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Abstract

In practice, the circumstance that training and test
data are clean is not always satisfied. The per-
formance of existing methods in the learning us-
ing privileged information (LUPI) paradigm may
be seriously challenged, due to the lack of clear
strategies to address potential noises in the data.
This paper proposes a novel Robust SVM+ (R-
SVM+) algorithm based on a rigorous theoretical
analysis. Under the SVM+ framework in the LUPI
paradigm, we study the lower bound of perturba-
tions of both example feature data and privileged
feature data, which will mislead the model to make
wrong decisions. By maximizing the lower bound,
tolerance of the learned model over perturbations
will be increased. Accordingly, a novel regular-
ization function is introduced to upgrade a vari-
ant form of SVM+. The objective function of R-
SVM+ is transformed into a quadratic program-
ming problem, which can be efficiently optimized
using off-the-shelf solvers. Experiments on real-
world datasets demonstrate the necessity of study-
ing robust SVM+ and the effectiveness of the pro-
posed algorithm.

1 Introduction

Great advances in machine learning have been inspired by the
deeper investigation into the learning process of human be-
ings [Shen et al., 2014; Wang et al., 2018]. Conventional su-
pervised methods utilize the priori knowledge to help us un-
derstand the world. Based on a set of examples and their cor-
responding labels, traditional supervised methods can train
a classification model, and then use it to classify unknown
test examples. However, in practice, there often exists some
auxiliary information associated with an example except for
its label. This auxiliary information can be widely found
in human teaching and learning process. For example, the
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teacher plays an important role to provide students with help-
ful comments, comparisons, and explanations to improve stu-
dents’ performance. Inspired by this fact, Vapnik and Vashist
[Vapnik and Vashist, 2009] introduced the paradigm of learn-
ing using privileged information (LUPI) that focuses on im-
proving the learning with the auxiliary information which is
supplied by a teacher about examples at the training stage.
Since this auxiliary information will not be available at the
test stage, it is referred to as privileged information.

As one of the most popular classifiers, support vector ma-
chine (SVM) was first upgraded in the paradigm of learn-
ing using privileged information (LUPI) [Vapnik and Vashist,
2009], and the new method is called SVM+. The main idea
of SVM+ is to define a linear or nonlinear correcting (slack)
function in the privileged feature space to estimate the slack
variables in the standard SVM method using privileged in-
formation. Recently, an increasing attention has been at-
tracted on the LUPI paradigm [Vapnik and Izmailov, 2015;
Motiian et al., 2016; Zhou et al., 2016; Yang et al., 2017], and
some SVM+-based algorithms have been proposed and ap-
plied for various applications. Beyond L-2 SVM, privileged
information is also introduced into an L-1 regularized SVM
to reduce time consumption on tuning model parameters [Niu
et al., 2012]. Considering privileged label information in
the multi-label learning problems, a privileged multi-label
learning (PrML) method explores and exploits the connec-
tions between different examples’ labels and is extended into
domain adaptation [You et al., 2017]. Moreover, there are
also multi-task multi-class SVM+ [Ji et al., 2012], structural
SVM+ [Feyereisl et al., 2014], and the rank transfer method
[Sharmanska et al., 2013]. Various optimization techniques
to solve SVM+ have been studied recently, such as MAT-
SVM+, CVX-SVM+, and L2-loss SVM+ [Li et al., 2016].
In [Li et al., 2016], two new algorithms are proposed to effi-
ciently solve linear SVM+ and kernel SVM+ which uses the
L2-loss based on the ρ-SVM formulation, respectively.

These methods have largely advanced the developments
on LUPI. However, their successes are usually achieved in
the circumstance that training and test data are deemed to be
clean and the teacher always makes correct judgement. In

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2411



practice, we can well design the training set under our de-
mands, but it is difficult and even impossible to tell what test
data will be. Existing methods lack clear strategies to address
potential noises in the data, and thus their practical perfor-
mances will be seriously deteriorated. In addition, existing
methods in LUPI used to consider that teacher’s comments
are always accurate. But if there exist noises in the data,
teacher may not be guaranteed to make correct judgements
any more, which will then influence the student performance
as a result.

