
Wright State University Wright State University

CORE Scholar CORE Scholar

Kno.e.sis Publications The Ohio Center of Excellence in Knowledge-
Enabled Computing (Kno.e.sis)

5-2003

ρ-Queries: Enabling Querying for Semantic Associations on the -Queries: Enabling Querying for Semantic Associations on the

Semantic Web Semantic Web

Kemafor Anyanwu

Amit P. Sheth
Wright State University - Main Campus, amit@sc.edu

Follow this and additional works at: https://corescholar.libraries.wright.edu/knoesis

 Part of the Bioinformatics Commons, Communication Technology and New Media Commons,

Databases and Information Systems Commons, OS and Networks Commons, and the Science and

Technology Studies Commons

Repository Citation Repository Citation
Anyanwu, K., & Sheth, A. P. (2003). ρ-Queries: Enabling Querying for Semantic Associations on the
Semantic Web. Proceedings of the Twelfth International Conference on World Wide Web, 690-699.
https://corescholar.libraries.wright.edu/knoesis/684

This Article is brought to you for free and open access by the The Ohio Center of Excellence in Knowledge-Enabled
Computing (Kno.e.sis) at CORE Scholar. It has been accepted for inclusion in Kno.e.sis Publications by an
authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.

https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/knoesis
https://corescholar.libraries.wright.edu/knoesis_comm
https://corescholar.libraries.wright.edu/knoesis_comm
https://corescholar.libraries.wright.edu/knoesis?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F684&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F684&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/327?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F684&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F684&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F684&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F684&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F684&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu

 ρ-Queries: Enabling Querying for Semantic Associations
on the Semantic Web

Kemafor Anyanwu
LSDIS lab

Department of Computer Science
University of Georgia, Athens, GA 30602

01-706-542-4772
anyanwu@cs.uga.edu

Amit Sheth
LSDIS lab

Department of Computer Science
University of Georgia, Athens, GA 30602

01-706-542-2310
amit@cs.uga.edu

ABSTRACT
This paper presents the notion of Semantic Associations as
complex relationships between resource entities. These
relationships capture both a connectivity of entities as well as
similarity of entities based on a specific notion of similarity called
ρ-isomorphism. It formalizes these notions for the RDF data
model, by introducing a notion of a Property Sequence as a type.
In the context of a graph model such as that for RDF, Semantic
Associations amount to specific certain graph signatures.
Specifically, they refer to sequences (i.e. directed paths) here
called Property Sequences, between entities, networks of Property
Sequences (i.e. undirected paths), or subgraphs of ρ-isomorphic
Property Sequences.
The ability to query about the existence of such relationships is
fundamental to tasks in analytical domains such as national
security and business intelligence, where tasks often focus on
finding complex yet meaningful and obscured relationships
between entities. However, support for such queries is lacking in
contemporary query systems, including those for RDF.
This paper discusses how querying for Semantic Associations
might be enabled on the Semantic Web, through the use of an
operator ρ. It also discusses two approaches for processing ρ-
queries on available persistent RDF stores and memory resident
RDF data graphs, thereby building on current RDF query
languages.

Categories and Subject Descriptors
H.2.3 [Information Systems]: Database Management–Query
Languages

General Terms
Languages, Theory, Management

Keywords
Semantic Web Querying, Semantic Associations, RDF, Complex
Data Relationships, graph traversals.

1. INTRODUCTION
The Semantic Web [13] proposes to explicate the meaning of
Web resources by annotating them with metadata that have been
described in an ontology. This will enable machines to
“understand” the meaning of resources on the Web, thereby
unleashing the potential for software agents to perform tasks on
behalf of humans. Consequently, significant effort in the
Semantic Web research community is devoted to the development
of machine processible ontology representation formalisms.
Some success has been realized in this area in the form of W3C
standards such as the eXtensible Markup Language (XML) [16]
which is a standard for data representation and exchange on the
Web, and the Resource Description Framework (RDF) [42], along
with its companion specification, RDF Schema (RDFS) [17],
which together provide a uniform format for the description and
exchange of the semantics of web content. Other noteworthy
efforts include OWL [25], Topic Maps [53], DAML+OIL [31].
There are also related efforts in both the academic and
commercial communities, which are making available tools for
semi-automatic [30] and automatic [49][29] semantic (ontology-
driven and/or domain-specific) metadata extraction and
annotation.
With the progress towards realizing the Semantic Web, the
development of semantic query capabilities has become a
pertinent research problem. Semantic querying techniques will
exploit the semantics of web content to provide superior results
than present-day techniques which rely mostly on lexical (e.g.
search engines) and structural properties (e.g. XQuery [24]) of a
document. There are now a number of proposals for querying
RDF data including RQL [40], SquishQL [45], TRIPLE [49],
RDQL [48]. These languages offer most of the essential features
for semantic querying such as the ability to query using
ontological concepts, inferencing as part of query answering, and
some allow the ability to specify incomplete queries through the
use of path expressions. One key advantage of this last feature is
that users do not need to have in-depth knowledge of schema and
are not required to specify the exact paths that qualify the desired
resource entities. However, even with such expressive
capabilities, many of these languages do not adequately support a
query paradigm that enables the discovery of complex
relationships between resources. The pervasive querying
paradigm offered by these languages is one in which queries are
of the form: “Get all entities that are related to resource A via a
relationship R” where R is typically specified as possibly a join
condition or path expression, etc. In this approach, a query is a

Copyright is held by the author/owner(s).
WWW2003, May 20-24, 2003, Budapest, Hungary.
ACM 1-58113-680-3/03/0005.

