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Abstract— In information theory, it has been shown that
network coding can effectively improve the throughput of mul-
ticast communication sessions in directed acyclic graphs. More
practically, random network coding is also instrumental towards
improving the downloading performance in BitTorrent-like peer-
to-peer content distribution sessions. Live peer-to-peer streaming,
however, poses unique challenges to the use of network coding,
due to its strict timing and bandwidth constraints. In this paper,
we revisit the complete spectrum in the design space of live
peer-to-peer streaming protocols, with a sole objective of taking
full advantage of random network coding. We present R

2, our
new streaming algorithm designed from scratch to incorporate
random network coding with a randomized push algorithm. R

2

is designed to improve the performance of live streaming in terms
of initial buffering delays, resilience to peer dynamics, as well
as reduced bandwidth costs on dedicated streaming servers, all
of which are beyond the basic requirement of stable streaming
playback. On an experimental testbed consisting of dozens of
dual-CPU cluster servers, we thoroughly evaluate R

2 with an
actual implementation, real network traffic, and emulated peer
upload capacities, in comparisons with a typical live streaming
protocol (both without and with network coding), representing
the current state-of-the-art in real-world streaming applications.

Index Terms— peer-to-peer networks, multimedia streaming,
network coding

I. INTRODUCTION

The peer-to-peer communication paradigm has been suc-

cessfully used in live multimedia streaming applications over

the Internet [1]. The essential advantage of live peer-to-

peer streaming is to dramatically increase the number of

peers a streaming session may sustain with several dedicated

streaming servers. Intuitively, as participating peers contribute

their upload bandwidth capacities to serve other peers in

the same streaming session, the load on dedicated streaming

servers is significantly mitigated. Therefore, as one of the

most significant benefits, peer-to-peer streaming enjoys the

salient advantage of scalability in live sessions, where upload

capacities on streaming servers are no longer the bottleneck.

Network coding has been originally proposed in information

theory [2], [3], [4], and has since emerged as one of the

most promising information theoretic approaches to improve

performance in peer-to-peer networks. The upshot of network

coding is to allow coding at intermediate nodes in information

flows. It has been shown that random linear codes using Galois

fields of a limited size are sufficient to implement network

coding in a practical network setting [5]. Avalanche [6], [7]

Manuscript received date: March 16, 2007, revised date: August 1, 2007

has demonstrated — using both simulation studies and realistic

experiments — that network coding may improve the overall

performance of peer-to-peer content distribution. The intuition

is that, with network coding, all pieces of information are

treated equally, without the need to identify and distribute the

“rarest piece” first.

The requirements of peer-to-peer live multimedia streaming

applications, however, have marked a significant departure

from applications in content distribution. Since live content

becomes available as time progresses, it is delivered to each

peer in a roughly sequential order. The most critical require-

ment is that the streaming rate has to be maintained for smooth

playback. The challenge of streaming is that the demand for

bandwidth at the streaming rate (which is very similar to

CBR traffic) must be satisfied at all peers, while additional

bandwidth is, in general, not required.

Due to such strict timing and bandwidth requirements in live

streaming, the advantages of network coding is less obvious,

and would certainly justify an in-depth study. Experimentally,

we have recently performed a fair comparison between using

and not using random network coding in a typical live stream-

ing protocol [8]. We have found that network coding may offer

some advantages when peers are volatile and dynamic with

respect to their arrivals and departures. To maintain fairness

in our comparisons, our previous study have not attempted a

redesign of the P2P streaming protocol, and as such may not

have taken full advantage of random network coding.

Convinced that random network coding is beneficial, in this

paper, we believe a complete redesign of the P2P streaming

algorithm is necessary to take full advantage of network

coding. We present R2, our new streaming algorithm designed

from scratch to incorporate random network coding with

a randomized push algorithm. Though the first and most

important requirement of R2 is to achieve perfect playback, R2

is nevertheless designed to improve the overall performance, in

terms of initial buffering delays, resilience to peer dynamics,

as well as reduced bandwidth costs on dedicated streaming

servers. On an experimental testbed consisting of dozens of

dual-CPU cluster servers, we thoroughly evaluate R2 with

an actual implementation, real network traffic, and emulated

peer upload capacities, in comparison with a typical P2P live

streaming protocol (both without and with network coding),

representing the current state-of-the-art in real-world streaming

applications.

The remainder of this paper is organized as follows. Sec. II

discusses related work in P2P streaming and practical network



coding. The design and implementation of R2 is presented

in Sec. III and IV. We present our experimental experiences

with R2 in live peer-to-peer streaming sessions in Sec. V, and

conclude the paper in Sec. VI.

II. RELATED WORK

To alleviate bandwidth demand at dedicated streaming

servers, tree-based streaming topologies [9], [10], [11], [12]

have been proposed, which organize peers into one or more

multicast trees rooted at the streaming servers. The original

streaming content is decomposed into sub-streams that are

pushed through respective trees from the servers to all peers.

Although such push-based tree topologies are beneficial in

reducing the delays of distributing live content, they are gener-

ally not deployed in real-world streaming systems, mainly due

to the complexity involved in maintaining such tree structures

in dynamic P2P environments.

The design of CoolStreaming [1] employs a gossip-like

protocol to discover content availability among peers, elim-

inating the need for trees. The streaming content is presented

as a series of segments, each represents a short duration of

playback. A peer in CoolStreaming maintains not only a

list of neighboring peers, but also a summary of available

segments on these neighbors. Based on such information,

segments are pulled from appropriate neighbors, in order

to meet their playback deadlines and to accommodate het-

erogeneous streaming bandwidth from the peers. Although

such a “pull-based” design with “mesh” topologies is more

robust to peer dynamics than push-based tree topologies, it

inevitably increases the delay of distributing live content from

servers to all participating peers, due to delays caused by

periodic exchanges of segment availability. Zhang et al. [13]

has proposed to combine pull-based and push-based protocols,

in order to take advantage of better resilience to dynamics with

a pull-based design, and better delay and stability with push-

based protocols. Essentially, its push-based design divides the

stream into multiple sub-streams, each pushed down a different

tree structure.