In this paper, we derive a novel Robust SVM+ (R-SVM+)
algorithm based on a rigorous theoretical analysis. Con-
sidering perturbations over both example feature data and
privileged feature data, we study the lower bound of these
perturbations that will mislead the model to make wrong
judgements. A novel regularization function adapted from
this lower bound is introduced to upgrade a variant form of
SVM+. In this way, the capability of the learned model to
tolerate perturbations over the data will be enhanced - that is
to say the robustness of the model will be strengthened. The
objective function of R-SVM+ is transformed into a quadratic
programming problem, which can be efficiently optimized
using off-the-shelf solvers. Experimental results demonstrate
the necessity of researching robust SVM+ and the effective-
ness of the proposed algorithm.

2 Preliminary of LUPI

The LUPI paradigm considers a set of training examples
where privileged information is additionally supplied,

(x1,x
∗

1
, y1), (x2,x

∗

2
, y2), . . . , (xn,x

∗

n, yn),

where xi ∈ R
d and x∗

i ∈ R
d∗

are the i-th example feature
(EF) vector and its corresponding privileged feature (PF) vec-
tor, yi ∈ {+1,−1} is the ground-truth label of the i-th train-
ing example pair (xi,x

∗

i ), and n is the number of training
example pairs.

The first approach proposed in the LUPI paradigm is called
SVM+ [Vapnik and Vashist, 2009], which tries to measure the
misclassification loss of training example with a correcting
function learned from privileged information. The objective
function of SVM+ can be formulated as follows:

min
w,w∗,
b,b∗

1

2
(〈w,w〉+ ρ〈w∗,w∗〉) + C

n
∑

i=1

[〈w∗, ψ(x∗

i )〉+ b∗]

s.t. yi[〈w, φ(xi)〉+ b] ≥ 1− [〈w∗, ψ(x∗

i )〉+ b∗],

〈w∗, ψ(x∗

i )〉+ b∗ ≥ 0, i = 1, . . . , n,
(1)

where w and w∗ are the weight vectors, b and b∗ are the bias
terms, C is the a non-negative parameter which balances the
loss term and the regularizer, the term ρ

2 〈w
∗,w∗〉 in Eq. (1)

aims to restrict the capacity of the correcting function space,
ρ > 0 is the trade-off parameter, the functions φ(·) and ψ(·)
are two feature mappings induced by the kernels on exam-
ple features and privileged features, respectively, and 〈a, e〉
denotes the inner product between two vectors a and e.

By introducing Lagrange multipliers αi ≥ 0 and βi ≥ 0,

i = 1, . . . , n, we can arrive at the dual form of SVM+,

max
α,β

n
∑

i=1

αi −
1

2

n
∑

i,j=1

αiαjyiyjk(xi,xj)

−
1

2ρ

n
∑

i,j=1

(αi + βi − C)(αj + βj − C)k∗(x∗

i ,x
∗

j ),

(2)
subject to constraints

∑n
i=1 (αi + βi − C) = 0,

∑n
i=1 αiyi = 0, αi ≥ 0, and βi ≥ 0, i =

1, . . . , n, and where k(xi,xj) = 〈φ(xi), φ(xj)〉 and
k∗(x∗

i ,x
∗

j ) = 〈ψ(x∗

i ), ψ(x
∗

j )〉 are kernels in example fea-

ture and privileged feature spaces, respectively. After solv-
ing the dual optimization problem, two weight vectors can
be reconstructed as w =

∑n
i=1 αiyiφ(xi) and w∗ =

1
ρ

∑n
i=1 (αi + βi − C)ψ(x∗

i ).

3 Robust SVM+

According to the constraint of Eq. (1), we can define two
functions f(x) and g(x∗), where f(x) = 1−y[〈w, φ(x)〉+b]
denotes a hinge loss of the decision function ~ = 〈w, φ(x)〉+
b on the example (x, y) and g(x∗) = 〈w∗, ψ(x∗)〉 + b∗ de-
notes a loss of the correcting function on the privileged data
x∗. And f(x) and g(x∗) under the framework of SVM+ are

f(x) = 1− y[
n
∑

i=1

αiyik(xi,x) + b],

g(x∗) =
1

ρ

n
∑

i=1

(αi + βi − C)k∗(x∗

i ,x
∗) + b∗.

