
R-Storm: Resource-Aware Scheduling in Storm

Boyang Peng
University of Illinois,
Urbana-Champaign

bpeng@illinois.edu

Mohammad Hosseini
University of Illinois,
Urbana-Champaign

shossen2@illinois.edu

Zhihao Hong
University of Illinois,
Urbana-Champaign

hong64@illinois.edu

Reza Farivar
Yahoo! Inc.

rfarivar@yahoo-inc.com

Roy Campbell
University of Illinois,
Urbana-Champaign

rhc@illinois.edu

ABSTRACT

The era of big data has led to the emergence of new systems
for real-time distributed stream processing, e.g., Apache Storm
is one of the most popular stream processing systems in in-
dustry today. However, Storm, like many other stream pro-
cessing systems lacks an intelligent scheduling mechanism.
The default round-robin scheduling currently deployed in
Storm disregards resource demands and availability, and
can therefore be inefficient at times. We present R-Storm
(Resource-Aware Storm), a system that implements resource-
aware scheduling within Storm. R-Storm is designed to in-
crease overall throughput by maximizing resource utilization
while minimizing network latency. When scheduling tasks,
R-Storm can satisfy both soft and hard resource constraints
as well as minimizing network distance between components
that communicate with each other. We evaluate R-Storm
on set of micro-benchmark Storm applications as well as
Storm applications used in production at Yahoo! Inc. From
our experimental results we conclude that R-Storm achieves
30-47% higher throughput and 69-350% better CPU utiliza-
tion than default Storm for the micro-benchmarks. For the
Yahoo! Storm applications, R-Storm outperforms default
Storm by around 50% based on overall throughput. We
also demonstrate that R-Storm performs much better when
scheduling multiple Storm applications than default Storm.

Categories and Subject Descriptors

1.1 [Middleware for emerging cloud computing plat-
forms]; 1.2 [Middleware for data-intensive computing
(Big Data)]; 2.5 [Real-time solutions and quality of
service]

General Terms

Distributed Computation, Scheduling

Keywords

Storm, Resource-Aware Scheduling, Stream Processing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
Middleware’15, December 07-11, 2015, Vancouver, BC, Canada
c©2015 ACM ISBN 978-1-4503-3618-5/15/12 ...$15.00

DOI: http://dx.doi.org/10.1145/2814576.2814808.

1. INTRODUCTION
As our society enters an age dominated by data, process-

ing large amounts of data in a timely fashion has become a
major challenge. As of 2012, 2.5 exabytes (2.5×1018) of data
were created every day [9], which increased to 2.3 zettabytes
(2.3×1021) of data as of 2014 [10]. This number is projected
to grow rapidly in the next few years as smart devices such
as smartphones become more and more popular.

In the past decade, distributed computation systems such
as [2] [3] [4] [5] [22] have been widely used and deployed
to handle big data. Many systems, like Hadoop, have a
batch processing model which is intended to process static
data. However, a demand has arisen for frameworks that
allow for processing of live streams of data and answering
queries quickly. Users want a framework that can process
large dynamic streams of data on the fly and serve results
to potential customers with low latency.

Storm is a distributed computation system built to ad-
dress this concern. Storm is an open source distributed real-
time computation system, for which the goal is to reliably
process unbounded streams of data in an easy to program
framework. What Hadoop has done for Big Data batch pro-
cessing [6], Storm is effectively poised to do for real-time
processing.

Currently, the Storm platform uses pseudo-random round
robin task scheduling and task placement on physical ma-
chines. This default scheduling algorithm is simplistic and
not optimal in terms of throughput performance and re-
source utilization. Default Storm does not consider resource
availability in the underlying cluster or resource requirement
in the of Storm topologies when scheduling. A Storm ap-
plication or topology (defined in Section 2) is a user-defined
application that can have any number of resource constraints
for it to run.

Not considering resource demand and resource availabil-
ity when scheduling can be problematic. The resource on
machines in the cluster can be easily over-utilized or under-
utilized which can cause problems ranging from catastrophic
failure to execution inefficiency. For example, a Storm clus-
ter can suffer a potentially unrecoverable failure if certain
executors attempt to use more memory than is available.
Over-utilization of resource other than memory can also
cause the execution of applications to grind to a halt. Under-
utilization decreases resource utilization and can cause un-
necessary expenditures in operating costs of a cluster. Thus,
to maximize performance and resource utilization, an intel-
ligent scheduler must take into account resource availability
in the cluster as well as resource demand/requirement of a

storm application in order to calculate an efficient schedul-
ing.

In this paper, we present the design of R-Storm that
implements resource-aware scheduling in Storm. R-Storm
significantly outperforms the default Storm as demonstrated
in our evaluation. The paper is organized in the following
manner: In Section 2, we provide an overview of Storm. In
Section 3, we discuss the problem and provide the problem
definition and formulation. Later in Section 4, we describe
in detail the algorithms R-Storm uses for its resource-aware
scheduling in Storm. In Section 5, we provide an overview
on the architecture and implementation of R-Storm as well
as a description of the User API we have implemented. In
Section 6, we provide an evaluation of R-Storm. In Section
7, we discuss the body of related research work, and Section
8 includes our concluding comments.

Our work makes the following contributions: 1) We have
created a system called R-Storm that, to the best of our
knowledge, is the first system to implement resource-aware
scheduling within Storm. R-Storm is able to support both
hard and soft resource constraints. 2) We evaluate the per-
formance of R-Storm on a range of micro-benchmarks as
well as applications used in industry to demonstrate that R-
Storm outperforms the default Storm in both overall through-
put as well as resource utilization. We also demonstrate that
R-Storm is able to efficiently schedule multiple topologies.

2. BACKGROUND
Storm is a distributed processing framework that can pro-

cess incoming live data in real-time [6]. Storm processes
real-time data via “topologies”. A Storm topology is a com-
putation graph that provides a logic view of the data flow
and how the data is processed. Similar to a Map-Reduce
job, Storm jobs typically fragment the input dataset into
independent chunks which are processed by the tasks. One
major difference is that a MapReduce job finishes ultimately,
while in Storm, a topology runs forever until it is killed. Fig-
ure 1 provides an example of a Storm topology. We define
a list of terms used in Storm:

• Tuples - The basic unit of data that is processed.