Network coding has been initially shown to improve in-

formation flow rates in multicast sessions in directed acyclic

graphs [2], [3], [4], while random network coding has been

shown by Ho et al. [5], [14] to be feasible in a more practical

setting, without deterministic code assignment algorithms.

Avalanche [6], [7] has proposed that randomized network

coding can be used for elastic content distribution to reduce

downloading times. Our previous work [15] has concluded

that random network coding would only be computationally

feasible if the number of blocks to be coded is fewer than a

thousand.

While advantages of network coding have been better

understood and tested in scenarios of elastic P2P content

distribution, our previous work, Lava [8], represents the first

fair evaluation on the feasibility and effectiveness of random

network coding in live P2P streaming sessions, with strict

timing and bandwidth requirements. While a traditional P2P

streaming protocol sends original segments, the random net-

work coding “plug-in” component makes it possible to send

coded blocks of each segment, such that receiving peers may

decode them on-the-fly. With Lava, we have discovered that

network coding provides some marginal benefits when peers

are volatile with their arrivals and departures, and when the

overall bandwidth supply barely exceeds the demand.

While Lava has focused on a fair comparison study without

any changes of the P2P streaming protocol, we believe the

advantages of network coding have not been fully explored

with a traditional pull-based protocol. In this paper, we are

determined to redesign the P2P streaming protocol to take

full advantage of random network coding by revisiting entire

spectrum of design choices, and by introducing randomizing

elements into the algorithm. Unlike the rigid and more “static”

push design using predetermined trees in [13], a peer in R2

randomly chooses a segment to push whenever a coded block

(of a very small size) is sent. Peers in R2 proactively sends

segments that are missing from their downstream peers — no

“pull” is ever required — and there is never a need to time

the switch between pull and push mechanisms on-the-fly.

The idea of random push is partly inspired by Chunked

Codes [16]. With Chunked Codes, the message to be com-

municated is logically partitioned into disjoint “chunks” of

contiguous symbols. To encode at the source node, it ran-

domly and uniformly chooses a chunk, and performs a dense

linear combination of input symbols from this chunk. The

intermediate node, again, randomly and uniformly chooses a

chunk, and then performs a dense linear combination of so-

far received coded symbols within this chunk. Decoding at

the receiver is performed as a regular Gaussian elimination

to solve the symbol diagonal matrix. Chunked Codes are

designed for the network erasure channel, which is applicable

to the P2P streaming case, due to peer dynamics. However,

the design of Chunked Codes have been purely analytical and

specifically excluded support for the streaming case, due to its

strict timing requirements. With R2, we focus on the design

of a practical streaming solution based on random push of

coded blocks of each segment, as well as an experimental

evaluation of its effectiveness. Since R2 only encodes within

a particular segment, it enjoys similar advantages in terms of

coding complexity as Chunked Codes.

III. THE DESIGN OF R2

In this paper, we consider a typical live peer-to-peer session

(also referred to as a channel), with a number of dedicated

streaming servers (usually under the administrative control

of a service provider), and a large number of peers. Peers

participate in and depart from a session in unpredictable ways.

The live stream to be served is coded into a constant bit

rate, usually in the range of 38 − 50 KB per second in real-

world streaming applications. In this section, we present R2,

our attempt at a complete redesign of the live P2P streaming

protocol to take full advantage of random network coding.

A. Traditional Pull-based P2P Streaming

A traditional live P2P streaming protocol — one similar

to CoolStreaming and PPLive — utilizes a pull-based mesh



streaming mechanism (sometimes referred to as a “data-

driven” approach in previous literature). In such a pull-based

P2P streaming protocol, peers periodically exchange informa-

tion on segment availability with active neighboring peers,

which is commonly referred to as buffer maps. According to

the buffer maps, those peers that have a particular segment

available for transmission are referred to as seeds of this

segment. Each peer maintains a playback buffer that consists

of segments to be played in the immediate future. For any

segment that is missing in the playback buffer, a peer sends

an explicit request to a chosen seed of this segment. Segments

that are not retrieved in time for playback are skipped during

playback, leading to degraded quality.

When a new peer participates in the session, in order to

ensure smooth streaming playback, it does not immediate start

playback as the first data segments are received; rather, it

waits for a period of initial buffering delay. During such an

initial buffering process, the new peer attempts to download

the initial segments from as many other peers as possible,

subject to availability.

To best saturate peer download capacities, a typical P2P

streaming protocol usually allows a peer to concurrently “pull”

multiple segments from respective seeds. Each outstanding

“pull” request is an active task. The protocol usually imposes

an upper bound on the number of tasks, in order to reduce

context switching overhead among tasks (which may corre-

sponds to OS-level threads). To avoid overloading the seeds,

the number of concurrent outgoing connections on a seed is

also bounded, which may be computed based on the upload

capacity and the streaming rate. In the event of peer departures,

the affected segments are usually “pulled” again from other

seeds, with the hope that they will arrive in time for playback.

