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^-SEPARATION OF VARIABLES FOR THE
FOUR-DIMENSIONAL FLAT SPACE LAPLACE AND

HAMILTON-JACOBI EQUATIONS
BY

E. G. KALNINS AND WILLARD MILLER, JR.1

Abstract. All Ä-separable orthogonal coordinate systems for the complex
equations 2/_i3„* » 0 and Sf_i(3,ff)2 = 0 are classified and it is shown
that these equations separate in exactly the same systems.

1. Introduction. We study the problem of ^-separation of variables for the
complex flat space Laplace and Hamilton-Jacobi equations

(a)    Í   -^T-0, (b)    ¿(fn'=0. (1.1)i = i   9(z') /-iv 9z   '

Here the complex metric is ds2 = "Z4¡_x(dz')2. We show that these two
equations separate in precisely the same orthogonal coordinate systems and
classify all possibilities. In particular, we show that the /?-separable coor-
dinates correspond to coordinates which permit pure separation for the
Helmholtz equations on the manifolds EA (flat space), S2 X S2, S3 X Ex and
54 where Sj is the complex ./-dimensional sphere. Detailed group theoretic
classifications of separable coordinates on the first three manifolds appear in
earlier papers by the authors [1], [2] while an analysis of S4 will appear shortly
[3]. It follows from these results that each Ä-separable system {xJ} for (l.l)(a)
is characterized by a triplet of second-order commuting symmetry operators
{Lx, L2, L3) in the enveloping algebra of 0(6, C), the symmetry algebra of
this equation. The .R-separable solutions ¥„. of (l.l)(a) corresponding to {xJ}
are characterized by the eigenvalue equations

Li^a¡ = ai%j,       i =1,2,3, (1.2)
where ax, a2, a3 are the separation constants [4]. This relationship between
0(6, C) and separation of variables for (l.l)(a) permits use of group represen-
tation theory to derive properties of the /^-separated solutions [5].

The problem of orthogonal .R-separation for (l.l)(a) was treated in 1905 by
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242 E. G. KALNINS AND WILLARD MILLER, JR.

Bôcher [6] who constructed all systems whose coordinate surfaces are families
of confocal cyclides. As we shall show, Bôcher's method actually suffices to
construct all orthogonal i?-separable systems for (l.l)(a). However, Bôcher's
method is very special and does not permit one to conclude that all separable
coordinate systems have been found. In this paper, based partially on
techniques of Eisenhart [7] we develop a more general method which allows
us to obtain an exhaustive list of separable systems for (l.l)(a), each of which
has a simple geometric and group theoretic interpretation. Moreover, we are
able to establish the equivalence of separation for (l.l)(a) and (l.l)(b).
Similar comments hold for the distinct real forms of these complex equations,
e.g., the real Laplace and wave equations with their Hamilton-Jacobi coun-
terparts. One need only modify the results obtained here by classifying the
possible real metrics with the appropriate signature. In particular, our results
show that the lists of orthogonal iî-separable coordinates for the wave
equation found in [1], [2], [4] are complete.

In §2 we examine the problem of i?-separation for the Laplace and
Hamilton-Jacobi equations in arbitrary «-dimensional Riemannian spaces
and prove some lemmas which clear up a number of obscurities and
ambiguities which have appeared in the recent literature devoted to
separation of variables. In §3 we prove that for n « 4 every conformally flat
metric in Stäckel form is conformai to a Stäckel form metric which satisfies
the Robertson condition. This result is used in §4 to find a complete list of
such metrics and obtain the principal results announced above.

For the singular case n = 3, corresponding results were obtained in [8]. We
expect the techniques and results of this paper to extend to the case n > 4
and to some nonflat metrics. In another paper we will classify the
nonorthogonal i?-separable coordinate systems for (1.1).

The equations and coordinate systems treated in this paper are of great
interest for applications because of their close connection with the wave
equation and the Hamilton-Jacobi equations of classical and relativistic
physics. In particular, most of the special functions of mathematical physics
arise as solutions of (l.l)(a) via separation of variables and many of their
properties can be obtained from the representation theory of o(6, Q QS\, [9]).

2. /{-separation. We begin by examining the general problem of A-sépara-
tion for the Laplace and Hamilton-Jacobi equations

(a)   A2¥ = -Lr    ± 0jc,(V¿ g%^) = 0,
Vg     tjmt

(b)   AXW= 2 g%lWdxj}V=0. (2.1)
IJ-i

Here, ds2 = ^gydx'dx1 is a complex Riemannian metric, g = det(g^) =£ 0,
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/{-SEPARATION OF VARIABLES 243

2jgiJgJk = Si, and gy = gß. We restrict our attention to orthogonal coordi-
nates

ds2 = 2 Hj2 (dxrf= 2 Sy dx> dxK
J U

By Ä-separation of (2.1)(a) we mean that the assumption

<Sr = M(x\...,x")JlAj(xJ)
y-i

permits the separation of this equation into n ordinary differential equations,
one for each factor Aj. Similarly, separation of (2.1)(b) means that the
assumption

j-i
permits the separation of the Hamilton-Jacobi equation into n ordinary
differential equations.

