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Abstract 

R&D is considered to be the main source of innovation. We argue that R&D is too broad a 

measure, including activities differing in purposes, culture, people, management and other 

features. However, empirical studies have not analyzed them separately, mainly due to the 

lack of data. Using firm-level data, the aim of this paper is to estimate the differentiated 

effect of research and development on different innovation outputs. Results show that both 

research and development activities are important. However, we find that development 

activities are more important for product innovation, while the effect of research activities 

is higher on process innovation. Moreover, we analyze differences by technological 

intensity of the sector. When analyzing product and process innovations, we find evidence 

supporting the existence of higher payoffs to development and, especially to research in 

low-tech sectors when compared with high-tech ones. 
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1. Introduction 

Research and development (R&D) expenditures have long been an important concern for 

economists. Policy initiatives towards fostering R&D have proliferated all around the world 

and at different levels of governance (local, regional, national and supranational). As a 

consequence, one of the main objectives of economists is to evaluate whether the returns to 

this investment justify the expenditure, and offer a guide to managers and policy makers on 

how to choose their investments and evaluate the success of different strategies (Wieser, 

2005; Hall et al, 2010). 

The most employed model is the “R&D stock capital model”, first introduced by Griliches 

(1979) to explore the relationship between R&D and productivity. Following this model, a 

huge stream of literature has been developed. The abundance of this literature can be seen 

in the large number of surveys that have already been carried out on this topic: Griliches 

(1995), Hall (1996), Mairesse and Sassenou (1991); Mairesse and Mohnen (1995), Nadiri 

(1993) and, more recently, Wieser (2005) and Hall et al. (2010). 

This model has been extended to estimate the effect of R&D on different innovation 

outputs, such as patents and number of innovations (and, more recently, sales due to 

innovations) (see, for example, Jaffe, 1989; Acs et al., 1992; Mairesse and Mohnen, 2005)1. 

These analyses employ the so-called “knowledge production function”, again first 

introduced by Griliches (1979). 

Literature on the economics of innovation considers R&D the main source of innovation2. 

However, while most literature has considered R&D to be a single and homogenous 

activity, research and development actually includes a myriad of heterogeneous activities 

(Mansfield, 1981; and Link, 1982). These activities differ in purposes, main features, 

culture, people involved and style of management, as is shown by case studies and the 

opinion of R&D managers (see Chiesa and Frattini, 2007). In fact, research and 

development are usually performed by different departments of the firm which are under 

                                                 
1A further step in this literature is the paper by Crepon et al (1998). These authors propose a structural model (CDM model) for analyzing 

the relationship between R&D, innovation and productivity.  
2Although some authors (see, for example, Barge-Gil et al., 2011) have pointed out the importance of non-R&D activities in innovation. 
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the responsibility of different managers. Moreover, this kind of organization seems to be a 

major trend in future R&D strategy (Chiesa 2001).  

Assuming that R&D includes two different activities, the aim of this paper is to explore the 

differences between “R” and “D”, and analyze how they differently impact the innovation 

results of the firm. In doing this, we use a new firm-level data base for innovative activities 

(the Technological Innovation Panel, PITEC). 

The results of this paper might be useful for academics, for policy makers and for R&D 

managers. Firstly, this paper allows us to go further in our understanding of the innovation 

process. As pointed out by Mansfield (1981), R&D expenditure is very heterogeneous and 

its composition may be as important as its total amount. In addition, the OECD 

classification of industries is based on R&D intensity and, although it does not say anything 

about the relative weights of R and D in each industry, it is usually believed that high-tech 

industries are more science-based, while low-tech industries are usually more focused on 

engineering and development. 

Second, this analysis is useful for policy makers. An increasing amount of public funds is 

destined to stimulating R&D activities on different levels (local, regional, national and 

supranational). More precise knowledge about which component of R&D has a greater 

effect on different innovation outputs will be useful in designing more specific innovation 

policies.  

Finally, the analysis is also of interest for R&D managers who make decisions about the 

allocation of resources to different activities pursuing some specific results. 

The rest of the paper is organized as follows. Section 2 focuses on the differences between 

research and development activities. Section 3 deals with the related literature. Section 4 

describes the data used and presents a brief descriptive analysis of research and 

development for Spanish manufacturing firms. Section 5 sets out the empirical 

methodology, describing the econometric details, estimation method applied and the sample 

of firms and variables used in estimation. Section 6 presents the results. Finally, Section 7 

concludes.  
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2. Differences between research and development 

R&D includes basic research, applied research and development. However, we use only the 

split between research and development activities. Firstly, basic and applied research share 

many characteristics which distinguish them from development. Second, case studies show 

that the difference between basic and applied research is too diffuse (see, for example, 

Arnold, 2004; and van Ark et al., 2007). Therefore, some authors recommend collapsing 

basic and applied research in empirical studies (Balconi et al., 2010). Moreover, basic 

research represents a small share of total R&D expenditures. For example, in our sample of 

Spanish firms, basic research is around 3% of total R&D expenditures. 

In what follows, we are going to briefly expose the differences between research and 

development. We analyze these differences focusing on their purposes, their main features, 

the underlying culture, the style of management and the people involved in each activity. 

These differences are summarized in Table 1. 

Purposes 

The main purpose of both basic and applied research is to acquire new knowledge, while 

the main purpose of development is directed to the introduction of new or improved 

products or processes (OECD, 2005). In this sense, research is more theoretical in nature 

(although usually oriented to some practical objective) and their outputs are more related to 

the expansion of the knowledge base. On the other hand, development is essentially applied 

and usually attains physical outputs (Leifer and Triscari, 1987; Karlsson et al., 2004). 

Type of knowledge 

Some authors have argued that knowledge bases can differ between activities (Laestadius, 

1998; Asheim and Coenen, 2005; Moodyson et al., 2008). We can distinguish between two 

knowledge bases: analytical and synthetical. An analytical knowledge base is closely 

related to research and leads to innovation by the creation of new knowledge. It is 

associated with scientific techniques involving mathematical and science-based theories 

and with tools and methods such as experimentation. Codified knowledge dominates due to 

documentation in patents and publications. Synthetic knowledge, for its part, is closely 

related to development and leads to innovation by application or novel combination of 

existing knowledge (Laestadius, 1998; Asheim and Coenen, 2005). It is more engineering-
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based, also involving the utilization of mathematics and other scientific formulae, but with 

a great emphasis on piecing together separate components into working systems, while 

satisfying many real-world constraints (Amsdem and Tschang, 2003). Tacit knowledge 

dominates due to more concrete know-how, craft and practical skill. 

People 

Research is more labour-intensive, while development is more material-intensive (Van Ark 

et al., 2007). People involved in research are generally more qualified and more 

specialized. The human factor is crucial for research and the importance of individuality is 

central to its effectiveness (Chiesa, 2001). However, development needs generalists 

(Karlsson et al., 2004). People involved in development activities are required to have a 

broader perspective, covering science, engineering and the market, and be able to manage 

across different corporate functions. Moreover, while in research the most creative people 

should not become managers, in development people should have an entrepreneurial spirit 

and combine a long-term strategic view with day-to-day activities (Chiesa and Frattini, 

2007). 

Style of management 

Research units work relatively independently of the rest of the organization (Leifer and 

Triscari, 1987), they maintain close links with universities and research centers (Van Ark et 

al., 2007) and are much more based on individuals, the department being a very important 

dimension of analysis and management. In contrast, development activities often require 

coordination with other functional units of the organization, and even its approval. They 

establish close links with production and marketing departments and, ideally, also with 

actual or potential customers (Leifer and Triscari, 1987). In addition, they build much upon 

team work, usually interdepartmental (Chiesa and Frattini, 2007). 

The management of research is characterized by less hierarchy. The specific features of 

research departments make them achieve coordination and control by a combination of 

leadership and a strong culture, due to the difficulty of ascertaining clear performance 

standards as well as the possibility of conflict between the values of the profession (for 

inventiveness and creativity) and values of the organizations (meeting deadlines, cost 

schedules and customer needs) (Leifer and Triscari, 1987). In addition, researchers should 
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be given the opportunity to take an occasional break such as a sabbatical and to be involved 

in a variety of projects .To sum up, research needs to be very open and sometimes borders 

on chaos (Chiesa, 2001). On the other hand, development is much more subject to formal 

planning, with a clear definition of hierarchy and fixing project milestones and pressuring 

on deadlines (Chiesa and Frattini, 2007), so that any significant deviation of the plan should 

become the subject of formal discussion (Chiesa, 2001). 

Other features  

Research is considered a more complex activity (Leifer and Triscari, 1987; Chiesa and 

Frattini, 2007), involving the performance of more non-routine tasks than development and 

with a greater importance of discontinuous jumps in contrast with the more incremental 

nature of development (Karlsson et al., 2004). In addition, the time horizon is much longer 

in research than in development, where pressure to market usually constrains it between six 

months and two years. These factors underlie the perception that research is more uncertain 

than development (Nelson, 1959), although it has been recently highlighted that, actually, 

they suffer different kinds of uncertainty. While research faces a higher technical 

uncertainty (about a one in ten chance of success) and also a business risk (even a 

successful project could yield results that do not fit with the firm’s business plan3), 

development involves a higher market risk, for example, a competitor entering the market 

earlier or the consumer not willing to buy the product (Van Ark et al, 2007). 

3. Empirical studies of research versus development 

During the 1980s, some authors pointed out that R&D includes a myriad of activities and 

that an important task for researchers should be to analyze the determinants and impacts of 

this heterogeneity (see Mansfield, 1981 and Link, 1982, 1985)4. However, these authors 

themselves point out some limitations of their studies (especially related to the data and the 

analysis performed) and stress that results presented should be viewed as preliminary. 

 

                                                 
3 Of course the results can be sold or the business plan adjusted but neither option is easily implemented in the short run as stressed by 
many of the R&D managers (Van Ark et al., 2007). 
4  We do not include here the studies aimed at analyzing the impact of basic research, as this is not the aim of this paper. For a review of 
this strand of the literature, see Salter and Martin (2001). 
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Table 1. Differences between research and development 

 Research Development 

Purpose Acquire new knowledge 
More theoretical (even if applied) 

Introduction of new or improved 
process or product 
Applied in nature 

Type of 
knowledge 

Analytical 
Codified 

Synthetic 
Tacit 

People More labour-intensive 
Specialized 
More qualified 

More material-intensive 
Generalist 
Less qualified 

Management Relative independence and links 
with universities 
Less hierarchy 

Integration and links with other 
departments and customers 
Formal planning 

Other features Complexity 
Long term 
Technical and business uncertainty 

Less complex 
Short term 
Market uncertainty 

 

Mansfield (1981) uses a survey of 108 large US firms to analyze the determinants of the 

composition of R&D expenditures and the effect of this composition on innovative output. 

This author distinguishes between four types of R&D expenditures: (i) R&D expenditures 

devoted to basic research, (ii) R&D expenditures devoted to relatively long-term projects 

(projects lasting five or more years), (iii) R&D expenditures aimed at entirely new products 

and processes, and (iv) R&D expenditures devoted to relatively risky projects (projects 

with less than a fifty-fifty estimated chance of success). One of the main results of this 

paper is that these four dimensions of R&D are not much related (when comparing firms 

within industries). Moreover, this author finds that larger firms are more oriented towards 

basic research, but he finds no evidence on the relationship between market concentration 

and the type of R&D expenditure. Finally, regarding the effect of the composition of R&D 

on innovative output, this author finds some correlation between the number of innovations 

and the proportion of basic research on total R&D expenditures.  