specification of which entities (i.e. resources) should be returned
in the result. Sometimes the specification describes a relationship
that the qualifying entities should have with other entities, e.g. a
join expression or a path expression indicating a structural
relationship. However, the requirement that such a relationship be
specified as part of the query is prohibitive in domains with
analytical or investigative tasks such as national/homeland
security [11] and business intelligence, where the focus is on
trying to uncover obscured relationships or associations between
entities and very limited information about the existence and
nature of any such relationship is known to the user. In fact, in
this scenario the relationship between entities is the subject of the
user’s query and should being returned as the result of the query
as opposed to be specified as part of the query. That is, queries
would be of the form “How is Resource A related to Resource
B?”. For example, a security agent may want to find any
relationship between a terrorist act and a terrorist organization or
a country known to support such activities.
One major challenge in dealing with queries of this nature is that
it is often not clear exactly what notion of a relationship is
required in the query. For example, in the context of assessing
flight security, the fact that two passengers on the same flight are
nationals of a country with known terrorist groups and that they
have both recently acquired some flight training, may indicate an
association due to a similarity. On the other hand, the fact that a
passenger placed a phone call to someone in another country that
is known to have links to terrorist organizations and activities
may indicate another type of association characterized by
connectivity. Therefore, various notions of “relatedness” should
be supported.
This paper intends to make two main contributions. First, we
formalize a set of complex relationships for the RDF data model,
which we call Semantic Associations. Second, we outline
two possible approaches for processing queries about Semantic
Associations through the use of an operator ρ (ρ-Queries). One of
the two approaches is based on processing ρ-queries on persistent
RDF data systems such as RDFSuite [8], while the other is based
on processing these queries on a main memory based
representation of an RDF model such as JENA [56].
The rest of the paper is organized as follows: Section 2 discusses
some background and motivates our work with the help of an
example. Section 3 presents the formal framework for Semantic
Associations; section 4 discusses implementation strategies for
the ρ operator, section 5 reviews some related work, and section 6
concludes the paper.

2. BACKGROUND & MOTIVATION
Although there are various knowledge modeling languages that
may be used on the Semantic Web such as Topic Maps [55],
UML [47], DAML+OIL [31], OWL [25], etc., in this paper we
have chosen to formalize Semantic Associations for the RDF data
model. It should be clear that we are not suggesting that the
notion of Semantic Associations only applies to RDF. On the
contrary, the notion is very general and is applicable to any data
model that can be represented as a graph. The choice of RDF for
formalization does not confer serious problems however. In the
first place, some of these other models e.g. DAML+OIL build
upon RDF. Secondly, there is work on mappings from other
formalisms to RDF [20][41].

Next, we will briefly summarize the RDF data model and then
motivate our work with an example.

2.1 RDF
RDF [42] is a standard for describing and exchanging semantics
of web resources. It provides a simple data model for describing
relationships between resources in terms of named properties and
their values. The rationale for the model is that by describing
what relationships an entity has with other entities, we somehow
capture the meaning of the entity. Relationships in RDF, or
Properties as they are called, are binary relationships
between two resources, or between a resource and a literal value.
An RDF Statement, which is a triple of the form (Subject,
Property, Object), asserts that a resource, the Subject, has
a Property whose value is the Object (which can be either
another resource or a literal). This model can be represented as a
labeled directed graph, where nodes represent the resources
(ovals) or literals (rectangles) and arcs representing properties
whose source is the subject and target is the object, and are
labeled with the name of the property. For example, in the bottom
part of Figure 1, we can see a node &r1 connected by a paints
arc to the node &r2, which reflects the fact that &r1 (a painter
with first name Pablo, and last name Picasso) painted another
resource &r2 (a painting). The meaning of the nodes and arcs is
derived from the connection of these nodes and arcs to a
vocabulary (the top part of the figure). The vocabulary contains
describes types of entities i.e. classes (e.g. Museum) and types of
properties (e.g. creates) for the domain. The vocabulary
description and is done using the companion specification to RDF
called the RDF Schema specification [17]. For example in Figure
1, classes like Painter, Museum and properties such as
Paints, are defined. Resources are connected to classes using
an rdf:typeof property indicating an instantiation relationship.

2.2 MOTIVATING EXAMPLE
Although the focus of our current evaluations involves scenarios
in the National Security domain, for brevity and pedagogical
reasons, for this paper we have chosen to use a modified version
of the example from [40]. We will now illustrate Semantic
Associations by way of a simple example shown in Figure 1. The
figure shows an RDF model base containing information to be
used in the development of a cultural portal, given from two
perspectives, reflected in two different schemas (the top part of
the figure). The top left section of the picture is a schema that
reflects a museum specialist’s perspective of the domains using
concepts like Museum, Artist, Artifact, etc. The top right
section is a schema that reflects a Portal administrator’s
perspective of the domains using administrative metadata
concepts like file-size, mime-type, etc. to describe
resources. The lower part of the figure is the model base (or
description base in the linguo of [40]), that has
descriptions about some Web resources, e.g., museum websites
(&r3, &r8), images of artifacts (&r2, &r5, &r7) and for
resources that are not directly present on the Web, e.g., people,
nodes representing electronic surrogates are created (&r1, &r4,
&r6 for the artists Pablo Picasso, Rembrandt, and Rodin August
respectively).

&r3

&r5

“Reina Sofia
Museun”

&r7

“oil on
canvas”

&r2

2000-02-01

“oil on
canvas”

&r8 “Rodin
Museum”

“image/jpeg”

2000-6-09

Ext. Resource

String

Date

Integer

String

titl
e

file_size

last_modified

m
im

e -
ty

p e

Artist

Sculptor

Artifact

Sculpture

Museum

String

String

String fname

lname
creates exhibited

sculpts

StringPaintingPainter
paints technique

material

typeOf(instance)

subClassOf(isA)

subPropertyOf

mime-type

exhibited

technique

exhibited

title

last_modified

last_modified

title

technique

exhibited

“Rodin”

“August”
&r6

&r1

fname

lname

fname

lname

paints

paints

creates

&r4
“Rembrandt”

“Pablo”

“Picasso”

fname

Figure 1: Cultural Portal Information in RDF

Typically, a query language allows you to find all entities that are
related by a specific relationship. For example, we may ask a
query to retrieve all resources related to resource &r1 via a
paints relationship, or via a paints.exhibited
relationship, and get &r2 as a result for the first query and &r3 as
the answer for the second query. However, we are unable to ask
queries such as “How are resources &r1 and &r3 related? Such a
query should return for example that “&r1 paints &r2 which is
exhibited in &r3”, indicating a path connecting the two
entities. With a query such as this one, the user is trying to
determine if there is a relationship between entities, and what
the nature of the relationship(s) is(are). It should be possible to
ask such a query without any type of specification as to the nature
of the relationship, such as using a path expression to give
information about the structure of the relationship. For example,
the following example RQL query

select * from
{;Artist}@P{X}.{;Sculpture}@Q{Y}.@R{Z}

finds all data paths that traverse the class hierarchies Artist and
Sculpture, containing three schema properties, one for each
property variable (@variable). However, we notice that the query
requires that a property variable be added for every edge in the
required path. That is, the user is required to have some idea of at
least the structure e.g. length, of the relationship. One approach
that some of these systems offer to alleviate this problem is that
they provide mechanisms for browsing or querying schemas to
allow users to get the information they need. While this may be a
reasonable requirement when querying specific domains with a
few schemas involved, on the Semantic Web, many schemas may
be involved in a query, and requiring a user to browse them all
would be a daunting task for the user. In fact, in some cases, such
information may not be available to all users (e.g., classified
information) even though the data may be used indirectly to
answer queries. Furthermore, browsing schemas do not always
give the complete picture, especially in the case of RDFS
schemas, because, entities may belong to different schemas,
creating links between entities that are not obvious from just
looking at the schemas. For example in Figure 1, the relationship
paints.exhibited.title connecting &r1 to “Reina Soifa
Museum”, is not apparent by just looking at either schema.