• Stream - an unbounded sequence of tuples.

• Component - A processing operator in a Storm topol-
ogy that is either a Bolt or Spout (defined later in the
paper)

• Tasks - A Storm job that is an instantiation of a Spout
or Bolt (defined later in the paper).

• Executors - A thread that is spawned in a worker pro-
cess (defined later) that may execute one or more tasks.

Worker Process - A process spawned by Storm that
may run one or more executors.

An processing vertex or operator in Storm is called a com-
ponent. A Storm topology contains two basic components:
Spouts and Bolts.

1. Spout - This type of component is a source of data
streams and it emits an unbounded number of tuples
further downstream in the topology. For example, a
spout can be programmed to receive or read live fi-
nancial data from the stock market and transform that

Figure 1: An Example of Storm topology

data into tuples and emit them to be processed in some
meaningful way further down in the Storm topology.

2. Bolt - This is a component that consumes, processes,
and potentially emits new streams of data. A bolt can
consume any number of input streams from spouts or
other bolts, do some processing on the received data,
and potentially emit new streams to be received and
processed downstream. Bolts can filter tuples, perform
aggregations, carry out joins, query databases, and in
general, any user-defined functions. Multiple bolts can
work together to compute complex stream transforma-
tions that may require multiple steps, like computing
a stream of trending topics in tweets from Twitter [6].

A Storm Cluster has two types of nodes:

1. Master Node – This is the node responsible for schedul-
ing tasks among worker nodes and also maintains an
active membership list to ensure reliable fault-tolerant
processing of data. The master node runs a daemon
called “Nimbus”. Nimbus communicates and coordi-
nates with Zookeeper [7] to maintain a consistent list of
active worker nodes and to detect failure in the mem-
bership.

2. Worker Node - Most machines in a Storm cluster are
worker nodes. Each worker node runs a daemon called
the “Supervisor”. The supervisor continually listens
for the master node to assign it tasks to execute. Each
worker contains many worker processes which are the
actual containers for tasks to be executed. A worker
node can have any number of worker processes execut-
ing on it to facilitate multiplexing.

Links between components in a Storm topology indicate
how tuples are passed around. For example, if there is a
directed link from a component A to a component B, that
means component A will send to component B a stream of
tuples. Each component in a Storm topology can be paral-
lelized to potentially improve throughput. The user needs to
explicitly specify a parallelization hint for each component
to set how many concurrent tasks to run for that compo-
nent. Each of these concurrent tasks that is parallelized
from a component contains the same processing logic but
may be executed at different physical locations and receive
data from different sources. Figure 2 provides an example.

Storm’s default Storm scheduler, which is a part of Nim-
bus daemon on the master node, will place tasks of bolts

Figure 2: Intercommunication of tasks within a Storm topol-
ogy

Figure 3: An example Storm machine

and spouts on worker nodes running worker processes in a
round robin manner so tasks from a single bolt or spout will
most likely be placed on different physical machines. Fig-
ure 2 shows the intercommunication of tasks organized by
component, however the actual intercommunication relative
to the physical network and machines can be quite differ-
ent. Figure 3 shows a example of a Storm cluster of three
machines running the topology shown in Figure 2. In Fig-
ure 3, tasks are scheduled in a round robin fashion across all
available machines.

3. PROBLEM DEFINITION
The gist of problem we are trying to solve is how to best

assign tasks to machines. Each task has a set of certain
resource requirements and each machine in a cluster has a
set of resources that are available. Given these resource re-
quirements and resource availability how can we create a
scheduling such that, for all tasks, every resource require-
ment is satisfied if possible. Thus, the problem becomes find
a mapping of tasks to machines such that every resource re-
quirement is satisfied and at the same time no machine is
exceeding its resource availability.

In this work, we consider three different types of resources:
CPU usage, memory usage, and bandwidth usage. We de-

fine CPU resources as the projected CPU usage or avail-
ability percentage, memory resources as the megabytes used
or available, and bandwidth as the network distance be-
tween two nodes. We classify them as two different classes:
hard constraints and soft constraints. Resources labeled
as hard constraints must be satisfied to its full amount,
while resources labeled as soft constraints may not be com-
pletely satisfied, however, we aim to minimize the number
and amount of soft constraints that are violated. In the con-
text of our system, CPU and bandwidth budgets are con-
sidered soft constraints as they can be overloaded, while the
memory is considered as a hard constraint as we cannot ex-
ceed the total amount of available memory on a machine.

In general, the number of constraints to use and whether
a constraint is soft or hard is specified by the user. The
reasoning behind having hard and soft constraints is that
some resources have a graceful degradation of performance
while others do not. For example, the performance of com-
putation and network resources degrade as over utilization
increases. However, if a system attempts to use more mem-
ory resources than physically available the consequences are
catastrophic. We have also identified that to improve per-
formance sometimes it is beneficial to over utilize one set of
soft-constrained resources but gain better utilization of an-
other set of soft-constrained resources. We assume that for
each node of the cluster there is a specific limited budget for
these resources. Similarly, each task specifies how much of
each type of resource it needs. Thus, this problem can es-
sentially be modeled as a linear programming optimization
problem as we discuss next.

Let T = (τ1, τ2, τ3, . . .) be the set of all tasks within a
topology. Each task τi has a soft constraint CPU require-
ment of cτi , a soft constraint bandwidth requirement of bτi ,
and a hard constraint memory requirement of mτi . We dis-
cuss the notion of soft and hard constraints more in the next
section. Similarly, let N = (θ1, θ2, θ3, . . .) be the set of all
nodes, which correspond to total available budgets of W1,
W2, and W3 for CPU, bandwidth, and memory. For the
purpose of quantitative modeling, let the throughput con-
tribution of every sink component to be Qθi defined as the
rate of tuples being processed at that node. The goal is
to assign tasks to a subset of nodes N ′ ⊆ N that increases
the total throughput by maximizing resource utilization and
minimizing network latency while at the same time not cre-
ating schedulings that will exceed the budgets W1, W2, and
W3. In other words

Maximize
∑

i∈clusters

∑

j∈nodes

Qθij

s.t.
∑

i∈clusters

∑

j∈nodes

cτij ≤W1,

and
∑

i∈clusters

∑

j∈nodes

bτij ≤W2,

and
∑

i∈clusters

∑

j∈nodes

mτij ≤W3.