Link (1982) analyzes the determinants of basic research, applied research and development 

for a sample of 275 firms belonging to Fortune 1000 list in the US. Firstly, this author finds 

that orientation to development is higher for firms operating in more concentrated markets 

and receiving more public funding. Secondly, firms with a higher level of profits are more 
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oriented to applied research. Finally, orientation to basic research increases with 

diversification and profits and was higher for owner-managed firms. 

Link (1985) adopts a dynamic perspective. This author finds that orientation to basic and 

long-term research is decreasing and he analyzes the determinants of this change for 146 

very large US firms. He finds that managerial issues are important as firms with a more 

offensive strategy and central R&D labs are also those more increasingly oriented towards 

basic and long-term research. 

However, to our knowledge, in spite of the relevance of these papers and claims by their 

authors about the importance of studying the composition of R&D, this topic has not 

received much attention (mainly due to the lack of appropriate data). In the last years, this 

topic has received growing interest due to the availability of new data from CIS surveys. 

Specifically, empirical studies are focused on analyzing the relationship between public 

funding and the composition of R&D5 (see Aerts and Thorwall, 2009; Clausen, 2009; and 

Czarnitzki et al., 2011).  

Firstly, Aerts and Thorwall (2009) use a sample of 521 Belgian firms from two waves of 

the R&D survey (2004 and 2006). These authors find that additionality of public funding 

exists in research but not in development. 

Secondly, Clausen (2009) uses a sample of 1019 firms in Norway and distinguishes 

between subsidies for research and subsidies for development. This author also finds that 

there is additionality for research subsidies but not for development ones. 

Finally, Czarnitzki et al. (2011) constructs an unbalanced panel from 1999 to 2007 

including 952 Belgium firms. These authors analyze financial constraints associated with 

research and development activities. They find a higher effect of financial constraints on 

research (this activity is performed by firms showing more liquidity and less debt than 

those performing development). 

More related to our study, we can quote two main examples: Czarnitzki et al. (2009) and 

Czarnitzki and Thorwarth (2010). Czarnitzki et al. (2009) analyzes the different impact of 

research and development on patents. They use an unbalanced panel of 122 Belgian firms 

                                                 
5 Regarding related theoretical studies, for example, Banal-Estañol and Macho-Stadler (2010) present a model to analyze the effect of 
commercial and scientific incentives on the amount of time spent in research and development by researchers.  
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from 1993 to 2003. They find that the patent-R&D relationship exhibits a premium for the 

portion of R in R&D although they warn about the explorative nature of the result due to 

the small size of the sample used. 

On the other hand, Czarnitzki and Thorwarth (2010) focus on analyzing the effect of basic 

research on a firm’s output depending on the technological intensity of the firm’s industry. 

They find that basic research has a productivity premium when compared to applied 

research and development only for firms belonging to high-tech industries. 

4. Data and descriptive analysis 

4.1. The database 

We use information from the Technological Innovation Panel (PITEC). PITEC is a 

statistical instrument for studying the innovation activities of Spanish firms over time. The 

data base is developed by the INE (The National Statistics Institute). The data come from 

the Spanish Community Innovation Survey (CIS). 

The data base is placed at the disposal of researchers on the FECYT web site6. PITEC 

contains information for a panel of more than 12,000 firms from 2003 to 2008, for the 

moment. PITEC consists of several subsamples, the most important of which are a sample 

of firms with 200 or more employees and a sample of firms with intramural R&D 

expenditures. Both subsamples have quite broad coverage. A more detailed description can 

be found on the FECYT web site. 

PITEC has three main advantages for this study. Firstly and most important, this data base 

has detailed information about firms’ R&D activities. Specifically, it allows the 

differentiation between research and development expenditures7. This information, seldom 

available, is essential to this study. 

Secondly, PITEC is a CIS-type data base. CIS data are widely used both by policy 

observers to provide innovation indicators and trend analyses, and by economists to analyze 

a variety of topics related to innovation. Therefore, throughout this study, we use widely 

                                                 
6 http://icono.fecyt.es/contenido.asp?dir=05)Publi/AA)panel. To observe confidentiality, an anonymized version of the data is available 
on the web site.  The anonymization procedure applied at the PITEC is described at the web page. 
7 Specifically, this differentiation between research and development expenditures refers only to current R&D expenditures. We assume 
that these weights can be extended to total R&D expenditures (including both current and capital expenditures). In our sample, current 
R&D expenditures account for approximately 80% of total R&D expenditures. 
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accepted innovation indicators and variables. For a review of CIS-based studies, see, for 

example, van Beers et al. (2008) and Mairesse and Mohnen (2010). 

Thirdly, PITEC is designed as a panel data survey. This fact allows us to mitigate many of 

the problems related to studies using CIS data, such as the simultaneity between input and 

outputs by lagging explanatory variables. 

In this paper, we use information from PITEC for the period 2005-20088, and we restrict 

our attention to manufacturing firms9. Finally, we use a constant sample of 4,168 firms for 

which we have data for each year in the period 2005-2008.  

4.2. Research and Development: A descriptive analysis  

At this point, we briefly describe intramural R&D expenditures of Spanish manufacturing 

firms during the period 2005-2008. Specifically, we focus on the decomposition of total 

expenditures between expenditures in research activities and development activities. As we 

said in Section 2, we define research expenditures as the sum of expenditures in basic and 

applied research. 

First, we identify firms performing both research and development, firms performing only 

research and firms performing only development during the period 2005-2008 (see Table 

2)10. It should be noted that less than half of the firms perform both research and 

development, while firms performing only development activities are more common than 

those performing only research. This pattern is stable across industries with the exception 

of the low-tech sector where the percentage of firms performing only research is similar to 

the percentage of firms performing only development. 

 

 

 

 

                                                 
8 Due to enlargements of the sample of firms performing intramural R&D in 2004 and 2005, we do not use the data for the years 2003 
and 2004. 
9 R&D performed by manufacturing and service firms shows many differences (see, for example, Sirilli and Evangelista, 1998). 
10 We find an important decrease in the number of R&D performers during the period 2005-2008 in the sample employed. This decrease 
is mainly due to firms which report performing R&D occasionally.  
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Table 2. Firms with R&D expenditures by year 
(number and percentage of firms) 

 2005 2006 2007 2008 
Manufacturing firms 3,795 3,446 3,268 3,087 

with R and D 43.5% 42.5% 41.1% 41.7% 
only R 23.6% 23.0% 23.6% 24.0% 
only D 32.9% 34.5% 35.3% 34.3% 

Low-tech firms 1002 874 837 776 
with R and D 39.8% 38.9% 37.6% 39.2% 
only R 30.8% 30.1% 30.0% 30.4% 
only D 29.4% 31.0% 32.4% 30.4% 

Medium-low tech firms 936 839 767 717 
with R and D 41.5% 39.2% 37.4% 37.3% 
only R 20.8% 20.9% 21.8% 23.8% 
only D 37.7% 39.9% 40.8% 38.9% 

Medium-high tech firms 1395 1297 1240 1181 
with R and D 44.7% 44.6% 44.2% 43.5% 
only R 21.9% 21.3% 21.0% 20.2% 
only D 33.5% 34.2% 34.8% 36.3% 

High-tech firms 462 436 425 413 
with R and D 51.9% 49.5% 44.9% 48.9% 
only R 18.8% 18.2% 22.4% 23.0% 
only D 29.3% 32.3% 32.7% 28.1% 

 

Table 3 shows the weight of research expenditures and development expenditures in the 

total R&D expenditures by year.  Firms spend slightly more on development, and this result 

is consistent over the years analyzed. Development expenditures account for about 55% of 

intramural R&D expenditures, while research expenditures account for about 45% of 

intramural R&D expenditures. These figures point to a high orientation to research (in 

relative terms) by Spanish firms. For example, in France, firms devote 31.7% of R&D 

expenses to research (Bertrand, 2009). In Belgium, this figure is around 33% (Czarnitzki et 

al., 2011), while NSF estimated it to be around 25% in the US in 2001 (Bercovitz and 

Feldman 2007). 
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Table 3. Percentage of R expenditures and D expenditures by year1 
 2005 2006 2007 2008 Mean 
R expenditures 46.1 44.9 44.4 45.1 45.1 
D expenditures 53.9 55.1 55.6 54.9 54.9 
1Firms with R&D expenditures. 

 

Surprisingly, firms belonging to low technological sectors spend slightly more on research 

than on development (see Table 4). For the rest of the sectors analyzed, development 

expenditures are higher than research expenditures. However, this result for low-tech firms 

should be viewed with some caution as they are less intensive in both research and 

development. This fact is pointed out in Table 5.  

 

Table 4. Percentage of R expenditures and D expenditures by sector1 
(% with respect to total R&D expenditures) 

 R expenditures D expenditures 
Low-tech firms 50.7 49.3 
Medium-low tech firms 41.3 58.7 
Medium-high tech firms 43.5 56.5 
High-tech firms 45.9 54.1 
Manufacturing firms 45.1 54.9 
1Firms with R&D expenditures. Weighted mean of years 2005, 2006, 2007 and 2008. 

 

Table 5 shows the ratio of intramural R&D expenditures over total turnover by industry, 

and its decomposition between the ratio of research expenditures over total turnover and the 

ratio of development expenditures over total turnover. As expected, both ratios are much 

higher for firms belonging to high-technology industries (1.96% and 2.28%, respectively). 

In the case of research expenditures, this ratio is almost six times higher in high-tech 

industries than in low-tech industries, while for development expenditures, it is seven times 

higher in high-tech industries than in low-tech ones. 
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Table 5. Ratio of intramural R&D expenditures over total turnover 1 
(% with respect to sales) 

 R expenditures 
Total turnover 

D expenditures 
Total turnover 

R&D expenditures 
Total turnover 

Low-tech firms 0.34 0.33 0.67 
Medium-low tech firms 0.26 0.37 0.63 
Medium-high tech firms 0.51 0.67 1.18 
High-tech firms 1.96 2.28 4.24 
Manufacturing firms 0.59 0.72 1.31 
1Firms with R&D expenditures. Weighted mean of years 2005, 2006, 2007 and 2008. 

 

5. Econometric specification 

We estimate a modified “knowledge production function” where some innovation output 

(I) depends on research and development expenditures, as well as on Z, which is a vector of 

controls. Thus for each firm i: 

)( )0705(,)0705(,)0705(,)0806(, iiiii ZintensityDintensityRaGI εϕβα ++++= −−−−                      (1) 

,where G is a linear or a non-linear function (depending on the dependent variable 

considered). 

Specifically, we focus on three different innovation outputs: (i) Patent applications; (ii) 

Technological innovations (measured by the introduction of product and process 

innovations); and (iii) Innovative sales. 