B. R2: Design Objectives

Traditional pull-based P2P streaming protocols are simple

to implement (possibly within a few thousand lines of Python

code), and are robust to peer arrivals and departures. Current-

generation real-world protocols, such as PPLive and UUSee,

have used such pull-based strategies, and have been able to

serve tens of thousands of users in a session with smooth

playback. However, we believe that the user experience in P2P

streaming sessions can be further enhanced by considering

the following quality metrics that are beyond basic playback

quality:

⊲ Shorter initial buffering delays: Since the initial buffering

delay must be experienced by a user when it switches to

a new channel, a shorter delay dramatically improves the

user experience.

⊲ Reduced server bandwidth costs: Since peer upload ca-

pacities may not be sufficient to sustain the entire stream-

ing session for all participating peers, dedicated streaming

servers provide additional “supply” of bandwidth. Since

operational costs of these dedicated servers depend on

the bandwidth consumed, we believe that it is critical

to minimize server bandwidth costs. Even if monetary

operational costs are not a concern, minimizing server

bandwidth usage allows sufficient unused server capacity

to cater to the demand spike in “flash crowd” scenarios.

⊲ Better resilience to extremely volatile peers: When peers

join and leave in an extremely volatile fashion, we wish

to maintain smooth playback as much as possible.

⊲ Smoother playback when bandwidth supply barely ex-

ceeds the demand: With an increasing number of peers

and a fixed number of dedicated streaming servers, the

saturation point will eventually be reached, where the

bandwidth supply barely exceeds the demand. We wish

to maintain smooth playback as much as possible in

such challenging situations. This is especially the case

in unpopular sessions, when a very small number of

servers (usually just one or two) and a few hundred peers

are engaged. The playback quality in current pull-based

protocols is usually unsatisfactory in such cases, due to

the lack of seeds and unpredictable bandwidth among

peers.

C. The Essence of R2: Random Push with Random Network

Coding

Random Network Coding. Random network coding serves

as the cornerstone of R2, and is instrumental towards most of

the advantages of R2. In traditional P2P streaming protocols,

the live stream to be served is divided into segments, such

that they can be better exchanged among peers. In R2, each

segment is further divided into n blocks [b1, b2, . . . , bn], each

bi has a fixed number of bytes k (referred to as the block

size). If the segment duration (for example, four seconds) and

the streaming rate is predetermined, the block size k can be

directly computed from n.

When network coding is used on a seed (a serving peer or

streaming server), we do not propose to code across different

segments. This is similar to the approach taken by Chunked

Codes, which only codes within a chunk. This is primarily for

the purpose of reducing the number of blocks to code, leading

to much reduced coding complexity of dense linear codes, as

has been well established in the literature [16].

When a seed encodes for a downstream peer p, as a

critical aspect of the algorithm design, we need to address

the question: Which segment should the seed select in which

to code and send a coded block? Trivially, segments that p
has already received should be excluded, and the decision

would be made among the remaining segments that p has not

completely received so far. In a traditional pull-based protocol,

such a decision is made on the downstream peer p, and explicit

requests are made to the seed. The seed then honors the request

by sending the segment. To better take advantage of random

network coding in R2, we instead use random push, in which

the seed randomly chooses a segment whenever it produces

one coded block, among all remaining segments that p has

not completely received. The coded block is then sent to

p without the need of any requests. Since all coded blocks

are equally innovative, all seeds of p cooperatively serve the

missing segments on p, without any explicit exchanges of

protocol messages.

When a segment is selected by a seed to code for its

downstream peer p, the seed independently and randomly

chooses a set of coding coefficients [cp
1, c

p
2, · · · , c

p
m](m ≤ n) in
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Fig. 1. An example of progressive decoding with Gauss-Jordan elimination.

GF(28) for each coded block to be sent to p. It then randomly

chooses m blocks — [bp
1, b

p
2, . . . , b

p
m] — out of all the blocks

in this segment that it has received so far (all the original

blocks in the segment if the seed is a streaming server), and

produces one coded block x of k bytes:

x =

m∑

i=1

cp
i · bp

i

The ratio m/n is referred to as density, and a low ratio

leads to sparse decoding matrices. Our previous work [15]

has experimentally shown that the density can be as low as

6% without leading to linear dependence among coded blocks,

which has been analytically corroborated in Ma et al. [17].

The coding coefficients used to encode original blocks to

x are typically embedded in the header of the coded block

[18] for transmission. We thus need a total of n coefficients,

leading to an overhead of n bytes per coded block. These n
coding coefficients to be embedded can easily be computed

by multiplying [cp
1, · · · , c

p
m] with the m × n matrix of coding

coefficients embedded in the incoming blocks [bp
1, b

p
2, . . . , b

p
m].

We note that an overhead of n bytes may still be considered

substantial when n is large (e.g., 128) and the block size k is

small (e.g., 1 KB). If m/n = 1 and the seed has all n blocks

of a segment when producing a coded block, we just need to

embed the random seed used to produce the series of random

coefficients with a known pseudo-random number generator.

This effectively reduces the overhead to just 4 bytes, regardless

of n and k.

As the session proceeds, a peer accumulates coded blocks

into its playback buffer, and encodes new coded blocks to serve

its downstream peers. In order to reduce the delay introduced

by waiting for new coded blocks, the peer produces a new

coded block upon receiving α ·n coded blocks (0 < α ≤ 1), in

which the tunable parameter α is referred to as aggressiveness.

A smaller α implies that downstream peers can be served

sooner. In other words, a peer is more “aggressive” to become

a seed.

Coupled with a choice of flow control algorithm (such as

TCP-friendly flow control), a coded block is best sent over the

UDP transport protocol, and uses TCP only when UDP is not

available (e.g., due to firewalls blocking UDP traffic). This is

due to the inherent error resilience of random network coding,

in that should a particular coded block be lost, subsequent

coded blocks received are equally innovative and useful. This

is in sharp contrast to traditional pull-based streaming, in

which TCP is preferred to send segments, due to its built-in

reliability.