(1)

which is simplified into

Maximize {N ′⊆N}

∑

θ∈N ′

Qθi subject to

∑

τi∈N ′

cτi ≤W1,
∑

τi∈N ′

bτi ≤W2,
∑

τi∈N ′

mτi ≤W3.
(2)

This selection and assignment scheme is a complex and
a special variation of Knapsack optimization problem. The
well-known binary Knapsack problem is NP-hard but effi-
cient approximation algorithms can be utilized (fully poly-
nomial approximation schemes), so an approach is compu-
tationally feasible. However, the binary version, which is
the most common Knapsack problem only considers a single
constraint and enables only a subset of the tasks to be se-
lected, which is not desired as we need to assign all the tasks
to the nodes, considering that there are multiple constraints.
To overcome the shortcomings of the binary Knapsack ap-
proach, we need to formulate the problem as other varia-
tions of the Knapsack problem, that eventually assigns all
the tasks to nodes. In our problem formulation we identify
three challenges.

The first challenge is the fact that our problem consists of
multiple knapsacks (i.e. clusters and corresponding nodes).
This may seem like a trivial change, but it is not equiva-
lent to adding to the capacity of the initial knapsack. This
variation is used in many loading and scheduling problems
in Operations Research [13]. Thus our problem corresponds
to a Multiple Knapsack Problem (MKP), in which we assign
tasks to multiple different constrained nodes.

The second challenge that we need to consider in our for-
mulation is that if there is more than one constraint for each
knapsack (for example, given knapsack scenario, both a vol-
ume limit and a weight limit, where the volume and weight
of each item are not related), we get the multidimensional
knapsack problem, orm-Dimensional Knapsack Problem. In
our problem, we need to address 3 different resources (i.e.
CPU, bandwidth, and memory constraints) which leads to
a 3-Dimensional Knapsack Problem.

The third challenge that we need to consider is that given
the topology, assigning two successive tasks on the same
node is more efficient than assigning them on two different
nodes, or even two different clusters. This is another special
variation of knapsack problem, called Quadratic Knapsack
Problem (QKP) introduced by Gallo et al. [17] [29], which
consists in choosing elements from n items for maximizing
a quadratic profit objective function subject to a linear ca-
pacity constraint.

Our problem is aQuadratic Multiple 3-Dimensional Knap-
sack Problem (we call it QM3DKP). Different variations of
the knapsack problem has been applied to certain contexts.
Y. Song et al. in their paper [27] investigated the multi-
ple knapsack problem and its applications in cognitive ra-
dio networks. Hosseini et al. [19–21] applied the concept of
multiple-choice knapsack problem to the context of multime-
dia streaming applications to save bandwidth and energy. X.
Xie and J. Liu in their paper [30] studied QKP, while also
in [15], the authors applied the concept of m-dimensional
knapsack problem to the packet-level scheduling problem
for a network, and proposed an approximation algorithm
for that.

Many algorithms have been developed to solve various
knapsack problems using dynamic programming [11] [24],
tree search (such as A*) techniques used in AI [18] [26], ap-

proximation algorithms [14] [16], and etc. However, these
algorithms will not necessarily produce a solution that over-
comes all the challenges we laid out for our problem. More-
over, these algorithms are constraining in terms of computa-
tional complexity even though some algorithms have pseudo
polynomial runtime complexity. Most, if not all, of these
algorithms would require much more time to compute a
scheduling that than necessarily available in a distributed
data stream system. Since data stream systems like Storm
are required to respond to events as close to real-time as pos-
sible, scheduling decisions need to be made in a snappy man-
ner. The longer the scheduling takes to compute, the longer
the downtime an application will have. Moreover, if there
are failures in the Storm cluster and executors need to be
rescheduled, the scheduler must be able to produce another
scheduling quickly. If executors are not rescheduled quickly,
whole topologies my be stalled, or worst, catastrophic and
cascading failures might occur do to overflowing of message
queues.

Thus, we need a scheduling algorithm that can schedule
all tasks to multiple nodes and at the same time respect all
resource requirements while with a high probability sched-
ule two successive tasks on the same node. The algorithm
needs to be simple with low overhead for it to be suitable
for real-time requirements of Storm applications. In the next
section, we discuss the details of R-Storm and how it sched-
ules tasks within Storm.

4. R-STORM SCHEDULING ALGORITHM
As discussed in the previous section, producing an optimal

solution to our resource-aware scheduling problem in Storm
can be very difficult and computationally infeasible. There-
fore, we need simpler yet effective algorithms that circum-
vents the challenges involved in solving knapsack problems
and more specifically the Quadratic Multiple 3-Dimensional
Knapsack Problem in our case.

In our pursuit of designing a scheduling algorithm, we
made some important observations about the environment
in which Storm is running in. Storm is usually deployed in
data centers where servers are placed on a rack connected to
each other by a top-of-rack switch. The top-of-rack switch
is also connected to another switch which connects server
racks together. The network layout can be represented by
Figure 4. We also gained some insight into how communi-
cation latency is affected by the network distance.

To consider intercommunication demands for our formu-
lation, we designed our scheduling algorithm around the in-
sight:

1. Inter-rack communication is the slowest

2. Inter-node communication is slow

3. Inter-process communication is faster

4. Intra-process communication is the fastest

As discussed in the previous section, let T = (τ1, τ2, τ3, . . .)
be a topology. A task has a set of resource requirement
needed in order to execute. Thus, a task τi has two soft
resource constraints cτi and bτi and a hard resource con-
straint mτi . A cluster can be represented as a set of nodes
N = (θ1, θ2, θ3, . . .). Every node has a specific available
memory, CPU, and network resources. A node θi has a

Figure 4: Typical cluster layout

resource availability denoted by cθi ,bθi , and mθi for CPU,
bandwidth, and memory, respectively.

