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ABSTRACT 
This paper presents the notion of Semantic Associations as 
complex relationships between resource entities. These 
relationships capture both a connectivity of entities as well as 
similarity of entities based on a specific notion of similarity called 
ρ-isomorphism. It formalizes these notions for the RDF data 
model, by introducing a notion of a Property Sequence as a type. 
In the context of a graph model such as that for RDF, Semantic 
Associations amount to specific certain graph signatures. 
Specifically, they refer to sequences (i.e. directed paths) here 
called Property Sequences, between entities, networks of Property 
Sequences (i.e. undirected paths), or subgraphs of ρ-isomorphic 
Property Sequences.  
The ability to query about the existence of such relationships is 
fundamental to tasks in analytical domains such as national 
security and business intelligence, where tasks often focus on 
finding complex yet meaningful and obscured relationships 
between entities.  However, support for such queries is lacking in 
contemporary query systems, including those for RDF. 
This paper discusses how querying for Semantic Associations 
might be enabled on the Semantic Web, through the use of an 
operator ρ. It also discusses two approaches for processing ρ-
queries on available persistent RDF stores and memory resident 
RDF data graphs, thereby building on current RDF query 
languages.  

Categories and Subject Descriptors 
H.2.3 [Information Systems]: Database Management–Query 
Languages  

General Terms 
Languages, Theory, Management 

Keywords 
Semantic Web Querying, Semantic Associations, RDF, Complex 
Data Relationships, graph traversals. 

1. INTRODUCTION 
The Semantic Web [13] proposes to explicate the meaning of 
Web resources by annotating them with metadata that have been 
described in an ontology.  This will enable machines to 
“understand” the meaning of resources on the Web, thereby 
unleashing the potential for software agents to perform tasks on 
behalf of humans. Consequently, significant effort in the 
Semantic Web research community is devoted to the development 
of machine processible ontology representation formalisms.  
Some success has been realized in this area in the form of W3C 
standards such as the eXtensible Markup Language (XML) [16] 
which is a standard for data representation and exchange on the 
Web, and the Resource Description Framework (RDF) [42], along 
with its companion specification, RDF Schema (RDFS) [17], 
which together provide a uniform format for the description and 
exchange of the semantics of web content. Other noteworthy 
efforts include OWL [25], Topic Maps [53], DAML+OIL [31]. 
There are also related efforts in both the academic and 
commercial communities, which are making available tools for 
semi-automatic [30] and automatic [49][29] semantic (ontology-
driven and/or domain-specific) metadata extraction and 
annotation.  
With the progress towards realizing the Semantic Web, the 
development of semantic query capabilities has become a 
pertinent research problem. Semantic querying techniques will 
exploit the semantics of web content to provide superior results 
than present-day techniques which rely mostly on lexical (e.g. 
search engines) and structural properties (e.g. XQuery [24]) of a 
document. There are now a number of proposals for querying 
RDF data including RQL [40], SquishQL [45], TRIPLE [49], 
RDQL [48]. These languages offer most of the essential features 
for semantic querying such as the ability to query using 
ontological concepts, inferencing as part of query answering, and 
some allow the ability to specify incomplete queries through the 
use of path expressions. One key advantage of this last feature is 
that users do not need to have in-depth knowledge of schema and 
are not required to specify the exact paths that qualify the desired 
resource entities. However, even with such expressive 
capabilities, many of these languages do not adequately support a 
query paradigm that enables the discovery of complex 
relationships between resources. The pervasive querying 
paradigm offered by these languages is one in which queries are 
of the form: “Get all entities that are related to resource A via a 
relationship R” where R is typically specified as possibly a join 
condition or path expression, etc. In this approach, a query is a 
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specification of which entities (i.e. resources) should be returned 
in the result. Sometimes the specification describes a relationship 
that the qualifying entities should have with other entities, e.g. a 
join expression or a path expression indicating a structural 
relationship. However, the requirement that such a relationship be 
specified as part of the query is prohibitive in domains with 
analytical or investigative tasks such as national/homeland 
security [11] and business intelligence, where the focus is on 
trying to uncover obscured relationships or associations between 
entities and very limited information about the existence and 
nature of any such relationship is known to the user. In fact, in 
this scenario the relationship between entities is the subject of the 
user’s query and should being returned as the result of the query 
as opposed to be specified as part of the query. That is, queries 
would be of the form “How is Resource A related to Resource 
B?”. For example, a security agent may want to find any 
relationship between a terrorist act and a terrorist organization or 
a country known to support such activities.  
One major challenge in dealing with queries of this nature is that 
it is often not clear exactly what notion of a relationship is 
required in the query. For example, in the context of assessing 
flight security, the fact that two passengers on the same flight are 
nationals of a country with known terrorist groups and that they 
have both recently acquired some flight training, may indicate an 
association due to a similarity. On the other hand, the fact that a 
passenger placed a phone call to someone in another country that 
is known to have links to terrorist organizations and activities 
may indicate another type of association characterized by 
connectivity. Therefore, various notions of “relatedness” should 
be supported.  
This paper intends to make two main contributions. First, we 
formalize a set of complex relationships for the RDF data model, 
which we call Semantic Associations. Second, we outline 
two possible approaches for processing queries about Semantic 
Associations through the use of an operator ρ (ρ-Queries). One of 
the two approaches is based on processing ρ-queries on persistent 
RDF data systems such as RDFSuite [8], while the other is based 
on processing these queries on a main memory based 
representation of an RDF model such as JENA [56].  
The rest of the paper is organized as follows: Section 2 discusses 
some background and motivates our work with the help of an 
example. Section 3 presents the formal framework for Semantic 
Associations; section 4 discusses implementation strategies for 
the ρ operator, section 5 reviews some related work, and section 6 
concludes the paper.  