(3)

In the SVM+ method, the constraint yi[〈w, φ(xi)〉+ b] ≥
1 − [〈w∗, ψ(x∗

i )〉 + b∗] in Eq. (1) can be written as Eq. (4).
The inequality in Eq. (4) will be satisfied if x and x∗ are
good enough for model training and a small loss f(x) in the
decision space can be achieved. It is the basic assumption
of LUPI that if a small loss in the correcting space can be
obtained, then a small loss in the decision space should also
be achieved [Pechyony and Vapnik, 2010],

f(x) ≤ g(x∗). (4)

However, in practice there may be some noises over x and
x∗ sometimes. If perturbations caused by noises over exam-
ples are large enough, the inequality will not hold, which will
then influence the correct decisions of the model on exam-
ples. In response to this circumstance, we propose to learn
a Robust SVM+ (R-SVM+) algorithm, which has a stronger
capability to tolerate perturbations over the data caused by
noises. We assume there are some perturbations τx ∈ R

d

and τx∗ ∈ R
d∗

over the ideal observations x and x∗, respec-
tively, i.e., x + τx and x∗ + τx∗ , which are large enough to
make the following inequality satisfied,

f(x+ τx) > g(x∗ + τx∗). (5)

Our purpose is to study what properties τx and τx∗ should
have if Eq. (5) holds. Therefore, in the following, we proceed
to show that these perturbations τx and τx∗ actually have the
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lower bounds based on a rigorous theoretical analysis. Ac-
cording to the theorem of calculus, we have

f(x+ τx) = f(x) +

∫ 1

0

〈∇f(x+ tτx), τx〉dt,

g(x∗ + τx∗) = g(x∗) +

∫ 1

0

〈∇g(x∗ + tτx∗), τx∗〉dt.

(6)

If the perturbations are serious enough, according to Eq.
(5) and Eq. (6), the following inequality is satisfied,

0 ≤ g(x∗)− f(x)

<

∫ 1

0

〈∇f(x+ tτx), τx〉dt−

∫ 1

0

〈∇g(x∗ + tτx∗), τx∗〉dt

=

∫ 1

0

[∇f(x+ tτx);−∇g(x∗ + tτx∗)]T · [τx; τx∗ ]dt

≤‖τ‖p

∫ 1

0

‖̟(t, τx, τx∗)‖qdt,

where τ = [τx; τx∗ ] ∈ R
d+d∗

, ̟(t, τx, τx∗) = [∇f(x +
tτx);−∇g(x∗+tτx∗)] ∈ R

d+d∗

and we have applied Hölder
inequality in the last step that the q-norm is dual to the p-
norm, where p and q satisfy 1

p
+ 1

q
= 1.

Hence, given g(x∗) ≥ f(x), we have the minimal pertur-
bations τ that is required to reverse the decision of the SVM+
classifier,

‖τ‖p >
g(x∗)− f(x)

∫ 1

0
‖̟(t, τx, τx∗)‖qdt

. (7)

Eq. (7) indicates the lower bound over the perturbations
to bring in the undesirable error in Eq. (5). In order to ob-
tain a more robust classifier, we consider maximizing the
lower bound (i.e., the right of Eq. (7)). As a result, the
new model will have more tolerances over the perturbations,
and will thus be more robust. And this is the main idea of
our proposed R-SVM+ algorithm. That is to say, we wants
∫ 1

0
‖̟(t, τx, τx∗)‖qdt to be small as well as g(x∗) − f(x)

to be large. Therefore, the new objective function of our
proposed R-SVM+ have two components: 1) For f(x) ≤
g(x∗)+ ǫ, ǫ should be minimized; 2) minimizing the value of

function Ψ(t, τx, τx∗) =
∫ 1

0
‖̟(t, τx, τx∗)‖qdt.

3.1 Minimizing ǫ
First, we consider minimizing ǫ under the framework of
SVM+. We replace the constraints f(xi) ≤ g(x∗

i ), i =
1, . . . , n in the original SVM+ objective function with the
constraints f(xi) ≤ g(x∗

i ) + ǫi, where ǫi ≥ 0, i = 1, . . . , n.
Then the optimization problem of this variant form of the
SVM+ problem can be transformed into,

min
w,w∗,b,b∗,ǫ

1

2
(〈w,w〉+ ρ〈w∗,w∗〉)

