Jones (1967), Theorem 4.1]. 2

Lemma 8. Inequality (1.28) holds.

Proof. We saw in Lemma 1 that we can take x0 equal to any state and
that this may be the same state as y0. We therefore only have to prove

�2:24� gn = Py0
�Xn = y0; but Xr 6= y0 for 1 ≤ r ≤ n− 1� ≤ D1�R+ η0�−n

for some D1 < ∞; η0 > 0, under the assumption that (1.23) holds with x0
replaced by y0. Now introduce a Markov chain X∗n with state space S0 and
(honest) transition probability matrix

P∗�x;y� = RP�x;y�f�y�
f�x� ; x; y ∈ S0:

Analogously to Section 1, write P∗x for the distribution ofX∗-paths conditioned
on X∗0 = x. It is well known and easy to check that the R-positive-recurrence
of X? implies that X∗? is positive-recurrent.

We shall first prove that for some α > 0; η1 > 0 and D2 <∞,

�2:25� P∗y0
�X∗r ∈ U1 for fewer than αn values of r in �0; n�� ≤ D2�1− η1�n:

Note the similarity of (2.25) to (2.11). The principal difference is that we now
use the measure P∗y0

, instead of the measure Px, conditioned on �T > n�, of
(2.11). Even though this will not be needed in the sequel, we point out that
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there exists a general relationship between the measures Px conditioned on
�T > n� and P∗x. The latter is a limit of the former in the following sense:

lim
n→∞

Px�X1 = x1; : : : ;Xk = xk�T > n�

= lim
n→∞

Pxk�T > n− k�
Px�T > n�

Px�X1 = x1; : : : ;Xk = xk�

= Rkf�xk�
f�x� Px�X1 = x1; : : : ;Xk = xk� [by (1.26)]

= Rk f�xk�
f�xk−1�

· · · f�x1�
f�x� Px�X1 = x1; : : : ;Xk = x�

= P∗x�X∗1 = x1; : : : ;X
∗
k = xk�:

Returning to the proof of (2.25), we have

�2:26�

P∗y0
�X∗r ∈ U1 for fewer than αn values of r in �0; n��

=
∞∑

m=n+1

∑
y∈U1

Rmf�y�
f�y0�

Py0
��αn+ 1�th visit by X? to U1

occurs at time m and Xm = y�:

Moreover, by (1.26) and (1.23), we have for some D3 <∞,

�2:27� f�y�
f�y0�

= lim
n→∞

Py�T > n�
Py0
�T > n� ≤ D3 for all y ∈ U1:

Therefore, the left-hand side of (2.26) is (for large n) at most

2D3

∞∑
m=n+1

∑
y∈U1

RmPy0
��αn+ 1�-th visit by X? to U1 occurs at time m;

Xm = y;T > m�
�again because Xm = y ∈ U1 implies T > m�

≤ D4

∞∑
m=n+1

∑
y∈U1

Py0
��αn+ 1�th visit by X? to U1 occurs at time m;

Xm = y�T > m� [by (1.26)]

≤ D4

∞∑
m=n+1

Py0
�Xr ∈ U1 for fewer than �αn+ 2� values

of r in �0;m��T > m�

≤ D5

∞∑
m=n+1

(
R+ ε0/2
R+ 3ε0/4

)m
[by (2.11)]:
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This proves (2.25) with

η1 =
ε0

4R+ 3ε0
:

The second ingredient for the proof is the following simple estimate, which
holds uniformly for y ∈ U1 and k ≥ 0:

�2:28�

P∗y0
�X∗r = y0 for some k ≤ r ≤ k+ n0�X∗k = y�

≥ 1
n0 + 1

E∗y0
�number of r in �k; k+ n0� with X∗r = y0�X∗k = y�

= 1
n0 + 1

n0∑
j=0

�P∗�j�y;y0�

≥ f�y0�
n0 + 1

[
sup
y∈U1

f�y�
]−1 n0∑

j=0

Pj�y;y0�

≥ C3
f�y0�
n0 + 1

[
sup
y∈U1

f�y�
]−1 [by (1.24)]

≥ D6 > 0 [by (2.27)]

for some constant D6 > 0. If 0 ≤ σ∗0 < σ∗1 < · · · are the times of the successive
visits by X∗? to U1 and

F ∗
k = σ-field generated by X∗0; : : : ;X

∗
k;

then (2.28) implies that

P∗y0
�X∗r equals y0 for some σ∗j ≤ r ≤ σ∗j+n0

�F ∗
σj
�

≥ P∗y0
�X∗r equals y0 for some σ∗j ≤ r ≤ σ∗j + n0�F ∗

σj
�

≥ D6:

This in turn shows that

�2:29� P∗y0
�X∗r 6= y0 for all 1 ≤ r ≤ σ∗l � ≤ �1−D6��l−1�/�n0+1�:

Finally note that

g∗n x= P∗y0
�X∗n = y0 but X∗r 6= y0 for 1 ≤ r ≤ n− 1�

=
∑

x1;:::;xn−1 6=y0

P∗�y0; x1�P∗�x1; x2� · · ·P∗�xn−1; y0�

= Rn
∑

x1;:::;xn−1 6=y0

P�y0; x1� · · ·P�xn−1; y0� = Rngn;

so that (2.24) is equivalent to

�2:30� g∗n ≤ D1

(
R

R+ η0

)n
:
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This follows for suitable η0 > 0; D1 <∞ from (2.25) and (2.29) by observing
that

g∗n ≤ P∗y0
�X∗r ∈ U1 for fewer than αn values of r in �0; n��

+P∗y0
�X∗r 6= y0 up until the αnth visit of X∗ to U1�

≤ D2�1− η1�n + �1−D6���αn�−2�/�n0+1�: 2

We have now proven all statements in Theorem 1.