Given that, due to the design of the CIS, innovation outputs refer to a three-year period, we 

consider the innovation outputs for the period 2006-2008 (which correspond to the answers 

from the questionnaire of the year 2008) to be dependent variables. In defining the 

explanatory variables, we use yearly information from the questionnaires from the years 

2005, 2006 and 2007. For example, in obtaining research and development expenditures, 

we sum the expenditures reported by the firm for the years 2005, 2006 and 2007 (which 

correspond to the answers from the questionnaires from the years 2005, 2006 and 2007, 

respectively)11. Using this approach, we mitigate simultaneity and endogeneity problems 

inherent to cross-section analysis using CIS data in a single year (i.e., in many papers, 
                                                 
11 As a robustness check, we also define explanatory variables using information from 2005 and 2006. Results are shown in Section 6. 
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outputs which refer to a three-year period are explained using independent variables which 

refer only to the last year of the period).  

5.1. Sample of firms and variables used in the estimation 

Sample of firms 

As we said before, our panel data set comes from PITEC for the years 2005 to 2008, which 

allows us to use values of the explanatory variables from the period 2005-2007 to explain 

the existence of different innovation outputs in 2006-2008. Given this setup, we restrict our 

attention to those manufacturing firms presenting a positive amount spent on intramural 

R&D in at least one year during the period 2005-2007. This selection should not be 

problematic since several studies (see for example, Mairesse and Cuneo, 1984; and Crepon 

and Mairesse, 1993) show that there is not an important selection bias when using only 

R&D performers to analyze the relationship between R&D and productivity. Moreover, this 

selection is driven by the aim of the study: to analyze the different impacts of R and D. The 

final sample used in the estimation includes 4,024 firms observed for the period 2005 to 

2008. 

Dependent variables 

We focus on three different innovation outputs: patents, technological innovation and 

innovative sales. These three types of outputs are located along an axis reflecting distance 

to market. Patents are the results of inventive activity, and thus they can be seen as an 

intermediate output. Technological innovation (new products and processes) are 

technological outputs of the innovation process. Finally, sales from innovative products 

constitute an economic indicator of innovation success. 

Firstly, we have information on whether the firm has applied for patents (the extensive 

dimension) and on the number of patent applications (the intensive dimension). 

Specifically, we define the intensive measure as the number of patent applications per 

100,000 employees (in logs). Secondly, in order to measure technological innovation, we 

have information on whether the firm has introduced a product or process innovation. In the 

case of product innovation, we consider only the introduction of products new to the firm’s 

market. Finally, to measure innovative sales, we use the ratio between sales due to new-to- 

the-market products and total number of employees (in logs). 
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Explanatory variables 

This paper is focused on analyzing the differentiated effect of research and development on 

innovation results. In this sense, we distinguish between research intensity (R intensity in 

equation (1)) expressed as the ratio of research expenditures over the total number of 

employees (in logs) and development intensity (D intensity in equation (1)) expressed as 

the ratio of development expenditures over the total number of employees (in logs).  

In addition, in each regression, we control for several firms’ specific characteristics. As 

controls, denoted by Z in equation (1), we include firm size (measured by the log of total 

turnover), external R&D intensity (note that data do not allow us to distinguish between 

external ‘R’ and external ‘D’), cooperation, spillovers and the existence of cost and 

information barriers to innovation. Detailed definitions of all variables employed can be 

found in Appendix A. 

Note that, as we said before, we use information from the most relevant explanatory 

variables for the period 2005-2007. Therefore, in the case of these variables (research 

intensity, development intensity, firm size and external R&D intensity), we are using their 

weighted means for the period 2005-2007 as explanatory variables12. For example: 












++

++
=  

employeesemployeesemployees 
esexpenditurresearch esexpenditurresearch esexpenditurresearch 

logintensityResearch 
i,07i,06i,05

i,07i,06i,05
07-i,05

 

For the rest of the explanatory variables, we use the data for the year 2005. 

To analyze differences among industries, we consider industry-specific relationships 

between inputs and outputs. In doing this, we include interaction terms between our 

variables of interest (research intensity and development intensity) and industry dummies 

representing the technological intensity of the industry. We distinguish between four 

industries according to technological intensity following the OECD classification (OECD 

2005) 13. 

                                                 
12When we define these variables with information from 2005 and 2006, we use their weighted means for the period 2005-2006. In this 
case, we define the sample restricting our attention to those manufacturing firms presenting a positive amount spent on intramural R&D 
in at least one year during the period 2005-2006. 
13The OECD classification consists of four categories of industries: Low-Tech, Low-medium Tech, Medium-high Tech and High-Tech. 
Detailed definitions of these industries can be found in Appendix A. 
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In this sense, a strand of literature has analyzed the industry differences in terms of several 

characteristics, such as opportunity and appropriability conditions, cumulativeness or 

knowledge bases (for a review, see Malerba, 2002; 2007). Moreover, some authors have 

pointed out the analysis of industry peculiarities of the relationships between inputs and 

outputs of innovation as a crucial future line of research (Mairesse and Mohnen, 2010). 

Moreover, as a robustness check, we use an alternative industry classification: the Pavitt 

taxonomy. This classification consists of four categories of industries according to sources 

of technology, requirements of the users and appropriability regime (see Pavitt 1984)14. 

5.2. Estimation method 

Patent equation 

In this case, we are interested in estimating the determinants affecting both the firm’s 

capacity to apply for patents and the number of patent applications (for those firms active in 

patenting). Using the notation in equation (1), we can write:  

)( 1)0705(,1)0705(,1)0705(,11)0806(, iiiii ZintensityDintensityRaPat εϕβα ++++Φ= −−−−             (2) 

iiiii ZintensityDintensityRaPatInt 2)0705(,2)0705(,2)0705(,22)0806(, εϕβα ++++= −−−−            (3) 

, where Φ  is the normal standard c.d.f., Pat is a dummy variable indicating whether or not 

firm i applies for patents and PatInt is the number of patent applications per 100,000 

employees (in logs). 

We estimate equation (2) using a probit model for the whole sample and equation (3) by 

OLS for the sub-sample of firms with at least one patent application. Equation (3) may be 

seen as the second equation of a two-part model where the first part is equation (2) (for a 

further discussion of this topic, see Wooldridge, 2002, Chapter 16). By applying this 

method, we allow different mechanisms to determine the probability of patenting and the 

patent intensity. However, the results of equation (3) will apply only to patenting firms and 

cannot be extended to the whole sample15. 

                                                 
14Pavitt taxonomy consists of four categories of industries: Supplier-Dominated, Scale-Intensive, Specialized-Suppliers and Science-
based. Detailed definitions of these industries can be found in Appendix A. 
15 If R and D show positive coefficients in the first part, estimates would show a downward bias if extended to the whole sample. See 
Angrist and Pishke (2008), Chapter 3 for details. An alternative approach would be to use a generalized tobit. This would be the same as 
assuming missing values in the number of patents for the non-patenting firms. However, we observe that they have zero patents. 
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Moreover, we also estimate equation (3) using Quantile regression. This procedure 

examines conditional changes in different points of the distribution by minimizing a 

weighted sum of absolute deviations. This method allows us to know more about the entire 

distribution of patent application intensity. Specifically, we use the whole sample and 

present the results for the 90th, 94th and 98th percentiles of the distribution. These 

percentiles are chosen on empirical grounds as the ninth decile is the first one with a 

positive value of patent intensity. 

Technological innovation equation 

At this point, we have two equations of interest.  Again, using the notation in equation (1), 

we can write:  

)( 3)0705(,3)0705(,3)0705(,33)0806(, iiiii ZintensityDintensityRaInnProd εϕβα ++++Φ= −−−−   (4) 

)( 4)0705(,4)0705(,4)0705(,44)0806(, iiiii ZintensityDintensityRaInnProc εϕβα ++++Φ= −−−−   (5) 

, where Φ  is the normal standard c.d.f. and InnProd and InnProc are dummy variables 

indicating whether or not firm i has introduced product or process innovations, respectively. 

We estimate equations (4) and (5) using two separate probit models. Moreover, we also 

estimate a joint model for InnProd and InnProc using a bivariate probit model. 

Innovative sales equation 

In this case, the equation of interest is: 

iiiii ZintensityDintensityRaInnSalInt 5)0705(,5)0705(,5)0705(,55)0806(, εϕβα ++++= −−−−        (6) 

,where InnSalInt is the ratio between sales due to new-to-the-market products and total 

number of employees (in logs).  

We estimate equation (6) by OLS for the sub-sample of firms with product innovations. 

This equation may be seen as the second equation of a two-part model, where the first part 

is equation (4).  

Again, in order to deeply analyze the distribution of innovative sales, we estimate equation 

(6) using Quantile regression. In this case, we present the results for the 70th, 80th and 90th 
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percentiles of the distribution. Again, this selection is based on empirical grounds, as 56% 

of firms do not show positive innovative sales. 

6. Results and discussion 

In this section, we present the results of the differentiated effect of research and 

development on innovation outputs. The first three sections show the baseline results for 

patent application, technological innovation and innovative sales without focusing on 

industry differences. Section 6.4 presents some robustness checks. Finally, in Section 6.5, 

we focus on analyzing the effect of research and development on innovation results by the 

firm’s industry. 

6.1. Patent application 

First, we analyze the differentiated effect of research and development on patent 

application. Regression a in Table 6 shows the estimated coefficients of the determinants of 

patent application for a probit model for the whole sample of firms. We find that both 

research and development have a positive effect on the probability of patenting. Most 

interesting, we find no difference between the effects of these two types of expenditures.  

Estimates b to e in Table 6 show the results for the intensive dimension of patents. Firstly, 

Estimate b shows the OLS results for the sample of firms with at least one patent 

application. We find that both research and development expenditures seem to have no 

significant effect on patent application intensity. Again, the difference between the effects 

of both types of expenditures is not significant.  