+C
n
∑

i=1

[〈w∗, ψ(xi
∗)〉+ b∗] + σ

n
∑

i=1

ǫi

s.t. yi[〈w,φ(xi)〉+ b] ≥ 1− [〈w∗, ψ(x∗

i )〉+ b∗]− ǫi,

〈w∗, ψ(x∗

i )〉+ b∗ ≥ 0,

ǫi ≥ 0, i = 1, . . . , n,
(8)

where σ > 0 is a tradeoff parameter. Similar variant of Eq.
(8) has been discussed in [Vapnik and Vashist, 2009] as well,
while in this paper we try to make the value g(x∗) − f(x)
large to enhance the robustness according to Eq. (7). In order
to minimize ǫ, the value of σ should be relatively larger com-
pared with C, to reinforce the effect of the smooth function
term

∑n
i=1 ǫi on the solution. For simplicity, we let σ = σ′C,

where σ′ > 1. By introducing Lagrange multipliers αi ≥ 0,
βi ≥ 0 and ηi ≥ 0, where i = 1, . . . , n, the Lagrangian is
constructed as

L(w,w∗, b, b∗, ǫ, α, β, η)

=
1

2
(〈w,w〉+ ρ〈w∗,w∗〉) +

n
∑

i=1

(σ′C − αi − ηi)ǫi

+ C
n
∑

i=1

[〈w∗, ψ(x∗

i )〉+ b∗]−
n
∑

i=1

βi[〈w
∗, ψ(x∗

i )〉+ b∗]

−
n
∑

i=1

αi

{

yi[〈w, φ(xi)〉+ b]− 1 + [〈w∗, ψ(x∗

i )〉+ b∗]
}

.

We set the derivatives of the Lagrangian function with
respect to w, w∗, b, b∗, ǫ to zeros, and then the
Karush–Kuhn–Tucker (KKT) conditions can be obtained.
Accordingly, the dual problem of Eq. (8) can be rewritten
as,

max
α,β

n
∑

i=1

αi −
1

2

n
∑

i,j=1

αiαjyiyjk(xi,xj)

−
1

2ρ

n
∑

i,j=1

(αi + βi − C)(αj + βj − C)k∗(x∗

i ,x
∗

j ),

subject to constraints
∑n

i=1 (αi + βi − C) = 0,
∑n

i=1 αiyi = 0, 0 ≤ αi ≤ σ′C, and βi ≥ 0, where
i = 1, . . . , n. We denote α ◦ y as the element-wise
product between vectors α = [α1, . . . , αn]

T ∈ R
n and

y = [y1, . . . , yn]
T ∈ R

n, β = [β1, . . . , βn]
T ∈ R

n,
1 = [1, . . . , 1]T ∈ R

n, and C = [C, . . . , C]T ∈ R
n. The

dual problem can be further reformulated as

max
α,β

1
Tα−

1

2
(α ◦ y)TK(α ◦ y)

−
1

2ρ
(α+ β −C)TK∗(α+ β −C),

(9)

subject to constraints 1
T(α + β − C) = 0, yTα = 0,

0 ≤ αi ≤ σ′C, and βi ≥ 0, i = 1, . . . , n. K ∈ R
n×n

is the kernel matrix based on example features whose each
element being Kij = k(xi,xj) and K∗ is the kernel ma-
trix based on privileged features whose each element being
K∗

ij = k∗(x∗

i ,x
∗

j ) ∈ R
n×n.

3.2 Minimizing Ψ(t, τx, τx∗)

To minimize Ψ(t, τx, τx∗) =
∫ 1

0
‖̟(t, τx, τx∗)‖qdt, we can

first define the upper bound of perturbations over some fixed
range Ωp(x, ℓ) = {z ∈ R

d|‖x − z‖p ≤ ℓ}. In this way,
we ensure that the upper bound of τx and τx∗ is at most ℓ by
making assertions of perturbations τx, τx∗ ∈ Ωp(0, ℓ). We
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further define z = x + tτx and z∗ = x∗ + tτ∗, 0 < t ≤ 1.
In the following, we discuss the case where p = q = 2 for
simplicity, and other cases will be studied in our future work.
Then the inequality holds

sup
τx,τx∗

∈Ω2(0,ℓ)

∫ 1

0

‖̟(t, τx, τx∗)‖2dt ≤ max
τx,τx∗

∈Ω2(0,ℓ)

‖̟(t, τx, τx∗)‖2

= max
z∈Ω2(x,ℓ),
z∗∈Ω2(x

∗,ℓ)

‖[∇f(z);−∇g(z∗)]‖2.