3. Cellular automata. In this section we discuss Markov chains of the
type discussed before Theorem 2 in the Introduction and prove Theorem 2.
As we shall show, the main reason for the validity of Theorem 2 is that the
number of occupied sites in its chains does have a very strong downward drift
when this number of occupied sites becomes large. This is made precise by the
estimate (3.2) below.

Proof of Theorem 2. We shall occasionally write X̃�n; z� and �X̃�n�� for
X̃n�z� and �X̃n�, respectively, for typographical convenience. We remind the
reader that the range ρ is introduced in (1.35). Because X̃? is strongly sub-
critical, there exists an n4 ≥ 1 such that for all x ∈ S̃; z ∈ Zd,

�3:1� Px�X̃�n4; z� 6= 0� ≤ 1
2�2ρ+ 1�−dn−d4 :

We claim that this implies

�3:2� Ex��X̃�n4��� ≤ 1
2 �x� for all x ∈ S̃:

To see this, write

�3:3� �X̃�n4�� =
∑

z∈Zd
I�n4; z�;

where I�n; z� is the indicator function of the event �X̃�n; z� 6= 0�. Now the
distribution of X̃�n; z� depends on x only through the values of x�v� with
v ∈ Zd such that �v − z� ≤ nρ (where � � is short for � �2). For n = 1 this is
just assumption (1.35), and it easily follows for general n by induction on n.
Consequently, if x�v� = 0 for all v with �v− z� ≤ nρ, then

�3:4� Px�X̃�n; z� 6= 0� = P0�X̃�n; z� 6= 0� = 0;

because the state 0, with all components equal to 0, is absorbing. It follows
that if v1; : : : ; v�x� are the sites in Zd with x�v� 6= 0, then a.e. �Px�,

�3:5� �X̃�n4�� ≤
�x�∑
j=1

∑

z∈B�vj; n4ρ�
I�n4; z�;

where

B�v; r� = �z ∈ Zd: �z− v� ≤ r�:
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Taking expectation with respect to Px in (3.5) gives

Ex�X̃�n4�� ≤
�x�∑
j=1

∑

z∈B�vj; n4ρ�
Px�X̃�n4; z� 6= 0�

≤ �x��B�0; n4ρ�� 12�2ρ+ 1�−dn−d4 [by (3.1)]

≤ 1
2 �x�:

This establishes (3.2).
Now for any integer m ≥ 1 and �x� ≤K,

�3:6�

Px��X̃�jn4�� > K for 1 ≤ j ≤m; T > mn4�

≤ 1
Kr

Ex��X̃�mn4��ry �X̃�jn4�� > K; 1 ≤ j ≤m�

= �x�
r

Kr
Ex

{m−1∏
j=0

�X̃��j+ 1�n4��r

�X̃�jn4��r
y �X̃�jn4�� > K; 1 ≤ j ≤m

}

≤ sup
�x�≤K

Ex

( �X̃�n4��r
�x�r

)[
sup
�y�>K

Ey

( �X̃�n4��r
�y�r

)]m−1

:

By (3.5),

�X̃�n4�� ≤ �X̃�0���2ρ+ 1�dnd4

so that

�3:7� sup
�x�≤K

Ex

( �X̃�n4��r
�x�r

)
≤ �2ρ+ 1�drndr4 :

We next fix r such that

�3:8�
(

2
3

)r/n4

< γ

[where γ is the number appearing in the right-hand side of (1.39)]. We shall
show that for all large K,

�3:9� sup
�y�>K

Ey

( �X̃�n4��r
�y�r

)
≤
(

2
3

)r
:
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Now observe that the absorption time T is the same for the two chains �Xn�
and �X̃n�. Also �Xn� = �X̃n�. Therefore, if (3.9) holds,

sup
x∈S;�x�≤K

Px�T > n; but �Xl� > K for all 1 ≤ l ≤ n�

= sup
x∈S̃;�x�≤K

Px�T > n; but �X̃l� > K for all 1 ≤ l ≤ n�

≤ sup
x∈S̃;�x�≤K

Px��X̃�jn4�� > K for all 1 ≤ j ≤ �n/n4��

≤ �2ρ+ 1�drndr4

( 2
3

)r��n/n4�−1� [by (3.6), (3.7) and (3.9)]

≤ C5γ
n [by (3.8)]

with

C5 =
( 3

2

)2r�2ρ+ 1�drndr4

(which is independent of n;K). Thus (3.9) will imply (1.39) and we now turn
to the proof of (3.9).

By (3.3),

�3:10�

Ex�X̃�n4��r =
∑

z1;:::;zr

Ex�I�n4; z1� · · ·I�n4; zr��

=
∑

z1;:::;zr

r∏
i=1

ExI�n4; zi�

+
∑

z1;:::;zr

{
Ex�I�n4; z1� · · ·I�n4; zr�� −

r∏
i=1

ExI�n4; zi�
}

Also, by (3.2),

∑
z1;:::;zr

r∏
i=1

ExI�n4; zi� =
{
Ex

∑
z

I�n4; z�
}r
≤
( 1

2 �x�
)r
:

Moreover,
∣∣∣∣Ex�I�n4; z1� · · ·I�n4; zr�� −

r∏
i=1

ExI�n4; zi�
∣∣∣∣ ≤ 1;

so that (3.10) shows

Ex

�X̃�n4��r
�x�r ≤ 2−r + �x�−r

(
number of r-tuples z1; : : : ; zr with

Ex�I�n4; z1� · · ·I�n4; zr�� 6=
r∏
i=1

ExI�n4; zi�
)
:

(3.11)
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We claim that for any subsets E1; : : : ;Er of Zd, which satisfy