2. BACKGROUND & MOTIVATION  
Although there are various knowledge modeling languages that 
may be used on the Semantic Web such as Topic Maps [55], 
UML [47], DAML+OIL [31], OWL [25], etc., in this paper we 
have chosen to formalize Semantic Associations for the RDF data 
model. It should be clear that we are not suggesting that the 
notion of Semantic Associations only applies to RDF. On the 
contrary, the notion is very general and is applicable to any data 
model that can be represented as a graph. The choice of RDF for 
formalization does not confer serious problems however. In the 
first place, some of these other models e.g. DAML+OIL build 
upon RDF. Secondly, there is work on mappings from other 
formalisms to RDF [20][41]. 

Next, we will briefly summarize the RDF data model and then 
motivate our work with an example.  

2.1 RDF 
RDF [42] is a standard for describing and exchanging semantics 
of web resources. It provides a simple data model for describing 
relationships between resources in terms of named properties and 
their values. The rationale for the model is that by describing 
what relationships an entity has with other entities, we somehow 
capture the meaning of the entity. Relationships in RDF, or 
Properties as they are called, are binary relationships 
between two resources, or between a resource and a literal value. 
An RDF Statement, which is a triple of the form (Subject, 
Property, Object), asserts that a resource, the Subject, has 
a Property whose value is the Object (which can be either 
another resource or a literal).  This model can be represented as a 
labeled directed graph, where nodes represent the resources 
(ovals) or literals (rectangles) and arcs representing properties 
whose source is the subject and target is the object, and are 
labeled with the name of the property. For example, in the bottom 
part of Figure 1, we can see a node &r1 connected by a paints 
arc to the node &r2, which reflects the fact that &r1 (a painter 
with first name Pablo, and last name Picasso) painted another 
resource &r2 (a painting). The meaning of the nodes and arcs is 
derived from the connection of these nodes and arcs to a 
vocabulary (the top part of the figure). The vocabulary contains 
describes types of entities i.e. classes (e.g. Museum) and types of 
properties (e.g. creates) for the domain. The vocabulary 
description and is done using the companion specification to RDF 
called the RDF Schema specification [17].  For example in Figure 
1, classes like Painter, Museum and properties such as 
Paints, are defined. Resources are connected to classes using 
an rdf:typeof property indicating an instantiation relationship.  

2.2 MOTIVATING EXAMPLE 
Although the focus of our current evaluations involves scenarios 
in the National Security domain, for brevity and pedagogical 
reasons, for this paper we have chosen to use a modified version 
of the example from [40]. We will now illustrate Semantic 
Associations by way of a simple example shown in Figure 1. The 
figure shows an RDF model base containing information to be 
used in the development of a cultural portal, given from two 
perspectives, reflected in two different schemas (the top part of 
the figure). The top left section of the picture is a schema that 
reflects a museum specialist’s perspective of the domains using 
concepts like Museum, Artist, Artifact, etc. The top right 
section is a schema that reflects a Portal administrator’s 
perspective of the domains using administrative metadata 
concepts like file-size, mime-type, etc. to describe 
resources. The lower part of the figure is the model base (or 
description base in the linguo of [40]), that has 
descriptions about some Web resources, e.g., museum websites 
(&r3, &r8), images of artifacts (&r2, &r5, &r7) and for 
resources that are not directly present on the Web, e.g., people, 
nodes representing electronic surrogates are created (&r1, &r4, 
&r6 for the artists Pablo Picasso, Rembrandt, and Rodin August 
respectively).  
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Figure 1: Cultural Portal Information in RDF  