Therefore, the resource demand for a task τi can be de-
noted as a set or 3-dimensional vector:

Aτi = {mτi , cτi , bτi}
and a set of soft constraints:

Sτi = {cτi , bτi}
and set of hard constraints:

Hτi = {mτi}
Such that

Hτi ⊆ Aτi

Sτi ⊆ Aτi

and,

Aτi = Sτi ∪Hτi

The resource availability of a node θi can be denoted as a
set or 3-dimensional vector:

Aθi = {mθi , cθi , bθi}
and a set of soft constraints:

Sθi = {cθi , bθi}
and set of hard constraints:

Hθi = {mθi}
Such that

Hθi ⊆ Aθi

Sθi ⊆ Aθi

and,

Aθi = Sθi ∪Hθi

This formulation can easily be generalized to model the
resource availability of a node and the resource demand of a
specific task as a n-dimensional vector residing in R

n. Each
soft constraint can have a weight attached to it, such that:

|Weights| = |S|
S

′

= Weights · S
The reason for allowing constraints to be weighted is so

that values can be normalized for comparison, as well as for
allowing users to decide which constraints are more valued.

Figure 5: An example node selection in a 3D resource space

Algorithm 1 R-Storm Schedule

1: procedure Schedule

2: taskOrdering ← TaskSelection(())
3: for each Task τ in taskOrdering do
4: Node n← NodeSelection(τ , cluster)
5: schedule(τ , n);
6: end for
7: end procedure

4.1 Algorithm Overview
Given a Storm topology T consisting of a set of tasks

(τ1, τ2, τ3, . . .) and a cluster N consisting of a set of nodes
(θ1, θ2, θ3, . . .) where each node θi has a corresponding vector
Aθi representing the node’s resource availability. For each
task τiǫT and its corresponding resource demand vector Aτi ,
the algorithm determines which node to schedule a task on.
Assuming that each resource corresponds to an axis, we find
the node Aθi that is closest in Euclidean distance to Aτi

such that Hθi > Hτi for all hard constraints, so that no hard
constraints are violated. We choose θi as the node where we
schedule task τi, and then update the available resources
left on Aθi . We continue this process until all tasks get
scheduled on nodes. Our proposed heuristic algorithm has
the following properties:

1. Tasks of components that communicate will each other
will have the highest priority to be scheduled in close
network proximity to each other.

2. No hard resource constraints is violated.

3. Resource wastes on nodes are minimized.

Figure 5 shows a visual example of a selected minimum-
distance node to a given task in the 3D resource space, while
the hard resource constraint (i.e. Z axis) is not violated.

Our algorithm consists of two core parts, task selection
and node selection. Algorithm 1 depicts the pseudo-code
for scheduling procedure in R-Storm. When scheduling, R-
Storm first obtains a ordered list of tasks to be scheduled
via TaskSelection procedure (Algorithm 1 line 2). Then, for
each task in the ordered list, we find a node on which the
task will run via the NodeSelection procedure (Algorithm 1
line 3-6). Please note that the actual assignment of task to

Algorithm 2 Topology Traversal

1: procedure BFSTopologyTraversal(Component
root)

2: queue; % queue of Components
3: visted; % list of Components
4: if root == null then

return null

5: end if
6: queue.add(root)
7: visted.add(root)
8: while queue is not empty do
9: Component com← queue.remove()
10: for each Component n in com.neighbor do
11: if visited does not contain n then %check

whether visited or not
12: queue.add(n);
13: visited.add(n)
14: end if
15: end for
16: end while

return visited

17: end procedure

Algorithm 3 Task Selection

1: procedure TaskSelection

2: components← BFSTopologyTraversal(root)
3: while taskOrdering does not contain all tasks do
4: for each Component c in components do
5: if c has tasks then
6: Task τ ← c.getTask()
7: taskOrdering.add(τ)
8: c.removeTask(τ)
9: end if
10: end for
11: end while

return taskOrdering

12: end procedure

node is done in an atomic fashion after the schedule mapping
between all tasks to nodes has been determined. Next, we
explain the process of task selection and node selection in
detail.

4.1.1 Task Selection

In this section, we discuss in detail how we determine the
ordering in which tasks are scheduled. Algorithm 3 depicts
the pseudo-code for the whole task selection procedure. The
first part of task selection is determining how to traverse
the directed graph representing a Storm topology as well
as where to start the traversal. The location at which the
traversal of the topology starts should be related to how im-
portant the set of components in that location is in respect
to the rest of the topology. A number of heuristics can be
used to determine the starting point, however, for simplicity,
in our algorithm, we start traversing the topology starting
from the spouts since the performance of spout(s) impacts
the performance of the whole topology. As for the traver-
sal algorithms, we use breadth first search (BFS) traversal.
Since BFS traverses one level at a time, we use BFS traversal
to create an partial ordering of components in which adja-
cent components will be placed in close succession to each

Algorithm 4 Node Selection

1: procedure NodeSelection(Task τ , Cluster cluster)
2: Aθ: set of all nodes θi in the n-dimensional

space %(n=3 in our context)
3: Aτ : set of all tasks τi in the n-dimensional

space %(n=3 in our context)
4: Aθi : n-Dimensional vector of resource availability on

each node θi , such that Aθi ∈ Aθ

5: Aτi : n-Dimensional vector of resource availability for
each task τi , such that Aτi ∈ Aτ

6: if global refNode == null then
7: ServerRack s ←

findServerRackWithMostResources(cluster)
8: refNode← findNodeWithMostResources(s)
9: end if
10: select Aθj such that:

Aθj = min d(Aτi , Aθj) ∀Aθj ǫ Aθ given

d(λ, λ2) ← Distance(τi, θj), Hθj > Hτi %for all hard
resource constraints

return θj
11: end procedure
12: procedure distance(Task τi, Node θj)
13: distance← weightm∗(mτi−mθj)

2+weightc∗(cτi−
cθj)

2 + weightb ∗ (newtorkDistance(refNode, θj))

return
√
distance

14: end procedure

other. Algorithm 2 depicts the pseudo-code for our BFS
traversal of a Storm topology.

Once we have obtained a partial ordering of components
from the BFS traversal, we create an partial ordering of
tasks. Lines 3-12 in Algorithm 3 depicts this process. To
create the ordering of tasks, we first iterate through ordered
list of components we obtained from BFS traversal (Algo-
rithm 3 line 3). For each component we iterated, we get one
task from this component and add it to our taskOrdering

list. We keep iterating through the ordered list of compo-
nents until we have added all tasks into taskOrdering. Or-
dering tasks to be scheduled in this fashion will ensure that
tasks from adjacent components will be scheduled as close
together as possible, thus fulfilling the first desired property
of our scheduling algorithm that we listed in the previous
section.