�3:12� d�Ei;Ej� = inf��z′ − z′′�: z′ ∈ Ei; z
′′ ∈ Ej� > 2nρ for i 6= j;

the families �X̃�n; z�: z ∈ Ei� are independent under Px. In fact, for n = 1
all X̃�1; z�; z ∈ Zd, are independent under Px by (1.34). For general n our
claim follows by induction, by means of (1.34) and (1.35). Indeed if the result
is true for n = 1; : : : ; k and E1; : : : ;Er satisfy (3.12) with n = k+ 1, then for
any bounded functions fi, depending on �X̃�k+ 1; z�: z ∈ Ei�; 1 ≤ i ≤ r, the
Markov property and (1.34) imply that

�3:13� Ex

{ n∏
1

fi

}
= Ex

{
Ex

{ r∏
1

fi

∣∣∣X̃k

}}
= Ex

{ r∏
1

Ex�fi�X̃k�
}

(note that the Ei are disjoint). Furthermore, by (1.35), Ex�fi�X̃k� = gi for
some bounded function gi of the X̃k�v� with v ∈ E′i, where

E′i = �v ∈ Zd: �v− z� ≤ ρ for some z ∈ Ei�:
The E′i satisfy (3.12) with n = k, so that by the induction hypothesis the gi
are independent under Px. Thus

Ex

{ r∏
1

fi

}
= Ex

{ r∏
1

gi

}
=

r∏
1

Ex�gi� =
r∏
1

Ex�Ex�fi�X̃k�� =
r∏
1

Ex�fi�:

Thus the families �X̃k+1�z�: z ∈ Ei� are independent, as claimed.
The above independence property shows that

Ex�I�n4; z1� · · ·I�n4; zr�� =
r∏
i=1

ExI�n4; zi�

as soon as �zi − zj� > 2n4ρ for i 6= j. Furthermore, by (3.4), I�n4; zi� = 0 a.e.
�Px� unless zi lies within distance n4ρ from the set

�3:14� �v ∈ Zd: x�v� 6= 0�:
Thus

Ex�I�n4; z1� · · ·I�n4; zr�� =
r∏
i=1

ExI�n4; zi� = 0

unless each zi lies within distance n4ρ from the set (3.14). Since the set in
(3.14) has cardinality �x�, the number of r-tuples z1; : : : ; zr which lie entirely
within distance n4ρ of the set (3.14) and have �zi− zj� ≤ 2n4ρ for some i 6= j
is at most

��2n4ρ+ 1�d�x��r−1r2�4n4ρ+ 1�d:
This is therefore an upper bound for the number appearing in the right-hand
side of (3.11) and, consequently,

Ex

�X̃�n4��r
�xr� ≤ 2−r + 1

�x�r
2�4n4ρ+ 1�dr:
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Equation (3.9) is now immediate for

�K� > r2�4n4ρ+ 1�dr
�2/3�r − �1/2�r : 2

4. Some examples. We shall now use Theorem 2 to give some specific
examples to which Theorem 1 applies. These examples therefore have nor-
malized quasi-stationary distributions and the limit relations (1.26) and (1.27)
hold for them. All examples are of the form described before Theorem 2, and
we allow only the values 0 or 1 for X̃n�z� [i.e., κ = 2 in (1.30)]. By the trans-
lation invariance (1.33) and the independence property (1.34) the model is
completely specified by the probabilities

�4:1� P�X̃1�0� = 1�X̃0 = x�

(where 0 denotes the origin in Zd), and this probability depends only on x�z�
for �z� ≤ ρ [by (1.35)]. Note that we have an obvious partial order on S̃d;2: x′ ≥
x′′ if and only if x′�z� ≥ x′′�z� for all z ∈ Zd. We now impose four further
conditions on the probabilities in (4.1):

�4:2� P�X̃1�0� = 1�X̃0 = x� is increasing in xy

�4:3� P�X̃1�0� = 1�X̃0 = x� < 1 for all x ∈ S̃d;2y

�4:4�
P�X̃1�0� = 1�X̃0 = x� = 0 if x�z� = 0 for all z ∈ B�0; ρ�, but
P�X̃1�z0� = 1�X̃0 = x� > 0 for some z0 if x�z� = 1 for some
z ∈ B�0; ρ�;

�4:5�
for any disjoint subsetsA1; : : : ;As ofB�0; ρ� = �v: �v� ≤ ρ�,
it holds that P

{
X̃1�0� = 1�X̃0�z� = 1 in B�0; ρ� exactly for

the z’s in
⋃s

1Ai

}
≤ 1 − ∏s

i=1P�X̃1�0� = 0�X̃0�z� = 1 in
B�0; ρ� exactly for the z’s in Ai�.

Condition (4.5) says that the chain starting with only the sites in
⋃s

1Ai occu-
pied lies stochastically below the maximum of s independent chains, the ith
of which starts with only the sites in Ai occupied, 1 ≤ i ≤ s. In order to obtain
the required irreducibility (1.2) or (1.32), we shall restrict the state space S
to

�4:6� 0 ∪ collection of states which can be reached by X? when
starting at X0 = δ�0�

[δ�0� is the state with only the component at the origin equal to 1 and all
others equal to 0]. We shall prove the following result.
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Proposition 1. If (1.31)–(1.35) and (4.2)–(4.5) hold and if �X̃n� is strongly
subcritical, then �Xn� [as defined by (1.36) and restricted to the space S of
(4.6)] satisfies all hypotheses of Theorem 1. It therefore has a minimal normal-
ized quasi-stationary distribution µ̃; and the limit relations (1.26) and (1.27)
hold as well as the bound (1.28).

Before proving the proposition, we give some very specific examples.