(2.1)(a) has been studied by Moon and Spencer [10] who find that
necessary and sufficient conditions for Ä-separability are (1) that the metric
take the form

H2 = (S/MiX)Q,       i-l,...,n, (2.2)
where S is a Stäckel determinant, S — det $, $ = ($tf) where flfy = $y(x'),
MiX is the (/', l)-cofactor of the Stäckel matrix $, and Q(xx,..., x") is an
arbitrary function, (2) that

^=fU(*').       H = HX,...,H„, (2.3)
*~ y—1

and (3) that M satisfy

S    ~-^-dxJ(fjdx,M-x) + aM-l = 0 (2.4)
j — 1        "V

JL    MJX

where a is a constant.
Conditions (2.2), (2.3) are obviously essential. However, the requirement

that a be a constant in (2.4), while not necessarily incorrect, is rather
misleading. In fact, a closer analysis of the .R-separation problem for (2.1)(a)
shows that it is necessary and sufficient for a to be of the more general form

a(x\ ..., x") - 2   —L—±+cx,      c,GC. (2.5)
&Á_xJ)

j~i      «j

In this case the function $ = H"_ x A¡(x') satisfies
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244 E. G. KALNINS AND WILLARD MILLER, JR.

2j-\ fM/A<*) + §* + c,* = 0, (2.6)

an equation which separates into ordinary differential equations

7JMi%) + 'jA<+È**<A'-°-   '-',.'   (27)
where c2,... ,cn are the separation constants.

On the other hand the multiplier M associated with a given /{-separable
coordinate system {*',..., x") is not unique. We say that two nonzero
functions M, M are equivalent if there exist nonzero functions Pj(xJ), j =
\,...,n, such that M = px\xx) • • • p~\x")M. Then ¥ = MAX • • • An =
MÄX,... ,Ä„ where Äj = p-Aj so ^ is /{-separable with multiplier M if and
only if it is /{-separable with multiplier M. Note that M satisfies (2.3)-(2.5)
with^Ç, lj replaced by

i = P/% i - 5 + Mpí l)'/fj+ PÁPÍ1)"- (2-8)
It follows that we can always choose the functions p} such that ^ = 0 for
j = 1,..., n; hence M is equivalent to a multiplier M for which a in (2.5) is
a constant. Thus the criterion for /{-separability as given in [10] can be saved,
although one thereby loses the flexibility due to equivalence transforms.

There is another degree of freedom in the description of /{-separation due
to the fact that the characterization (2.2) of the metric in terms of Stäckel
determinants may not be unique. Suppose ds2 is a metric and M a function
satisfying (2.2)-(2.5), hence defining an /{-separation of (2.1)(a) in the coor-
dinates {xx,... ,x") and let 3> be a Stäckel matrix in these coordinates,
S = det <î>, and ß a function such that

H2 - SQ/MiX, (2.9)
where MiX is the (/, l)-cofactor of 3>.

Lemma 1. The Stäckel matrix Ô determines an R-separation in the variables
{xx,..., x") with multiplier M equivalent to M.

Proof. Comparing (2.2) and (2.9) we have QS/(QS) = MiX/_MiX for / =
1,..., n. Since MiX, Mn are independent of x' we have QS = kQS where k is
a nonzero constant. By renormalization of ß we can assume without loss of
generality that k — 1. It follows immediately that MiX = Mn for all /. From
(2.3), if the matrix $ is to determine /{-separation with multiplier M then M
must satisfy

HM2/QS= f[fj(xJ) (2.10)
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/{-SEPARATION OF VARIABLES 245

for some nonzero functions^. (2.3) and (2.10) then imply

ÜÍ4)-4P.
;-. {ti  «2

Thus M is equivalent to M and it is enough to establish the lemma for
M= M.

Expanding S in cofactors we have

S-2»n*lii-2»n*n
so the identity QS = QS leads to

To show that M = M determines an /{-separation corresponding to (2.9) we
must establish (2.4) for S replaced by 5 and a by a corresponding function 5.
Now

2 ̂ toMr')- fS^/A^"1)

- - § (21| +c.)*- = -2 JU + c^)m-.
Thus

5=2"^ (/y(^) + *i*,i<*>))-    Q.E.D.
7 = 1 -"y

The above result shows that if a coordinate system is /{-separable then any
Stäckel matrix <ï> satisfying (2.9) can be used to define the separation.

It is well known [11], [12] that a necessary and sufficient condition that
(2.1)(b) be separable in the coordinates {xx,.. ., x"} is (2.2). Thus every
/{-separable system for (2.1)(a) also separates (2.1)(b) but the converse is not
generally true.

It is also well known [12] that a necessary and sufficient condition for
separability (M s 1) of the Helmholtz equation A20 = E®, E i= 0, corre-
sponding to the metric ds = 1,]^lhf(dxJ)2 is

h>~M-x>    f-ÍU(*>).       h = hx,...,hn, (2.12)

i.e., that ds2 be in Stäckel form and that the Robertson condition be satisfied.
Eisenhart [12] has shown that the Robertson condition is equivalent to the
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246 E. G. KALNINS AND WILLARD MILLER, JR.

requirement R0 = 0 for i =£ j where R¡¡ is the Ricci tensor with respect to the
metric ds2.

The following result will prove useful.

Lemma 2. Let {xx,..., x") be an R-separable system for (2.1)(a)i«cA that
ds2 = 2jHf(dxJ)2 where Hf = Qhj and ds2 = *Ljhj(dxJ)2 satisfies conditions
(2.12). Then the multiplier can be chosen to be M = ß<2-">/4. Furthermore

n   l (XJ)K2M-x + aM-x = 0,   a-JS^V^+e.» (2-13)
J-i    hJ

A2$+a¥ = 0 (2.14)
where ¥ = A/S?.