With Gauss-Jordan elimination implemented in the de-

coding process [8], a peer starts to progressively decode a

segment, as soon as it receives the first coded block of this

segment. As a total of n coded blocks x = [x1, x2, . . . , xn]

has been received, the original blocks can be immediately

recovered as Gauss-Jordan elimination computes:

b = A
−1

x
T ,

where A is the matrix formed by coding coefficients of x. The

use of progressive decoding with Gauss-Jordan elimination

implies that the start of the decoding process does not have to

wait for all n coded blocks. It also enjoys an additional benefit:

if a peer has received a coded block that is linearly dependent

on existing blocks, the elimination process will lead to a row

of all zeros, so that this coded block can be immediately

discarded. This eliminates explicit linear dependence checks

when all n blocks are received.

We illustrate progressive decoding in Fig. 1, with 3 blocks

in a segment, and one byte of data in each block. The coding

coefficients and the actual data (in their ASCII values) is

separated by a vertical bar. For each newly received coded

block, Gauss-Jordan elimination is applied to the coding

coefficient matrix A on the left. The same operation is carried

out in x on the right. Each iteration partially decodes the data

by reducing A to the Row Reduced Echelon Form (RREF).

Once the last block is received, the segment is recovered with

a final iteration.

Random Push. We have shown that, in R2, whenever a seed

sends a coded block to a downstream peer, it needs to use the

“random push” mechanism by randomly selecting a segment

to code, among segments that the downstream peer has not

yet completely received. How does a seed randomize such a

segment selection process for each outgoing coded block? The

answers to this question constitutes an important design choice

in R2.

Naturally, an important concern at the downstream peer is

that it should expedite the downloading process of “urgent” but

missing segments, i.e., those missing segments that are close

to their playback time. This range of urgent segments may be

τ seconds after the playback point, and is referred to as the

priority region, as shown in Fig. 2. Since there are no explicit

requests made by the downstream peer (no “pull” required),

seeds should give strict priority to the segments within the pri-

ority region. In our randomized segment selection, we stipulate

that a seed should randomize within the priority region using

an uniform distribution, whenever segments in this region are

still missing in the downstream peer. From the viewpoint of

a receiving peer, as playback progresses, if a few missing

segments eventually fall into the priority region, their urgency

guarantees that all of its seeds will serve these segments. If

the receiving peer has sufficient download bandwidth, it should

be able to completely receive these missing segments before

playback.

If there are no missing segments in the priority region at

the downstream peer, the seed will choose missing segments



from outside of the priority region in the playback buffer. Such

a randomized choice is subject to a certain probability distri-

bution with a PDF that gives preference to segments that are

earlier in time. In our experiments (Sec. V), we use a Weibull

distribution with a PDF f(x; k, λ) = k
λ (x

λ )k−1e−(x/λ)k

, such

that different shapes of the PDF may be obtained by simply

tuning the shape parameter k and scale parameter λ. An

alternative distribution is acceptable as well, as long as it

prefers earlier segments.

current playback
point

playback buffer
size

priority region

Fig. 2. The playback buffer in R
2.

To summarize, as long as the receiving rate at a peer

exceeds the streaming rate, the priority region of the playback

buffer should be always filled. The peer concurrently transmits

segments in the remainder of the playback buffer, where earlier

segments take precedence over the later ones. The dark shade

in Fig. 2 indicates the receiving status of each segment in the

playback buffer on a typical peer.

D. Timely Feedback from Downstream Peers

One outstanding but important question from the previous

discussion is: How does the seed obtain precise knowledge of

the missing segments on its downstream peers at any time?

In traditional pull-based protocols, a buffer map is exchanged

among peers periodically, which is a bitmap that represents

segment availability in the playback buffer. The period of such

an exchange cannot be too short, as a typical playback buffer

in traditional pull-based protocols usually contains hundreds

of segments. We perform the following back-of-the-envelope

calculation: With 480 segments, a buffer map needs 60 bytes.

With dozens (if not hundreds) of neighboring peers, if we

exchange buffer maps every second, it amounts to 6 KB/sec

on-the-wire overhead from exchanging buffer maps alone (out

of around 40 KB/sec streaming bit rate)! For this reason, most

real-world protocols exchange buffer maps less frequently.

Even with the level of overhead in the unrealistic case

of exchanging every second, a seed may still be sending

segments that are no longer missing in the downstream peers,

since its knowledge may be up to a second delayed. In the

traditional pull-based protocol, such delayed knowledge is

less of a concern. Since the seed will not send the segment

until it is explicitly requested, such delayed knowledge only

leads to delayed requests. In R2, such delayed knowledge of

missing segments is no less than catastrophic: it will lead

to redundant coded blocks being sent to and discarded by

a downstream peer, that are no longer useful, but consume

bandwidth nevertheless.

The design of R2 stipulates that buffer maps be exchanged

with much higher frequency. As a matter of fact, the buffer

maps are no longer sent periodically. Instead, a downstream

peer sends its buffer map whenever the buffer status changes

— when it has played back a segment, or when it has com-

pleted the downloading of a segment. Whenever possible, the

buffer map is embedded in outgoing coded blocks. Otherwise,

it is separately sent to the neighboring peers. With such a

design, R2 guarantees that the delay of obtaining precise buffer

maps from downstream peers is never higher than the network

transmission delay on the overlay links, which is in the range

between a few to a few hundred milliseconds. We further note

that, as an arbitrary pair of peers will be likely to serve as seeds

for each other, such explicit transmission of buffer maps may

rarely be needed.