4.2 Node Selection
After we have obtained an ordered list of tasks to sched-

ule, we need to determine on which node to schedule each
task. Algorithm 4 depicts the pseudo-code for node selec-
tion. After a task is selected to be scheduled, a node needs to
be selected to run this task by invoking the NodeSelection

procedure in Algorithm 4. If the task that needs to be sched-
uled is the first task in a topology, find the server rack or
sub-cluster with the most available resources. Afterwards,
find the node in that server rack with the most available
resources and schedule the first task on that node which we
refer to as the Ref Node (Algorithm 4 lines 6-9). For the
rest of the tasks in the Storm topology, we find nodes to
schedule based on the Distance procedure in Algorithm 4
with our bandwidth attribute bθi defined as the network dis-
tance from Ref Node to node θi. The Distance procedure
calculates the Euclidean distance between the resource re-

Figure 6: R-Storm Architecture Overview.

quirement vector of a task τi and the resource availability
vector of a node θj . By selecting nodes in this manner, tasks
will be patched as tightly on or closely around the Ref Node
as resource constraints allow, which minimizes the network
latency of tasks communicating with each other. This pro-
cess is visual depicted in Figure 5.

5. IMPLEMENTATION
We have implemented R-Storm as a custom version of

Storm. We have modified the core Storm code to allow phys-
ical machines to send their resource availability to Nimbus.
The core scheduling functions of R-storm is implemented as
a custom scheduler in our custom version of Storm. A user
can create a custom scheduler by creating a Java class that
implements a predefined IScheduler interface. The sched-
uler runs as part of the Storm Nimbus daemon. A user
specifies which scheduler to use in a YAML formated config-
uration file call storm.yaml. The Storm scheduler is invoked
by Nimbus periodically, with a default time period set to 10
seconds. Storm Nimbus is a stateless entity and thus, any
Storm scheduler does not have any mechanism to store any
information across multiple invocations. The architecture of
R-Storm is graphically depicted in Figure 6.

5.1 Core Architecture
Our implementation of R-Storm has three modules:

1. StatisticServer - This module is responsible for collect-
ing statistics in the Storm cluster, e.g., throughput on
a task, component, and topology level. The data gen-
erated in this module is used for evaluative purposes.

2. GlobalState - This module stores important state in-
formation regarding the scheduling and resource avail-
ability of a Storm Cluster. This module will hold infor-
mation about where each task is placed in the cluster.
This module also stores all the resource availability in-
formation of physical machines in the cluster and the
resource demand information of all tasks for all Storm
topologies that are scheduled or needs to be scheduled.

3. ResourceAwareScheduler - This module is the custom
scheduler that implements IScheduler interface. This
class starts and initializes the StatisticServer and Glob-
alState modules. This module also contains the imple-
mentation of the core R-Storm scheduling algorithm.

5.2 User API
We have designed a list of APIs for the user to specify the

resource demand of any component and the resource avail-
ability of any physical machine. For a Storm topology, the
user can specify in the topology application code the amount
of resources a topology component (i.e. Spout or Bolt) is re-
quired to run a single instance of the component by using
the following API calls.

public T setMemoryLoad(Double amount)

Parameters:

• Double amount – The amount of on memory an in-
stance of this component will consume in megabytes.

public T setCPULoad(Double amount)

Parameters:

• Double amount – The amount of on CPU an instance
of this component will consume.

Example of Usage:

SpoutDeclarer s1 = builder.setSpout("word", new

TestWordSpout(), 10);

s1.setMemoryLoad(1024.0);

s1.setCPULoad(50.0);

Next, we discuss how to specify the amount of resources
available on a machine. An administrator can specify a ma-
chine’s resource availability by modifying the conf/storm.yaml
file located in the storm home directory of that machine.

A administrator can specify how much available mem-
ory a machine has in megabytes by adding the following
to storm.yaml

supervisor.memory.capacity.mb: [amount<Double>]

A administrator can specify how much available CPU a ma-
chine has adding the following to storm.yaml

supervisor.cpu.capacity: [amount<Double>]

(a) Layout of Linear Topology (b) Layout of Diamond Topology (c) Layout of Star Topology

Figure 7: Layout of Micro-benchmark Topologies

(a) Linear Topology (b) Diamond Topology (c) Star Topology

Figure 8: Experimental results of Network-bound Micro-benchmark Topologies

Example of usage:

supervisor.memory.capacity.mb: 20480.0

supervisor.cpu.capacity: 100.0

Currently, the amount of CPU resources a component re-
quires or is available on a machine is represented by point
system since CPU usage is a difficult concept to define. Dif-
ferent CPU architectures perform differently depending on
the task at hand. The point system is a rough estimate of
what percentage of CPU core a task is going to consume.
Thus, for a typical situation, the CPU availability of a node
is set to 100 ∗ # of cores. For the purposes of this paper,
we are assuming that the Storm cluster is homogeneous.

6. EVALUATION
In this section, we discuss how we evaluated the perfor-

mance of R-Storm. We first present an overview of our ex-
perimental setup, followed by a comparison of performance
of the R-Storm versus the default Storm measured on a va-
riety of micro-benchmark Storm topologies. Next, we com-
pare the performance of R-Storm with default Storm on two
Storm topologies used in production at Yahoo! Inc. We
also present an evaluation of R-Storm scheduling multiple
topologies.

6.1 Experimental Setup
We aim to evaluate our scheduling algorithm in a simu-

lated real world environment where a Storm cluster is com-

posed of machines from more than one server rack. We used
Emulab [8] to run our experiments. Emulab is a network
testbed which provides researchers with a wide range of envi-
ronment to develop, debug, and evaluate their experimental
system.

In our Emulab experimental setup, the Storm cluster con-
sists of a total of 13 machines. One machine is designated
as the master node, i.e. runs Storm Nimbus and Zookeeper,
while the other 12 machines are worker nodes. To emu-
late the latency of inter-rack communication, we create two
VLANs, with each VLAN holding 6 machines. The latency
cost of the inter-rack communication is 4ms for a round trip
time. Each machine runs on Ubuntu 12.04 LTS with a sin-
gle 3GHz processor, 2GB of RAM, 15K RPM 146GB SCSI
disks, and is connected via 100Mbps network interface cards.