Proof. From (2.12) we have

whereas (2.3) yields

fs = M-2tfj^).
Thus M is equivalent to the multiplier ß P"")/4.   Q.E.D.

Note from (2.14) that St* satisfies a "Helmholtz equation with separable
potential", hence it can be completely separated: St' = li"^xA(xJ).

Lemma 3. Suppose ds2 = 2h2(dxJ)2 satisfies conditions (2.12) and that H2 =
Qhj. Then (2.1)(a) is R-separable corresponding to the system ds2 = 2,Hj2(dxJ)2
if and only if M = ß<2-">/4 satisfies (2.13).

As an example of the application of Lemmas 2 and 3 we consider the
notion of /{-separation of the flat space Helmholtz equation

2   -^-r*-£*.      E*0, (2.15)
<-i d(z'y

as introduced by Moon and Spencer [13]. These authors show that a
necessary condition for /{-separation of (2.15) in the coordinates {xJ} is that
the metric satisfy (2.2) and (2.3) with ß = 1. However, the above lemmas
then imply that (since /{,-, = 0 for flat space) we can choose the multiplier M
so M = 1. Thus {xJ} permits /{-separation of (2.15) iff it permits pure
separation. It follows that /{-separation for (2.15), and any Helmholtz
equation for an Einstein space, is a useless concept.

3. The Robertson condition. We shall now restrict our attention to (2.1)(a)
for which ds2 = ~2Hj2(dxJ)2 is a flat space metric, i.e., the complex Laplace
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/{-SEPARATION OF VARIABLES 247

equation in n variables. Then condition (2.2) for /{-separation implies ds2 =
Q ds2 where ds2 = 2h2(dxj)2, hj = S/MjX. Thus ds2 is in Stäckel form and
corresponds to a conformally flat space. To solve the separation of variables
problem for the Laplace equation one must necessarily study these confor-
mally flat metrics in Stäckel form. In [7] Eisenhart has investigated these
metrics and we list some of his formulas which are relevant to our study.

The condition that ds2 be in Stäckel form is

32lnA,2      31n/z,2    Sink2      31nA2   31nA?      31n/i2    31nA2
——L-L   -1 +-L   -L +-L   -* = o,
dxJdxk        dxJ       dxk dxJ       dxk dxk       dxJ

(j*k).   (3.1)
In consequence of (3.1) the components of the Riemann curvature tensor for
i,j, k different may be written

RJiik= ihfd2lnh2/tedxk (3.2)

and the nondiagonal elements of the Ricci tensor are

R   -Y+-R     -2^M (33)Rjk   &h?Rjak   4  ax^ax* (13)
where II' indicates the product of the A's except hj and hk. For n > 4 the
necessary and sufficient condition that ds2 be conformally flat is that the
conformai curvature tensor CliJk identically vanish [14], i.e.,

cujk ~ Rnjk + n _2 (SjiRik ~ êikRu + e¡kRij ~ SyRik)

+ („ _ 1)(„ _ 2) (AA " ^*) " °>      êjt = h28j,.     (3.4)

Given the metric ds2 the function ß = e2* is determined by solving the
equations

Xy = (n- 2)~\Rgy/2{n - 1) - /{,) - \ gyAxX (3.5)
where

Xy = X y — X ¡X j,    X ,• = 3 X/ dx '
and X ty is a second covariant derivative of X with respect to gkI.

For n = 3 it was shown explicitly in [8] that by suitable renormalization of
ß it is always possible to choose ds2 such that Ry = 0 for /' ¥=j. For « = 4 we
have

Theorem 1. Let ds2 = ^=xh2(dxJ)2 be a conformally flat metric in Stäckel
form.  Then  there exists a nonzero function  q such  that as2 = q ds2 =
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248 E. G. KALNINS AND WILLARD MILLER, JR.

~2qnJ(eLJ)2 where the metric ds2 is in Stäckel form and such that Ry = 0 for
i+j.

Our proof of this result is rather complicated and will be accomplished
through a series of lemmas valid for all n > 3, some of which are interesting
in their own right.

Lemma 4. Let ds2 = 1"^xh2(dxJ)2 be conformally flat and in Stäckel form.
Then there exist nonzero functions Xj(xj), ^Jk(xJ, xk) = —¥kJ,f(xx, ..., x")
such that

h2 = Xj]{%k,      ;=1.n, (3.6)

(a)3*(SV)-0,   (b)9;*(*^)=0      (iJ,k¥=). (3.7)

(Here d2f/dxJdxk -dJkf.)

Proof. From (3.1) for / = k we find

dyln(h2/h2) = 0,       i+j,

so

hf = %®y,   hj = tpjßy,
where tpy, <pj¡, 6,-, are functions such that 8-ç^ = 3(ç>„- = 0. The condition
cm ~ ° (À '. k =£) implies

Rjiik = {h2/(n-2))RJk. (3.8)
From (3.2) and (3.3) we find

a/^n,tf/tf0,-*)-ft so djk]ri{h2/h2) = o
for /, / distinct fromy, k. It follows that

hf= n *«(x,.*,>er */- n *„(*;, x')®,,-
These results are consistent for all values of i and y* only if (3.6) is valid.
Substituting (3.6) into (3.1) we obtain the conditions (3.7)(a), (b).   Q.E.D.