(10)
Thus, our problem can be further transformed into mini-
mizing the value of the upper bound, i.e., the right side
of Eq. (10). Naturally, we consider using a surro-
gate Θ(f, g) of the quantity of right side of Eq. (10)
for regularization. According to Eq. (3), we can ob-
tain ∇f(x) = −y

∑n
i=1 αiyi∇xk(xi,x) and ∇g(x∗) =

1
ρ

∑n
i=1 (αi + βi − C)∇x∗k(x∗

i ,x
∗). Here we use the

Gaussian kernel k(xi,xj) = e−γ‖xi−xj‖
2

2 and we set γ =
1/D in the experiment, where D is the mean of distances
among examples in the training set. And a novel regulariza-
tion function Θ(f, g) is defined as follows,

Θ(f, g) =
1

n

n
∑

s=1

‖[∇f(xs);−∇g(x∗

s)]‖
2
2

=
1

n

n
∑

s=1

‖ − ys

n
∑

i=1

αiyi∇xs
k(xi,xs)‖

2
2

+
1

n

n
∑

s=1

‖ −
1

ρ

n
∑

i=1

(αi + βi − C)∇x∗

s
k(x∗

i ,x
∗

s)‖
2
2

=
1

n

n
∑

s=1

n
∑

i,j=1

αiαjyiyjh(xi,xj ,xs)

+
1

nρ2

n
∑

s=1

n
∑

i,j=1

(αi + βi − C)(αj + βj − C)h∗(x∗

i ,x
∗

j ,x
∗

s),

(11)
where h(xi,xj ,xs) = 〈∇xs

k(xi,xs),∇xs
k(xj ,xs)〉 =

4γ2〈xs − xi,xs − xj〉e
−γ‖xi−xs‖

2

2e−γ‖xj−xs‖
2

2 and
h∗(x∗

i ,x
∗

j ,x
∗

s) = 〈∇x∗

s
k(x∗

i ,x
∗

s),∇x∗

s
k(x∗

j ,x
∗

s)〉 =

4γ2〈x∗

s − x∗

i ,x
∗

s − x∗

j 〉e
−γ‖x∗

i−x∗

s‖
2

2e−γ‖x∗

j−x∗

s‖
2

2 . And

we can define a matrix Hs with each element being
Hs,ij = h(xi,xj ,xs) ∈ R

n×n and a matrix H∗

s with each

element being H∗
s,ij = h∗(x∗

i ,x
∗

j ,x
∗

s) ∈ R
n×n. And Eq.

(11) can be further reformulated as

Θ(f, g) =
1

n

n
∑

s=1

(α ◦ y)THs(α ◦ y)

+
1

nρ2

n
∑

s=1

(α+ β −C)TH∗

s (α+ β −C).

(12)

3.3 Objective Function of R-SVM+

The objective of the proposed R-SVM+ algorithm aims to
solve a maximization problem in Eq. (9) and a minimization

problem in Eq. (12) at the same time. Therefore, we arrive
at the objective function of R-SVM+ which is a minimization
problem,

min
α,β

1

2
(α ◦ y)TK(α ◦ y)− 1

Tα

+
1

2ρ
(α+ β −C)TK∗(α+ β −C) + λΘ(f, g),

(13)
subject to 1

T(α + β − C) = 0, yTα = 0, 0 ≤ αi ≤ σ′C,
and βi ≥ 0, i = 1, . . . , n. And λ is a trade-off parameter
to control the effect of the proposed regularization term. Eq.
(13) can be reformulated with a simple calculation,

min
α,β

1

2
(α ◦ y)T(K +

2λ

n

n
∑

s=1

Hs)(α ◦ y)− 1
Tα

+
1

2ρ
(α+ β −C)T(K∗ +

2λ

nρ

n
∑

s=1

H∗

s )(α+ β −C)

s.t. 1
T(α+ β −C) = 0,

yTα = 0,

0 ≤ αi ≤ σ′C,

βi ≥ 0, i = 1, . . . , n.
(14)

We further define two matrices A = K + 2λ
n

∑n
s=1 Hs

and B = K∗+ 2λ
nρ

∑n
s=1 H

∗

s . And we let µ = [αT,βT]T ∈

R
2n, v = [(1 + 1

ρ
BC)T, ( 1

ρ
BC)T]T ∈ R

2n, and M =
[

A ◦ (yyT) + 1
ρ
B 1

ρ
B

1
ρ
B 1

ρ
B

]

∈ R
2n×2n. Finally, the optimiza-

tion problem of R-SVM+ can be rewritten as,

min
µ

1

2
µTMµ− vTµ

s.t. 1
T(α+ β −C) = 0,

yTα = 0,

0 ≤ αi ≤ σ′C,

βi ≥ 0, i = 1, . . . , n.