So far, we have talked about relationships in terms of a directed
path connecting two entities. However, there are some other
interesting types of relationships. Let us take for example,
resources &r4 and &r6. Both resources could be said to be related
because they have both created artifacts (&r5, and &r7) that are
exhibited at the same museum (&r8). In this case, having some
relationship to the same museum associates both resources. This
kind of connectivity is an undirected path between the entities.
Another closely related kind of association is class membership.
For example, &r1 and &r6 are both Artists, even though of a
different kind, and therefore are somewhat associated. Also, &r1
and &r6 could be said to be associated because they both have
creations (&r2, and &r7) that are exhibited by a Museum (&r3
and &r8 respectively). In this case, the association is that of a
similarity. So, in the first three associations the relationships
capture some kind of connectivity between entities, while the last
association captures a similarity between entities. Note that the
notion of similarity used here is not just a structural similarity, but
a semantic similarity of paths (nodes and edges) that the entities
are involved in. Nodes are considered similar, if they have a
common ancestor class. For example in the relationship involving
&r1 and &r6, although one case involves a painting and the other
a sculpture, we consider them similar because sculptures and
paintings are kinds of Artifacts and sculpting and painting are
both kinds of creative activities (the notion of similarity is
extended to properties as well).
The Semantic Associations shown in this example are fairly
simple involving only short paths and are useful only for the
purpose of illustration. However, in environments that support
information analytics and knowledge discovery involve longer
paths, especially undirected paths, which are not easily detectable
by users in fast-paced environments. For example at airport
security portals, agents may want to quickly determine if a
passenger has any kind of link to terrorist organizations or
activities.

3. FRAMEWORK
The framework described in this section provides a formal basis
for Semantic Associations. It builds on the formalization for the
RDF data model given in [40], by including a notion of a
Property Sequence. A Property Sequence allows us to
capture paths in the RDF model and forms the basis for
formalizing Semantic Associations as binary relations on Property
Sequences. Secondly, we some complex queries called ρ-queries
for querying about Semantic Associations.

3.1 Formal Data Model
In section 2.1, we describe the RDF data model informally as a
labeled directed graph. To recap, the RDF Schema specification
[17] provides a special vocabulary for describing classes and
properties in a domain. A Property is defined by specifying its
domain (the set of classes that it applies to), and its range
(either a Literal type e.g. String, Integer, etc, or the classes whose
entities it may take as values). Classes are defined in terms of
their relationship to other classes using the rdfs:sublassOf
property to place them at the appropriate location in a class
hierarchy, as well as other user specified properties that may
include them in their range or domain thereby linking them to
other classes. Properties may also be organized in a hierarchy
using the rdfs:subPropertyOf property.

The formalization in [40] defines a graph data model along with a
type system that connects the RDF Model & Syntax specification
with the RDFS schema specification using an interpretation
mechanism. It forms the basis for a typed RDF query language
called RQL [40]. RQL is fairly expressive and supports a broad
range of queries. Its type system T is the set of all possible types
that can be constructed from the following types:

τ = τC | τP | τM | τU | τL | {τ} | [1:τ1, 2:τ2, ..., n:τn] | (1:τ1 + 2:τ2 +
... + n:τn)

where τC indicates a class type, τP a property type, τM a
metaclass type, τL a literal type in the set L of literal type names
(string, integer, etc.), and τU is the type for resource URIs. For the

RDF multi-valued types we have {.} as the Bag type, [.] is the

Sequence type, and (.) is the Alternative type. The set of values
that can be constructed using the resource URIs, literals and class
property names is called V. Then, the interpretation of types in T
is given naturally by the interpretation function [[]], which is a
mapping from τ to the set of values in V. For example, a class C
is interpreted as unary relation of type {τU}, which is the set of
resources (i.e. of type τU) that have an rdf:typeOf property
with range C, and includes the interpretations of the subclasses of
C. For a property p, [[p]] is given by

{[v1, v2] | v1∈ [[p.domain]], v2∈ [[p.range]] } ∪

{ [[p’]] | p’ is a subPropertyOf p}

It defines an RDF schema as a 5-tuple RS = (VS, ES, ψ, λ, H)
where: VS is the set of nodes and ES is the set of edges. ψ is an
incidence function ψ: ES → VS × VS, and λ is a labeling function
that maps class and property names to one of the types in T, i.e. λ:
VS∪ ES → T. H = (N, <), where N = C ∪ P, C and P are the set
of class and property names in RS, respectively. H is a well-
formed hierarchy, i.e., < is a smallest partial ordering such that: if
p1, p2 ∈ P and p1 < p2, then p1.domain ≤ p2.domain and p1.range ≤
p2.range. It also formalizes an instance of an RDFS schema called
a description base which contains all the asserted
instances of classes and properties of an RDF schema.
We generalize these definitions to sets of RDF schemas and
description bases as basic notion of context for a ρ-query.

3.1.1 Definition 1
The RDFS schema set of RDFS Schemas RSS = {RSi: 1≤ i ≤ n}.

Let C = CS1 ∪ CS2 ∪… ∪ CS2 where CSi is the set of class names
in schema RSi and P = PS1 ∪ PS2 ∪ … ∪ PSn, where PSi is the set
of property names in RSi then N = C ∪ P.

[40] defines a description base RD which is an instance of an
RDFS schema RS containing all the asserted instances of the
classes and properties in RS. We generalize that definition here to
the union of instances of the set of schemas in an RDFS schema
set.