Lemma 5. Let ds2 = 2j-xhj(dxj)2 be in Stäckel form. Then ds2 = e2* ds2 is
in Stäckel form iff

djk<p + 2dj<pdk<p + dj<pdk\n hj + 3,<p3,.ln h2 - 0 (3.9)
for all unequal j, k. The nondiagonal elements of the corresponding Ricci tensors
are related by

Rjk = 4 + K« - 2)djk<P       U> k *). (3.10)
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/{-SEPARATION OF VARIABLES 249

Proof. (3.9) follows directly from (3.1), and (3.10) is a consequence of
identity (28.6) in [14].   Q.E.D.

Clearly, Theorem 1 will follow from Lemma 5 provided we can find a
function <p such that

RJk +\(n- 2)3^9 = 0,       (j, k +). (3.11)

Eisenhart [12] has shown that the nondiagonal elements of the Ricci tensor
for a metric in Stäckel form are given by

RJk=^jk\nJ['hf. (3.12)
Thus if as2 satisfies the hypotheses of Lemma 4 then (3.11) requires

àjk<P = -ï3jiln/
or

e2* = r\t2-• • tn (3.13)
where t¡ = t¡(x') is a nonzero function. The transformed metric ds2 has the
form

?-*/,---/„Hty (3.14)
t+J

The condition that (3.14) be in Stäckel form, i.e., the condition that e2<p
preserves Stäckel form is easily determined from (3.7) or (3.9).

Lemma 6. The metric ds2 of Lemma 4 is conformai to a metric ds2 in Stäckel
form which satisfies the Robertson condition iff there exist nonzero functions
t¡(x'), i = 1,..., n, such that

dJk(tjtk%k) = 0       (j*k). (3.15)

To complete the proof of Theorem 1 we will show that if {^ab = — S^^,} is
a set of functions satisfying (3.7)(b) then there exist nonzero functions {t¡}
such that (3.15) holds for n = 4. Let i,j, k be three distinct indices. Then
(3.7)(b) is equivalent to the existence of functions ®ab(xa, xb) such that

%k = ©j,*,* + ©,**//>

** = %%k + ®jk%j, (3.16)
%j = ©A- + 8«*».

These relations imply the equalities

(a) (0,6, - 1)*,, - (8Ä - 0^0,*)*,,
(b) (©*,©,, - ©*,)*;* = (0^.0,* - l)¥y/, (3.17)
(c) (©A- - ®kj)%k - (©A - i)%.
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250 E. G. KALNINS AND WILLARD MILLER, JR.

The functions 0a6 are not uniquely determined since, for example, the
functions

©j, - Bj, + h(¿)%j,   ©;, - % - h(*)%k
also satisfy (3.16). Now fix x' = x¿ such that the {Sf^}^..^ are all nonzero
and normalize the functions {®ab} such that 0,0/,- = 1. It follows from
(3.17)(a) that ®Jk = ®ik/®y. Similarly for fixed x' = x¿ we can normalize so
that 0Al0,* = 1. thus (3-17)(c) implies 0*,- = ©¿,0*,. We conclude that ®kj =
Bj\ independent of x'. Then (3.17)(b) imphes ®kJ = Bu/Bß for all x'. We
have now determined functions such that the last two equations of (3.16) hold
for all x'. Defining 0, = Bjl, ®ik = ®kix for all x' we can verify that the
first equation of (3.16) is also valid. It follows easily that there exist nonzero
functions /„ = ta(xa) such that 0,*1 = - tk/t„ ®yX = - tj/t¡, so

T% + '/'*« + *kl% - °- (3-18)
Thus there exist functions ba, a — i,j, k, such that

(a) *, = bitj-x - bjtr1 = (¥j)~\c, - ej),

(b) f^ = bjtkx - bktj~x = (tjtky\cj - ck), (3.19)

(c) %k - bkt,rl - bftj-1 = (/,/*)"l(ek - q),

where ca = bata. Again the functions ba and ca are highly nonunique since it is
only the differences c¡ — c} (independent of xk), etc. which appear in (3.19).
By addition of an appropriate function we can assume c¡ = c¡(x'). Then
(3.19)(a), (c) imply Cj = Cj(x',xJ), ck = ck(x\xk). From (3.19)(b) we have
Mcj - ck) = 0 so

c,(x', x*) - Cj(x¿, *>) = ck(x>, xk) - ck{xi, xk) = h(x').

By adding — h(x') to all functions ca we get new functions ca = ca(xa) which
also satisfy (3.19). Thus dJk(tjtk%k) = 0, etc.

Now suppose dyln ̂ y 7e 0 for some Sf',. Then d¡c¡ =£ 0, djCj =£ 0. Next
consider the functions 4ty, Sf'y,, S§'i/ for / i= i,j, k. Arguing as above we find
■nonzero functions sa = s(xa), and functions da = da(xa), a = i,j, I, such that

siSj*y = di-dJ,   sjsfij, = dj - d„   vA = d, - d,.        (3.20)
Since d¡ and dj are nonconstant we can compare expressions (3.19) and (3.20)
for Sf,,-/ to obtain (to within trivial multiplications and additions by scalars)
either ta = sa, ca = da or tjsa = \/da, ca = -\/da, a - i, j. If d, is
nonconstant we easily obtain a uniform representation of the six functions
St^ in the form tatß^aß = ca — cß. If, however, d,d¡ = 0 then we have
relations of the form tjSjia = h¡, t,s¡^la = h¡, h¡ = h¡(x') which do not assume
the appearance (3.19). Still, setting /, = s,h,~x we find
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/{-SEPARATION OF VARIABLES 251