The buffer maps are also used as a signal for the seed

to stop a segment transmission, once the segment has been

completely received (likely with the assistance from other

seeds). Since buffer maps are sent in the most timely fashion,

such a “negative” signal is received as soon as the network

allows. In fact, there is nothing in the design of R2 that

prevents downstream peer to send the negative signal even

before it has completely received the segment, in order to

prematurely stop a subset of seeds for this segment, usually

when segment downloading is almost completed. Such a

premature braking algorithm may be designed to favor seeds

with better bandwidth to complete the download, and stop

those seeds with lesser inter-peer bandwidth. The design of

such algorithms may be quite elaborate, gradually stopping

more seeds based on precise completion timing estimates

of the downloading process. In our experiments, we do not

include this feature, and leave its design to our future work.

How does R2 manage the excessive overhead of exchanging

buffer maps, then? Let us revisit the example discussed earlier,

in which a playback buffer has 480 segments representing

160 seconds of playback, around 15 KB per segment with

a streaming rate of 45 KB/second. R2, instead, divides the

buffer into 40 segments of 4 seconds each, and further divides

each 180 KB segment into 180 blocks of 1 KB each. This leads

to just 5 bytes to represent each buffer, which can be easily

embedded in a 1 KB coded block with a 4% overhead, when

required. Moreover, a segment is removed from the buffer

every 4 seconds, and a segment is completely received every 4
seconds in a steady state. Hence, a peer sends at most 2 buffer

maps to each neighboring peer every 4 seconds on average. It

amounts to approximately 200 bytes/sec on-the-wire overhead

to exchange buffer maps among dozens of peers, a significant

improvement in comparison to the 6 KB/sec overhead offered

by a traditional protocol.

Finally, why is R2 able to use much larger segments? In

traditional pull-based protocols, we observe that a missing

segment on a downstream peer can only be served by one seed

at a time (with the possibility of switching to a different seed if

the transmission fails due to low bandwidth or peer dynamics).

With random push coupled with random network coding, a

segment can be served by multiple seeds, as each seed uses

its randomized selection algorithm to select a segment to send

coded blocks. We refer to such a phenomenon as perfect

collaboration, since seeds collaborate with each other without

any protocol messages. Such an excellent property is due to

the fundamental characteristic of dense random linear codes,

in that any coded block is as good as any other, regardless



of the seed that produces them. The sharp contrast between a

traditional P2P streaming protocol and R2 is shown in Fig. 3.

E. Synchronized Playback

As we have much fewer segments in the playback buffer

in R2, we prefer to recruit as many seeds as possible for

each segment. To achieve this, we wish to make sure that the

playback buffers overlap as much as possible among peers. R2

features synchronized playback as follows. In a live streaming

session, the playback buffers on all peers are synchronized

so that all peers plays the same segment at approximately

the same time. When a peer joins a streaming session, it first

retrieves buffer maps from its initial seeds (usually assigned by

tracking servers), along with the current segment being played

back. To synchronize the playback buffer, the new peer only

retrieves segments that are δ seconds after the current point of

playback, while δ corresponds to the initial buffering delay.

The peer starts playback after precisely δ seconds elapsed

in real time, regardless of the current status of the playback

buffer. This allows the peer δ seconds to fill as many segments

as possible in the priority region of the playback buffer before

the playback starts. Naturally, both the priority region and the

initial buffering delay can be tuned, and they can be equal to

each other. Regardless of the state of the playback buffer, a

new peer starts playback after exactly δ seconds have elapsed.

Recall that a seed only selects segments within the priority

region if they are still missing in a downstream peer. This

is exactly the case when a new peer joins, with an empty

playback buffer. If the priority region is the same as the initial

buffering delay, within δ seconds of initial buffering delay,

all the seeds of a new peer start to serve segments within

the priority region. Akin to a “flash crowd” of seeds, such a

phenomenon in R2 easily saturates the download bandwidth

of the new peer, and if it exceeds the streaming rate, R2

guarantees smooth playback during the priority region. In

practice, this ensures that R2 does not need to employ an

exceeding large initial buffering delay (in the order of one

minute in PPLive, for example), and can use as small as 10−20
seconds.

A possible drawback of synchronized playback is that, the

time between the occurrence of a live event in the media

stream and its playback is the same across the board in all

peers in the entire session. Though seemingly harmful, this

may even be an advantage when live interaction is involved

(such as live voting with SMS): all peers will view the same

content at the same time, such that interactive behavior starts

to occur at the same time as well.

F. Random Selection of Downstream Peers

To make sure that coded blocks from one segment is not

“spread too thin” in all the peers, a seed only sends a segment

to a limited number of downstream peers at any given time,

subject to an upper bound. To select such limit, the seed

can randomly select from all its downstream peers, or select

those that have historically had the highest flow rate with

the seed. The maximum number of downstream receivers

should be linearly related to the upload capacity of a seed:

the lower the upload capacity, the smaller number of active

downstream receivers it should maintain. This design choice

in R2 places “emphasis” on a small number of receiving peers

for a particular segment, which accelerates the rate of initial

propagation of a segment that has just been made available

on dedicated servers. For such a segment, as the number of

peers who have already received it exceeds a threshold, the

remaining peers will be able to download smoothly — leading

to exponential propagation behavior.

When a seed randomly chooses downstream peers for a

segment, each segment should have a different and randomly

generated set of seeds. This randomizes the data dissemination

process since a seed serves different segments to different sets

of peers. The randomized selection of both downstream peers

and segments (for a particular peer) in R2 is perfectly resilient

to peer departures and network losses.

G. R2: Design Objectives Revisited

Let us now revisit the original design objectives that we

have outlined, and note how R2 fulfills these requirements.