6.2 Experiment Results
We evaluate the performance of R-Storm by comparing

the throughput of a variety of topologies scheduled by R-
Storm against Storm’s default scheduler. To be comprehen-
sive in our evaluation, we conduct our experiments using
both common micro-benchmark Storm topologies, as well as,
actual Storm topologies deployed in industry. For our evalu-
ation, the throughput of a topology is the average through-
put of all output bolts which tends to be farthest down-
stream components in a Storm topology. Our experiments
are run for an average of 15 minutes by which the through-
put of the Storm Topology that is being evaluated should
have stabilized and converged.

(a) Linear Topology (b) Diamond Topology (c) Star Topology

Figure 9: Experimental results of Computation-time-bound Micro-benchmark topologies

Figure 10: CPU Utilization Comparison

6.3 Micro-benchmark Storm Topologies: Lin-
ear, Diamond, and Star

To fairly evaluate R-Storm, we created Micro-benchmark
topologies representing commonly found topologies, namely
Linear Topology, Diamond Topology, and Star Topology. These
Storm Topologies are visually depicted in Figures 7a, 7b,
and 7c. The Linear Topology is similar to the evaluation
topology used in a related work on Storm scheduling [25].

Among the three resources (i.e. memory, CPU, network)
we consider for our evaluation, the performance of a topol-
ogy is majorly influenced by CPU and network resources.
Since a Storm topology executes as fast as it can, the perfor-
mance of the topology is likely to be bounded by either the
maximum performance of the CPU or network. Thus, Storm
topologies can be classified into categories: 1) topologies
bounded by network resources and 2) topologies bounded
by computation time. When a workload is bound by net-
work resource usage, the overall throughput is limited by
the amount network bandwidth and latency. On the other
hand, for a workload that is bounded by computation time,
the overall throughput is limited by the processing time of
each tuple.

We first present the results of the micro-benchmark topolo-
gies that are configured to be network resource bound and
then we present the results of the micro-benchmark topolo-
gies that are configured to be computation time bound.

6.3.1 Network Resource Bound

In this scenario, we have configured the micro-benchmark
topologies to do very little processing at each component.
Thus, the overall throughput is limited by the network speed
in which tuples get sent through the network. Figure 8a, 8b,
and 8c compare the throughput of schedulings done by R-

Storm versus that of Storm’s default scheduler for the Lin-
ear, Diamond, and Star Topologies, respectively. The per-
formance of those Storm topologies scheduled by R-Storm
is significantly higher compared to the schedulings done by
Storm’s default scheduler. As seen in the results, schedul-
ing computed by R-Storm provides on average of around
50%, 30%, and 47% higher throughput than that computed
by Storm’s default scheduler, for the Linear, Diamond, and
Star Topologies, respectively. The significant improvement
in throughput when using R-Storm can be attributed to R-
Storm’s ability to minimize network communication latency
by colocating tasks that communicate with each other to the
same machine or same server rack.

6.3.2 Computation Time Bound

In this scenario, the overall throughput of the micro -
benchmark topologies are bounded by the computation time
spent at each component. We have configured each compo-
nent for the micro-benchmark topologies to conduct a signif-
icant amount of arbitrary processing. In this experiment, we
intend to show that R-Storm can efficiently schedules tasks
closely together to maximize CPU utilization and minimize
resource waste.

Same as the previous experiment, the cluster used con-
sists of 12 machines partitioned into two racks. Since it
does a round robin scheduling of executors among all work-
ers/nodes, Storm’s default scheduler will schedule executors
on all the 12 machines regardless of the actual computation
each executor will use. In contrast, by using R-Storm, the
user can provide hints on how much CPU computation each
instance of a component in a topology needs, and by doing
so, R-Storm will not necessarily need to use all machines.
R-Storm will only use as many machines needed to satisfy
user specified resource requirements. For this experiment,
we will supply R-Storm with the CPU usage requirements
for each component/executor in the topology to demonstrate
how R-Storm can achieve the same level of throughput while
at the same time use only a portion of the total number of
machines.

Figure 9 displays the timeline graphs for the throughput
of Linear, Diamond, and Star topologies. Figure 10 dis-
plays a comparison of the average CPU utilization of ma-
chines used in the cluster when scheduling using Storm’s
default scheduler versus R-Storm. For the Linear topology,
the throughput of a scheduling by R-Storm using 6 machines
is similar to that of Storm’s default scheduler using 12 ma-
chines. R-Storm creates schedulings that better utilizes the
machines is the reason why R-Storm performs just as well
as Storm’s default scheduler even when R-Storm uses fewer
machines For the Linear topology, the average CPU utiliza-

(a) Layout of Page Load Topology
(b) Layout of Processing Topology

Figure 11: Production Topologies Modeled After Typical Industry Topologies

(a) Experiment results of Page Load Topology (b) Experiment results of Processing Topology

Figure 12: Experiment results of Industry Topologies

tion when using R-Storm is 69% higher than when using
Storm’s default scheduler. For the Diamond topology, a
scheduling by R-Storm using 7 machines performs as well
as a scheduling done by Storm’s default scheduler using 12
machines. For the Diamond topology, the average CPU uti-
lization when using R-Storm is 91% higher than when us-
ing Storm’s default scheduler. For the Star Topology, even
when R-Storm was using half of the machines Storm’s de-
fault scheduler used, R-Storm still had much higher through-
put than Storm’s default scheduler. Since Storm’s default
scheduler does not take resource requirement and availabil-
ity into account, a scheduling is created in which one of the
machines in the cluster gets over utilized in computational
resources and creates a bottleneck that throttles the overall
throughput of the Star topology. The average CPU uti-
lization of the cluster when using R-Storm is 350% better
than that of when using Storm’s default scheduler. When
provided with accurate information about computational us-
age and availability, R-Storm is able to better utilize CPU
resources (as seen Figure 10) in a cluster which results in
being able to use fewer machines to produce to same level
of performance as compared against Storm’s default sched-

uler. Another lesson learned from this experiment is that a
topology’s performance may not necessarily scale with the
number of machines. Without adjusting the parallelism of
components, a topology’s throughput will reach a ceiling at
which adding more machines will not improve performance.
The performance of a topology is more closely related to
what resources are need and scheduling a topology among
unnecessary number of machines can also cause an increase
in communication latency

6.4 Yahoo Topologies: PageLoad and Process-
ing Topology

We obtained the layouts of two topologies in use at Ya-
hoo! Inc. to evaluate the performance of R-Storm on ac-
tual topologies used in industry. The layout of the Page
Load and Processing topologies are displayed in Figure 11a
and 11b. These two topologies are used by Yahoo! for
processing event-level data from their advertising platforms
to allow for near real-time analytical reporting. Figure 12
shows the experimental results for Page Load and the Pro-
cessing topologies when using R-Storm and default Storm.
As shown in the graphs, the scheduling derived using R-

Figure 13: Throughput comparison of running multiple topologies.