Now consider ¥w. Treating ¥ik, St^, SPjy and reasoning as above we see
that there exist nonzero functions ua = ua(x") such that

«,¥ft + rt + M,Sf w - 0.
If 3,4 ?*= 0 then

Vk%k = <* ~ c¡,   t¡t,*a = c,-c,
so

= {€,/*,${*& - uktk) + (1/«¿)(W* - **¥/)• (3.21)
Since 9, (/**,¥*,) = 0 we see that if 9, («,/,) ^ 0 then there exists a constant a
such that

Thus
MV/*«)"* (3-22)

If, however, 1/,-r, = ß = const then since d¡c¡ ̂ Owe have «/i, = uktk<= const,
so again (3.22) holds.

Now suppose d¡d¡ = 0. Then
Vk*m - * - 4>   '.'/*// - 1

so
V*** = ('¡/"¿M - 0/"/',)(<*'/"/ + '*"*)• (3-23)

If 3, («,/,) ^ 0 then there exists a constant a such that

and (3.22) holds. If u¡t¡ — ß then since 9,-c,- ¥= 0 we have /,«, = 0, which is
impossible. Thus (3.22) holds in all cases.

For n = 4 the only remaining possibility is that 3a6ln Sf^ = 0, for all a,
b = t,j, k,l,a¥= b. Then Sf^ = Aab(xa)Bab(xb). A case-by-case analysis
employing (3.7)(b) and much simpler than the above shows that there always
exist nonzero functions ta(xa), a = i, j, k, I, such that ^(tj^^) = 0.
Indeed if ¥jk = A(xJ)B(xk) with djA ¥* 0, 3*5 ^ 0 it is easy to show that the
ta can be chosen so that t, m A~\ tk = B~x. If each Sf^ is a nontrivial
function of at most one variable then we can choose tx = • • • = t4 = 1. This
completes the proof of Theorem 1 for n = 4.

Lemma 7. For n > 4 let ds2 = "2'J^lHj2(dsJ'f be aflat space metric such that
ds2 = Q as2 where as2 = "2j^xhj(dxj)2 is in Stäckel form and satisfies the
Robertson condition. Then the coordinates {xx,..., x") permit R-separation
for the flat space Laplace equation A^ = 0 iff
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252 E. G. KALNINS AND WILLARD MILLER, JR.

Ä-2   nj^+c (3-24)

where R is the scalar curvature corresponding to the metric ds2.

Proof. By Lemmas 2 and 3 the coordinates {xk} permit /{-separation iff
Â2g(„-2)/4 + aß("-2)/4 = 0 where

«-2 -n-+ci>j-i      hj

and Â2 is the Laplace-Beltrami operator corresponding to the metric ds2.
Since ds2 is conformally flat (3.5) holds for ß = e2". Multiplying both sides of
(3.5) by hf2, setting i = j and summing onj we readily obtain

Ä2ß("-2>/4+ 4(" ~   ' /{ß("-2>/4= 0.   Q.E.D. (3.25)

Theorem 2. Let [xk) be a coordinate system for four-dimensional flat space
with metric ds2 = 2j-xHj2(dxJ)2. Then (xk) permits R-separation of variables
for the flat space Laplace equation iff ds2 is conformai to a metric ds2 =
^j-.\hj(dxj)2 such that (1) ds2 is in Stäckel form, (2) ds2 satisfies the Robertson
condition R¡j = 0 (/ ^ j), and (3) the scalar curvature of ds2 can be expressed in
the form (3.24).

It follows from Lemma 1 that the validity of condition (3) is independent of
which metric ds2 is chosen satisfying conditions (1) and (2). Thus to find all
/{-separable systems for the flat space Laplace equation it is sufficient to
compute all conformally flat metrics <¿s2 which satisfy conditions (1) and (2),
and then compute the scalar curvature of each to determine if condition (3) is
satisfied.

Due to the crucial importance of Theorems 1 and 2 in this paper we
indicate an alternate proof of these results. Let the metric ds2 satisfy the
hypotheses of Theorem 1. From Lemmas 4 and 5 it follows easily that
ds2 — hx2ds2 = S^i-H^dx')2 is also in Stäckel form where

H2 = 1,   Hj2 = qJ(xx)^2XJ{Pk + T$)m + T{t), (3.26)

j, k, I = 2, 3, 4 are distinct, and Tx¡, Spy are functions of {xx, xJ} alone.
Indeed the trick of multiplying by hx2 allows us to take/ = [SP^is^iJ-1 in
Lemma 5 and (3.26) follows immediately from (3.7)(b) with i = 1.