3.1.2 Definition 2
An instance of an RDF schema set RSS = {RS1, RS2, .. RSn}, is a
description base RDS defined as a 5-tuple = (VDS, EDS, ψ, ν, λ),
where VDS = VD1 ∪ VD2 ∪… ∪ VDn and VDi is the set of nodes in
the description base of the schema RSi, and EDS is defined

similarly. ψ is the incidence function ψ: EDS → VDS × VDS, ν is a
value function that maps the nodes to the values in V i.e. ν: VDS
→ V, λ is a labeling function that maps each node either to one of
the container type names (Seq, Bag, Alt) or to a set of class
names from the schema set RSS whose interpretations contain the
value of the node, and each edge e = [v1, v2] to a property name p
in RSS, where the interpretation of p contains the pair
[ν(v1),ν(v2)], i.e., the values of v1 and v2. Formally, λ: VD ∪ ED
→ 2N ∪ {Bag, Seq, Alt} in the following manner:

i. For a node n in RDS, λ(n) = {c | c ∈ C and ν(n) ∈ [[c]]}

ii. For an edge e from node n1 to n2, λ(e) = p ∈ P and the
values of n1 to n2 belong in the interpretation of p: [ν(n1),
ν(n2)] ∈ [[p]].

In order capture paths in the RDF graph model, we define a
notion of a Property Sequence, represented in the graph as a
sequence of edges (i.e. properties). There is a choice to be made
in the method for realizing such a notion in a query language such
as RQL. One option is to add paths or property sequences as types
in a query language making them first class citizens. The second
option is to realize them as complex operations such as Cartesian
product, on property types. We choose the later approach because
attempting to make paths as first class citizens brings up
additional issues such as defining path subsumption and so on.
We will now define the notion of a Property Sequence.

3.1.3 Definition 3 (Property Sequence)
A Property Sequence PS is a finite sequence of properties
[P1, P2, P3, … Pn] where Pi is a property defined in an RDF
Schema RSj of a schema set RSS. The interpretation of PS is
given by:

[[PS]] ⊆ ×i=1 n [[Pi]] where for ps ∈ [[PS]], called an instance
of PS, ps[i] ∈ [[Pi]] for 1≤ i ≤ n and ps[i][1] = ps[i+1][0]).
ps[i][1] refers to the second element of the ith ordered pair and
ps[i+1][0] refers to the first element of the i+1th ordered pair. We
define a function NodesOfPS()which returns the set of nodes
of a Property Sequence PS, i.e.
PS.NodesOfPS()= {C1, C2, C3, … Ck} where Ci is a class in
either the domain or range of some Property Pj in PS, 1≤ j ≤ n.
For example in Figure 1, for PS =
creates.exhibited.title, PS.NodesOfPS () = {Artist,
Artifact, Museum, Ext. Resource, String}.
Let PS = [P1, P2, P3, … Pn], a description base RDS is said to
satisfy or be a model of PS (RDS |= PS) if there exists a
sequence of edges e1, e2, e3, … en in the description base RDS

such that for all i, λ(ei) = Pi, ψ(ei) = (vi, vi+1) and ×i=1 n (vi, vi+1) =
ps for some ps ∈ [[PS]].
We define a function PSNodesSequence() on Property
Sequence instances that returns its sequence of nodes, i.e.
ps.PSNodesSequence()= [v1, v2, v3, … vn+1]. The node v1
is called the origin of the sequence and vn+1 is called the
terminus.

Next, we define a set of binary relations on Property Sequences.

3.1.4 Definition 4 (ρ Joined Property Sequences)
PS1 ρ PS2 is true if:

NodesOfPS(PS1) ∩ NodesOfPS(PS2) ≠ 0.

The Property Sequences PS1 and PS2 are called joined, and for
C ∈ (NodesOfPS(PS1) ∩ NodesOfPS(PS2)), C is called a
join node. For example, in Figure 2, the sequences
creates.exhibited. and paints.exhibited are joined
because they have a join node Museum.

&r3

&r5

&r7

“oil on
canvas”

&r2

“oil on
canvas”

&r8

Artist

Sculptor

Artifact

Sculpture

MuseumString

String fname

lname
creates exhibited

sculpts String

StringPaintingPainter
paints technique

material

typeOf(instance)

subClassOf(isA)

subPropertyOf

exhibited

technique

exhibited

technique

exhibited

“Rodin”

“August”
&r6

&r1

fname

lname

fname

lname

paints

paints

creates

&r4
“Rembrandt”

“Pablo”

“Picasso”

fname

Figure 2 : Isomorphic Property Sequences

3.1.5 Definition 5 (≅ρ ρ-Isomorphic Property
Sequences)

Two property sequences PS1 = P1, P2, P3, … Pm, and PS2 = Q1, Q2,
Q3, … Qm, are called ρ-isomorphic (PS1 ≅ρ PS2), if

for all i, 1 ≤ i ≤ m: Pi = Qi or Pi ⊆ Qi or Qi ⊆ Pi (⊆ means
subPropertyOf)

For example in Figure 2, the sequences paints.exhibited
and creates.exhibited are ρ-isomorphic because
paints is considered to be similar to creates, since paints
is a subproperty of creates. Note that the example that we use
here is somewhat misleading because the example shown for
Joined Property Sequences also happens to be ρ-Isomorphic.
However, the two notions are quite different because Joined
Property Sequences are not required to be similar.

3.1.6 Definition 6 (Length)
The length of a Property Sequence is equal to the number of
properties in the Property Sequence. In the case of a Joined
Property Sequence its length is the sum of all the properties in its
constituent Property Sequences, i.e. the length of the
undirected path from origin of one Property Sequence to the
origin of the other Property Sequence. For example, in Figure 2,
the Joined Property Sequences [creates.exhibited,
paints.exhibited] has a length of 4.

3.2 Semantic Associations
We can now define some binary relations on the domain of
entities i.e. resources, based on the different types of Property
Sequences.

3.2.1 Definition 7 (ρ-pathAssociated)
ρ-pathAssociated (x, y) is true if there exists a Property
Sequence with ps ∈ [[PS]] and, either x and y are the origin and
terminus of ps respectively, or vice versa, i.e. y is origin and x is
terminus. Then ps is said to satisfy ρ-pathAssociated (x,
y) written as ps |= ρ-pathAssociated (x, y).