Secondly, estimates c, d and e in Table 6 present Quantile regression results. These results 

confirm that there are no differences between the effects of research and development on 

patent intensity. Most interesting and in contrast with the OLS results, we find that both 

research and development have a positive and significant effect on patent intensity.  
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Table 6. The differentiated effect of Research and Development on patent application 
 (a) (b) (c) (d) (e) 
 Probability of patent 

application 
Number of patent applications 
(Patent application intensity) 

 
Probit OLS Quantile regression 

(90th percentile) 
Quantile regression 

(94th percentile) 
Quantile regression 

(98th percentile) 
R intensity 0.011*** (0.002) 0.021 (0.013) 0.250*** (0.050) 0.107*** (0.027) 0.106** (0.036) 
D intensity 0.011*** (0.002) 0.016 (0.016) 0.262*** (0.061) 0.118*** (0.033) 0.123** (0.042) 
Size 0.018*** (0.003) -0.541*** (0.029) -0.114 (0.092) -0.372*** (0.050) -0.412*** (0.069) 
External R&D intensity 0.011*** (0.002) 0.017 (0.013) 0.255*** (0.050) 0.105*** (0.027) 0.078* (0.035) 
Cooperation 0.032** (0.012) -0.168 (0.088) 0.417 (0.336) 0.071 (0.179) -0.004 (0.237) 
Information factors 0.014 (0.027) 0.110 (0.191) -0.138 (0.744) 0.126 (0.401) 0.155 (0.552) 
Cost factors -0.007 (0.022) -0.268 (0.158) -0.249 (0.592) -0.032 (0.323) -0.550 (0.440) 
Spillovers 0.112*** (0.021) 0.034 (0.183) 3.368*** (0.551) 0.708* (0.302) 0.667 (0.416) 
Medium-low industry 0.072*** (0.019) 0.101 (0.123) 2.552*** (0.415) 0.826*** (0.222) 0.419 (0.290) 
Medium-high industry  0.086*** (0.017) 0.121 (0.110) 2.923*** (0.385) 0.995*** (0.205) 0.361 (0.269) 
High industry 0.102*** (0.025) 0.170 (0.145) 2.201*** (0.536) 1.233*** (0.279) 0.525 (0.362) 
Number of firms 4,024 647 4,024 4,024 4,024 
R-squared  0.485
Log-Likelihood -1,621.406        
Pseudo R-squared 0.086  0.083 0.057 0.063 
Test R=D1 0.921 0.805 0.853 0.773 0.728 
Robust standard errors in parentheses. ***significant at 1%, **significant at 5%, *significant at 10%. 
Estimate (a) shows the marginal effects of the independent variables.   
1p-value from a test of equality of estimated coefficients of R intensity and D intensity. 
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To sum up, we find no differences between the effect of research and development on both 

the probability of applying for patents and the number of patent applications. This result 

differs from that of Czarnitzki et al. (2009). These authors find that the weight of research 

on total R&D expenditures positively affected the number of patents. However, we can 

point out four important differences between our study and Czarnitzki et al. (2009). The 

first difference is the sample size. In this sense, we use a sample of 4,268 firms, in contrast 

with the 122 firms used by Czarnitzki et al. (2009). Second, they analyze the effect of 

contemporaneous R&D expenditures on the number of patents filed. Thirdly, they use panel 

data techniques to control for unobservable individual heterogeneity. Finally, they use an 

absolute measure (number of patents), while we use a relative measure (number of patents 

weighted by firm size). 

6.2. Technological innovation 

Table 7 shows the differentiated effect of research and development on both product and 

process innovation. Estimates a and b show separate probit models results for product and 

process innovation, while estimate c shows the results of a bivariate probit model. Results 

for separate probits and bivariate probit are very similar, although the hypotheses that 

0=ρ  is rejected, suggesting that the bivariate probit is more adequate. 

We find that research and development have a significant and positive effect on both 

product and process innovation. Research intensity has a similar effect on both types of 

technological innovation, while the effect of development expenditures is much higher on 

the probability of introducing product innovations.  

Comparing the effect on each type of innovation, we find that development activities are 

more important than research activities in introducing product innovations. In particular, 

development intensity exhibits a 50% higher coefficient than research intensity. For their 

part, research activities have a 30% higher effect on introducing process innovation than 

development activities. These results might suggest that development expenditures are 

highly relevant to obtaining new products and are not usually used to obtain new processes. 

However, research activities seem to be very helpful also in obtaining new processes. This 

result is of great importance for shedding light on the sources of process innovations. As 
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some authors have highlighted, process innovation has received less attention than product 

innovation, although it is crucial for productivity improvements (Reichstein and Salter, 

2006). 

Furthermore, evidence on the relationship between R&D and process innovation is not 

conclusive. Some authors find a positive and important effect of R&D on process 

innovation (Mairesse and Mohnen, 2005; Reichstein and Salter, 2006). Meanwhile, other 

studies find no evidence supporting this relationship (Martinez-Ros, 2000; Rouvinen 2002) 

or even a negative one (Conte, 2009). Our results suggest that both activities have a 

positive effect on process innovation, although the effect of research seems higher. 

 

Table 7. The differentiated effect of Research and Development 
on technological innovation

 (a) (b) (c) (d) 
 Product innovation Process innovation Product innovation Process innovation 
 Probit Probit Bivariate Probit 
R intensity 0.017*** (0.003) 0.014*** (0.002) 0.018*** (0.003) 0.014*** (0.002) 
D intensity 0.026*** (0.003) 0.010*** (0.003) 0.027*** (0.003) 0.010*** (0.003) 
Size 0.030*** (0.005) 0.050*** (0.005) 0.030*** (0.005) 0.051*** (0.005) 
External R&D intensity 0.008** (0.003) 0.004 (0.002) 0.008** (0.003) 0.004 (0.002) 
Cooperation 0.076*** (0.018) 0.055*** (0.016) 0.076*** (0.018) 0.055*** (0.016) 
Information factors -0.001 (0.038) 0.038 (0.035) -0.001 (0.038) 0.038 (0.035) 
Cost factors -0.046 (0.031) 0.024 (0.029) -0.047 (0.031) 0.024 (0.029) 
Spillovers 0.127*** (0.031) 0.080** (0.029) 0.126*** (0.031) 0.080** (0.029) 
Medium-low industry 0.002 (0.022) 0.008 (0.021) 0.003 (0.022) 0.008 (0.021) 
Medium-high industry  0.073*** (0.021) -0.085*** (0.019) 0.074*** (0.021) -0.086*** (0.019) 
High industry 0.075** (0.029) -0.095*** (0.028) 0.077** (0.029) -0.096*** (0.028) 
Number of firms 4,024 4,024 4,024 
Log-Likelihood -2,612.619 -2,352.507 -4,937.903 
Pseudo R-squared 0.053 0.051  
Test ρ=01   0.000 
Test R=D2 0.011 0.232 0.010 0.223 
Robust standard errors in parentheses. ***significant at 1%, **significant at 5%, *significant at 10%. 
Coefficients are the marginal effect of the independent variable.  
 1p-value from a test of ρ=0. 
2p-value from a test of equality of estimated coefficients of R intensity and D intensity. 
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6.3. Innovative sales 

The last innovation output analyzed is sales due to new-to-the-market products. Regression 

a in Table 8 shows OLS estimates of the effect of research and development on innovative 

sales for the sample of firms with product innovations. Again, both types of innovation 

expenditures have a positive and significant effect. In this case, the effect of development 

expenditures on innovative sales is slightly higher than the effect of research expenditures. 

The estimated elasticities of innovative sales with respect to development and research 

intensities are 0.059 and 0.046, respectively. 

 

Table 8. The differentiated effect of Research and Development on innovative sales 
 (a) (b) (c) (d) 

 OLS Quantile regression 
(70th percentile) 

Quantile regression 
(80th percentile) 

Quantile regression 
(90th percentile) 

R intensity 0.048*** (0.013) 0.186*** (0.030) 0.108*** (0.019) 0.068*** (0.017) 
D intensity 0.067*** (0.016) 0.407*** (0.035) 0.181*** (0.023) 0.118*** (0.020) 
Size 0.153*** (0.025) 0.383*** (0.057) 0.222*** (0.037) 0.202*** (0.031) 
External R&D intensity 0.012 (0.012) 0.080** (0.030) 0.059** (0.019) 0.052** (0.017) 
Cooperation -0.094 (0.081) 0.284 (0.206) 0.166 (0.132) 0.037 (0.113) 
Information factors -0.026 (0.175) -0.282 (0.435) -0.259 (0.278) -0.227 (0.236) 
Cost factors 0.218 (0.152) -0.024 (0.356) 0.104 (0.229) 0.229 (0.197) 
Spillovers -0.134 (0.145) 0.695* (0.354) 0.215 (0.227) 0.005 (0.198) 
Medium-low industry 0.074 (0.113) 0.000 (0.255) 0.264 (0.163) 0.097 (0.138) 
Medium-high industry 0.129 (0.099) 0.663** (0.236) 0.541*** (0.151) 0.159 (0.128) 
High industry -0.173 (0.133) 0.197 (0.329) 0.095 (0.210) -0.134 (0.176) 
Number of firms 1,770 4,024 4,024 4,024 
R-squared 0.041    
Pseudo R-squared  0.040 0.025 0.018 
Test R=D1 0.294 0.000 0.005 0.030 
Robust standard errors in parentheses. 
***significant at 1%, **significant at 5%, *significant at 10%. 
1p-value from a test of equality of estimated coefficients of R intensity and D intensity. 

 

Estimates b, c and d in Table 8 present the results for the 70th, 80th and 90th percentiles, 

respectively. They clearly show that development intensity has a significantly greater effect 

than research intensity. At the 70th percentile, the effect of development intensity is more 

than double the effect of research intensity, while at the 80th and 90th percentiles it is 70% 

greater. That is, the impact of development on sales from new-to-the-market products is 
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much higher than the impact of research even for the more innovation-intensive points of 

the distribution. 

6.4. Robustness checks 

We apply two robustness checks to verify our results. The first test is related to the lag used 

to define our main explanatory variables. For now, we are using research and development 

expenditures for the period 2005-2007 to explain innovation outputs for the period 2006-

2008. In this sense, we may still have too much overlapping between the periods 

considered. In solving this problem, we define research intensity, development intensity, 

firm size and external R&D intensity using information for 2005 and 2006. In this case, we 

use past and contemporaneous values of these explanatory variables (in 2005 and 2006) to 

explain innovation outputs (in 2006–2008). Tables A1, A2 and A3 in Appendix B show the 

results for patent application, technological innovation and innovative sales, respectively. 

We find that the results are very similar to those presented before, although, in general, we 

obtain less precise estimations and estimated coefficients are smaller.  

The second robustness check is related to the definition of the sample of interest. For the 

moment, we have focused on firms with intramural R&D expenditures in at least one year 

during the period 2005-2007. Therefore, we do not distinguish between occasional R&D 

performers and continuous R&D performers (i.e., firms with intramural R&D expenditures 

in 2005, 2006 and 2007). This second test analyzes the differentiated effect of research and 

development on innovation outputs, focusing on a sample of 3,027 continuous R&D 

performers (see Tables A4, A5 and A6 in Appendix B). Again, results are very similar to 

those presented in Sections 6.1, 6.2 and 6.3. This finding might suggest that our results are 

valid for the whole population of R&D performers without distinguishing between 

occasional and continuous performers. 

6.5. Industry level results 

In this section, we analyze the effect of research and development on innovation results by 

the firm’s industry. In doing this, we use the interactions between research and 

development intensities and industry dummies indicating technological intensity (following 



24 

the OECD classification) as explanatory variables. As we said in Section 5.1, in defining 

industry dummies, we also use the Pavitt taxonomy as a robustness check. 

Firstly, following the OECD classification, we allow research intensity and development 

intensity to be interacted with dummies for belonging to a low-tech industry, to a low-

medium tech industry, to a medium-high industry or to a high-tech industry (denoted by -lt, 

-lmt, -mht and -ht, respectively). For example, R intensity-lt is the interaction between the 

firm’s research intensity and a dummy variable for belonging to a low-tech industry.  

Secondly, using the Pavitt taxonomy, we allow research intensity and development 

intensity to interact with dummies for belonging to a supplier-dominated industry, to a 

scale-intensive industry, to a specialized-suppliers industry or to a science-based industry 

(denoted by -sd, -si, -ss and -sb, respectively). For example, R intensity-sd is the interaction 

between the firm’s research intensity and a dummy variable for belonging to a supplier-

dominated industry. 