Storm performs considerably higher than a scheduling by
default Storm. On average, the Page Load and Processing
Topologies have 50% and 47% better overall throughput,
respectively, when scheduled by R-Storm as compared to
Storm’s default scheduler.

6.5 Multi-topology Performance
In this section, we evaluate performance of R-Storm when

scheduling multiple topologies in a cluster. We compare
the performance of R-Storm’s schedulings to that of default
Storm. For this experiment, we used a larger 24 machine
cluster separated into two 12 machine subclusters. We sub-
mit both the Yahoo! PageLoad and Processing topologies
to be scheduled by R-Storm and Default Storm. Figure 13
displays the throughput comparison of R-Storm versus de-
fault Storm. When scheduled by R-Storm, the throughput
of both the PageLoad and Processing topologies (especially
the Processing topology) are higher than when using default
Storm. When using default Storm, the performance of the
Processing topology grinded to a near halt with an aver-
age overall throughput near zero. The terrible performance
of the Processing topology when using default Storm is an-
other example of the consequences of over utilizing certain
machines and not scheduling topologies in a resource-aware
manner.

The average throughput of the PageLoad topology when
scheduled by R-Storm (25496 tuples/10sec) is around 53%
higher than when scheduling by default Storm (16695 tu-
ples/10sec). For the Processing topology, the average through-
put when scheduled using R-Storm (67115 tuples/10sec) is
orders of magnitude higher than the throughput when sched-
uled using default Storm (10 tuples/sec).

7. RELATED WORK
Not much work has been done in the area of resource-

aware scheduling in Storm or distributed data stream sys-
tems. Some research work has been done in the space of
scheduling for Hadoop MapReduce which share many sim-
ilarities with real-time processing distributed system. In
the work from Jorda et al. [25], a resource-aware adaptive
scheduling for a MapReduce Cluster is proposed and imple-
mented. Their work is built upon the observation that there
can be different workload jobs, and multiple users running

at the same time on a cluster. By taking into account the
memory and CPU capacities for each Task Tracker, the algo-
rithm is able to find a job placement that maximizes a utility
function while satisfying resource limits constraints. The al-
gorithm is derived from a heuristic optimization algorithm
to Class-Constrained Multiple Knapsack Problem which is
NP-hard. However, their work fails to take network into re-
source constraints which is a major bottleneck for streaming
systems such as Storm.

Aniello et al. in their paper [12] proposes two schedulers
for Storm. The first scheduler is used in an offline manner
prior to executing the topology and the second scheduler is
used in on online fashion to potentially reschedule after a
topology has been running for a duration. Since R-Storm
derives the scheduling prior to the actual execution of the
topology, the offline scheduler proposed is the most compara-
ble with the scheduling mechanism used in R-Storm. Their
offline scheduler attempts to derive a linearization(similar
to R-Storm) topology components and schedule tasks from
those components in a round robin fashion to physical ma-
chines. Their offline scheduler, like R-Storm, tries to mini-
mize network distance between components that communi-
cate with each other but uses a less effective approach and is
limited to only acyclic Storm topologies which is not a limit
for R-Storm. Their online scheduler monitors CPU usage
and aims to rebalance the topology to eliminate over uti-
lization after running/profiling the topology for a duration
of time. However, their scheduler only takes into account the
CPU usage of the nodes, with an average of 20-30 percent-
age improvement in performance in total. This work also
does not take into account resource constraints and makes
no attempt to satisfy or guarantee any resources that may
be needed to run user defined code as does R-Storm. We
attempted to deploy their code to profile its scheduling per-
formance but the code was outdated and could run at all.

In the paper [28], Joel et al. described a scheduler for
System S, a distributed stream processing system which is
similar to Storm, . The proposed algorithm is broken into
four phases and runs periodically. At the first and second
phases, the algorithm decides which job to admit, which job
to reject, and compute the candidate processing nodes. In
the third and last phases, it computes the fractional allo-
cations of the processing elements to nodes. However, the

approach only accounts processing power as resource and
the algorithm itself is relatively complex requiring certain
amount of computation.

8. CONCLUSIONS
As an emerging open source technology in the field of Big

Data, Storm has the capability of processing streams of data
in a reliable and real time manner. The growing popularity
of Storm stems from the wide range of use cases for this
platform. Thus, we have created R-Storm to improve this
emerging platform. In spite of Storm’s promising nature, the
scheduling mechanism is inadequate. The schedulers that
come with Apache Storm schedule tasks in a round-robin
fashion with disregard to resource demands and availability.
We designed and implemented a system called R-Storm that
implements resource-aware scheduling within Storm. When
scheduling tasks, R-Storm can satisfy both soft and hard
resource constraints as well as minimizing network distance
between components that communicate with each other. We
learn through R-Storm that round-robin scheduling with dis-
regard to resource requirement and availability and commu-
nication patterns may be ineffective if not catastrophic. Us-
ing user provided info and analyzing the topology DAG can
lead to better initial schedulings.

We evaluate R-Storm by running a variety of micro -
benchmark Storm topologies as well as production topolo-
gies used by Yahoo!. We compare the results of the topolo-
gies scheduled by R-Storm versus the default scheduler within
Storm. Our experimental results demonstrate that schedul-
ings done by R-Storm perform far better than that done
by the default schedulers of Storm. From our experimental
results we conclude that R-Storm achieves 30-47% higher
throughput and 69-350% better CPU utilization than de-
fault Storm for the micro-benchmarks topologies. For the
Yahoo! Storm topologies, R-Storm outperforms default Storm
by around 50% based on overall throughput. We also demon-
strate that R-Storm performs much better when scheduling
multiple topologies than default Storm.