(15)

Eq. (15) is a typical quadratic programming problem
[Gould and Toint, 2004; Coleman and Li, 1996], which can
be efficiently solved by off-the-shelf quadratic programming
solvers.

4 Experiments

In order to evaluate the robustness of our proposed R-SVM+
algorithm, we carry out experiments on three real-world
datasets for digit classification, face pose classification and
human activity recognition tasks, respectively.

4.1 Experimental Setting

Datasets

The experiments are executed on three real-world datasets, in-
cluding the MNIST+ dataset [Vapnik and Vashist, 2009], the
RGB-D Face dataset [Hg et al., 2012], and the Human Activ-
ity Recognition dataset [Anguita et al., 2013]. The MNIST+

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2414



SNR SVM RSVM-RHHQ SVM+ L2-SVM+ R-SVM+

4 82.09±1.49 80.26±4.02 81.76±2.71 81.07±2.67 84.42±1.39

6 83.17±1.78 83.37±1.58 82.96±3.26 82.76±1.96 86.08±1.35

8 84.64±1.63 84.59±1.79 84.74±2.78 84.12±1.84 87.39±1.43

10 85.81±1.55 85.86±1.62 86.03±2.80 85.47±1.55 88.45±1.34

15 87.15±1.76 86.10±1.41 88.82±2.06 88.06±1.69 90.04±0.91

No noise 90.97±0.94 87.83±0.84 91.86±0.70 92.12±0.70 92.23±0.55

Table 1: Classification accuracies (mean ± standard deviation, %) on the MNIST+ dataset. The best results on each row are in boldface.

SVM RSVM-RHHQ SVM+ L2-SVM+ R-SVM+

Up vs Forward 95.07±1.22 93.33±1.95 95.63±1.69 95.87±1.82 96.59±1.53

Up vs Down 97.90±0.66 97.58±1.34 98.08±0.59 98.17±0.68 98.48±0.56

Up vs Expression 96.38±1.49 96.56±1.94 96.87±1.68 97.23±1.39 97.72±1.34

Forward vs Down 88.46±1.23 82.73±2.42 89.12±2.09 88.96±1.81 91.63±2.01

Forward vs Expression 88.73±2.81 85.60±2.26 88.33±1.80 88.88±1.90 90.16±1.71

Down vs Expression 89.19±2.41 87.72±2.14 89.55±2.11 90.04±2.18 90.36±1.43

Table 2: Classification accuracies (mean ± standard deviation, %) on the RGB-D Face dataset when SNR is equal to 8. The best results on
each row are highlighted in boldface.

dataset is used for the digit classification task that classifies
two digits “5” and “8”. It contains 2943 images of “5” and
3025 images of “8” from the MNIST database [LeCun et al.,
1998]. A holistic (poetic) description [Vapnik and Vashist,
2009] for each image is translated into a 21-dimensional fea-
ture vector as privileged information. All the images of two
digits in the MNIST+ dataset are resized into 10×10 pixels.
The 100-dimensional vector of raw pixels is used as the exam-
ple feature data for each image. The RGB-D Face dataset [Hg
et al., 2012] contains color and corresponding depth images
of faces of 31 people in different face poses and expressions
taken by a Kinect sensor. The depth images are used as priv-
ileged information. For each person, the image of each face
pose is taken repeatedly for 3 times, which results in 31 × 3
RGB-depth image pairs for each pose. The face pose recog-
nition task is performed on this dataset. The Human Activity
Recognition dataset [Anguita et al., 2013] contains 10299 in-
stances of 30 people performing six activities (i.e., walking,
walking upstairs, walking downstairs, sitting, standing, and
laying) by wearing a smart phone on the waist. Each exam-
ple for each activity is described by 561 dimensional features
drawn from accelerometer, gyroscope, gravity signals and so
on.