Typically, a query language allows you to find all entities that are 
related by a specific relationship. For example, we may ask a 
query to retrieve all resources related to resource &r1 via a 
paints relationship, or via a paints.exhibited 
relationship, and get &r2 as a result for the first query and &r3 as 
the answer for the second query.  However, we are unable to ask 
queries such as “How are resources &r1 and &r3 related? Such a 
query should return for example that “&r1 paints &r2 which is 
exhibited in &r3”, indicating a path connecting the two 
entities. With a query such as this one, the user is trying to 
determine if there is a relationship between entities, and what 
the nature of the relationship(s) is(are). It should be possible to 
ask such a query without any type of specification as to the nature 
of the relationship, such as using a path expression to give 
information about the structure of the relationship. For example, 
the following example RQL query  

select * from 
{;Artist}@P{X}.{;Sculpture}@Q{Y}.@R{Z} 

finds all data paths that traverse the class hierarchies Artist and 
Sculpture, containing three schema properties, one for each 
property variable (@variable).  However, we notice that the query 
requires that a property variable be added for every edge in the 
required path. That is, the user is required to have some idea of at 
least the structure e.g. length, of the relationship. One approach 
that some of these systems offer to alleviate this problem is that 
they provide mechanisms for browsing or querying schemas to 
allow users to get the information they need.  While this may be a 
reasonable requirement when querying specific domains with a 
few schemas involved, on the Semantic Web, many schemas may 
be involved in a query, and requiring a user to browse them all 
would be a daunting task for the user. In fact, in some cases, such 
information may not be available to all users (e.g., classified 
information) even though the data may be used indirectly to 
answer queries. Furthermore, browsing schemas do not always 
give the complete picture, especially in the case of RDFS 
schemas, because, entities may belong to different schemas, 
creating links between entities that are not obvious from just 
looking at the schemas. For example in Figure 1, the relationship 
paints.exhibited.title connecting &r1 to “Reina Soifa 
Museum”, is not apparent by just looking at either schema.    

So far, we have talked about relationships in terms of a directed 
path connecting two entities. However, there are some other 
interesting types of relationships. Let us take for example, 
resources &r4 and &r6. Both resources could be said to be related 
because they have both created artifacts (&r5, and &r7) that are 
exhibited at the same museum (&r8).  In this case, having some 
relationship to the same museum associates both resources. This 
kind of connectivity is an undirected path between the entities. 
Another closely related kind of association is class membership. 
For example, &r1 and &r6 are both Artists, even though of a 
different kind, and therefore are somewhat associated. Also, &r1 
and &r6 could be said to be associated because they both have 
creations (&r2, and &r7) that are exhibited by a Museum (&r3 
and &r8 respectively). In this case, the association is that of a 
similarity. So, in the first three associations the relationships 
capture some kind of connectivity between entities, while the last 
association captures a similarity between entities. Note that the 
notion of similarity used here is not just a structural similarity, but 
a semantic similarity of paths (nodes and edges) that the entities 
are involved in. Nodes are considered similar, if they have a 
common ancestor class. For example in the relationship involving 
&r1 and &r6, although one case involves a painting and the other 
a sculpture, we consider them similar because sculptures and 
paintings are kinds of Artifacts and sculpting and painting are 
both kinds of creative activities (the notion of similarity is 
extended to properties as well).  
The Semantic Associations shown in this example are fairly 
simple involving only short paths and are useful only for the 
purpose of illustration. However, in environments that support 
information analytics and knowledge discovery involve longer 
paths, especially undirected paths, which are not easily detectable 
by users in fast-paced environments. For example at airport 
security portals, agents may want to quickly determine if a 
passenger has any kind of link to terrorist organizations or 
activities.  

3. FRAMEWORK    
The framework described in this section provides a formal basis 
for Semantic Associations. It builds on the formalization for the 
RDF data model given in [40], by including a notion of a 
Property Sequence. A Property Sequence allows us to 
capture paths in the RDF model and forms the basis for 
formalizing Semantic Associations as binary relations on Property 
Sequences. Secondly, we some complex queries called ρ-queries 
for querying about Semantic Associations. 

3.1 Formal Data Model 
In section 2.1, we describe the RDF data model informally as a 
labeled directed graph. To recap, the RDF Schema specification 
[17] provides a special vocabulary for describing classes and 
properties in a domain. A Property is defined by specifying its 
domain (the set of classes that it applies to), and its range 
(either a Literal type e.g. String, Integer, etc, or the classes whose 
entities it may take as values). Classes are defined in terms of 
their relationship to other classes using the rdfs:sublassOf 
property to place them at the appropriate location in a class 
hierarchy, as well as other user specified properties that may 
include them in their range or domain thereby linking them to 
other classes. Properties may also be organized in a hierarchy 
using the rdfs:subPropertyOf property.  