⊲ Shorter initial buffering delays: Peers in R2 enjoy shorter

initial buffering delays, as smooth playback is guaranteed

if sufficient seeds are used to saturate the peer download

capacity. This is due to our design of synchronized

playback, as well as perfect collaboration among seeds

due to random network coding.

⊲ Reduced server bandwidth costs: With network coding,

every coded block being transmitted is equally useful

to the receiving peer. With multiple seeds serving any

segment, and without any overhead incurred by explicit

requests, the probability of saturating both peer upload

and peer download bandwidth capacities is much higher

than traditional pull-based protocols. Both of these factors

contribute to reducing server bandwidth costs, since peers

are able to serve more useful bits to one another.

⊲ Better resilience to peer dynamics: In R2, resilience to

peer dynamics has been significantly improved. Since

multiple seeds are used to serve each segment, the

departure of one or a few of them does not constitute

a challenge.

⊲ Smooth playback when bandwidth supply is tight: Since

R2 utilizes bandwidth as efficiently as possible with

UDP-based transmission of coded blocks under flow con-

trol, and since R2 gives strict priority to urgent missing

segments, playback quality will be much improved as

compared to traditional pull-based protocols, especially

in challenging scenarios when overall bandwidth supply

barely exceeds the overall demand in the entire channel.

IV. R2: IMPLEMENTATION

As we prepare to evaluate the performance of R2, we be-

lieve that the most insightful results are achieved with an actual

implementation. We utilize a cluster of 48 dedicated dual-

CPU servers (Pentium 4 Xeon 3.6 GHz and AMD Opteron 2.4

GHz), interconnected by Gigabit Ethernet. In order to obtain

accurate results, R2 should be evaluated with network settings

that are as close to the reality as possible, with real TCP
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and UDP flows. In addition, since we wish to maximize the

number of peers to be emulated on any server in the cluster,

the processing and memory footprint of our implementation

must be minimized.

We start our implementation of R2 from basic building

blocks: multithreading, data block processing and forwarding,

timed and periodic event scheduling, network socket program-

ming, as well as exception handling. In addition, we have

implemented a lightweight emulation of arbitrary peer upload

and download capacities, end-to-end delays, as well as peer

arrivals and departures. We also developed a set of facilities to

automate the deployment, troubleshooting, and data collection.

Each peer in the R2 implementation consists of only two

threads. The network thread is in charge of maintaining all

the incoming and outgoing TCP connections or UDP flows,

their corresponding FIFO queues, as well as bandwidth and

delay emulation. It also emulates the dedicated streaming

servers by producing data at the streaming rate. Incoming and

outgoing network traffic are monitored by a single select()

call with a specific timeout value. The timeout value of the

select() call is tuned on-the-fly, and is critical to the scalable

implementation of bandwidth emulation. The engine thread,

on the other hand, processes incoming blocks, and sends

coded blocks to outgoing connections. The engine thread

also implements random network coding, using random linear

codes over GF(28). To optimize the computational efficiency

of encoding and decoding processes, we take full advantage of

hardware acceleration by using SSE2 SIMD instruction sets,

supported by both AMD and Intel processors.

V. R2: PERFORMANCE EVALUATION

The focus of our experiments is to examine the effectiveness

of R2 with respect to our design objectives. For the sake

of comparison, we implemented a conventional streaming

protocol, henceforth referred to as Vanilla. Similar to existing

protocols such as CoolStreaming [1] and PPLive, Vanilla

employs a data-driven pull-based design philosophy, as have

been described in Sec. III-A. Moreover, we also implemented

Vanilla with network coding [8] as a comparison (later referred

to as network coding), which uses network coding as a

“plugin” component in Vanilla, without making changes to

the pull-based streaming protocol.

A large real-world streaming channel involves tens of

thousands of peers, supported by dozens of high performance

servers with at least 10 MB per second upload capacity each.

It is impossible for us to emulate such a large streaming

population with actual traffic using only 48 clustered servers.

With network coding, each emulated peer consumes roughly

5 − 7% of the CPU; hence, we are approaching 100%
CPU usage with 800 peers. In order to obtain reasonable

observations from such a relatively small network, we use

only one streaming server with 1 MB per second upload

capacity, and limit all other peer connections to DSL grade,

with upload capacities uniformly distributed between 80 and

100 KB per second. We use a streaming rate of 64 KB

per second, a typical rate in real-world streaming protocols.

We believe that such a scenario may be experienced in real-

world channels that are relatively unpopular, when very few

streaming servers have been deployed. In these cases, the

real-world user experience has often been quite poor as well,

corroborating our observations in these sets of experiments.

By emulating a streaming channel using such extreme settings,

our results represent a baseline level of performance, and we

fully expect R2 to perform better in reality with more popular

channels.

In all experiments, unless specified otherwise, each segment

represents 4 seconds of the playback, and is divided into

128 blocks, offering a satisfactory encoding and decoding

bandwidth with our implementation of random linear codes

(around 4 MB per second). Each streaming session lasts for

10 minutes. For a more challenging scenario, we set the buffer

size to 32 seconds, the initial buffering delay to 16 seconds,

and the priority region to 8 seconds.

To evaluate the performance of R2, we evaluate several

important metrics: (1) Playback skips: measured as the per-

centage of segments skipped during playback. A segment is

skipped during playback if it is still not completely received

at the playback time. (2) Bandwidth redundancy: To evaluate

the level of redundancy when using bandwidth, we measured

the percentage of discarded segments or blocks (due to linear
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Fig. 4. Average playback and bandwidth status on each peer in a 64 KB/sec streaming session deployed to P2P sessions of various sizes, ranging from 88

to 792.

dependence or obsolescence) over all received segments or

blocks. (3) Buffering levels on each peer during a live session

over time, measured as the percentage of received blocks or

segments in the playback buffer. (4) The uplink bandwidth

consumption on the dedicated streaming server. All measure-

ments are averaged over all peers in the session.