Implementation Details

For the MNIST+ dataset, it is randomly split into a training
set of 100 images, a test set of 1866 images, and a validation
set of 4002 [Vapnik and Vashist, 2009]. In the experiment, we
randomly select 80 examples and their corresponding holistic
descriptions from the training set as training examples for 10
times and classify the images on the test set.

For the RGB-D Face dataset, due to the small number of
images per face pose, we merge the poses into four groups:
looking up, looking forward, looking down and having facial
expressions. Then we train a binary classifier on each pair
of groups. We randomly split 40% color and corresponding
depth image pairs per class for training, 30% image pairs per
class for testing, and the rest 30% for validation for 10 times.

We crop each image into the same fixed size of 150×150 and
convert each color image into a gray image. Then for each
image, it is divided into 100 non-overlapping subregions in
15×15 and for each subregion we extract the LBP feature. By
concatenating the LBP features derived from all subregions,
PCA is then performed to obtain a 150-dimensional compact
representation.

For the Human Activity Recognition dataset, we use the
first 200-dimensional features which come from the ac-
celerometer and gyroscope 3-axial raw signals and their sep-
aration into body and gravity acceleration signals as example
features. The remaining 361-dimensional features that come
from signals obtained by some post-processing such as a Fast
Fourier Transform (FFT) and the magnitude calculated us-
ing the Euclidean norm, are used as privileged features. We
train one binary classifier on each pair of groups in the ex-
periment. For training we use 200 examples from the desired
class and 200 examples randomly drawn from the rest of ex-
amples from the remaining classes. And 600 examples ran-
domly selected from the desired class and the rest of classes
respectively are used for testing. The remaining examples
from the desired class and the same number of examples from
the rest of classes are used as the validation examples.

For each dataset, we add white Gaussian noise to examples
in the validation set and test set with a specific signal-to-noise
ratio (SNR). The classification results in experiments are av-
eraged over 10 independent trials.

4.2 Compared Methods

For all the datasets, we evaluate performances of the proposed
R-SVM+ algoirthm compared with the standard support vec-
tor machine (SVM), the robust SVM based on the rescaled
hinge loss function (RSVM-RHHQ) [Xu et al., 2016], SVM+
[Vapnik and Vashist, 2009], and L2-SVM+ [Li et al., 2016]

methods.

For all the methods, the regularization parameter C are se-

lected from 10{−2,1,0,1,2} and the Gaussian kernel is used.
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SVM RSVM-RHHQ SVM+ L2-SVM+ R-SVM+

Walking 89.52±2.17 92.07±1.21 91.90±1.16 92.21±1.37 93.83±1.44

Walking upstairs 82.38±1.90 91.88±0.98 92.36±0.49 89.98±2.23 93.15±0.76

Walking downstairs 92.04±1.30 93.71±0.68 94.29±0.86 94.37±0.52 94.49±0.71

Sitting 79.84±3.13 87.75±0.87 79.42±5.32 81.29±4.54 87.30±0.71

Standing 81.91±4.13 91.57±0.50 78.97±7.33 78.72±7.29 91.61±1.00

Laying 99.42±0.27 99.55±0.17 99.50±0.21 99.63±0.13 99.65±0.12

Table 3: Classification accuracies (mean ± standard deviation, %) on the Human Activity Recognition dataset with an SNR of 4. Best
accuracies on each row are highlighted in boldface.

(a) Using separate components (b) Influence of noisy PF

Figure 1: Discussions of performances of R-SVM+.

For SVM+, L2-SVM+ and the proposed R-SVM+, we set the
parameter of Gaussian kernel γ = 1

D
where D is the mean

of distances among examples in the training set according to
[Li et al., 2016]. While for SVM and RSVM-RHHQ, γ is
selected from 10{−3,−2,−1,0,1,2,3}, since significantly better
performances can be achieved. For RSVM-RHHQ, the scal-
ing constant η is varied in range of {0.01, 0.1, 0.5, 1, 2, 3, 10,
100}. For SVM+-based methods, the trade-off parameter ρ is

selected from 10{−2,−1,0,1,2}. For the proposed R-SVM+, we
also vary the parameter σ′ in range of {5, 10, 50, 100} and

λ in range of 10{−5,−4,...,0,1}. The best parameters for all
methods are determined with a joint cross validation model
selection strategy on the validation set.