The formalization in [40] defines a graph data model along with a 
type system that connects the RDF Model & Syntax specification 
with the RDFS schema specification using an interpretation 
mechanism. It forms the basis for a typed RDF query language 
called RQL [40]. RQL is fairly expressive and supports a broad 
range of queries. Its type system T is the set of all possible types 
that can be constructed from the following types:  

τ = τC | τP | τM | τU | τL | {τ} | [1:τ1, 2:τ2, ..., n:τn] | (1:τ1 + 2:τ2 + 
... + n:τn) 

where τC indicates a class type, τP  a property type, τM  a 
metaclass type, τL a literal type in the set L of literal type names 
(string, integer, etc.), and τU is the type for resource URIs. For the 

RDF multi-valued types we have {.} as the Bag type, [.] is the 

Sequence type, and (.) is the Alternative type. The set of values 
that can be constructed using the resource URIs, literals and class 
property names is called V. Then, the interpretation of types in T 
is given naturally by the interpretation function [[  ]], which is a 
mapping from τ to the set of values in V. For example, a class C 
is interpreted as unary relation of type {τU}, which is the set of 
resources (i.e. of type τU) that have an rdf:typeOf property 
with range C, and includes the interpretations of the subclasses of 
C. For a property p, [[p]] is given by  

{[v1, v2] | v1∈ [[ p.domain ]], v2∈ [[ p.range ]] } ∪ 

{ [[ p’ ]] | p’  is a subPropertyOf  p} 

It defines an RDF schema as a 5-tuple RS = (VS, ES, ψ, λ, H) 
where: VS is the set of nodes and ES is the set of edges. ψ is an 
incidence function ψ: ES → VS × VS, and λ is a labeling function 
that maps class and property names to one of the types in T, i.e. λ: 
VS∪ ES → T.  H = (N, <), where N = C ∪ P, C and P are the set 
of class and property names in RS, respectively. H is a well-
formed hierarchy, i.e., < is a smallest partial ordering such that: if 
p1, p2 ∈ P and p1 < p2, then p1.domain ≤ p2.domain and p1.range ≤ 
p2.range. It also formalizes an instance of an RDFS schema called 
a description base which contains all the asserted 
instances of classes and properties of an RDF schema.  
We generalize these definitions to sets of RDF schemas and 
description bases as basic notion of context for a ρ-query.  

3.1.1 Definition 1  
The RDFS schema set of RDFS Schemas RSS = {RSi: 1≤ i ≤ n}.  

Let C = CS1 ∪ CS2 ∪… ∪ CS2 where CSi is the set of class names 
in schema RSi and P = PS1 ∪ PS2 ∪ … ∪ PSn, where PSi is the set 
of property names in RSi then N =  C  ∪ P. 

[40] defines a description base RD which is an instance of an 
RDFS schema RS containing all the asserted instances of the 
classes and properties in RS. We generalize that definition here to 
the union of instances of the set of schemas in an RDFS schema 
set.  

3.1.2 Definition 2  
An instance of an RDF schema set RSS = {RS1, RS2, .. RSn}, is a 
description base RDS defined as a 5-tuple = (VDS, EDS, ψ, ν, λ), 
where VDS = VD1 ∪ VD2 ∪… ∪ VDn and VDi is the set of nodes in 
the description base of the schema RSi, and EDS is defined 

similarly. ψ is the incidence function ψ: EDS → VDS × VDS, ν is a 
value function that maps the nodes to the values in V i.e. ν: VDS 
→ V, λ is a labeling function that maps each node either to one of 
the container type names (Seq, Bag, Alt) or to a set of class 
names from the schema set RSS whose interpretations contain the 
value of the node, and each edge e = [v1, v2] to a property name p 
in RSS, where the interpretation of p contains the pair 
[ν(v1),ν(v2)], i.e., the values of v1 and v2. Formally, λ: VD ∪ ED 
→ 2N ∪ {Bag, Seq, Alt} in the following manner: 

i. For a node n in RDS, λ(n) = {c | c ∈ C and ν(n) ∈ [[c]]} 

ii. For an edge e from node n1 to n2, λ(e) = p ∈ P and the 
values of n1 to n2  belong in the interpretation of p: [ν(n1), 
ν(n2)] ∈ [[p]].  

In order capture paths in the RDF graph model, we define a 
notion of a Property Sequence, represented in the graph as a 
sequence of edges (i.e. properties).  There is a choice to be made 
in the method for realizing such a notion in a query language such 
as RQL. One option is to add paths or property sequences as types 
in a query language making them first class citizens. The second 
option is to realize them as complex operations such as Cartesian 
product, on property types.  We choose the later approach because 
attempting to make paths as first class citizens brings up 
additional issues such as defining path subsumption and so on. 
We will now define the notion of a Property Sequence. 