A. Scalability

We first evaluate the scalability of R2, by varying the

number of peers in the live streaming session from 88 to 792
peers. In this experiment, peers join the streaming session as

soon as there is sufficient bandwidth supply in the session, i.e.

the bandwidth demand closely matches the bandwidth supply,

especially at the beginning of the session. Fig. 4(a) shows

that R2 offers steady playback quality, with less than 0.02%
of playback skips, whereas Vanilla and network coding have

an increasing percentage of playback skips as the number of

peers increases. The improvements in R2 is due to its effective

use of bandwidth, as shown in Fig. 4(b), which is brought

by network coding and the use of smaller blocks rather than

larger segments. For the benefit of the service provider that

hosts dedicated streaming servers, R2 saves almost 15% of

the upload bandwidth on the streaming server, as shown in

Fig. 4(c). Subject to exactly the same scenarios, however, R2

delivers robust and convincing performance in terms of both

playback quality and bandwidth costs on the servers.

B. Buffering Levels

As an important metric to gain insights on the playback

quality, we next examine the fluctuations in average buffering

levels over the course of a streaming session. Fig. V-B

compares the average buffering levels of R2, network coding,

and Vanilla in two representative sessions, from which we

draw two key observations. First, the buffering level ramps

up quickly and remains stable in R2, while Vanilla maintains

a much lower level with a slight variation over time. Network

coding maintains a slightly higher buffering level than Vanilla

does. Second, the buffering level of R2 increases as more

peers become available, while that of Vanilla and network

coding decrease as the network size increases. The satisfactory

buffering levels in R2 also explains the perfect playback

quality (represented by nearly nonexistent playback skips) in

Fig. 4(a). As observed, the random push algorithm and the

priority region design guarantee in-time and fast delivery of

each segment.
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Fig. 5. Average buffering level during the sessions and on each peer in a 64

KB/sec streaming session deployed to networks that consist of 88 and 792

peers.

C. Initial Buffering Delays

To better illustrate the advantage of R2 in effective segment

transmission, we present the time that all three algorithms

take to fill the priority region when a peer joins a session in

Table I. Although network coding improves the time from 14
seconds to 12 seconds in traditional pull-based protocol, such

a time still increases with the network size. In sharp contrast,

R2 is able to completely fill the priority region in less than

6 seconds regardless of the number of peers in the session,

i.e., the upload bandwidth on the seeds are fully utilized in

transmitting encoded blocks, and very few blocks are being

discarded.

Knowing that it takes less time for R2 to fill the priority

region, we turn our attention to the impact of the initial

buffering delay and the length of the priority region. Intu-

itively, longer initial buffering delays should lead to better

playback quality and higher buffering levels. However, we

show in Fig. 6 that the effect of different initial buffering

delays in R2 is not as significant as it is in traditional protocols.

We also observed that both Vanilla and network coding have

unacceptable playback quality when the initial buffering delay

is 8 seconds, which explains why they cannot support fast

channel switching well.

To gain a better understanding of the priority region set-

ting, we fixed the initial buffering delay to 24 seconds, and



session size 88 132 176 220 264 308 352 396 440 484 528 572 616 660 704 748 792

R
2 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6

Network coding 10 10 11 11 11 11 11 12 12 11 12 12 12 12 12 12 12

Vanilla 10 11 11 11 12 12 13 14 13 13 14 14 14 14 14 14 13

TABLE I

THE AVERAGE TIME (IN SECONDS) TAKEN TO FILL THE PRIORITY REGION IN SESSIONS INVOLVING DIFFERENT NUMBERS OF PEERS.
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Fig. 6. The average playback skips and buffering level during the session
when tuning the initial buffering delay, in a 64 KB/sec streaming session with
800 peers.

increased the length of the priority region from 8 seconds to 20
seconds (more than half of the playback buffer). As the priority

region grows, the earlier segments in the buffer become less

“urgent”, leading to lower playback quality, as shown in Fig. 7.

However, we note that the length of the priority region does not

materially affect the performance, since R2 effectively utilizes

all bandwidth to maintains high buffering levels.
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Fig. 7. Average playback skips when tuning the length of the priority region,
in a 64 KB/sec streaming session with 800 peers.

D. Effects of Random Network Coding

With respect to the segment size, we performed two ex-

periments to vary the time represented by a segment from 2
to 8 seconds. In the first experiment, we fix the number of

blocks in a segment to 128, and increase the block size from

1 KB to 4 KB as the segment size increases. When a segment

is too small, more overhead ensues when transmitting small

blocks. On the other hand, when a segment becomes larger (8
seconds of playback), the priority region consists of only one

segment, leading to less randomized segment selection. The

result in Fig. 8 shows lower buffering levels during the initial

buffering delay. We have observed that all of the playback

skips using large 8-second segments have occurred during the

first 8 seconds of playback.

In the second experiment, we set the block size to 2048
bytes, and increased the number of blocks within a segment
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Fig. 8. The average playback skips and buffering levels during a 64 KB/sec
streaming session, with a fixed number of blocks in each segment.

from 64 to 256 as the segment size increases. With a fixed

playback buffer size, the number of segments included in the

playback buffer increases as the segments become smaller.

Therefore, we have observed slightly more randomness during

segment selection, leading to slightly better playback quality,

as shown in Fig. 9. Though larger segments offer higher

buffering levels in both experiments, the priority region is not

filled as quickly as during the initial buffering delay. Moreover,

larger segment does not necessarily offer better quality since

a missing segment may results in longer skips in seconds. In

our experiments, it is ideal to have 4-second segment broken

into 132 blocks.
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Fig. 9. Average playback skips and buffering levels during a 64 KB/sec
streaming session with a fixed block size.