3.2.2 Definition 8 (ρ-joinAssociated)
Let PS1 and PS2 be two Property Sequences such that PS1 ρ PS2
with a join node C, and there exists ps1 and ps2 such that ps1 ∈ [[
PS1]] and ps2 ∈ [[PS2]] and, n ∈ ps1.PSNodesSequence() ∩
ps2.PSNodesSequence(), then ρ-joinAssociated (x,
y) is true if either of the conditions are satisfied.

1) x is the origin of ps1 and y is the origin of ps2 or
2) x is the terminus of ps1 and y is the terminus of ps2.

This means that either ps1.PSNodesSequence = [x, b, c … n,
.,., r] and ps2.PSNodesSequence = [y, β, χ, π. . n, ξ, ψ], or
ps1.PSNodesSequence = [a, b, c … n, .,., r ,x]] and
ps2.PSNodesSequence = [α, β, χ, π. . n, ξ, y] and n ∈ [[C]].

We say that (ps1, ps2) |= ρ-joinAssociated (x, y).

3.2.3 Definition 9 (ρ-cpAssociated)
This is a special case of Definition 5 that captures an inclusion or
sibling relationship (i.e. common parent) between resources.

ρ-cpAssociated (x, y) is true if there exists two Property
Sequences PS1 and PS2 such that PS1 ρ PS2 which satisfy ρ-
joinAssociated (x, y) and, both PS1 and PS2 are of the
form: rdf.typeOf.(rdfs:subClassOf)*. This relation
is used to capture the notion that entities are related if they either
belong to the same class or to sibling classes. For example, &r1
and &r6 are related because they are both Artists. We say that
(ps1, ps2) |= ρ-cpAssociated (x, y). However, in order
to reduce the possibility of meaningless associations e.g. both x
and y belong to rdfs:Resource, we make further restrictions.
We say that ρ-cpAssociated (x, y) is strong if

1) For the join node j of the Joined Property Sequence (inducing
the association (i.e. the common parent of x and y), j ⊆  ,
where   called the ceiling, refers to the most general
class in the hierarchy that is to be considered, which is usually
user-specified.

2) the length of the Joined Property Sequence inducing the
association is minimal. By minimal we mean that it is less
than a specific value indicated by context or specified by user.

The first restriction ensures that we do go to far up the hierarchy
looking for a common parent, while the second ensures that the
relationship is not too distant to be meaningful in the user’s
context.

3.2.4 Definition 10 (ρ-IsoAssociated)
ρ-IsoAssociated (x, y) is true if there exists two
property sequences PS1 and PS2 such that PS1 ≅ρ PS2, and there
exists ps1 and ps2 such that ps1 ∈ [[PS1]] and ps2 ∈ [[PS2]] such
that, x is the origin of ps1 and y is the origin of ps2. We say that
(ps1, ps2) |= ρ-IsoAssociated (x, y).

We say that x and y are semantically associated if either ρ-
pathAssociated(x, y), ρ-cpAssociated(x, y), ρ-IsoAssociated(x, y),
or ρ-joinAssociated(x, y).

3.3 ρ-Queries
A ρ-Query Q is defined as a set of operations that map from a
pair of keys (e.g. resource URIs) to the set of Property Sequences
PS in the following manner:

1. ρ: τU (2) 2PS

2. ρ ρ: τU (2) 2PS(2)

3. ρ≅ρ: τU (2) 2PS(2)

τU (2) = { {x, y} : x, y ∈ τU and x ≠ y }. Similarly, PS(2) is the set
of pairs of Property Sequences. In 1., we map from a pair of keys
x and y to a set of Property Sequences that induces a ρ-
pathAssociation of x and y. In 2., we map from (x, y) to a set of
binary tuples of Property Sequences that induces either a ρ-
joinAssociation or a strong ρ-cpAssociation of x and y and in 3.,
we map from (x, y) to a set of binary tuples of Property
Sequences that induces a ρ-isoAssociation.

4. STRATEGIES FOR PROCESSING
ρ-QUERIES
Our strategy for implementation involves investigating alternative
approaches to implementing the ρ-operator, and evaluate their
merits and demerits. We consider two major categories. The first
category, which we have developed a partial implementation for,
involves leveraging existing RDF persistent data storage
technologies. Here, a ρ-query processing layer is developed above
the RDF data storage layer, which performs some of the
computation and, relegates a specific portion of the computation
to the data store layer. In the second approach, the
implementation involves the use of a memory resident graph
representation of the RDF model, along with the use of efficient
graph traversal algorithms. We will outline how query processing
is done using both approaches.

4.1 Exploiting RDF Data Management
Systems
In this approach, we leverage existing RDF data storage
technologies such as RDFSuite [8] and SESAME [18] and
develop a ρ-query processing layer which performs some of the
computation and, relegates a specific portion of the computation
to the data store layer. Figure 3 gives an illustration of this
approach (although, this is somewhat of an oversimplification, it
adequate for the purposes of this discussion). Here the processing
of a ρ-query is broken down to 4 phases. Phases 2 and 4 occur at
the data store layer and phases 1 and 3 occur at the ρ-query
processing layer.
Phase 1 captures the query, i.e. the resources and context (i.e.
schema set). In the second stage, the resources are classified i.e.,
the classes that entities belong to, within the given context, are
identified. This involves a query to the data store layer, which
exploits the rdf:typeOf statements to answer the query. Much of
the processing is done in the third phase where potential paths

involving the entities in the query are discussed by querying a
PathGuide (a combination of index structures that stores
information about paths that exist between resources classes).
There are two kinds of paths that are kept in the PathGuide. The
first kind of path is that which is obvious from the schema. The
second kind is those paths that exist at the data level but are not
evident at the schema level. This is because of the fact that the
RDF data model allows multiple classifications of entities.
Consequently, every instance of a multiple classification induces
a connection between two classes that does not exist at the
schema level, and thus is not general to all entities of those
classes. Therefore, a query to the PathGuide yields potential
property sequences paths between entities, since some of the
paths are not general to entire classes but specific to the entities
that are multiply classified. For example in Figure 1, the
paints.exhibited.title sequence is not a sequence in
either the left or right schema, but is present in the description
base (i.e. between &r1 and the literal node “Reina Sofia
Museum”). The reason for this is &r3‘s membership in both the
Museum and the Ext.Resource classes, this can be seen as
having created an intermediate class node that collapses Museum
and the Ext.Resource classes, and consequently links the
paints.exhibited sequence to the title property.