Now, fixing the variable xx, we observe that the metric Hi(dx2)2 +
Hf(dx3)2 + Hl(dxAf in [x2, x3, x4) satisfies the Stäckel conditions (3.1) as
well as the Robertson condition for metrics in three variables. These are
precisely the conditions Eisenhart used to classify the possible Stäckel forms
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in three variables [12]. He found that the forms were of four types, the most
complicated of which is

Hj2 = (TXj - Txk)(TXj - Tu)*2j,      j = 2, 3,4, (3.27)
where TXJ is a function of [xx, xJ) alone. (Here we must modify Eisenhart's
results by allowing each function to depend on xx.) Substituting (3.27) into
(3.26) and imposing the remaining conditions (3.7)(b) for / = 2, 3, 4, we can
compute all possibilities for TXJ, SP^. One such solution is

(a, - ak)(ax - a,)HJ = TL-ir-T<K*')>      j,k, I = 2,3,4,

where a, = o¡(x'). Multiplying ds2 by (a, - Oj)(ox — ok)(ox — o,) and absorb-
ing q(xx) through a renormalization of xx we obtain the metric

H2 = (a,. - OjXo, - ok)(ot - a,),       i,j, k,l = 1, 2, 3, 4,       (3.28)

which is conformai to ds2, in Stäckel form, and satisfies the Robertson
condition. A similar case-by-case study employing Eisenhart's other three
standard forms in three variables leads in a straightforward manner to the
exhaustive list (4.1)-(4.7) and verifies Theorem 1.

4. The classification of separable systems. Here we implement the results of
Theorem 2 by constructing (for n = 4) all conformally flat metrics ds2 =
"2h2(dxj)2 which are in Stäckel form and satisfy the Robertson condition
Ry = 0, / ¥= j. It is a straightforward application of Eisenhart's results in [12]
to classify all metrics ds2 which are (1) in Stäckel form, (2) satisfy the
Robertson condition and (3) satisfy (3.8).

The possibilities are

[1]     h2 = Xx(ax-o2), hi = X2(ax - a2),

h\ = X3 (a3 - a4), h] = X4 (0-3 - o-4),

where the functions X¡, a, depend on x' only,

[2]     h2 = Xx(ox-o2), hi = X2(ox - a2),

hî = X3axa2(a3 - a4), hi = A^o-^^ - a4),

[3]     h\ = <J2a3a4, ä| = X2 (a^ + a32)(a24 + a42)

h\ = X3 (a32 + a23)(o34 + o43), hi = X4(o42 + a24)(a43 + a34),

(4.1)

(4.2)

(4.3)
where a,-, is a function of x' alone,

[4]    hf = Xt (a,- - o-y)(a,. - o,)^ - o,), (4.4)
with i,j, k, I distinct,
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[5]      h2x=Xx,hl = çi*1)*^»» + ff32)(*24 + ff42)»

hj = <p(xx)X3(a32 + OnXou + a43), (4.5)

hl = <f>(xX)X4(o42 + 024)(o43 + 034>»

[6]    h2 = Xx,   h2 = X2f(xx),
hj = X3<p(xx)(o3 - a4),   hl = X4<p(xx)(o3 - a4),

[7]    h2 = Xx,   h22 = X2f(xx),   h2 = X3g(xx),
h24 - X4h(xx).

We now examine the remaining conditions imposed by the requirement

CM = RM - \{h2Ru + hfRj,) + \Rhjhf - 0 (4.8)
for / *£j. Using the relations

Ru = 2K Rkuk,   r = jlK R„
k l

we see that (4.8) is equivalent to

2h2h2RjUJ + 2hj2h2Rkllk - h2h2Rm + h2h2Ríkkí

+h?h2kRj„j + h2h2RJkkJ (4.9)
where /,/, k, I are distinct. Writing

Rkiji = hkh,Rjuj + hjhiRux

we can express (4.9) in the form

2BklJl = %,7 + Bujg. (4.10)

Permuting [i,j, k, 1} we obtain two further conditions of this form and the
three conditions are readily seen to be equivalent to

Bktji - Bkj,u - Bkijj- (4-11)

We will substitute the various differential forms [lH?] iQt0 (4.11). Once the
possible conformally flat metrics ds2 have been determined we will compute
the functions ß = e2* from (3.5).

We first consider metrics of type [1]. If all the o, are not constants then the
metric may be taken in the form

h\ = Xx(xx-x2),    h2 = X2(xx-x2),

h2 = X3(x3-x%    h24 = X4(x3-x4), K     }

i.e., we can set a¡ = x' for all i. The condition 51234 = 0 is equivalent to
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+ (xl - X2) = 0.

(4.13)
Differentiating this equation successively with respect to xx we get that
(l/JTj^-Oso

-¿- -/(*') - a(xxf+ b(xxf+ cxx + d;

similarly, (A^-1 = - f(x2). An analogous computation yields

± = Ä(x3) = -a(x3f- e(x3f- gx3 -k,    ± - -h(x<).

If a =£ 0 the metric takes the form

(4.14)

ds2 =
(xx - x2)

4
(dxxf

(xx - ax)(xx - a2)(xx - a3)

(dx2T

(x3 - x4)

(x2 — axj{x2 — a2)(x2 — a3j

2
(dx3)

(x3 - bx)(x3 - b2)(x3 - 63)

<*y
(x*-bx){x*-b2)(x<-b3) (4.15)

This metric corresponds to the choice of elliptic type coordinates related to
the reduction 0(6, Ç) D o(3, C) X o(3, Ç) of the symmetry algebra 0(6, Q of
the Laplace equation. If the roots {0,} are distinct and the roots {b¡} are
distinct we may take ax = a, bx = b, a2 = b2= 1, a3 = b3 = 0. The corres-
ponding four space coordinates can be chosen as

£2 7 £1zx =

z3 =

£1 + Us '
r2 „4 =

Í1 + *3 '
r3 (4.16)

Íi + 'V €i + /fe'
where £2 + £| + £32 = 1 and f f + £2 + £3* = -1. In each case we have
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chosen Lamé type coordinates on the two-sphere S2 according to

f?-
lv-2XX - (*' - i)0 1)

1
n _ (*' - a)(x2 - a)
^ -        a(a - 1)        '

_ v3~4,2=^OÇ_
b '       «-

(*3-l)(*4-l)

6- 1
,a _ (x3 - ¿)(x4 - b)
«3   — *(* -  1)

(4.17)

-2

The function Q is given by

ß =[V- x3x*/b + V- (*3 - ¿>)(*4 - è)/6(ô - 1) ]
Note that the Riemann space is S2 X S2.