4.3 Performance Comparison

Table 1 summarizes the classification results of the proposed
R-SVM+ algorithm and compared methods, using 80 clean
training EF and PF examples, and noisy validation and test
examples polluted by Gaussian noises with different SNRs of
4, 6, 8, 10 and 15. And we also report the classification results
when validation and test examples are clean. As we can see,
the performances of all the methods are significantly affected
by varying SNR. Generally, the proposed R-SVM+ algorithm
shows bigger superiority than all the compared methods es-
pecially when SNR is smaller. Since the distribution of noisy
test data could be largely different from that of training data
when SNR is small, the advantage of classical SVM+ over
SVM is not preserved. When SNR is relatively large (i.e.,
SNR=15) or examples are clean, SVM+ and L2-SVM+ meth-
ods obviously outperform SVM and RSVM-RHHQ. While
R-SVM+ achieves obviously better than SVM-based meth-
ods in all cases. This demonstrates the proposed R-SVM+ is
a robust and effective SVM+-based algorithm against noises.

We also discuss the influences of different components of
R-SVM+ on the classification results on the MNIST+ dataset,

as an example. Figure 1 (a) shows the performances of R-
SVM+ if we separately consider minimizing ǫ (referred as R-
SVM+ without Ψ) and minimizing the value of Ψ(t, τx, τx∗)
(referred as R-SVM+ without ǫ). We can find that in gen-
eral the introduction of Ψ(t, τx, τx∗) obviously plays a more
important role on the performance of R-SVM+ when SNR is
small. While when SNR is relatively large, the introduction
of ǫ will boost the accuracy to some extent. And R-SVM+
achieves the best performance by simultaneously considering
both components in all cases.

In order to further evaluate the robustness of the proposed
R-SVM+ algorithm compared with other SVM+-based meth-
ods when PF examples are noisy, we add Gaussian noises to
the PF training examples with SNRs of 4, 6, 8, 10, and 15
on the MNIST+ dataset, as an example. As shown in Fig-
ure 1 (b), R-SVM+ obviously outperforms SVM+ and L2-
SVM+ with varying SNR in general. In detail, R-SVM+ ob-
tains gains in accuracy of +3.1%, +3.9%, +3.6%, +2.6% and
+1.2% over SVM+, and gains in accuracy of +4.1%, +4.4%,
+3.0%, +3.5% and +2.0% over L2-SVM+ when SNR is equal
to 4, 6, 8, 10, and 15, respectively. This is because R-SVM+
also considers maximizing the lower bound of potential per-
turbations over PF examples and has more tolerances over
these noisy examples, thus strengthening the robustness of
the R-SVM+ algorithm.

Table 2 shows the performance of different methods on the
RGB-D Face dataset when Gaussian noises with an SNR of 8
are added in the validation and test examples. Generally, we
can observe that SVM+ and L2-SVM+ methods are superior
to the SVM-based methods in almost all the 6 cases due to the
use of depth images as privileged information. In particular,
the proposed R-SVM+ algorithm shows its advantage over
SVM+ and L2-SVM+ in all the 6 cases, especially in the forth
and fifth cases.

Table 3 reports the classification results of the proposed R-
SVM+ algorithm and compared methods on the Human Ac-
tivity Recognition dataset whose validation and test examples
are added with Gaussian noises with an SNR of 4. From the
results shown in Table 3, we can see that R-SVM+ outper-
forms other methods in 5 out of 6 cases. In particular, R-
SVM+ obtains obviously better accuracies than SVM, SVM+
and L2-SVM+ in the “Sitting” and “Standing” cases. This
demonstrates the effectiveness and robustness of R-SVM+
against noises. And RSVM-RHHQ also performs obviously
better than SVM because of its robust strategy based on SVM.
In general, SVM+-based methods get better results than SVM
because of the use of privileged information.
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5 Conclusion

In this paper, we propose a Robust SVM+ (R-SVM+) al-
gorithm to construct a more robust classifier in the LUPI
paradigm for the potential noises in the data. Based on a rig-
orous theoretical analysis, the lower bound of perturbations
of noises that will mislead the model to make incorrect de-
cisions has been evaluated. Accordingly, R-SVM+ can be
learned by introducing a novel regularization function into a
slack form of SVM+. The effectiveness of the proposed R-
SVM+ algorithm and the necessity of studying robust SVM+
methods in the LUPI paradigm are demonstrated by experi-
ments on real-world datasets.
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