The fourth stage of query processing involves the validation of
the paths found in the PathGuide for the specific entities in the
query, by executing queries on the underlying data store. The
output of this stage selects only those paths whose queries do not
return an empty result.

r1

r1 = http://www.xxx.com/yyy

r2

r2 = http://www.zzz.net/

A

B

EC D

r1

r1 = http://www.xxx.com/yyy

r2

r2 = http://www.zzz.net/

A

B

EC D

r1

r1 = http://www.xxx.com/yyy

r2

r2 = http://www.zzz.net/

A

B

EC D

r1

r1 = http://www.xxx.com/yyy

r2

r2 = http://www.zzz.net/

1. Query Entities 2. Classification of Entities

3. Identification of Candidate Paths 4. Pruning of Invalid Paths

Figure 3: Illustration of ρ-Query Processing

4.1.1 Issues
Two challenges arise from storing all potential paths between
classes in the PathGuide indexes. The first is that it causes the size
of indexes to be quite large. Second, the potential paths found in
the PathGuide in response to a query, could generate a large
number of RQL queries that need to be validated at the data store
layer, which slows down processing time significantly. However,
heuristics could be employed to minimize these problems. For
example, to reduce the size of the indices, we could choose to
avoid adding every single potential path between classes in the
index, but include only those whose support value is at least as
large as a user supplied threshold value, where the support value
represents the percentage of resources that are involved in

multiple classification for any given pair of classes. This means
that if very few resources induce a connection between two
otherwise unconnected schema classes because of a multiple
classification, then we do not include in the indexes, those
additional paths created due to the multiple classification, thereby
reducing the size of the indices. The rationale for this is that the
probability of those paths being involved in the result of a query
is low, therefore the additional cost of storing the paths in the
indices may not be worth it. A second heuristic is to try to prune
the number of paths that need to be validated at the data storage
layer. This could be done by assigning weights to Semantic
Associations based on the contextual relevance and then
validating only those associations with a high relevance weight.
Our work in this area is still in progress.

An additional problem with processing ρ-queries on existing RDF
storage systems is that some of these systems represent each
property as a separate relation in a relational database model.
Therefore, the computation of a Property Sequence results in a
large number of joins which has a negative impact of the speed of
query processing. Currently, we do not see any easy solution to
this problem.

4.2 Using Graph Algorithms
This approach involves the computation of Semantic Associations
on a memory-resident graph representation of the RDF model
such as that provided by JENA [56], or the memory
representation of the schema set as in SESAME [18], to which
graph traversals algorithms can be applied. In the case of ρ-
pathAssociation we can search for paths between entities, and in
the case of a ρ-joinAssociation we check if the two entities belong
in the same connected component. One issue with this approach is
that that trying to find all paths between entities could easily lead
to an exponential time algorithm. However, [52] provides
promising fast algorithms for solving path problems which may
be employed for such computations. In particular, it offers near-
linear time algorithms for computing a path expression
representing the set of all paths between nodes in a graph. Such a
representation may then be processed using contextual
information to prune paths that are not very relevant in the given
context. In addition, other heuristics may be added. For example,
a user may be asked to characterize the desired result set, e.g.
shortest paths or longest paths, which will also help to reduce the
result set. Similar heuristics to those discussed in the first
approach that use context to prune paths based on degree of
relevance can also be used here. In that case, the complexity of
the problem can be analyzed along the number of semantic paths
retrieved

Complexity = Σ (n-1) (l=1)
(# paths of length l) (probability of keeping path of length l).

Another issue is the complexity of graph isomorphism problem
which is known to be NP-complete. However, certain classes of
graphs have properties making them amenable to efficient
manipulation. For example, [12] describes a polynomial time
algorithm for detecting isomorphism in rooted directed path
graphs, which includes the exact class of graphs that are required
for checking ρ-isomorphism. We are currently working on a
prototype implementation of this approach.

5. RELATED WORK
There is some relationship between our work and that on querying
object-oriented and semi-structured data using path expressions
[2][3][19][22][23][24][34]. Although, these systems provide
powerful and expressive capability, allowing users to query for
data without having in-depth schema knowledge, most of them
work on the premise that the goal of a query is to find data entities
but not complex relationships such as Semantic Associations.
Some of these systems [19][22] support paths as first class entities
and allow for path variables to be used outside of the FROM
clause, i.e. to be returned as a result of a query which suggests
that queries for ρ-pathAssociations could be supported. However,
they typically assume a simpler data model which is a rooted
directed graph without the nuances of RDF such as multiple
classification and property hierarchies. Furthermore, the more
complex Semantic Associations such as the ρ-joinAssociation and
ρ-Isomorphism are not supported, even in systems like [22] which
provide some functions that range over path variables, e.g., the
difference function which returns the difference in the set of paths
that originate from two nodes.
With respect to RDF, the current generation of RDF query
languages RQL [40], SquishQL [45], RDQL [48], do not support
path variables as first class entities and so cannot even be used for
querying for path relationships. In the case of the logic-based
RDF query languages such as TRIPLE [51], the inference rules
required to reason about the full range of the Semantic
Associations discussed here, would require functionality beyond
FOL.
The DISCOVER system [38] provides a keyword proximity
search capability over relational databases, which return
associations called Joining Sequences. Joining Sequences
represent the paths connecting keywords in the query, obtained by
traversing foreign key links. However, the semantics associated
with these associations is not explicit, but is implicit in the
database schema. Thus, the interpretation of the meaning and
usefulness of the associations must be done by users.
Furthermore, other more complex Semantic Associations such as
the ρ-Isomorphism are not captured.

There is a common intuition underlying our work and some of the
tasks related to data mining, in that they both involve discovering
relationships. However, there are significant differences in the
goals, methods and results produced by the both kinds of systems.
The first difference is articulated in a statement made in [32],
where data mining is said to be opportunistic while information
access techniques (such as ours) are goal-driven. Traditional data
mining [21][26] focuses on discovering patterns and relationships
in data that can be used to develop models of the data. In
association analysis [7], rules that associate attribute-value pairs
are learned from patterns of co-occurrences of attribute values in
data, which capture co-occurrence relationships between
attributes. On the contrary, we do not try to learn patterns from
data rather, we provide specific rules for inferring relationships
between entities by looking at property value dependencies, and
focus on providing methods for verifying whether these kinds of
associations exist between entities. That is, we identify
meaningful sequences of binary predicates while data mining
association rules involve sets of attribute value pairs. Therefore,
we view data mining as a complimentary technology. For
example, the association rules learnt from patterns in data can

provide knowledge that can be used to guide the search for
Semantic Associations or to rank resulting Semantic Associations
based on how close the follow the patterns.