6.5.1. OECD Classification 

We find that the general pattern of results does not change across the industries considered 

(see Tables 9, 10 and 11)16. Firstly, research and development intensities have a similar 

effect on patent application. Secondly, development expenditures have a higher effect on 

both the introduction of product innovations and, especially on sales due to these new 

products. Finally, research expenditures have a greater effect on process innovation. These 

results hold across industries, although differences between the effects of R intensity and D 

intensity are usually not significant (see Table A7). 

Regarding differences by industry, we find that the effect of research and development 

intensities on the probability of patent application is greater on medium-high tech and high-

tech industries than on low-tech and medium-low tech industries (see estimate a in Table 

9). This result might suggest that both research and development are more oriented to 

obtaining patents in industries intensive in technology, probably as a consequence of the 

existence of different appropriability regimes among industries. 

                                                 
16 Table A7 in Appendix B shows the results for tests of equality of estimated coefficients of R intensity and D intensity). 
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All the interaction variables lose their significance when we analyze the determinants of the 

number of patent applications (see estimate b in Table 9). However, Quantile regressions 

(see estimates c, d and e in Table 9) mostly restore their significance. We find a big effect 

of both R and D in low-tech sectors in the 90th and 94th percentiles of the distribution, 

while, R and especially D have a big effect for high-tech sectors in the 98th percentile. 

When analyzing the introduction of technological innovations, firstly, we find that research 

is more conducive to product innovations in low-tech industries. In fact, this type of 

innovation expenditure is not significant for the introduction of product innovations in 

high-tech industries (see estimates a and c in Table 10). Results for development are 

different as this type of expenditure has a significant and (quite similar) positive effect on 

product innovation across the industries considered. Secondly, regarding process 

innovations, we find that both research and development have a greater effect in low-tech 

industries (see estimates b and c in Table 10). 

Finally, Table 11 presents the results for innovative sales with industry interactions. We 

find that the effect of research is shown to be much greater in low-tech industries. 

However, the effect of development is greater for high-tech industries. Quantile regression 

allows us to qualify this last result by showing that it happens only for firms in the 90th 

percentile but not for those in lower percentiles. 

Some of these industry results could be surprising. However, they are consistent with the 

existing literature. In this sense, several authors had already obtained that R&D as a whole 

is more conducive to product and process innovation in low-tech industries (see, for 

example, Mairesse and Mohnen, 2005 and Hall et al., 2009). 

Several (non-competing) hypotheses could be proposed to explain this result. First, in low-

tech industries, spending more money on research activities could easily lead to new 

products and processes. However, the way of performing research and development is more 

important in high-tech industries (i.e., it is not a matter of “how much” but of “how”). This 

result could be driven by a lower uncertainty involved in low-tech innovation and a more 

straightforward relationship between research and innovation. One would wonder why then 

the investments are lower in the low-tech sector and the reason should be that the 

opportunity costs are also lower. That is, it is easier to survive in the market without R&D 
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investments, partly because of the existence of non-R&D based alternatives for innovation 

in low-tech industries, which are less frequently found in high-tech industries (Santamaria 

et al., 2009), and partly because it is easier to survive with unchanged products and 

processes in these industries. 

Second, this result would mean that opportunities, defined as likelihood of innovation per 

dollar (see Malerba and Orsenigo, 1993), would not be lower in low-tech industries. This 

apparent contradiction exists because technological opportunities have been increasingly 

identified with opportunities coming from new science. However, in their original 

formulation, the sources of technological opportunities were varied and came also from 

technological advances by other firms or by a firm’s own advances (Dosi, 1988). 

Innovation in low-tech industries is highly dependent on innovation of other industries (see, 

for example, Robertson and Patel, 2007), and is based on the recombination of existing 

knowledge (see, for example, Hirsch-Kreinsen, 2009). This process of recombination 

demands new roles for applied research and development: the absorption of external 

knowledge and the adaptation of it to the specifities of the firm (Cohen and Levinthal, 

1989). 

Finally, a third explanation is that firms in low-tech industries may also be high-tech and 

science-based firms (see Kirner et al., 2009). Some authors (see, for example, Klevorick et 

al., 1995) have pointed out that the difference between low and high-tech industries did not 

depend on science but on the number of scientific fields they depend upon. Therefore, 

differences among industries in relation to the scientific contents are questionable. 
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Table 9. The differentiated effect of Research and Development on patent application 
Industry interactions: OECD classification 

 (a) (b) (c) (d) (e) 
 Probability of patent 

application 
Number of patent applications 
(Patent application intensity) 

 Probit OLS Quantile regression
(90th percentile) 

Quantile regression
(94th percentile) 

Quantile regression
(98th percentile) 

R intensity-lt 0.008* (0.004) 0.008 (0.035) 0.412*** (0.089) 0.158** (0.049) 0.134* (0.059) 
R intensity-lmt 0.010** (0.004) 0.049 (0.027) 0.232** (0.089) 0.116* (0.052) 0.107 (0.067) 
R intensity-mht 0.013*** (0.003) 0.008 (0.017) 0.204** (0.071) 0.079 (0.042) 0.053 (0.048) 
R intensity-ht 0.014** (0.005) 0.017 (0.034) 0.185 (0.117) 0.100 (0.063) 0.144 (0.079) 
D intensity-lt 0.011* (0.005) 0.002 (0.031) 0.438*** (0.097) 0.355*** (0.055) 0.142* (0.061) 
D intensity-lmt 0.009* (0.005) 0.035 (0.029) 0.244* (0.108) 0.093 (0.063) 0.056 (0.081) 
D intensity-mht 0.013*** (0.004) 0.010 (0.029) 0.250** (0.089) 0.103 (0.054) -0.032 (0.060) 
D intensity-ht 0.011* (0.005) 0.017 (0.034) 0.151 (0.140) 0.114 (0.074) 0.183*** (0.053) 
Size 0.018*** (0.003) -0.541*** (0.029) -0.167* (0.083) -0.364*** (0.047) -0.409*** (0.057) 
External R&D intensity 0.011*** (0.002) 0.018 (0.013) 0.203*** (0.044) 0.100*** (0.025) 0.082** (0.031) 
Cooperation 0.032** (0.012) -0.170 (0.088) 0.329 (0.296) 0.146 (0.172) 0.150 (0.215) 
Information factors 0.014 (0.027) 0.120 (0.192) -0.103 (0.662) 0.116 (0.386) -0.046 (0.481) 
Cost factors -0.007 (0.022) -0.273 (0.159) -0.189 (0.528) 0.012 (0.311) -0.425 (0.379) 
Spillovers 0.112*** (0.021) 0.042 (0.185) 2.614*** (0.492) 0.676* (0.290) 0.515 (0.361) 
Medium-low industry 0.072 (0.065) -0.326 (0.395) 4.402*** (1.222) 2.799*** (0.677) 1.116 (0.836) 
Medium-high industry 0.047 (0.056) 0.079 (0.393) 4.927*** (1.141) 3.073*** (0.643) 1.993** (0.741) 
High industry 0.055 (0.081) 0.032 (0.482) 5.189** (1.600) 3.142*** (0.816) -0.059 (0.851) 
Number of firms 4,024 647 4,024 4,024 4,024 
R-squared   0.487       
Log-Likelihood -1,620.625        
Pseudo R-squared 0.087  0.086 0.058 0.066 
Robust standard errors in parentheses. ***significant at 1%, **significant at 5%, *significant at 10%. 
Estimate (a) shows the marginal effects of the independent variables.  
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Table 10. The differentiated effect of Research and Development 
on technological innovation 

Industry interactions: OECD classification 
 (a) (b) (c) 
 Product 

innovation 
Process 

innovation 
Product 

innovation 
Process 

innovation 
 Probit Probit Bivariate Probit 
R intensity-lt 0.022*** (0.005) 0.018*** (0.005) 0.022*** (0.005) 0.018*** (0.005)
R intensity-lmt 0.016** (0.005) 0.009* (0.005) 0.016** (0.005) 0.010* (0.005)
R intensity-mht 0.020*** (0.004) 0.017*** (0.004) 0.020*** (0.004) 0.017*** (0.004)
R intensity-ht 0.005 (0.007) 0.006 (0.006) 0.005 (0.007) 0.007 (0.006)
D intensity-lt 0.024*** (0.006) 0.024*** (0.005) 0.024*** (0.006) 0.024*** (0.005)
D intensity-lmt 0.020** (0.007) 0.014* (0.006) 0.021** (0.007) 0.014* (0.006)
D intensity-mht 0.031*** (0.005) -0.001 (0.005) 0.031*** (0.005) -0.001 (0.005)
D intensity-ht 0.029*** (0.008) 0.007 (0.008) 0.029*** (0.008) 0.007 (0.008)
Size 0.030*** (0.005) 0.051*** (0.005) 0.031*** (0.005) 0.051*** (0.005)
External R&D intensity 0.009*** (0.003) 0.004 (0.002) 0.009*** (0.003) 0.004 (0.002)
Cooperation 0.076*** (0.018) 0.055*** (0.016) 0.076*** (0.018) 0.055*** (0.016)
Information factors 0.001 (0.038) 0.036 (0.035) 0.001 (0.038) 0.036 (0.035)
Cost factors -0.046 (0.031) 0.023 (0.029) -0.047 (0.031) 0.023 (0.029)
Spillovers 0.127*** (0.031) 0.078** (0.029) 0.127*** (0.031) 0.078** (0.029)
Medium-low industry 0.054 (0.072) 0.097 (0.058) 0.056 (0.072) 0.095 (0.058)
Medium-high industry 0.037 (0.067) 0.060 (0.057) 0.039 (0.067) 0.059 (0.058)
High industry 0.145 (0.095) 0.064 (0.078) 0.148 (0.095) 0.062 (0.078)
Number of firms 4,024 4,024 4,024 
Log-Likelihood -2,609.017 -2,342.850 -4,924.531 
Pseudo R-squared 0.055 0.055  
Test ρ=01   0.000 
Robust standard errors in parentheses. 
***significant at 1%, **significant at 5%, *significant at 10%. 
Coefficients are the marginal effect of the independent variable.  
1p-value from a test of ρ=0. 
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Table 11. The differentiated effect of Research and Development on innovative sales 
Industry interactions: OECD classification 

 (a) (b) (c) (d) 

 OLS Quantile regression 
(70th percentile) 

Quantile regression 
(80th percentile) 

Quantile regression 
(90th percentile) 

R intensity-lt 0.113*** (0.028) 0.419*** (0.063) 0.224*** (0.040) 0.163*** (0.036) 
R intensity-lmt 0.011 (0.025) 0.149* (0.061) 0.104** (0.038) 0.064 (0.034) 
R intensity-mht 0.030 (0.020) 0.151** (0.050) 0.082** (0.031) 0.015 (0.028) 
R intensity-ht 0.069* (0.031) 0.056 (0.080) 0.059 (0.050) 0.088 (0.047) 
D intensity-lt 0.046 (0.032) 0.580*** (0.064) 0.234*** (0.042) 0.097** (0.037) 
D intensity-lmt -0.001 (0.033) 0.341*** (0.076) 0.107* (0.048) 0.100* (0.044) 
D intensity-mht 0.082*** (0.024) 0.401*** (0.061) 0.211*** (0.040) 0.122*** (0.037) 
D intensity-ht 0.173*** (0.046) 0.363*** (0.095) 0.197** (0.061) 0.190*** (0.056) 
Size 0.152*** (0.025) 0.383*** (0.059) 0.245*** (0.037) 0.202*** (0.033) 
External R&D intensity 0.012 (0.012) 0.062 (0.032) 0.050* (0.020) 0.051** (0.018) 
Cooperation -0.096 (0.080) 0.384 (0.214) 0.133 (0.134) 0.067 (0.120) 
Information factors -0.014 (0.175) -0.121 (0.451) -0.338 (0.284) -0.263 (0.249) 
Cost factors 0.192 (0.152) -0.130 (0.370) 0.202 (0.236) 0.229 (0.211) 
Spillovers -0.132 (0.144) 0.850* (0.369) 0.204 (0.232) -0.042 (0.212) 
Medium-low industry 0.926* (0.382) 3.427*** (0.810) 1.625** (0.519) 0.716 (0.449) 
Medium-high industry 0.373 (0.360) 3.620*** (0.758) 1.372** (0.485) 0.910* (0.432) 
High industry -0.850 (0.529) 4.124*** (1.098) 1.224 (0.693) -0.363 (0.627) 
Number of firms 1,770 4,024 4,024 4,024 
R-squared 0.053    
Pseudo R-squared  0.042 0.027 0.020 
Robust standard errors in parentheses. ***significant at 1%, **significant at 5%, *significant at 10%. 