3.1.3 Definition 3 (Property Sequence) 
A Property Sequence PS is a finite sequence of properties 
[P1, P2, P3, … Pn] where Pi is a property defined in an RDF 
Schema RSj of a schema set RSS. The interpretation of PS is 
given by:  

[[PS]] ⊆ ×i=1 n [[Pi]] where for ps ∈ [[PS]], called an instance 
of PS, ps[i] ∈ [[Pi]] for 1≤ i ≤ n and ps[i][1] = ps[i+1][0]).  
ps[i][1] refers to the second element of the ith ordered pair and 
ps[i+1][0] refers to the first element of the i+1th ordered pair. We 
define a function NodesOfPS()which returns the set of nodes 
of  a Property Sequence PS, i.e.    
PS.NodesOfPS()= {C1, C2, C3, … Ck} where Ci is a class in 
either the domain or range of some Property Pj in PS, 1≤ j ≤ n.  
For example in Figure 1, for PS = 
creates.exhibited.title, PS.NodesOfPS () = {Artist, 
Artifact, Museum, Ext. Resource, String}.  
Let PS = [P1, P2, P3, … Pn], a description base RDS is said to 
satisfy or be a model of PS (RDS |= PS) if there exists a 
sequence of edges e1, e2, e3, … en in the description base RDS 

such that for all i, λ(ei) = Pi, ψ(ei) = (vi, vi+1) and ×i=1 n (vi, vi+1) = 
ps for some ps ∈ [[PS]].  
We define a function PSNodesSequence() on Property 
Sequence instances that returns its sequence of nodes, i.e. 
ps.PSNodesSequence()= [v1, v2, v3, … vn+1]. The node v1 
is called the origin of the sequence and vn+1 is called the 
terminus.   

Next, we define a set of binary relations on Property Sequences.  



3.1.4 Definition 4 ( ρ Joined Property Sequences) 
PS1  ρ PS2 is true if: 

NodesOfPS(PS1) ∩  NodesOfPS(PS2) ≠ 0. 

The Property Sequences PS1 and PS2 are called joined, and for 
C ∈ (NodesOfPS(PS1) ∩  NodesOfPS(PS2)), C is called a 
join node. For example, in Figure 2, the sequences 
creates.exhibited. and paints.exhibited are joined 
because they have a join node Museum.  
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Figure 2 : Isomorphic Property Sequences 

3.1.5  Definition 5 (≅ρ ρ-Isomorphic Property 
Sequences)  

Two property sequences PS1 = P1, P2, P3, … Pm, and PS2 = Q1, Q2, 
Q3, … Qm, are called ρ-isomorphic (PS1 ≅ρ PS2), if  

for all i, 1 ≤ i ≤ m: Pi = Qi or Pi ⊆ Qi or Qi ⊆ Pi ( ⊆ means 
subPropertyOf ) 

For example in Figure 2, the sequences paints.exhibited 
and creates.exhibited are ρ-isomorphic because 
paints is considered to be similar to creates, since paints 
is a subproperty of creates. Note that the example that we use 
here is somewhat misleading because the example shown for 
Joined Property Sequences also happens to be ρ-Isomorphic. 
However, the two notions are quite different because Joined 
Property Sequences are not required to be similar.  

3.1.6 Definition 6 (Length) 
The length of a Property Sequence is equal to the number of 
properties in the Property Sequence. In the case of a Joined 
Property Sequence its length is the sum of all the properties in its 
constituent Property Sequences, i.e. the length of the 
undirected path from origin of one Property Sequence to the 
origin of the other Property Sequence. For example, in Figure 2, 
the Joined Property Sequences [creates.exhibited, 
paints.exhibited] has a length of 4. 

3.2  Semantic Associations 
We can now define some binary relations on the domain of 
entities i.e. resources, based on the different types of Property 
Sequences. 

3.2.1 Definition 7 (ρ-pathAssociated) 
ρ-pathAssociated (x, y) is true if there exists a Property 
Sequence with ps ∈ [[PS]] and, either x and y are the origin and 
terminus of ps respectively, or vice versa, i.e. y is origin and x is 
terminus. Then ps is said to satisfy ρ-pathAssociated (x, 
y) written as ps |= ρ-pathAssociated (x, y). 

3.2.2 Definition 8 (ρ-joinAssociated) 
Let PS1 and PS2 be two Property Sequences such that PS1 ρ PS2 
with a join node C, and there exists ps1 and ps2 such that ps1 ∈ [[ 
PS1 ]] and ps2 ∈ [[ PS2 ]] and, n ∈ ps1.PSNodesSequence() ∩ 
ps2.PSNodesSequence(), then ρ-joinAssociated (x, 
y) is true if either of the conditions are satisfied. 