Example A (One-dimensional nearest neighbor chains). These chains have
d = 1, ρ = 1, and X̃n�z� takes on only the values 1 and 0. Thus, given
X̃n, the distribution of X̃n+1�z� depends only on X̃n�z− 1�; X̃n�z�; X̃n�z+ 1�
(remember that z ∈ Z now). In fact we shall assume that it depends only
on the number of 1’s among X̃n�z− 1�; X̃n�z�; X̃n�z+ 1�. The distribution of
X̃n+1 is therefore completely specified by the four probabilities

πi x= P�X̃n+1�z� = 1�X̃n� on the event

�exactly i of the values X̃n�z− 1�; X̃n�z�; X̃n�z+ 1� equal 1�;
0 ≤ i ≤ 3:

In fact, to make 0 absorbing we must take

�4:7� π0 = 0:

Equations (4.2)–(4.5) will then hold if we take, in addition to (4.7),

0 < π1 ≤ π2 ≤ π3 < 1;�4:8�
π2 ≤ 1− �1− π1�2 = 2π1 − π2

1�4:9�
and

π3 ≤ 1− �1− π1��1− π2� = π1 + π2 − π1π2:�4:10�
Indeed (4.2)–(4.4) hold by virtue of (4.8). As for (4.5), B�0;1� = �−1;0;+1�
and the only possible disjoint choices for A1; : : : ;As are

s = 2; A1 = �−1�; A2 = �0�;�4:11�
or

s = 2; A1 = �−1�; A2 = �0;1�;�4:12�
or

s = 3; A1 = �−1�; A2 = �0�; A3 = �1�;�4:13�
or equivalent choices obtained from (4.11)–(4.13) by permuting �−1;0;1�. Con-
dition (4.5) is void for s = 1. For the situations in (4.11) and (4.12), (4.5) is
guaranteed by (4.9) and (4.10), respectively. For the case in (4.13), (4.5) re-
quires

π3 ≤ 1− �1− π1�3;
but this is easily seen to be a consequence of (4.9) and (4.10).
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We do not have a sharp criterion for this chain to be strongly subcritical.
However, this chain lies stochastically below oriented site percolation with
d = 1, p = π3, discussed in the next example. Thus if π3 is sufficiently small,
then �X̃n� is strongly subcritical.

Example B (The discrete time contact process or oriented percolation). We
describe here a discrete time analogue of the contact process. As will be appar-
ent from the description below, this model can also be viewed as percolation on
the vertex set Zd×�1;2; : : :� with an oriented edge from y×�n� to z×�n+1�
if and only if y and z are adjacent on Zd. The usual oriented percolation is
essentially the same model but with Zd replaced by another lattice; we shall
not consider that, though. Again we take a nearest neighbor process on Zd,
that is, with ρ = 1. The probability in (4.1) depends only on the number of 1’s
among the x�v�, with v in B�0;1� \ �0� = �v: v adjacent to 0 on Zd�. We do
allow d > 1 now, though. There are two versions of this model.

(i) Site version. This version corresponds to the threshold contact process.
We take P�X̃1�0� = 1�X̃0 = x� = p if at least one v adjacent on Zd to 0 has
x�v� = 1, and P�X̃1�0� = 1�X̃0 = x� = 0 otherwise. Equation (4.2) is obvious
and so are (4.3) and (4.4) if 0 < p < 1. We shall not check (4.5) formally, but
this is almost obvious from the following percolation construction. Color all
sites of Zd × �1;2; : : :� white (black) with probability p �1 − p, respectively),
independently of each other. When X̃0 = x is given, define X̃n for n ≥ 1 re-
cursively by the following rule. If the site at z× �n� is black, then X̃n�z� = 0
[i.e., z is vacant at time n]. If z × �n� is colored white and at least one of its
neighbors is occupied at time n − 1 [i.e., X̃n−1�v� = 1 for some neighbor v on
Zd of z], then z is also occupied at time n. If z has no occupied neighbor at
time n−1, then z is not occupied at time n, irrespective of the color of z×�n�.

It is known [see for instance Durrett (1988), Section 5a] that this chain has
a critical probability pc = pc�d; site� ∈ �0;1� such that for p ≤ pc the process
becomes extinct, that is, (1.4) holds for any starting configuration with finitely
many occupied sites. Moreover, if we write δ�z0� for the state x with x�z� = 1
if and only if z = z0, then

�4:14� Pδ�z0��T > n� → 0 exponentially in n

whenever p < pc [the probability in (4.14) is independent of z0]. This can
be seen by redoing Menshikov’s proof for the usual unoriented percolation
[as given in Grimmett (1989), Section 3.2] or by using Aizenman and Barsky
(1987) together with Hammersley’s theorem [Theorem 5.1 in Grimmett (1989);
the latter’s proof in the oriented case is quite easy]. For a proof of (4.14) in a
more complicated situation, see also Bezuidenhout and Grimmett (1991).

Equation (4.14) implies that

�4:15� for p < pc; �X̃n� is strongly subcritical.

To see this note that as in the lines following (3.3), X̃n�0� depends only on
x�v� with �v� ≤ n. Furthermore, by the above description, X̃n�0� = 1 occurs
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if and only if there is a path v0 = 0; v1; v2; : : : ; vn on Zd such that vk×�n−k�
is colored white for 0 ≤ k ≤ n− 1 and x�vn� = 1. Therefore,

�4:16�
Px�X̃n�0� = 1� ≤

∑

�v�≤n
Pδ�v��X̃n�0� = 1�

≤ �2n+ 1�dPδ�0��T > n�
and this tends to 0 exponentially fast in n. Thus for p < pc all conclusions of
Theorem 1 hold for this chain.