6.5.2. Pavitt taxonomy 

At this point, we use Pavitt taxonomy to define the interactions between research and 

development intensities and industry dummies.  Tables A8, A9 and A10 in Appendix B 

show the results for patent application, technological innovation and innovative sales, 

respectively. 

Results using Pavitt taxonomy confirm both the general and the industry pattern of results. 

First, research and development have a similar effect on patent application, while the effect 

of development is greater on product innovations and innovative sales and research has a 

greater effect on process innovation. 

Second, results are consistent with those obtained using the OECD classification, 

specifically, the importance of research for obtaining sales from new products in supplier-

dominated (low-tech) industries and the importance of development in science-based (high- 

tech) industries.  
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7. Conclusions 

We obtain new insights on the effect of R&D on innovation by analyzing the differentiated 

effect of each activity (R and D) on three innovation outputs (patent application, 

technological innovation and innovative sales). While there is a long tradition of firm-level 

studies on this topic, research and development had seldom been considered as separate 

activities. However, as pointed out by the early works by Mansfield (1981) and Link 

(1982), research and development have important differences, and it is worthy of exploring 

both the determinants and the effects of this heterogeneity. 

We find that both research and development are important for obtaining the innovation 

outputs analyzed. Firstly, their impact is very similar when patent applications are 

analyzed. Secondly, development activities seem to have a greater effect on product 

innovation, while research activities seem to have a greater effect on process innovation. 

Finally and more remarkably, development activities show a much greater effect (between 

70%-100% higher, depending on the level of innovation intensity) on sales from new-to-

the-market products. 

We find evidence supporting the existence of differences between R and D by the sector’s 

technological intensity. In this sense, we find that research activities (and to a lesser extent 

development activities) have a greater effect on sales from new products and on process 

innovation in low-tech sectors. We propose several hypotheses than can explain this result, 

which is consistent with previous studies using R&D as a whole. Moreover, we find that 

both activities have a greater effect on patent applications for firms belonging to high-tech 

sectors. In this sense, our results are consistent with the existing literature focused on 

patents as a measure of innovation results.  

To summarize, three main conclusions can be advanced. Firstly, we find that Spanish firms 

devote a large portion of R&D expenditures to research activities, compared to other 

developed countries. However, development expenditures show a much greater effect on 

sales from new products than research expenditures. To some extent, this result resembles 

the European paradox, but at the firm level. If increasing the economic returns of R&D 

through sales from new products is a central interest to policy makers, public support 

programs should make an effort to foster development activities, as these activities are 
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more connected to the market. It is worth noting that development activities still involve 

spillovers (especially market spillovers) so that the classical justification for public 

intervention applies. However, evidence on additionality of public funding for R and D is 

not conclusive. For example, Link (1982) finds a higher additionality for development, 

while Aerts and Thorwall (2009) and Clausen (2009) find a higher additionality for 

research.  

Secondly, our results do not mean that research is not important. On the contrary, its effect 

is significantly positive for obtaining sales from new-to-the-market products. Moreover, 

research activities are very important in obtaining product innovations, which help to 

increase productivity levels of firms, a very important target of policy initiatives. 

Thirdly, we have obtained that research and development activities have a great effect on 

innovation in low-tech sectors. This result could lead to a rethinking of innovation policies, 

which are mainly focused on high-tech sectors and also to a rethinking of some widely used 

concepts, such as science-based sectors, technological opportunity and industry 

classifications. 

Finally, further research is needed. It is likely that research and development have different 

time lags in their conversion to innovation results, the influence of development being more 

visible in the short term. Moreover, it is important to test whether research and 

development are complementary in obtaining innovation results. Finally, we analyze the 

Spanish case, where a low degree of R&D intensity is combined with relative orientation to 

research. Evidence from other countries on the differentiated effect of R and D on 

innovation results might be revealing17. 

 

                                                 
17Although previous research using CIS data finds that results for Spain do not seem to be strikingly different from the results for other 
European countries (see Griffith et al., 2006, for evidence on the relationship between innovation and productivity, and  Abramovsky et 
al., 2009, for evidence on the determinants of co-operative innovative activity). 
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Appendix A: Variable definitions  
 
Cost factors: Sum of the scores of importance of the following obstacles to the innovation 
process (number between 1 (high) and 4 (factor not experienced)): Lack of funds within the 
enterprise or group; Lack of finance from sources outside the enterprise; Innovation costs 
too high. Rescaled between 0 (factor not experienced) and 1 (high). 
 
Development intensity: Ratio between intramural development expenditures and total 
number of employees (in logs). 
 
External R&D intensity: Ratio between external R&D expenditures and total number of 
employees (in logs). 
 
High-tech industry: Dummy variable that takes the value one if the firm belongs to the 
following industries: aircraft, spacecraft, pharmaceuticals, office machinery, radio and TV 
equipment, and medical and optical instruments. 
 
Information factors: Sum of the scores of importance of the following obstacles to the 
innovation process (number between 1 (high) and 4 (factor not experienced)): Lack of 
qualified personnel; Lack of information on technology; Lack of information on markets; 
Difficulty in finding cooperation partners for innovation. Rescaled between 0 (factor not 
experienced) and 1 (high). 
 
Innovative sales intensity: Ratio between sales due to new-to-the-market-products and total 
number of employees (in logs). 
 
Low-medium tech industry: Dummy variable that takes the value one if the firm belongs to 
the following industries: petroleum refining, rubber and plastic products, non-metallic 
mineral products, ferrous metals, non-ferrous metals, shipbuilding and other manufacturing. 
 
Low-tech industry: Dummy variable that takes the value one if the firm belongs to the 
following industries: food, beverages, tobacco, textile and clothing, wood products, paper, 
printing, furniture, games and toys, and recycling. 
 
Medium-high tech industry: Dummy variable that takes the value one if the firm belongs to 
the following industries: chemicals, non-electrical machinery, electrical machinery, motor 
vehicles and other transport equipment. 
 
Patent application: Dummy variable that takes the value one if the firm has applied for 
patents. 
 
Patent application intensity: Number of patent applications per 100,000 employees (in 
logs). 
 
Process innovation: Dummy variable that takes the value one if the firm reports having 
introduced process innovations. 
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Product innovation: Dummy variable that takes the value one if the firm reports having 
introduced  a new good or service into its market before its competitors. 
 
Research intensity: Ratio between intramural research expenditures and total number of 
employees (in logs). 
 
Scale-Intensive industry: Dummy variable that takes the value one if the firm belongs to the 
following industries: food, beverages, tobacco, printing, petroleum refining, non-metallic 
mineral products, ferrous metals, non-ferrous metals, shipbuilding, motor vehicles and 
other transport equipment. 
 
Science-Based industry: Dummy variable that takes the value one if the firm belongs to the 
following industries: chemicals, pharmaceuticals, radio and TV equipment, aircraft and 
spacecraft. 
 
Size: Total turnover (in logs). 
 
Specialized-Suppliers industry: Dummy variable that takes the value one if the firm belongs 
to the following industries: non-electrical machinery, electrical machinery, office 
machinery, and medical and optical instruments. 
 
Spillovers: Sum of the scores of importance of the following information sources for the 
innovation process (number between 1 (high) and 4 (not used)): Conferences, trade fairs 
and exhibitions; Scientific journals and trade/technical publications and professional and 
industry associations. Rescaled between 0 (not used) and 1 (high). 
 
Supplier-Dominated industry: Dummy variable that takes the value one if the firm belongs 
to the following industries: textile and clothing, wood products, paper, rubber and plastic 
products, furniture, games and toys, recycling and other manufacturing. 
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Appendix B: Additional results  
 
 

Table A1. The differentiated effect of Research and Development on patent application 
Robustness check 1: intensities for the period 2005-2006  

 (a) (b) (c) (d) (e) 
 Probability of patent 

application 
Number of patent applications 
(Patent application intensity) 

 
Probit OLS Quantile regression 

(90th percentile) 
Quantile regression 

(94th percentile) 
Quantile regression 

(98th percentile) 
R intensity 0.011*** (0.002) 0.022 (0.012) 0.223*** (0.049) 0.094*** (0.025) 0.106** (0.036) 
D intensity 0.011*** (0.002) 0.012 (0.016) 0.254*** (0.057) 0.112*** (0.030) 0.091* (0.043) 
Size 0.018*** (0.003) -0.534*** (0.029) -0.096 (0.094) -0.405*** (0.049) -0.438*** (0.069) 
External R&D intensity 0.011*** (0.002) 0.013 (0.013) 0.211*** (0.048) 0.084*** (0.024) 0.069* (0.034) 
Cooperation 0.032** (0.012) -0.170 (0.090) 0.297 (0.338) 0.112 (0.174) 0.097 (0.245) 
Information factors 0.013 (0.027) 0.106 (0.198) -0.187 (0.742) 0.229 (0.386) 0.118 (0.575) 
Cost factors -0.008 (0.022) -0.286 (0.163) -0.256 (0.597) -0.225 (0.313) -0.676 (0.457) 
Spillovers 0.115*** (0.021) 0.050 (0.186) 3.287*** (0.556) 0.718* (0.290) 0.510 (0.415) 
Medium-low industry 0.074*** (0.019) 0.105 (0.126) 3.034*** (0.421) 0.846*** (0.216) 0.472 (0.299) 
Medium-high industry  0.088*** (0.017) 0.151 (0.114) 3.347*** (0.391) 1.007*** (0.200) 0.436 (0.286) 
High industry 0.105*** (0.026) 0.168 (0.147) 2.732*** (0.538) 1.310*** (0.268) 0.569 (0.366) 
Number of firms 3,947 635 3,947 3,947 3,947 
R-squared   0.483       
Log-Likelihood -1,591.296        
Pseudo R-squared 0.086  0.083 0.057 0.062 
Test R=D1 0.770 0.577 0.606 0.574 0.742 
Robust standard errors in parentheses. ***significant at 1%, **significant at 5%, *significant at 10%. 
Estimate (a) shows the marginal effects of the independent variables.   
1p-value from a test of equality of estimated coefficients of R intensity and D intensity. 
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Table A2. The differentiated effect of Research and Development 

on technological innovation 
Robustness check 1: intensities for the period 2005-2006 