1) x is the origin of ps1 and y is the origin of ps2 or  
2) x is the terminus of ps1 and y is the terminus of ps2.  

This means that either ps1.PSNodesSequence = [ x, b, c … n, 
.,., r ] and ps2.PSNodesSequence = [ y, β, χ, π. . n, ξ, ψ], or 
ps1.PSNodesSequence = [ a, b, c … n, .,., r ,x] ] and 
ps2.PSNodesSequence = [ α, β, χ, π. . n, ξ, y] and n ∈ [[ C ]].  

We say that (ps1, ps2) |= ρ-joinAssociated (x, y). 

3.2.3 Definition 9 (ρ-cpAssociated) 
This is a special case of Definition 5 that captures an inclusion or 
sibling relationship (i.e. common parent) between resources.  

ρ-cpAssociated (x, y) is true if there exists two Property 
Sequences PS1 and PS2 such that PS1 ρ PS2 which satisfy ρ-
joinAssociated (x, y) and, both PS1 and PS2 are of the 
form: rdf.typeOf.(rdfs:subClassOf)*. This relation 
is used to capture the notion that entities are related if they either 
belong to the same class or to sibling classes. For example, &r1 
and &r6 are related because they are both Artists. We say that 
(ps1, ps2) |= ρ-cpAssociated (x, y).  However, in order 
to reduce the possibility of meaningless associations e.g. both x 
and y belong to rdfs:Resource,  we make further restrictions. 
We say that ρ-cpAssociated (x, y) is strong if  

1) For the join node j of the Joined Property Sequence (inducing 
the association (i.e. the common parent of x and y), j ⊆  , 
where   called the ceiling, refers to the most general 
class in the hierarchy that is to be considered, which is usually 
user-specified. 

2) the length of the Joined Property Sequence inducing the 
association is minimal. By minimal we mean that it is less 
than a specific value indicated by context or specified by user. 

The first restriction ensures that we do go to far up the hierarchy 
looking for a common parent, while the second ensures that the 
relationship is not too distant to be meaningful in the user’s 
context. 

3.2.4 Definition 10 (ρ-IsoAssociated)  
ρ-IsoAssociated (x, y) is true if there exists two 
property sequences PS1 and PS2 such that PS1 ≅ρ PS2, and there 
exists ps1 and ps2 such that ps1 ∈ [[PS1]] and ps2 ∈ [[PS2]] such 
that,  x is the origin of ps1 and y is the origin of ps2. We say that 
(ps1, ps2) |= ρ-IsoAssociated (x, y).  



We say that x and y are semantically associated if either ρ-
pathAssociated(x, y), ρ-cpAssociated(x, y), ρ-IsoAssociated(x, y), 
or ρ-joinAssociated(x, y). 

3.3 ρ-Queries   
A ρ-Query Q is defined as a set of operations that map from a 
pair of keys (e.g. resource URIs) to the set of Property Sequences 
PS in the following manner: 

1. ρ: τU (2)  2PS  

2. ρ ρ: τU (2)  2PS(2)  

3. ρ≅ρ: τU (2)  2PS(2) 

 

τU (2)  = { {x, y} : x, y ∈ τU  and x ≠ y }. Similarly, PS(2) is the set 
of pairs of Property Sequences. In 1., we map from a pair of keys 
x and y to a set of Property Sequences that induces a ρ-
pathAssociation of x and y. In 2., we map from (x, y) to a set of 
binary tuples of Property Sequences that induces either a ρ-
joinAssociation or a strong ρ-cpAssociation of x and y and in 3., 
we map from (x, y) to a set of binary tuples of Property 
Sequences that induces a ρ-isoAssociation. 

4. STRATEGIES FOR PROCESSING          
ρ-QUERIES 
Our strategy for implementation involves investigating alternative 
approaches to implementing the ρ-operator, and evaluate their 
merits and demerits. We consider two major categories. The first 
category, which we have developed a partial implementation for, 
involves leveraging existing RDF persistent data storage 
technologies. Here, a ρ-query processing layer is developed above 
the RDF data storage layer, which performs some of the 
computation and, relegates a specific portion of the computation 
to the data store layer. In the second approach, the 
implementation involves the use of a memory resident graph 
representation of the RDF model, along with the use of efficient 
graph traversal algorithms. We will outline how query processing 
is done using both approaches.   