(ii) Bond version. We now take

P�X̃1�z� = 1�X̃0 = x� = 1− �1− p�j

if z has exactly j occupied neighbors in state x. In terms of independent
colorings we can describe this model as follows: put an edge or bond between
v × �n� ∈ Zd × �0;1; : : :� and z × �n + 1� if and only if v and z are adjacent.
Color all edges independently white (or black) with probability p (or 1 − p,
respectively). Then X̃n+1�z� = 1 if and only if it has a white edge to an occupied
neighbor at time n, that is, if X̃n�v� = 1 for some v adjacent to z for which the
edge between v×�n� and z×�n+ 1� is white. Again this chain has a critical
probability pc = pc�d;bond� ∈ �0;1� such that for p < pc all conclusions of
Theorem 1 hold. We skip the details.

Remark 7. A closely related problem to (1.27) for one-dimensional oriented
subcritical percolation is the following question: Is there a limit distribution
for the configuration of occupied sites at time n, as seen from the leftmost
occupied site, when in the initial state all sites in �0;1;2; : : :� are occupied?
In this case it is not necessary to condition on �T > n� because T = ∞
almost surely for any initial state with infinitely many occupied sites. This
question was investigated by A. Galves, M. Keane and I. Meilijson (private
communication). Our results do not apply directly to this problem, but we
hope that they will nevertheless be useful.

Remark 8. For the discrete time contact process it is almost trivial to ver-
ify (1.23) if we take U1 = �x: �x� ≤K� for some K and x0 = δ�0�. Indeed, for
any x ∈ U1,

�4:17�
Px�Xn is not absorbed by time n�

= Px�one of the �x� initial particles survives until time n�
≤ �x�Pδ�0��T > n� ≤KPδ�0��T > n�:

The next lemma shows how to generalize this estimate under (4.2)–(4.5).

Lemma 9. Let ��X̃v
n�n≥0: v ∈ Zd� be a family of independent Markov

chains, each of which has the same transition probabilities as �X̃n�; but X̃v
?

has initial state X̃v
0 = δ�v�. If (1.31)–(1.35), (4.2) and (4.5) hold, then �X̃n�;
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starting from X̃0 = x; is stochastically smaller than the process �Yn� defined
by

�4:18� Yn�z� = max�X̃v
n�z�: x�v� = 1�:

In particular, for any A ⊂ Zd;

�4:19�
Px�X̃n�z� = 0 for all z ∈ A� ≥ P�Yn�z� = 0 for all z ∈ A�

=
∏

v with

x�v�=1

P�X̃v
n�z� = 0 for all z ∈ A�:

Proof. Equation (4.19) is proven by induction on n, together with a cou-
pling of X̃? and all the X̃v

?. For n = 1, (4.19) is immediate from (4.5) with
Ai = �vi�, if v1; : : : ; vs are the sites for which x�v� = 1. Indeed, by (1.34),

Px�X̃1�z� = 0 for all z ∈ A� =
∏
z∈A

Px�X̃1�z� = 0�:

Moreover, by (1.35), Px�X̃1�z� = 0� depends only on which v’s in B�z;1� have
x�v� = 1 and, by (4.5),

�4:20�

Px�X̃1�z� = 0� ≥
∏

vi∈B�z;1�
Pδ�vi��X̃1�z� = 0�

≥
s∏
i=1

Pδ�vi��X̃1�z� = 0� = P�Y1�z� = 0�:

Now the Y1�z�; z ∈ Zd, are also independent when X̃0 = x is given [by virtue
of (1.34)]. Thus (4.20) gives (4.19) for n = 1. It is now easy to couple all the
X̃v

1; v ∈ Zd, and X̃1. One merely chooses the X̃v
1; v ∈ Zd, independently of

each other, with their prescribed distribution. These X̃v
1 determine Y1. One

now takes X̃1�z� = 0 for all z with Y1�z� = 0 and takes X̃1�z� = 0 (respec-
tively, 1) with probability

Px�X̃1�z� = 0� −Px�Y1�z� = 0�
1−Px�Y1�z� = 0�

(respectively,

Px�X̃1�z� = 1�
1−Px�Y1�z� = 0�

)

when Y1�z� = 1. These choices of the X̃1�z�; z ∈ Zd, are conditionally in-
dependent (given x and all the X̃v

1; v ∈ Zd). One easily checks that the
X̃1�z�; z ∈ Zd, are independent under this construction and, therefore, have
the correct distribution. Moreover,

X̃1�z� ≤ Y1�z�; z ∈ Zd:
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Now assume that (4.19) has been proven for n = 1; : : : ; k and that we have
also constructed joint versions of all X̃n; X̃

v
n, v ∈ Zd; 0 ≤ n ≤ k, such that

�4:21� X̃n�z� ≤ Yn�z�; z ∈ Zd; 0 ≤ n ≤ k:
Let Ck = �w1; : : : ;wr� be the collection of sites for which X̃k�w� = 1. A
fortiori Yk�wi� = 1 for 1 ≤ i ≤ r and hence we can choose a vi such that
x�vi� = 1; X̃vi

k �wi� = 1. The vi;1 ≤ i ≤ r, are not, in general, distinct. Call
wi ∼ wj if vi = vj. Then Ck breaks up into disjoint equivalence classes,
say A1; : : : ;As. Thus wi and wj belong to the same subclass if and only if
vi = vj. We now apply (4.5) with these Ai or rather with Ai ∩B�z; ρ� for fixed
z. Specifically, we first use

Px�X̃k+1�z� = 0 for all z in A�X̃k� =
∏
z∈A

PX̃k
�X̃1�z� = 0�:

Then, by (4.5), for fixed z,

PX̃k

{
X̃1�z� = 0

}
≥

s∏
i=1

P
{
X̃1�z� = 0�X̃0�w� = 1 in B�z; ρ� exactly

for the w’s in Ai ∩B�z; ρ�
}
:

Finally, on the event �X̃vi
k �w� = 1 for w ∈ Ai�,

P
{
X̃1�z� = 0�X̃0�w� = 1 in B�z; ρ� exactly for the w’s in Ai ∩B�z; ρ�

}

= P
{
X̃
vi
k+1�z� = 0�X̃vi

k �w� = 1 in B�z; ρ� exactly

for the w’s in Ai ∩B�z; ρ�
}

≥ P�X̃vi
k+1�z� = 0�X̃vi

k � [by (4.2)]:

Thus, on the event �X̃k�w� = 1 on Ck =
⋃s

1Ai�, which is contained in
s⋂
i=1

�X̃vi
k �w� = 1 for w ∈ Ai�;

and under (4.21), it holds that

Px
{
X̃k+1�z� = 0 for all z in A�X̃k; X̃

v
k; v ∈ Zd

}

≥
∏
z∈A

s∏
i=1

P
{
X̃
vi
k+1�z� = 0�X̃vi

k

}

=
s∏
i=1

P
{
X̃
vi
k+1�z� = 0 for all z ∈ A�X̃vi

k

}

≥ Px
{
Yk+1�z� = 0 for all z ∈ A�X̃v

k; v ∈ Zd
}
:

As before in the case n = 1, we can now couple X̃k+1 and X̃v
k+1 such that (4.21)

continues to hold for n = k + 1. Equation (4.19) for n = k + 1 is immediate
from (4.21) for n ≤ k+ 1. 2
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Proof of Proposition 1. We have to check (1.2), (1.4) and (1.22)–(1.24)
for the chain �Xn� defined in (1.36) [on the space S of (4.6)]. For the set U2
of (1.24) we shall take the singleton �δ�0��, that is, the state which has only
one occupied site (which is automatically the leftmost particle and therefore
shifted to the origin in Xn). For U1 in (1.23) we shall take the set

�4:22� U1�K� x= �x ∈ S0 = S \ �0�: �x� ≤K�

for some large K, yet to be determined. Also, x0 will be taken equal to δ�0�.
Now first observe that from any state x ∈ S the transition to x0 in one

step is possible. This (and several of the succeeding statements) is proven
somewhat more simply in terms of the chain X̃? than in terms of X? itself.
Indeed, if v1; : : : ; vl are the occupied sites of a state x ∈ S̃, then with z0 as in
(4.4),

Px��X̃1� = 1� ≥ Px�X̃1�z� = 1 only for z = v1 + z0�

= Px�X̃1�v1 + z0� = 1�
∏

z6=v1+z0

Px�X̃1�z� = 0�:

Now for some constant D1 > 0,

Px�X̃1�v1 + z0� = 1� ≥ D1

for all x with x�v1� = 1, by (4.2) and (4.4). Also Px�X̃1�z� = 0� = 1 when
z /∈ B�vi; ρ� for some 1 ≤ i ≤ l [by (1.35) and (4.4)]. For z ∈ B�vi; ρ�,

Px�X̃1�z� = 0� = 1−Px�X̃1�z� = 1� ≥ D2 > 0

for some constant D2 independent of x and z [by (1.33), (1.35) and (4.3)]. Thus

�4:23� Px��X̃1� = 1� ≥ D1D
l�2ρ+1�d
2 :

This proves the irreducibility condition (1.2). It also proves (1.24) (with n0 = 1)
for our choice of U1 and U2, because the estimate (4.23) depends on l = �x�
only; the right-hand side is at least

�4:24� D1D
K�2ρ+1�d
2

for any x ∈ U1�K�.
Condition (1.4), the certainty of absorption, follows directly from the as-

sumption that X̃? is (strongly) subcritical and the fact that X̃n�z� = 0 auto-
matically for all

z /∈
⋃
B�v;nρ�;

where the union is over the finitely many v with X̃0�v� 6= 0 [cf. proof of (3.4)].
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Condition (1.23) follows from Lemma 9. Indeed, if x�v� = 1 exactly when
v ∈ �v1; : : : ; vl�, with l ≤K, then by (4.19),

Px�T > n� = Px�X̃n�z� = 1 for some z�
≤ Px�Yn�z� = 1 for some z�

≤
l∑
i=1

Pδ�vi�
�X̃n�z� = 1 for some z�

≤ lPδ�0��T > n� ≤KPδ�0��T > n�:
Finally, condition (1.22) for any sufficiently large choice of K is guaranteed by
Theorem 2. 2

5. A central limit theorem. Finally we prove Theorem 3. We shall prove
(1.41) for a single time only; that is, we take, l = 1 and sl = 1. The general
case follows then easily by induction on l, from the Markov property. Also,
as before, we restrict ourselves to the aperiodic case (except when we prove
M = 0; 6 = σ2× identity matrix for the discrete time contact process, which
has period 2).