When some of the roots are equal in (4.14) the coordinates still take the
form (4.16) but £ and £ are now chosen as other separable systems on the
two-spheres of radii 1 and i respectively [4].

If, alternatively, a = 0 in (4.14) the metric can be taken in the form

ds2 =

+ c

(xx - x2)

4~

(x3 - x4)

(dxxY (dx2Y
(xx - ax)(xx - a2)       (x2 - ax)(x2 - a2)

(dx3)' (dx4)2

(x3 _ ¿i)(x3 _ bi)       {x4 _ ¿i)(x4 _ h) (4.18)

This metric corresponds to the choice of elliptic coordinates related to the
reduction o(6, Ç) d S(2, C) X S (2, Ç). If the roots {a,} and {b¡} are distinct
we may take ax = bx = 1, a2 = b2 = 0. The four space coordinates can be
chosen as

,2\l'/2zx = ß,/2[-(l - (xxf)(l - (x2)2)]    ,   z2= Qx'2xxx\

2XlI/2z3 = cß'/2[ -(l - (x3)2)(l - (x4)2)]    ,   z4 = cQx'2x3x4
(4.19)

where

ß = l    or   ß=[(x')2 + (x2)2-l + c2((x3)2-(x4)2-l)]"2.

(Here the two choices of Q lead to conformally equivalent coordinates.) For
general choices of {a,} and {b¡) the coordinates z' are of the form

zx = Qx'2x,   z2=Qx'2y,   z3=Qx'2x,   z4 = Q1^, (4.20)

where (x,y) and (x,y) are chosen from among the various inequivalent
elliptic coordinate systems in the complex Euclidean plane for which the flat
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space Helmholtz equation separates [2]. Here ß is either 1 or [x2 + y2 + x2
+y2]~2. The case ß = 1 corresponds to flat space E4.

If we allow any of the functions a, in [1] to be constant it is straightforward
to show that we just get special limiting cases of the coordinate systems
already discussed. We refer the reader to the literature [2], [4] for lists of these
systems.

Systems corresponding to metric [2] are conformally equivalent to metric
[1] systems. This can be shown by dividing the metric coefficients by axa2 and
absorbing this factor into Q.

For metrics of type [3], if all the functions a¡ are nonconstant the metric
coefficients can be chosen as

h\ = x2x3x\   h2 = X2 (x2 - x3)(x2 - x4),

hj = X3(x3 - x2)(x3 - x4),   hi = X4(x4 - x2)(x4 - x3).    { *   '

Making the transformation x' -» (x')~x, i = 2, 3, 4, and extracting the factor
\/x2x3x4 we obtain the new metric

h\ =1,   hj = X{ (x2 - x3)(x2 - x4),

hj = X'3 (x3 - x2)(x3 - x4),   h24 = X'4 (x4 - x2)(x4 - x3)     (4.22)

where X{ are new functions of the variables x'. It is also readily seen that if
the a, are nonconstant for a metric of type [5] then this metric can also be
reduced to (4.22). Dropping the primes in (4.22) we now proceed to evaluate
the possible functions X¡. Substituting (4.22) into B34X2 = B23_14 and dividing
by x2 - x4 we obtain the condition

(x2 - x4)

+ (x4 - x3f

+ (x3 - x2f

(x3 - x4)(x3 - x2)( ^ )' + 2(x2 + x4- 2x3)( ^ )1

(x2 - x3)(x2 - x4)( ^ j' + 2(x3 + x4 - 2x2)( ^- )1

(x4 - x2)(x4 - x3)( ^- )' + 2(x2 + x3 - 2x4)( ± ) 1 = 0.

(4.23)
Differentiating this equation twice with respect to x3, x4 and four times with
respect to x2 we find (A"2_1)(5) = 0 so

J- = f(x2) = a(x2)4 + ß(x2)3 + y(x2)2 + Ôx2 + e, (4.24)
A2

and in general A",-1 - fix'), i = 2, 3, 4. If a ¥= 0 we have the metric
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ds2 = (dxx)2 + 2 7- a'(x' - xj)(x' - xk)(dx')2
i-2 {x' - ax)(x' - a2)(x' - a3)(x' - a4)

(U,k*).    (4.25)

This metric corresponds to the choice of elliptic type coordinates related to
the reduction o(6, C) D o(2, Q X o(4, Q. If the roots {a,} are unequal they
may be chosen as a, b, 1, 0, respectively. The corresponding four space
coordinates are

z1 = Fsinh x1,   z2 «■ rj,F,   z3 = r¡2F,   z4 = t\3F,

F = Oto - cosh x1)-1,   tj2, + tj2 + tj| + ij2 = 1,

and the choice of coordinates on the sphere S3 is

(4.26)

vl = -(x2 - ö)(x3 - a)(x4 - a)        2 _ -(x2 - b)(x3 - b)(x4 - b)
(b -a)(l- a)a Ti = (a - b)(\ - b)b

2_ -(x2-l)(x3-l)(x4-l)
■nî = (a - \)(b - 1)

*a - MÎT' (427>

Here

ß =
(x2 - a)(x3 - g)(x4 - a)

(a - b)(l - a)a
1/2

— cosh x1
-2

If some of the roots are equal, this just amounts to a new choice of elliptic
coordinates on the sphere S3: ij • r¡ = 1, see [1]. Here the Riemannian space is
S3 X Ex.