An initial discussion on Semantic Associations is made in [10].

6. CONCLUSION & FUTURE WORK
Most RDF query systems do not provide adequate querying
paradigms to support querying for complex relationships such as
Semantic Associations. Support for such querying capabilities is
highly desirable in many domains. We have presented a formal
framework for these Semantic Associations for the RDF data
model, and reviewed some implementation strategies for
computing them. There are many open research issues that we
plan to focus on in the near future. First, it may be necessary to
develop data organization techniques for data that will adequately
support the kinds of queries discussed here. Such techniques
should eliminate the need for an excessive number of expensive
computations such as joins during query processing. Secondly, we
plan to develop techniques for dealing with the space complexity
problem of the indices used in the PathGuide. For example we
may use encoding schemes that compress path information, or
heuristics for managing the size of the indices. Another top
priority is the development of context-sensitive ranking
algorithms that assign higher weights to results that are most
relevant in the query context. Finally, we will perform a
comparative study of the two implementation strategies discussed
in section 4 over a testbed consisting of large amount of
automatically extracted metadata generated using the SCORE
system [41].

7. ACKNOWLEDGMENTS
Our thanks to Drs. Bob Robinson, John Miller, Krys Kochut, and
Budak Arpinar for the illuminating discussions and insightful
contributions, and to Boanerges Aleman-Meza on his revision
comments. We are also indebted to Dr. Vassilis Christophides
whose comments and suggestions were invaluable in preparing
the final version of the paper.
This work is funded by NSF-ITR-IDM Award # 0219649 titled
“Semantic Association Identification and Knowledge Discovery
for National Security Applications.”

8. REFERENCES
[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web:

From Relations to Semistructured Data and XML. Morgan
Kaufmann, 1999.

[2] S. Abiteboul. Querying Semi-Structured data. In Proc. of
ICDT, Jan 1997.
http://citeseer.nj.nec.com/abiteboul97querying.html

[3] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J.
Wiener. The Lorel Query Language for Semistructured Data.
International Journal on Digital Libraries, 1(1):68--88, April
1997.

[4] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[5] R. Agrawal. Alpha: An Extension of Relational Algebra to
Express a Class of Recursive Queries. IEEE Transactions on
Software Engineering. 14(7):879-- 885, July 1988.

[6] R. Agrawal, A. Borgida, and H.V. Jagadish. Efficient
Management of Transitive Relationships in Large Data
Bases. In SIGMOD'89, pages 253--262, Portland, Oregon,
USA, 1989.

[7] R. Agrawal, T. Imielienski and A. Swami. Mining
Assocation Rules between Sets of Items in Large Databases.
Proc. Conf. On Management of Data. Washington, DC,
USA, 207--216. ACM Press, New York, NY USA 1993.

[8] S. Alexaki, G. Karvounarakis, V. Christophides, D.
Plexousakis, and K. Tolle. The ICS-FORTH RDFSuite:
Managing Voluminous RDF Description Bases. In 2nd
International Workshop on the Semantic Web, pages 1--13,
Hong Kong, 2001.

[9] S. Alexaki, G. Karvounarakis, V. Christophides, D.
Plexousakis, and K. Tolle. On Storing Voluminous RDF
descriptions: The case of Web Portal Catalogs. In 4th
International Workshop on the Web and Databases
(WebDB), Santa Barbara, CA, 2001. Available at
http://139.91.183.30:9090/RDF/publications/webdb2001.pdf

[10] K. Anyanwu, A. Sheth, The ρ Operator: Discovering and
Ranking Associations on the Semantic Web. SIGMOD
Record (Special issue on Amicalola Workshop), December
2002.

[11] D. Avant, M. Baum, C. Bertram, M. Fisher, A. Sheth, Y.
Warke, “Semantic Technology Applications for Homeland
Security,” Proc. of the 11th Intl Conf. on Information and
Knowledge Management (CIKM 2002), McLean, VA,
November 4-9, 2002, pp. 611--613.

[12] L. Babel, I. Ponomarenko, G. Tinhofer. The Isomorphism
Problem for Directed Paths and For Rooted Directed Path
Graphs. Journal of Algorithms, 21:542--564, 1996.

[13] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic
Web. Scientific American, May 2001.

[14] B. Berendt, A. Hotho, G. Stumme. Towards Semantic Web
Mining. In Proceedings of the International Semantic Web
Conference, pp. 264--278, Sardinia, Italy. June 2002.

[15] A. Branstadt, V. B. Le, J. P. Spinrad. Graph Classes: A
Survey. SIAM 1999.

[16] T. Bray, J. Paoli, and C.M. Sperberg-McQueen. Extensible
Markup Language (XML) 1.0. W3C Recommendation,
February 1998.

[17] D. Brickley and R.V. Guha. Resource Description
Framework (RDF) Schema Specification 1.0, W3C
Candidate Recommendation. 2000.

[18] J. Broekstra, A. Kampman, and F. van Harmelen. SESAME:
An Architecture for Storing and Querying RDF Data and
Schema Information. In D. Fensel, J. Hendler, H. Lieberman,
and W. Wahlster, editors, Semantics for the WWW. MIT
Press, 2001.

[19] P. Buneman, M. Fernandez, D. Suciu. UnQL: A Query
Language and Algebra for Semistructured Data Based on
Structural Recursion. VLDB Journal, 9(1):76--110, 2000.

[20] W. W. Chang, A Discussion of the Relationship Between
RDF-Schema and UML. A W3C Note, NOTE-rdf-uml-
19980804.

[21] M. Chen, J. Han and P. Yu. Data Mining: An Overview from
the Database Perspective. IEEE Trans. On Knowledge and
Data Engineering. Vol. 8. No. 6. December 1996.

[22] V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl.
From Structured Documents to Novel Query Facilities. In
Proc. of ACM SIGMOD Conf. on Management of Data, pp.
313--324, Minneapolis, Minnesota, May 1994.