4.1 Exploiting RDF Data Management 
Systems  
In this approach, we leverage existing RDF data storage 
technologies such as RDFSuite [8] and SESAME [18] and 
develop a ρ-query processing layer which performs some of the 
computation and, relegates a specific portion of the computation 
to the data store layer. Figure 3 gives an illustration of this 
approach (although, this is somewhat of an oversimplification, it 
adequate for the purposes of this discussion). Here the processing 
of a ρ-query is broken down to 4 phases. Phases 2 and 4 occur at 
the data store layer and phases 1 and 3 occur at the ρ-query 
processing layer.  
Phase 1 captures the query, i.e. the resources and context (i.e. 
schema set). In the second stage, the resources are classified i.e., 
the classes that entities belong to, within the given context, are 
identified. This involves a query to the data store layer, which 
exploits the rdf:typeOf statements to answer the query. Much of 
the processing is done in the third phase where potential paths 

involving the entities in the query are discussed by querying a 
PathGuide (a combination of index structures that stores 
information about paths that exist between resources classes). 
There are two kinds of paths that are kept in the PathGuide. The 
first kind of path is that which is obvious from the schema. The 
second kind is those paths that exist at the data level but are not 
evident at the schema level. This is because of the fact that the 
RDF data model allows multiple classifications of entities.  
Consequently, every instance of a multiple classification induces 
a connection between two classes that does not exist at the 
schema level, and thus is not general to all entities of those 
classes. Therefore, a query to the PathGuide yields potential 
property sequences paths between entities, since some of the 
paths are not general to entire classes but specific to the entities 
that are multiply classified.  For example in Figure 1, the 
paints.exhibited.title sequence is not a sequence in 
either the left or right schema, but is present in the description 
base (i.e. between &r1 and the literal node “Reina Sofia 
Museum”). The reason for this is &r3‘s membership in both the 
Museum and the Ext.Resource classes, this can be seen as 
having created an intermediate class node that collapses Museum 
and the Ext.Resource classes, and consequently links the 
paints.exhibited sequence to the title property. 

The fourth stage of query processing involves the validation of 
the paths found in the PathGuide for the specific entities in the 
query, by executing queries on the underlying data store. The 
output of this stage selects only those paths whose queries do not 
return an empty result.  
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Figure 3: Illustration of ρ-Query Processing 

4.1.1 Issues 
Two challenges arise from storing all potential paths between 
classes in the PathGuide indexes. The first is that it causes the size 
of indexes to be quite large. Second, the potential paths found in 
the PathGuide in response to a query, could generate a large 
number of RQL queries that need to be validated at the data store 
layer, which slows down processing time significantly. However, 
heuristics could be employed to minimize these problems. For 
example, to reduce the size of the indices, we could choose to 
avoid adding every single potential path between classes in the 
index, but include only those whose support value is at least as 
large as a user supplied threshold value, where the support value 
represents the percentage of resources that are involved in 



multiple classification for any given pair of classes. This means 
that if very few resources induce a connection between two 
otherwise unconnected schema classes because of a multiple 
classification, then we do not include in the indexes, those 
additional paths created due to the multiple classification, thereby 
reducing the size of the indices. The rationale for this is that the 
probability of those paths being involved in the result of a query 
is low, therefore the additional cost of storing the paths in the 
indices may not be worth it. A second heuristic is to try to prune 
the number of paths that need to be validated at the data storage 
layer. This could be done by assigning weights to Semantic 
Associations based on the contextual relevance and then 
validating only those associations with a high relevance weight. 
Our work in this area is still in progress.  

An additional problem with processing ρ-queries on existing RDF 
storage systems is that some of these systems represent each 
property as a separate relation in a relational database model.  
Therefore, the computation of a Property Sequence results in a 
large number of joins which has a negative impact of the speed of 
query processing.  Currently, we do not see any easy solution to 
this problem. 

4.2 Using Graph Algorithms  
This approach involves the computation of Semantic Associations 
on a memory-resident graph representation of the RDF model 
such as that provided by JENA [56], or the memory 
representation of the schema set as in SESAME [18], to which 
graph traversals algorithms can be applied. In the case of ρ-
pathAssociation we can search for paths between entities, and in 
the case of a ρ-joinAssociation we check if the two entities belong 
in the same connected component. One issue with this approach is 
that that trying to find all paths between entities could easily lead 
to an exponential time algorithm. However, [52] provides 
promising fast algorithms for solving path problems which may 
be employed for such computations. In particular, it offers near-
linear time algorithms for computing a path expression 
representing the set of all paths between nodes in a graph. Such a 
representation may then be processed using contextual 
information to prune paths that are not very relevant in the given 
context. In addition, other heuristics may be added. For example, 
a user may be asked to characterize the desired result set, e.g. 
shortest paths or longest paths, which will also help to reduce the 
result set. Similar heuristics to those discussed in the first 
approach that use context to prune paths based on degree of 
relevance can also be used here. In that case, the complexity of 
the problem can be analyzed along the number of semantic paths 
retrieved  

Complexity = Σ (n-1) (l=1)  
(# paths of length l) (probability of keeping path of length l). 