 (a) (b) (c) 
 Product 

innovation 
Process 

innovation 
Product 

innovation 
Process 

innovation 
 Probit Probit Bivariate Probit 
R intensity 0.014*** (0.003) 0.011*** (0.002) 0.014*** (0.003) 0.011*** (0.002)
D intensity 0.020*** (0.003) 0.007** (0.003) 0.020*** (0.003) 0.007** (0.003)
Size 0.030*** (0.005) 0.047*** (0.005) 0.031*** (0.005) 0.048*** (0.005)
External R&D intensity 0.009*** (0.002) 0.005* (0.002) 0.009*** (0.002) 0.005* (0.002)
Cooperation 0.079*** (0.018) 0.059*** (0.016) 0.080*** (0.018) 0.059*** (0.016)
Information factors -0.010 (0.038) 0.032 (0.035) -0.010 (0.038) 0.033 (0.035)
Cost factors -0.031 (0.032) 0.030 (0.029) -0.031 (0.032) 0.030 (0.029)
Spillovers 0.133*** (0.031) 0.093** (0.029) 0.133*** (0.031) 0.093** (0.029)
Medium-low industry 0.003 (0.023) 0.011 (0.021) 0.003 (0.023) 0.011 (0.021)
Medium-high industry  0.080*** (0.021) -0.077*** (0.019) 0.081*** (0.021) -0.078*** (0.019)
High industry 0.087** (0.029) -0.083** (0.028) 0.088** (0.029) -0.084** (0.028)
Number of firms 3,947 3,947 3,947 
Log-Likelihood -2,577.960 -2,319.980 -4,868.121 
Pseudo R-squared 0.048 0.047  
Test ρ=01   0.000 
Test R=D2 0.065 0.152 0.062 0.147 
Robust standard errors in parentheses.  ***significant at 1%, **significant at 5%, *significant at 10%. 
Coefficients are the marginal effect of the independent variable.   
1p-value from a test of ρ=0. 
2p-value from a test of equality of estimated coefficients of R intensity and D intensity.
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Table A3. The differentiated effect of Research and Development on innovative sales 
Robustness check 1: intensities for the period 2005-2006 

 (a) (b) (c) (d) 

 OLS Quantile regression 
(70th percentile) 

Quantile regression 
(80th percentile) 

Quantile regression 
(90th percentile) 

R intensity 0.042*** (0.012) 0.140*** (0.025) 0.088*** (0.018) 0.058*** (0.017) 
D intensity 0.058*** (0.015) 0.282*** (0.029) 0.142*** (0.021) 0.105*** (0.019) 
Size 0.141*** (0.025) 0.337*** (0.049) 0.196*** (0.036) 0.192*** (0.032) 
External R&D intensity 0.012 (0.011) 0.085*** (0.025) 0.065*** (0.018) 0.049** (0.016) 
Cooperation -0.083 (0.081) 0.387* (0.177) 0.177 (0.129) 0.024 (0.117) 
Information factors -0.038 (0.177) -0.458 (0.375) -0.413 (0.271) -0.235 (0.244) 
Cost factors 0.237 (0.155) 0.237 (0.307) 0.185 (0.224) 0.249 (0.205) 
Spillovers -0.093 (0.148) 0.892** (0.304) 0.332 (0.220) 0.018 (0.206) 
Medium-low industry 0.082 (0.115) 0.148 (0.221) 0.242 (0.159) 0.089 (0.144) 
Medium-high industry 0.142 (0.100) 0.895*** (0.204) 0.537*** (0.147) 0.178 (0.133) 
High industry -0.147 (0.136) 0.409 (0.281) 0.100 (0.202) -0.118 (0.181) 
Number of firms 1,741 3,947 3,947 3,947 
R-squared 0.035    
Pseudo R-squared  0.033 0.022 0.014 
Test R=D1 0.349 0.000 0.022 0.031 
Robust standard errors in parentheses.  ***significant at 1%, **significant at 5%, *significant at 10%. 
1p-value from a test of equality of estimated coefficients of R intensity and D intensity. 
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Table A4. The differentiated effect of Research and Development on patent application 

Robustness check 2: continuous R&D performers 
 (a) (b) (c) (d) (e) 
 Probability of patent 

application 
Number of patent applications 
(Patent application intensity) 

 
Probit OLS Quantile regression 

(90th percentile) 
Quantile regression 

(94th percentile) 
Quantile regression 

(98th percentile) 
R intensity 0.014*** (0.002) 0.036* (0.014) 0.143*** (0.036) 0.103*** (0.030) 0.110 (0.060) 
D intensity 0.015*** (0.003) 0.033 (0.020) 0.224*** (0.045) 0.136*** (0.036) 0.146* (0.070) 
Size 0.019*** (0.004) -0.524*** (0.032) -0.308*** (0.067) -0.397*** (0.055) -0.413*** (0.115) 
External R&D intensity 0.012*** (0.002) 0.009 (0.015) 0.104** (0.035) 0.075** (0.029) 0.064 (0.058) 
Cooperation 0.037* (0.015) -0.217* (0.096) 0.037 (0.224) 0.035 (0.182) -0.053 (0.380) 
Information factors -0.006 (0.035) 0.074 (0.211) -0.231 (0.516) -0.038 (0.430) 0.066 (0.821) 
Cost factors -0.010 (0.028) -0.228 (0.175) 0.091 (0.416) -0.073 (0.346) -0.530 (0.647) 
Spillovers 0.124*** (0.028) 0.020 (0.200) 1.349*** (0.398) 0.288 (0.329) 0.528 (0.711) 
Medium-low industry 0.101*** (0.026) 0.133 (0.133) 1.550*** (0.308) 0.681** (0.252) 0.341 (0.501) 
Medium-high industry  0.090*** (0.021) 0.216 (0.119) 1.610*** (0.276) 0.728** (0.222) 0.317 (0.445) 
High industry 0.109*** (0.030) 0.298 (0.156) 1.587*** (0.363) 1.127*** (0.290) 0.443 (0.577) 
Number of firms 2,901 554 2,901 2,901 2,901 
R-squared   0.493       
Log-Likelihood -1,308.430        
Pseudo R-squared 0.075  0.062 0.062 0.075 
Test R=D1 0.672 0.891 0.097 0.399 0.645 
Robust standard errors in parentheses. ***significant at 1%, **significant at 5%, *significant at 10%. 
Estimate (a) shows the marginal effects of the independent variables.   
1p-value from a test of equality of estimated coefficients of R intensity and D intensity. 
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Table A5. The differentiated effect of Research and Development 
on technological innovation 

Robustness check 2: continuous R&D performers 
 (a) (b) (c) 
 Product 

innovation 
Process 

innovation 
Product 

innovation 
Process 

innovation 
 Probit Probit Bivariate Probit 
R intensity 0.014*** (0.003) 0.011*** (0.003) 0.014*** (0.003) 0.011*** (0.003)
D intensity 0.026*** (0.004) 0.007* (0.003) 0.026*** (0.004) 0.007* (0.003)
Size 0.025*** (0.006) 0.041*** (0.005) 0.025*** (0.006) 0.041*** (0.005)
External R&D intensity 0.007* (0.003) 0.003 (0.003) 0.007* (0.003) 0.002 (0.003)
Cooperation 0.070*** (0.021) 0.066*** (0.018) 0.070*** (0.021) 0.065*** (0.018)
Information factors 0.023 (0.045) 0.053 (0.040) 0.023 (0.045) 0.052 (0.040)
Cost factors -0.092* (0.037) 0.018 (0.033) -0.092* (0.037) 0.018 (0.033)
Spillovers 0.135*** (0.037) 0.086** (0.033) 0.135*** (0.037) 0.086** (0.033)
Medium-low industry -0.019 (0.028) -0.010 (0.026) -0.019 (0.028) -0.010 (0.026)
Medium-high industry  0.029 (0.025) -0.123*** (0.023) 0.029 (0.025) -0.123*** (0.023)
High industry 0.034 (0.032) -0.130*** (0.032) 0.035 (0.032) -0.130*** (0.032)
Number of firms 2,901 2,901 2,901 
Log-Likelihood -1,933.122 -1,613.705 -3,536.960 
Pseudo R-squared 0.039 0.051  
Test ρ=01   0.000 
Test R=D2 0.002 0.339 0.002 0.325 
Robust standard errors in parentheses.  ***significant at 1%, **significant at 5%, *significant at 10%. 
Coefficients are the marginal effect of the independent variable.  
1p-value from a test of ρ=0.  
2p-value from a test of equality of estimated coefficients of R intensity and D intensity.
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Table A6. The differentiated effect of Research and Development on innovative sales 
Robustness check 2: continuous R&D performers 

 (a) (b) (c) (d) 

 OLS Quantile regression 
(70th percentile) 

Quantile regression 
(80th percentile) 

Quantile regression 
(90th percentile) 

R intensity 0.052*** (0.014) 0.105*** (0.023) 0.080*** (0.019) 0.055** (0.017) 
D intensity 0.090*** (0.019) 0.283*** (0.027) 0.172*** (0.023) 0.116*** (0.021) 
Size 0.157*** (0.027) 0.250*** (0.043) 0.180*** (0.036) 0.211*** (0.031) 
External R&D intensity 0.005 (0.013) 0.036 (0.023) 0.044* (0.019) 0.039* (0.017) 
Cooperation -0.120 (0.088) 0.087 (0.152) -0.001 (0.126) 0.058 (0.111) 
Information factors 0.039 (0.193) -0.215 (0.327) -0.171 (0.271) -0.118 (0.230) 
Cost factors 0.234 (0.166) -0.085 (0.270) -0.066 (0.228) 0.241 (0.195) 
Spillovers -0.060 (0.163) 0.513 (0.271) 0.204 (0.222) 0.029 (0.200) 
Medium-low industry 0.019 (0.130) 0.011 (0.202) -0.020 (0.167) -0.009 (0.146) 
Medium-high industry 0.165 (0.108) 0.381* (0.179) 0.214 (0.147) 0.001 (0.127) 
High industry -0.173 (0.140) -0.011 (0.236) -0.186 (0.195) -0.308 (0.168) 
Number of firms 1,444 2,901 2,901 2,901 
R-squared 0.048    
Pseudo R-squared  0.025 0.020 0.017 
Test R=D1 0.074 0.000 0.000 0.010 
Robust standard errors in parentheses.  ***significant at 1%, **significant at 5%, *significant at 10%. 
1p-value from a test of equality of estimated coefficients of R intensity and D intensity. 
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Table A7. Tests of equality of estimated coefficients of R intensity and D intensity (by the firm’s industry following the OECE classification) 

 R_LT D_LT R_LMT D_LMT R_MHT D_MHT R_HT D_HT 

R_LT 
 

0.002 (PatInt94) 
0.046 

(InnSalInt70) 