The concepts and algorithms used in R-Storm are not only
relevant for Storm but they are also applicable to other dis-
tributed data stream processing systems that has a DAG
based data processing model (e.g. Twitter Heron [23], Apache
Flink [1], etc) and should yield similar improvement as in
Storm.

9. REFERENCES
[1] Apache Flink. https://flink.apache.org/.

[2] Apache Hadoop. http://hadoop.apache.org/.

[3] Apache Hive. https://hive.apache.org/.

[4] Apache Pig. http://pig.apache.org/.

[5] Apache Spark. https://spark.apache.org/.

[6] Apache Storm, available at . https://storm.apache.org.

[7] Apache Zookeeper. http://zookeeper.apache.org/.

[8] Emulab. http://emulab.net/.

[9] What is big data? — Bringing big data to the
enterprise. www.ibm.com,
http://www.ibm.com/big-data/us/en/, 2013.

[10] Big Data at the Speed of Business - What is big data?
www.ibm.com,
http://www.ibm.com/software/data/bigdata/what-is-
big-data.html,
2014.

[11] R. Andonov, V. Poirriez, and S. Rajopadhye.
Unbounded knapsack problem: Dynamic
programming revisited. European Journal of
Operational Research, 123(2):394–407, 2000.

[12] L. Aniello, R. Baldoni, and L. Querzoni. Adaptive
online scheduling in storm. In Proceedings of the 7th
ACM International Conference on Distributed
Event-based Systems, DEBS ’13, pages 207–218, New
York, NY, USA, 2013. ACM.

[13] C. Chekuri and S. Khanna. A ptas for the multiple
knapsack problem. In Proceedings of the Eleventh
Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’00, pages 213–222, Philadelphia,
PA, USA, 2000. Society for Industrial and Applied
Mathematics.

[14] C. Chekuri and S. Khanna. A polynomial time
approximation scheme for the multiple knapsack
problem. SIAM Journal on Computing, 35(3):713–728,
2005.

[15] R. Cohen and G. Grebla. Multi-dimensional ofdma
scheduling in a wireless network with relay nodes. In
INFOCOM, 2014 Proceedings IEEE, pages 2427–2435,
April 2014.

[16] D. Fayard and V. Zissimopoulos. An approximation
algorithm for solving unconstrained two-dimensional
knapsack problems. European Journal of Operational
Research, 84(3):618–632, 1995.

[17] G. Gallo, P. Hammer, and B. Simeone. Quadratic
knapsack problems. In M. Padberg, editor,
Combinatorial Optimization, volume 12 of
Mathematical Programming Studies, pages 132–149.
Springer Berlin Heidelberg, 1980.

[18] H. Greenberg and R. L. Hegerich. A branch search
algorithm for the knapsack problem. Management
Science, 16(5):327–332, 1970.

[19] M. Hosseini and G. Kurillo. Coordinated bandwidth
adaptations for distributed 3d tele-immersive systems.
In Proceedings of the 7th ACM International
Workshop on Massively Multiuser Virtual
Environments, MMVE ’15, pages 13–18, 2015.

[20] M. Hosseini, J. Peters, and S. Shirmohammadi.
Energy-budget-compliant adaptive 3D texture
streaming in mobile games. In Proceedings of the 4th
ACM Multimedia Systems Conference, MMSys ’13,
pages 1–11, 2013.

[21] M. Hosseini, J. Peters, and S. Shirmohammadi.
Energy-efficient 3D texture streaming for mobile
games. In Proceedings of the 6th ACM Workshop on
Mobile Video Delivery, MoViD ’14, pages 5:1–5:6,
2014.

[22] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: distributed data-parallel programs from
sequential building blocks. In ACM SIGOPS Operating
Systems Review, volume 41, pages 59–72. ACM, 2007.

[23] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli,
C. Kellogg, S. Mittal, J. M. Patel, K. Ramasamy, and
S. Taneja. Twitter heron: Stream processing at scale.
In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data,
pages 239–250. ACM, 2015.

[24] S. Martello, D. Pisinger, and P. Toth. Dynamic

programming and strong bounds for the 0-1 knapsack
problem. Management Science, 45(3):414–424, 1999.

[25] J. Polo, C. Castillo, D. Carrera, Y. Becerra,
I. Whalley, M. Steinder, J. Torres, and E. Ayguadé.
Resource-aware adaptive scheduling for mapreduce
clusters. In Proceedings of the 12th
ACM/IFIP/USENIX International Conference on
Middleware, Middleware’11, pages 187–207, Berlin,
Heidelberg, 2011. Springer-Verlag.

[26] U. K. Sarkar, P. P. Chakrabarti, S. Ghose, and
S. De Sarkar. Reducing reexpansions in
iterative-deepening search by controlling cutoff
bounds. Artificial Intelligence, 50(2):207–221, 1991.

[27] Y. Song, C. Zhang, and Y. Fang. Multiple
multidimensional knapsack problem and its
applications in cognitive radio networks. In Military
Communications Conference, 2008. MILCOM 2008.
IEEE, pages 1–7, Nov 2008.

[28] J. Wolf, N. Bansal, K. Hildrum, S. Parekh, D. Rajan,
R. Wagle, K.-L. Wu, and L. Fleischer. Soda: An
optimizing scheduler for large-scale stream-based
distributed computer systems. In Proceedings of the
9th ACM/IFIP/USENIX International Conference on
Middleware, Middleware ’08, pages 306–325, New
York, NY, USA, 2008. Springer-Verlag New York, Inc.

[29] Z. Wu, Y. Yang, F. Bai, and M. Mammadov. Global
optimality conditions and optimization methods for
quadratic knapsack problems. Journal of Optimization
Theory and Applications, 151(2):241–259, 2011.

[30] X.-F. Xie and J. Liu. A mini-swarm for the quadratic
knapsack problem. In Swarm Intelligence Symposium,
2007. SIS 2007. IEEE, pages 190–197, April 2007.