For the proof we shall make use of an analogue of the P∗-measure used in
Lemma 8. However, this time we need a measure on the space S̃0 x= S̃ \ �0�,
which is the state space for X̃? minus its absorbing state. To define this we
must first lift the function f of (1.17), which is defined on S0, to S̃0. To this
end let π be the projection from S̃0 to S0. That is, if x̃�z� 6= 0 exactly for
z ∈ �ξ1; : : : ; ξν�, then we take π�x̃� = x̃⊕ �−ξ1�, which has π�x̃��z� 6= 0 if and
only if z ∈ �0; ξ2 − ξ1; : : : ; ξν − ξ1�. If X̃n = x̃, then π�x̃� is the corresponding
state of Xn. We now define

f̃�x̃� = f�π�x̃��; x̃ ∈ S̃0:

It is easy to see that for x = π�x̃�,
∑

ỹ∈S̃
P
(
X̃n = ỹ�X̃0 = x̃

)
f̃�ỹ�

= E�f�Xn��X̃0 = x̃� = E�f�Xn��X0 = x�
= R−nf�x� [see (1.17)]

= R−nf̃�x̃�:

Thus if we define for C ∈ S̃n+1
0 ,

�5:1�
P∗
{
X̃0; X̃1; : : : ; X̃n ∈ C�X̃0 = x̃

}

= Rn

f̃�x̃�
P
{
X̃0; : : : ; X̃n ∈ C�X̃0 = x̃

}
f̃�X̃n�;

then P∗ defines an honest distribution on the space of paths S̃
Z+
0 . (In order

not to overburden notation we shall refrain from attaching asterisks to the X̃
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as well, in contrast to what we did in Lemma 8. Note also that the measure
induced by P∗ on the paths of the X-process agrees with the P∗-measure of
Lemma 8.)

Now fix x̃ ∈ S̃0 and y ∈ S0 for the remainder of the proof. Let x = π�x̃� ∈ S0
and let B ⊂ Zd. Then

�5:2�

P
{
ξ1�n� ∈ B; Xn = y�X̃0 = x̃;T > n

}

= f�x�
f�y�

1

f̃�x̃�
P
{
ξ1�n� ∈ B; Xn = y�X̃0 = x̃

}
f�y��Px�T > n��−1

∼
[
f�y�

∑
w∈S0

µ�w�
]−1 Rn

f̃�x̃�
P
{
ξ1�n� ∈ B; Xn = y�X̃0 = x̃

}
f�y�

[by (1.26)]

=
[
f�y�

∑
w∈S0

µ�w�
]−1

P∗
{
ξ1�n� ∈ B; π�X̃n� = y�X̃0 = x̃

}
:

We now define τ0 = 0 < τ1 < · · · as the successive times at which X? visits x
and write

�5:3� Wi =
(
X̃τi−1

; X̃τi−1+1; : : : ; X̃τi

)
; i ≥ 1;

for the ith excursion between visits to x. We already remarked in Lemma
8, that under P∗; X? is positive-recurrent, so that a.e. �P∗� all τi are finite
and the Wi are well defined. Also by the strong Markov property, and the
translation invariance property (1.33), the shifted excursions

�5:4�

Wi ⊕ �−ξ1�τi−1��

x= �X̃τi−1
⊕ �−ξ1�τi−1��; X̃τi−1+1 ⊕ �−ξ1�τi−1��;

: : : ; X̃τi
⊕ �−ξ1�τi−1���; i ≥ 1;

are i.i.d. Define further

3i = “length” of Wi = τi − τi−1;�5:5�
1i = “displacement” of Wi = ξ1�τi� − ξ1�τi−1��5:6�

and

0i = “diameter” of Wi = max��ξ1�n� − ξ1�τi−1��: τi−1 ≤ n ≤ τi�:

These are functions of Wi and, hence, �3i; 1i; 0i�i≥1 are also i.i.d. Moreover
(1.28) shows that the distribution of 3i underP∗ has an exponentially bounded
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tail, as follows:

�5:7�

P∗
{
3i ≥ l�X̃0 = x̃

}
= P∗

{
31 ≥ l�X̃0 = x̃

}

=
∞∑
k=l
P∗
{
31 = k�X̃0 = x̃

}
=
∞∑
k=l
P∗
{
τ1 = k�X̃0 = x̃

}

=
∞∑
k=l
RkP

{
Xk = x; Xr 6= x; 1 ≤ r ≤ k− 1�X0 = x

}

≤
∞∑
k=l
C4

(
R

R+ η�x�

)k
≤ D1�x�

(
R

R+ η�x�

)l
:

In addition we claim that for some D2 = D2�x� <∞,

�5:8� 0i ≤ 23iρ+D2:

To see this, note that if X̃n has occupied sites at ξ1�n�; : : : ; ξν�n��n�, then the

occupied sites of X̃n+1 must all lie in

ν�n�⋃
i=1

B�ξi�n�; ρ�

[by virtue of (1.35) and (1.31); compare (3.4)]. Therefore the occupied sites of
X̃n for any τi−1 ≤ n ≤ τi have to lie in

ν�τi−1�⋃
i=1

B�ξi�τi−1�; �τi − τi−1�ρ�

and

0i ≤ 2�τi − τi−1�ρ+ max
1≤r≤ν

�ξr�τi−1� − ξ1�τi−1��

≤ 23iρ+max
r; s
�vr − vs�;

where v1; v2; : : : are the occupied sites of the state x (because X̃τi−1
=

x̃; Xτi−1
= x� and ν = ν�τi−1�. Thus (5.8) holds with D2 = maxr; s �vr − vs�.

Next we define

θ�n� = max�i: τi ≤ n�:

Then

ξ1�n� = ξ1�θ�n�� + ξ1�n� − ξ1�θ�n�� = ξ1�0� +
θ�n�∑

1

1i + ξ1�n� − ξ1�θ�n��

and

�ξ1�n� − ξ1�θ�n��� ≤ 0�θ�n� + 1� ≤ 23θ�n�+1ρ+D2:
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In addition,

1√
r
3r→ 0 almost surely �P∗�

because the 3r are i.i.d. and have all moments under P∗. Also, by the strong
law of large numbers,

�5:9� θ�n�
n
→ �E∗�31�X̃0 = x̃��−1 almost surely �P∗�;

again because the 3r are i.i.d. and τi =
∑i

1 3r. Thus

�5:10�
3θ�n�+1√

n
→ 0 almost surely �P∗�:

The standard proof of the central limit theorem for Markov chains [Chung
(1967), Section I.16] now shows that

�5:11� ξ1�n� − nM√
n

⇒N�0; 6�

under P∗, conditioned on X0 = x̃, with

�5:12� M = E∗�11�X̃0 = x̃�
E∗�31�X̃0 = x̃�

;

�5:13� 6�i; j� = 1

E∗�31�X̃0 = x̃�
E∗��11; i −Mi31��11; j −Mj31��X̃0 = x̃�;

where 11; i and Mi are the ith component of 11 and M, respectively. Slightly
more explicit expressions for M and 6 can be given in the same form as
in Theorems I.14.5, I.14.7 and its Corollary in Chung (1967). Note in this
connection that

�5:14�

E∗�number of indices 0 ≤ n < τ1 with Xn = v�X̃0 = x̃�
= E∗�number of indices 0 ≤ n < τ1 with Xn = v�X0 = x�

= f�v�µ�v�
f�x�µ�x�

because f�v�µ�v� is the unique invariant probability measure for theX? chain
under P∗. That is,

�5:15�

∑
x∈S0

f�x�µ�x�P∗�X1 = v�X0 = x�

= Rf�v�
∑
x∈S0

µ�x�P�X1 = v�X0 = x� = f�v�µ�v�

[by (1.18)] and (1.19) holds. We shall not pursue more explicit expressions for
M and 6 here; see, however, the end of this proof.
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In view of (5.11) we basically only have to prove the independence of Xn

and �ξ1�n� − nM�/
√
n. The arguments for this are at least part of the folklore

and we shall therefore be brief. For ε > 0 we can choose n5 such that for all
n ≥ 2n5,

�5:16�
�P∗�Xn = y�X̃0 = x̃� − f�y�µ�y��

= �P∗�Xn = y�X0 = x� − f�y�µ�y�� ≤ ε
and

�5:17� P∗�τ�θ�n− 2n5� + 1� ≥ n− n5�X̃0 = x̃� ≤ ε:
Equation (5.16) is immediate from (1.26) and (1.27) after a translation to the
P∗-measure. In (5.17) we have written τ�θ�n− 2n5� + 1� instead of τθ�n−2n5�+1
for typographical convenience; the estimate (5.17) itself is straightforward re-
newal theory, since τ�θ�n−2n5�+1� is the smallest m > n−2n5 with Xm = x
[see Chung (1967), Theorem I.14.2]. It is further easy to see by means of (5.8)
and Chung [(1967), Theorem I.14.2] that for fixed n5,

lim
a→∞

P∗��ξ1�n� − ξ1�τ�θ�n− 2n5� + 1��� > a�X̃0 = x̃� = 0

uniformly in n ≥ 2n5. Therefore,

�5:18�
1√
n
�ξ1�n� − ξ1�τ�θ�n− 2n5� + 1��� → 0 in P∗-measure,

conditioned on X̃1�0� = x̃; as n→∞:
Finally, a decomposition with respect to the value of τ�θ�n− 2n5� + 1� gives

�5:19�

�P∗�ξ1�τ�θ�n− 2n5� + 1�� ∈ B; Xn = y�X̃0 = x̃�

−P∗�ξ1�τ�θ�n− 2n5� + 1�� ∈ B�X̃0 = x̃�f�y�µ�y��

≤ P∗�τ�θ�n− 2n5� + 1� ≥ n− n5�X̃0 = x̃�

+
∑

n−2n5<r<n−n5

P∗�τ�θ�n− 2n5� + 1� = r; ξ1�r� ∈ B�X̃0 = x̃�

× �P∗�Xn−r = y�X0 = x� − f�y�µ�y��
≤ 2ε [by (5.16) and (5.17)].

Since ε > 0 is arbitrary, it is now not hard to obtain from (5.11), (5.18) and
(5.19) that

lim
n→∞

P∗
{
ξ1�n� − nM√

n
< γ;Xn = y�X̃0 = x̃

}

= P�G1 ≤ γ�f�y�µ�y�:
Translating this back to the P-measure gives (1.41) for l = 1; sl = 1 [by means
of (1.26) again].
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The last statement of Theorem 3 is about the values of M and 6 for the
discrete time contact process. Since M and 6 are independent of the choice
of x̃ [see Chung (1967), Corollary to Theorem I.15.4 and Corollary 2 to Theo-
rem I.16.1], we can take x̃ = δ�0�. It is then clear from the symmetry of the
discrete time contact process that M = 0 and 6ij = 0 for i 6= j [see (5.12) and
(5.13)]. Also all 6i; i; 1 ≤ i ≤ d, must have the same value, say σ2, so the only
nontrivial part of our claim is that

σ2 = 1

E∗�31�X̃0 = δ�0��
E∗��11;1 −M131�2�X̃0 = δ�0�� > 0

or, equivalently, that

P∗�11;1 −M131 6= 0�X̃0 = δ�0�� > 0:

However, M1 = 0 and one easily sees that

P∗�11;1 6= 0�X̃0 = δ�0��

≥ P∗�τ1 = 2; 11;1 = 2�X̃0 = δ�0��

≥ P∗�X̃1 = δ�e1� + δ�−e1�; X̃2 = δ�2e1��X̃0 = δ�0�� > 0;

where e1 = �1;0; : : : ;0�. Indeed the event �X̃�1� = δ�e1�+δ�−e1�� occurs if at
time 1 exactly the sites e1 and −e1 are occupied; similarly �X̃�2� = δ�2e1�� is
the event that only the site 2e1 is occupied at time 2. The description in Sec-
tion 4 of the discrete time contact process shows that these events have strictly
positive probability. Thus σ2 > 0 and the proof of Theorem 3 is complete.
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