0.006 (InnSalInt) 
0.002 (InnSalInt70) 
0.031 (InnSalInt80) 
0.042 (InnSalInt90) 

0.007 (InnSalInt) 

0.014 (InnSalInt) 
0.001 (InnSalInt70) 
0.005 (InnSalInt80) 
0.001 (InnSalInt90) 

0.005 (InnProc) 
0.048 (InnProd) 

0.000 (InnSalInt70) 
0.010 (InnSalInt80) 

 

D_LT 

 

 

0.002(PatInt94) 
0.037 (InnProc) 

0.000 (InnSalInt70) 
0.021(InnSalInt80) 

0.002 (PatInt94) 
0.015 (InnSalInt70) 
0.044 (InnSalInt80) 

0.000 (PatInt94) 
0.000 (InnSalInt70) 
0.003 (InnSalInt80) 

0.001 (PatInt94) 
0.037 (PatInt98) 
0.000 (InnProc) 

0.040 (InnSalInt70) 

0.002 (PatInt94) 
0.034 (InnProd) 
0.025 (InnProc) 

0.000 (InnSalInt70) 
0.007 (InnSalInt80) 

0.008 (PatInt94) 
0.023 (InnSalInt) 

 

R_LMT 
 

  0.030 (InnSalInt70)  0.040 (InnSalInt) 
0.003 (InnSalInt70)  0.002 (InnSalInt) 

D_LMT 
 

   0.035 (InnSalInt70) 0.048 (InnProc) 
0.037 (InnSalInt) 0.009 (InnSalInt70) 0.002(InnSalInt) 

R_MHT 
 

    

0.000 (InnProc) 
0.000 (InnSalInt70) 
0.005 (InnSalInt80) 
0.010 (InnSalInt90) 

 0.004 (InnSalInt) 
0.005 (InnSalInt90) 

D_MHT 
 

     
0.002 (InnProd) 

0.001 (InnSalInt70) 
0.016 (InnSalInt80) 

 

R_HT 

 

      

0.006 (PatInt98) 
0.010 (InnProd) 
0.049 (InnSalInt) 

0.005 (InnSalInt70) 
0.049 (InnSalInt80) 

D_HT  
       

p-value from a test of equality of estimated coefficients of R intensity and D intensity (by the firm’s industry following the OECE classification). Only p-values < 0.05 are shown. 
Relevant equation in parentheses: Pat (probit model for patent application); PatInt (OLS for patent intensity); PatInt# (quantile regression for patent intensity; 90th, 94th and 98th percentiles); InnProd 
(probit model for product innovation); InnProc (probit model for process innovation); InnSalInt (OLS for innovative sales intensity); InnSalInt# (quantile regression for innovative sales intensity; 70th, 
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Table A8. The differentiated effect of Research and Development on patent application 
Industry interactions: Pavitt taxonomy 

 (a) (b) (c) (d) (e) 
 Probability of 

patent 
application 

Number of patent applications 
(Patent application intensity) 

 Probit OLS Quantile regression 
(90th percentile) 

Quantile regression 
(94th percentile) 

Quantile regression 
(98th percentile) 

R intensity-sd 0.011** (0.004) 0.030 (0.034) 0.402*** (0.097) 0.159* (0.074) 0.128 (0.065) 
R intensity-si 0.008* (0.003) 0.044 (0.025) 0.339*** (0.074) 0.115 (0.062) 0.089 (0.057) 
R intensity-ss 0.015*** (0.003) 0.003 (0.018) 0.226** (0.080) 0.060 (0.062) 0.089 (0.054) 
R intensity-sb 0.016** (0.005) 0.014 (0.035) 0.459*** (0.113) 0.175* (0.089) 0.151* (0.069) 
D intensity-sd 0.014** (0.005) 0.013 (0.030) 0.646*** (0.119) 0.170 (0.090) 0.131 (0.084) 
D intensity-si 0.010* (0.004) 0.029 (0.032) 0.463*** (0.085) 0.177* (0.071) 0.070 (0.065) 
D intensity-ss 0.012** (0.005) 0.009 (0.032) 0.165 (0.118) 0.094 (0.093) -0.020 (0.082) 
D intensity-sb 0.009* (0.004) 0.017 (0.031) 0.115 (0.103) 0.093 (0.073) 0.168** (0.057) 
Size 0.022*** (0.004) -0.537*** (0.029) -0.027 (0.080) -0.296*** (0.067) -0.431*** (0.062) 
External R&D intensity 0.012*** (0.002) 0.020 (0.013) 0.273*** (0.045) 0.120*** (0.034) 0.090** (0.031) 
Cooperation 0.034** (0.012) -0.156 (0.088) 0.619* (0.301) 0.048 (0.228) 0.141 (0.207) 
Information factors 0.008 (0.027) 0.088 (0.196) -0.064 (0.658) -0.275 (0.504) 0.043 (0.491) 
Cost factors -0.004 (0.022) -0.252 (0.160) 0.347 (0.531) 0.322 (0.412) -0.477 (0.379) 
Spillovers 0.111*** (0.021) 0.054 (0.189) 2.448*** (0.505) 1.229** (0.393) 0.532 (0.360) 
Scale-Intensive industry  0.011 (0.057) -0.313 (0.404) 0.074 (1.219) -0.437 (0.924) 0.192 (0.868) 
Specialized-Suppliers industry 0.057 (0.069) 0.150 (0.414) 5.129*** (1.404) 1.359 (1.055) 1.534 (0.986) 
Science-based industry -0.028 (0.061) 0.021 (0.489) 1.008 (1.474) -0.453 (1.085) -0.644 (0.937) 
Number of firms 4,024 647 4,024 4,024 4,024 
R-squared   0.487       
Log-Likelihood -1,612.489        
Pseudo R-squared 0.091  0.095 0.059 0.067 
Test ρ=01      
Robust standard errors in parentheses. ***significant at 1%, **significant at 5%, *significant at 10%. 
Estimate (a) shows the marginal effects of the independent variables. 
1p-value from a test of ρ=0. 
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Table A9. The differentiated effect of Research and Development 

on technological innovation 
Industry interactions: Pavitt taxonomy 

 (a) (b) (c) 
 Product 

innovation 
Process 

innovation 
Product 

innovation 
Process 

innovation 
    Probit Probit Bivariate Probit 
R intensity-sd 0.012* (0.006) 0.016** (0.005) 0.012* (0.006) 0.016** (0.005)
R intensity-si 0.024*** (0.004) 0.013** (0.004) 0.024*** (0.004) 0.013** (0.004)
R intensity-ss 0.019*** (0.005) 0.016*** (0.004) 0.019*** (0.005) 0.016*** (0.004)
R intensity-sb 0.013* (0.006) 0.009 (0.006) 0.013* (0.006) 0.009 (0.006)
D intensity-sd 0.015* (0.007) 0.014* (0.006) 0.016* (0.007) 0.014* (0.006)
D intensity-si 0.028*** (0.005) 0.022*** (0.005) 0.028*** (0.005) 0.022*** (0.005)
D intensity-ss 0.035*** (0.007) 0.003 (0.006) 0.035*** (0.007) 0.003 (0.006)
D intensity-sb 0.025*** (0.006) -0.001 (0.006) 0.025*** (0.006) -0.001 (0.006)
Size 0.034*** (0.005) 0.047*** (0.005) 0.034*** (0.005) 0.047*** (0.005)
External R&D intensity 0.009*** (0.003) 0.004 (0.002) 0.009*** (0.003) 0.004 (0.002)
Cooperation 0.078*** (0.018) 0.053*** (0.016) 0.078*** (0.018) 0.053** (0.016)
Information factors -0.005 (0.038) 0.037 (0.035) -0.005 (0.038) 0.037 (0.035)
Cost factors -0.043 (0.031) 0.021 (0.029) -0.043 (0.031) 0.021 (0.029)
Spillovers 0.128*** (0.031) 0.081** (0.029) 0.128*** (0.031) 0.081** (0.029)
Scale-Intensive industry  -0.171* (0.068) 0.005 (0.063) -0.168* (0.068) 0.002 (0.064)
Specialized-Suppliers industry -0.085 (0.080) -0.028 (0.073) -0.082 (0.081) -0.030 (0.074)
Science-based industry -0.045 (0.083) 0.078 (0.069) -0.041 (0.083) 0.076 (0.069)
Number of firms 4,024 4,024 4,024 
Log-Likelihood -2,604.788 -2,340.761 -4,917.134 
Pseudo R-squared 0.056 0.055  
Robust standard errors in parentheses. ***significant at 1%, **significant at 5%, *significant at 10%. 
Coefficients are the marginal effect of the independent variable.   
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Table A10. The differentiated effect of Research and Development on innovative sales 
Industry interactions: Pavitt taxonomy 

 (a) (b) (c) (d) 

 OLS 
Quantile 

regression 
(70th percentile) 

Quantile 
regression 

(80th percentile) 

Quantile 
regression 

(90th percentile) 
R intensity-sd 0.076** (0.027) 0.186** (0.059) 0.109** (0.038) 0.147*** (0.035) 
R intensity-si 0.053* (0.022) 0.358*** (0.043) 0.184*** (0.028) 0.090*** (0.026) 
R intensity-ss 0.023 (0.022) 0.121** (0.047) 0.079* (0.031) 0.027 (0.028) 
R intensity-sb 0.067* (0.032) 0.121* (0.061) 0.095* (0.040) 0.062 (0.037) 
D intensity-sd 0.026 (0.031) 0.235*** (0.067) 0.085* (0.043) 0.026 (0.042) 
D intensity-si 0.052 (0.031) 0.944*** (0.048) 0.244*** (0.032) 0.142*** (0.032) 
D intensity-ss 0.043 (0.030) 0.335*** (0.067) 0.153*** (0.045) 0.120** (0.043) 
D intensity-sb 0.132*** (0.030) 0.345*** (0.058) 0.191*** (0.038) 0.124*** (0.035) 
Size 0.158*** (0.025) 0.424*** (0.049) 0.254*** (0.032) 0.245*** (0.029) 
External R&D intensity 0.011 (0.012) 0.069** (0.026) 0.059*** (0.017) 0.046** (0.016) 
Cooperation -0.097 (0.081) 0.365* (0.178) 0.139 (0.115) 0.091 (0.106) 
Information factors -0.037 (0.177) -0.231 (0.374) -0.338 (0.242) -0.159 (0.223) 
Cost factors 0.191 (0.153) -0.044 (0.306) 0.125 (0.202) 0.164 (0.188) 
Spillovers -0.126 (0.144) 1.005** (0.307) 0.350 (0.201) -0.060 (0.188) 
Scale-Intensive industry  -0.095 (0.370) -6.546*** (0.675) -1.529*** (0.440) -0.570 (0.414) 
Specialized-Suppliers industry 0.233 (0.387) 0.341 (0.801) 0.121 (0.523) 0.299 (0.496) 
Science-based industry -0.860* (0.429) -0.503 (0.820) -0.730 (0.526) -0.434 (0.493) 
Number of firms 1770 4,024 4,024 4,024 
R-squared 0.046    
Pseudo R-squared  0.047 0.027 0.020 
Robust standard errors in parentheses. ***significant at 1%, **significant at 5%, *significant at 10%. 

 
 