E. Tuning the Random Segment Selection Algorithm

In our previous experiment, we have obtained satisfactory

results using Weibull(0.5, 1) — equivalent to exponential

distribution — for segment selection outside of the priority

region. We further wish to gain a better understanding on the

performance impact of different probability distributions used

in our segment selection algorithm. In this experiment, we se-

lected two representative parameter settings, Weibull(2, 2) and

Weibull(5, 2). Both distributions are approaching the normal

distribution, but with different mean values. The former gives

more preference to earlier segments than the latter does. For

clarity, the PDFs of our distributions are shown in Fig. 10(a).
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Fig. 10. The effects of different probability distributions in the segment selection algorithm, in a 64 KB/sec streaming session.

As shown in Fig. 10(b), distributions that favor the earlier

segments offer better playback quality, without consuming

additional upload bandwidth on the dedicated streaming server.

F. When Bandwidth Demand Meets the Supply

In our previous experiment, bandwidth supply outstrips

demand since the peer upload bandwidth is higher than the

streaming rate. It may appear that R2 does not lead to

improved performance when compared to Vanilla and network

coding. The question naturally becomes: is this the case

when the supply-demand relationship of bandwidth changes?

In a session consisting of 800 peers, with all DSL-grade

connections except the source, the average bandwidth supply

in the session is 92 KB per second for each peer. We run a

set of experiments with four different streaming rates: 64 KB

per second to represent the case where the supply outstrips the

demand, 70 and 75 KB per second to represent an approximate

match between the supply and demand, as well as 80 KB per

second, when the demand exceeds the supply of bandwidth.

When the streaming rate is 80 KB per second, the average

bandwidth demand is more than 92 KB per second from each

peer, including protocol messages and redundant traffic.
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Fig. 11. Effects of the balance between bandwidth supply and demand with
800 peers.

From Fig. 11(a), we observed that R2 significantly out-

performs both Vanilla and network coding when there is a

close match between supply and demand, and even when the

demand exceeds the supply. We also observed that, regardless

of the streaming rate, R2 is able to consistently maintain a

buffering level around 90%, while Vanilla and network coding

are striving to maintain the buffering level above the priority

region. Fig. 11(b) illustrates the difference in buffering levels

among the three protocols in a 70 KB per second streaming

session. Despite the different buffering levels, we notice that

R2 offers a more rapid increase of buffering levels during the

initial buffering delay, which is confirmed in Table II. As a

result, R2 can fill the priority region in less then 8 second.

In sharp contrast, Vanilla cannot fill the priority region during

the entire session when the streaming rate reaches 80 KB per

second.

Streaming rate 64 KB/sec 70 KB/sec 75 KB/sec 80 KB/sec

R2 6 6 7 8

Network coding 11 12 14 15

Vanilla 13 14 15 —

TABLE II

THE TIME (IN SECONDS) TAKES TO FILL THE PRIORITY REGION WHEN

TUNING THE STREAMING RATE.

G. Effects of Peer Dynamics

To emulate volatile peers with frequent departures, we again

use the Weibull distribution — Weibull(k, 2) — to randomly

generate the lifetime of participating peers. With Weibull(k, 2),
we may conveniently decrease the mean peer lifetime by

adjusting k from 500 to 300. For clarity, the plot of each

distribution is shown in Fig. 12(a). The shorter the peer

lifetime is, the more volatile the session becomes. Fig. 12(b)

indicates that the playback skips in all three protocols do

not vary significantly as we tune peer dynamics. However,

as shown in Fig. 12(c), the buffering level is more than

90% on more than half of the R2 peers, whereas all peers

in Vanilla has less than half of the buffer filled during the

entire streaming session. The intuition behind this phenomena

is that all coded blocks are equally innovative with network

coding; thus, the content in the buffers at all seeds of a peer

are equally important. A peer does not need to identify the

blocks or segments affected by a departing seed. All seeds

of a peer are able to cooperatively serve missing segments.

The performance of Vanilla with network coding is similar

to Vanilla (that we choose not to show for clarity of the

graph): since it has not been designed to implement perfect

collaboration, a segment can only be served by one peer, which

may be negatively affected by frequent peer departures.
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Fig. 12. R
2 is more resilient to peer dynamics as compared to network coding and Vanilla, in a 64 KB/sec streaming session involving 800 peers.

VI. CONCLUDING REMARKS

This paper presents the design and performance evaluation

of R2, with a sole objective of redesigning the live P2P

streaming protocol to take full advantage of random network

coding. R2 integrates the following original contributions into

a coherent design. First, it employs a randomized push algo-

rithm without the need of making explicit requests. Second, it

utilizes random network coding within each segment, making

it possible for multiple seeds to cooperatively serve the same

downstream peer, with no messaging overhead. Similar to

Chunked Codes [16], the use of dense linear codes within a

segment reduces the coding complexity to a level that can

be realistically implemented and used. Third, as all seeds

give strict priority to segments close to the playback point,

new peers in a session enjoy a shorter initial buffering delay.

Fourth, with synchronized playback, the overlap of playback

buffers on participating peers is maximized, leading to much

more opportunities for peers to serve one another, and to re-

duced bandwidth costs on dedicated streaming servers. Finally,

with larger segments and much smaller buffer maps (a few

bytes), seeds in R2 receive feedback from downstream peers in

a timely manner. As shown in our experiments, R2 enjoys clear

advantages that should not be overlooked or underestimated.
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