[23] V. Christophides, S. Cluet, and G. Moerkotte. Evaluating
Queries with Generalized Path Expressions. In Proc. of ACM
SIGMOD, pp. 413--422, 1996.

[24] D. Chamberlin, D. Florescu, J. Robie, J. Simeon, and M.
Stefanescu. XQuery: A Query Language for XML. Working
draft, World Wide Web Consortium, June 2001.
http://www.w3.org/TR/xquery/

[25] M. Dean, D. Connolly, F. Harmelen, J. Hendler, I. Horrocks,
D. McGuinness, P. F. Patel-Schneider, and L. Stein. OWL
Web Ontology Language 1.0 Reference, W3C Working
Draft 29 July 2002. http://www.w3.org/TR/owl-ref/.

[26] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth and R.
Uthurusany. Advances in Knowledge Discovery and Data
Mining.. AAAI/MIT Press 1996.

[27] R. Fikes. DAML+OIL query language proposal, August
2001. http://www.daml.org/listarchive/joint-
committee/0572.html.

[28] R. H. Guting. GraphDB: Modeling and querying graphs in
databases. In Proceedings of the International Conference on
Very Large Data Bases, pp. 297--308, 1994.

[29] B. Hammond, A. Sheth, and K. Kochut, Semantic
Enhancement Engine: A Modular Document Enhancement
Platform for Semantic Applications over Heterogeneous
Content, in Real World Semantic Web Applications, V.
Kashyap and L. Shklar, Eds., IOS Press, December 2002, pp.
29--49.

[30] S. Handschuh and S. Staab. Authoring and annotation of web
pages in CREAM. In The Eleventh International World
Wide Web Conference (WWW2002), Honolulu, Hawaii,
USA, 7-11, May, 2002

[31] F. Harmelen, P. F. Patel-Schneider, I. Horrocks, eds.
Reference Description of the DAML+OIL (March 2001)
ontology markup language.

[32] M. Hearst. Distinguishing between Web Data Mining and
Information Access. Position statement for Web Data Mining
KDD 97.

[33] Y. E. Ioannidis, R. Ramakrishnan, L. Winger: Transitive
Closure Algorithms Based on Graph Traversal. TODS 18(3):
512--576 (1993).

[34] Y. E. Ioannidis, Y. Lashkari. Incomplete Path Expressions
and their Disambiguation, In Proc. of the 1994 ACM

SIGMOD, International Conference on Management of Data.
p.138-149, May 24-27, 1994, Minneapolis, Minnesota,
United States.

[35] P. Hayes. RDF Model Theory. W3C Working Draft,
September 2001.

[36] I. Horrocks, S. Tessaris. The Semantics of DQL.
http://www.cs.man.ac.uk/~horrocks/Private/DAML/DQL-
semantics.pdf

[37] I. Horrocks and S. Tessaris. A Conjunctive Query Language
for Description Logic Aboxes. In Proc. of AAAI-00, 2000.

[38] V. Hristidis and Y. Papakonstanti-nou. DISCOVER:
Keyword search in relational databases. In Procs. VLDB,
Aug. 2002.

[39] ICS-FORTH. The ICS-FORTH RDFSuite web site.
Available at http://139.91.183.30:9090/RDF, March 2002.

[40] G. Karvounarakis, S. Alexaki, V. Christophides, D.
Plexousakis, M. Scholl, RQL: A Declarative Query
Language for RDF, WWW2002, May 7-11, 2002, Honolulu,
Hawaii, USA.

[41] M. S. Lacher and S. Decker. On the Integration of Topic
Maps and RDF Data. In Proc. of Semantic Web Working
Symposium. Palo Alto. California. August 2001.

[42] O. Lassila and R. Swick. Resource Description Framework
(RDF) Model and Syntax Specification, W3C
Recommendation. 1999.

[43] M. Mannino, L. Shapiro, L. Extensions to Query Languages
for Graph Traversal Problems. TKDE 2(3): 353--363,1990.

[44] A. O. Mendelzon and P. T. Wood. Finding Regular Simple
Paths in Graph Databases. SIAM J. Comput., 24(6):1235--
1258, 1995.

[45] L. Miller, A. Seaborne, A. Reggiori. Three Implementations
of SquishQL, a Simple RDF Query Language. In Proc. of 1st
International Semantic Web Conference. ISWC2002. June 9-
12, 2002, Sardinia, Italy.

[46] A. Nanopoulos. Y. Manolopoulos. “Mining Patterns from
Graph Traversals”, Data and Knowledge Engineering,
Vol.37, No.3, pp.243-266, 2001.

[47] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified
Modeling Language Reference Manual. Addison-Wesley,
1999.

[48] A. Seaborne. RDQL: A Data Oriented Query Language for
RDF Models. 2001. http://www.hpl.hp.com/semweb/rdql-
grammar.html

[49] A. Sheth, C. Bertram, D. Avant, B. Hammond, K. Kochut,
Y. Warke. Semantic Content Management for Enterprises
and the Web, IEEE Internet Computing, July/August 2002,
pp. 80--87.

[50] A. Sheth, S. Thacker and S. Patel. Complex Relationship and
Knowledge Discovery Support in the InfoQuilt System.
VLDB Journal. September 25, 2002.

[51] M. Sintek and S. Decker. TRIPLE---A Query, Inference,
and Transformation Language for the Semantic Web.

International Semantic Web Conference (ISWC), Sardinia,
June 2002. http://www.dfki.uni-kl.de/frodo/triple/

[52] Tarjan, R. Fast Algorithms for Solving Path Problems. J.
ACM Vol. 28, No. 3, July 1891, pp. 594—614.

[53] DQL: DAML Query Language.
http://www.daml.org/2002/08/dql/

[54] Inkling: RDF query using SquishQL, 2001.
http://swordfish.rdfweb.org/rdfquery/.

[55] ISO/IEC 13250: 2000 Topic Maps, Jan, 2000.
http://www.topicmaps.org/

[56] JENA – A Java API for RDF.

[57] Whitepaper on National Security and Intelligence, Semagix
Inc. 2002.
http://www.semagix.com/pdf/national_security.pdf

	ρ-Queries: Enabling Querying for Semantic Associations on the Semantic Web
	Repository Citation

	tmp.1410554466.pdf.2Lwla