If a = 0 the metric is

,2    i,    (*' - xJ)(x' - xk)(dx')2
ds2 = (dxxf+ 2 T^-rAj-/,    \ - (4.28)

,_2 (x1 - ax)(x' - a2)(x' - a3)

The metric corresponds to the choice of elliptic type coordinates related to
the reduction o (6, C) d S (4, C) d S (3, Q. Here we have assumed for
illustrative purposes that/(z) is a third order polynomial although all metrics
with deg/(z) < 3 correspond to reductions of this type. If all the roots in
(4.28) are distinct we may take ax = a, a2= 1, a3 = 0. The corresponding
choice of four space coordinates is
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zx = Qx'2xx,   z2 = Qx'2

z3=Qx'2

(x2 - d)(x3 - a)(x4 - a) 1
a(a - 1)

(x2- l)(x3- l)(x4- 1) ,,/2

1/2

1 -a
:4= r>'/2

2   3   4X xV 1/2

(4.29)
where

ß = l   or   ß = [(x1)2 + x2 + x3 + x4 - a - l]
-2

(The two choices for ß yield o (6, Q-equivalent coordinates.) For general
cases of type [3] metrics it is straightforward but lengthy to show that no new
coordinates appear. For metrics of type [5] allowing some of the functions o0
to be constant produces systems which run through the various separable
coordinates on the sphere S3 [1], [2]. Here, with Q = 1, the Riemannian space
is flat.

For metrics of type [4] we can take a, = x' and substitute the metric
coefficients into BX234 = Bx324 to get

4
2/-i2 [(*' - xJ)(x' - xk)(xJ - X*)]

• i(x'-x')(*'-*')(*'-**)(^)

- 2[3(x')2 - 2x'(x'' + xJ + x*)

+ (jcV + x'x* + x/x*)]( y \] = 0   (4.30)

where [i,j, k, I) is an even permutation of {1, 2, 3, 4}. These equations have
the general solution

Y = /(*') - 2 am(x')m,      i = 1,2, 3,4. (4.31)

If a6 =£ 0 then it is always possible to take a0 = 0 and change coordinates
according to x' -* (x')-1- Pulling out the factor (x'x2x3x4)_1 we see that X¡~x
can quite generally be taken such that a6 = 0. The metric is then

,      4   (x' - x^)(x'' - x*)(x' - x')       , 2
ds2 = 2-_;    , ,■     ;\-L (dx'f./-i n^_i(x' - ap) (4.32)

This metric corresponds to the various types of elliptic coordinates possible
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on the sphere S4 related to the reduction 0(6, Q D o(5, Q. If the {ap} are all
distinct then the four space coordinates are

z' - Q x/\,       i - 1, 2, 3, 4,   ß = (1 + r,5)-2, (4.33)

2 vf -1.
The coordinates on S4 are

n4_,.(x^' - a)
nf - J,   \a       '! ■ (4-34)11^,(0/ - Oj)

When some of the roots are equal then (4.32) corresponds to one of the
various degenerate elliptic type coordinates on S4 [3], [4]. (It is interesting to
note that the {x-'} in these cases are the general cyclidic coordinates in which
the Laplace equation separates [4]. We have shown that these cyclidic
coordinates correspond to elliptic coordinates on S4.)

If deg/(z) < 4 the resulting differential form corresponds to various types
of elliptic coordinates in flat space which are related to the reduction
0(6, Q D & (4, C) [2], [4]. If deg/(z) = 4 with distinct roots then

2    - nL,^ - a,)
(Z >      U Rj^a, - a,) '

4 nl_,(x>-<0
2=1 Mß,/!-,?,tW-      (435)

(The two choices of ß are 0(6, C) equivalent.) If some of the roots are equal
to deg/(z) < 4 the resulting coordinates are of the form z' = Qx/2z' where
the (z'} are separable flat space coordinates and ß = (24_1(z')2)~2.

This completes our classification of separable systems for the Hamilton-
Jacobi equation (l.l)(b). Since each of the Riemannian spaces E4, S2 X 52,
S3 X Ex, S4 which arise in this classification has constant scalar curvature R,
it follows from Theorem 2 that all these systems permit /{-separation for the
Laplace equation (l.l)(a).

Theorem 3. An orthogonal coordinate system permits separation of variables
for the flat space Hamilton-Jacobi equation

4     /   ^Tir\2 4,?,(f H *!=,?r>!
iff it permits R-separation for the Laplace equation

2^ = 0.
1-1   9(z')
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Furthermore the metric associated with each such coordinate system {x7} can be
written as

ds2 = ß ds2 = Q

«2

2 h2(dx'f

where ds permits true separation of variables for the Helmholtz equation
A2$ = £$ on one of the manifolds: (1) E4, (2) S2 X S2, (3) S3 X Ex, (4) S4. All
separable systems on these manifolds permit R-separation for the Laplace
equation.
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