Another issue is the complexity of graph isomorphism problem 
which is known to be NP-complete. However, certain classes of 
graphs have properties making them amenable to efficient 
manipulation.  For example, [12] describes a polynomial time 
algorithm for detecting isomorphism in rooted directed path 
graphs, which includes the exact class of graphs that are required 
for checking ρ-isomorphism. We are currently working on a 
prototype implementation of this approach.  
  

5. RELATED WORK 
There is some relationship between our work and that on querying 
object-oriented and semi-structured data using path expressions 
[2][3][19][22][23][24][34]. Although, these systems provide 
powerful and expressive capability, allowing users to query for 
data without having in-depth schema knowledge, most of them 
work on the premise that the goal of a query is to find data entities 
but not complex relationships such as Semantic Associations. 
Some of these systems [19][22] support paths as first class entities 
and allow for path variables to be used outside of the FROM 
clause, i.e. to be returned as a result of a query which suggests 
that queries for ρ-pathAssociations could be supported. However, 
they typically assume a simpler data model which is a rooted 
directed graph without the nuances of RDF such as multiple 
classification and property hierarchies. Furthermore, the more 
complex Semantic Associations such as the ρ-joinAssociation and 
ρ-Isomorphism are not supported, even in systems like [22] which 
provide some functions that range over path variables, e.g., the 
difference function which returns the difference in the set of paths 
that originate from two nodes.   
With respect to RDF, the current generation of RDF query 
languages RQL [40], SquishQL [45], RDQL [48], do not support 
path variables as first class entities and so cannot even be used for 
querying for path relationships. In the case of the logic-based 
RDF query languages such as TRIPLE [51], the inference rules 
required to reason about the full range of the Semantic 
Associations discussed here, would require functionality beyond 
FOL. 
The DISCOVER system [38] provides a keyword proximity 
search capability over relational databases, which return 
associations called Joining Sequences. Joining Sequences 
represent the paths connecting keywords in the query, obtained by 
traversing foreign key links.  However, the semantics associated 
with these associations is not explicit, but is implicit in the 
database schema. Thus, the interpretation of the meaning and 
usefulness of the associations must be done by users. 
Furthermore, other more complex Semantic Associations such as 
the ρ-Isomorphism are not captured.  

There is a common intuition underlying our work and some of the 
tasks related to data mining, in that they both involve discovering 
relationships. However, there are significant differences in the 
goals, methods and results produced by the both kinds of systems. 
The first difference is articulated in a statement made in [32], 
where data mining is said to be opportunistic while information 
access techniques (such as ours) are goal-driven. Traditional data 
mining [21][26] focuses on discovering patterns and relationships 
in data that can be used to develop models of the data. In 
association analysis [7], rules that associate attribute-value pairs 
are learned from patterns of co-occurrences of attribute values in 
data, which capture co-occurrence relationships between 
attributes. On the contrary, we do not try to learn patterns from 
data rather, we provide specific rules for inferring relationships 
between entities by looking at property value dependencies, and 
focus on providing methods for verifying whether these kinds of 
associations exist between entities. That is, we identify 
meaningful sequences of binary predicates while data mining 
association rules involve sets of attribute value pairs. Therefore, 
we view data mining as a complimentary technology. For 
example, the association rules learnt from patterns in data can 



provide knowledge that can be used to guide the search for 
Semantic Associations or to rank resulting Semantic Associations 
based on how close the follow the patterns. 

An initial discussion on Semantic Associations is made in [10]. 

6. CONCLUSION & FUTURE WORK 
Most RDF query systems do not provide adequate querying 
paradigms to support querying for complex relationships such as 
Semantic Associations. Support for such querying capabilities is 
highly desirable in many domains. We have presented a formal 
framework for these Semantic Associations for the RDF data 
model, and reviewed some implementation strategies for 
computing them.  There are many open research issues that we 
plan to focus on in the near future. First, it may be necessary to 
develop data organization techniques for data that will adequately 
support the kinds of queries discussed here. Such techniques 
should eliminate the need for an excessive number of expensive 
computations such as joins during query processing. Secondly, we 
plan to develop techniques for dealing with the space complexity 
problem of the indices used in the PathGuide. For example we 
may use encoding schemes that compress path information, or 
heuristics for managing the size of the indices. Another top 
priority is the development of context-sensitive ranking 
algorithms that assign higher weights to results that are most 
relevant in the query context. Finally, we will perform a 
comparative study of the two implementation strategies discussed 
in section 4 over a testbed consisting of large amount of 
automatically extracted metadata generated using the SCORE 
system [41].  
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