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Automatic extraction of liver and tumor from CT volumes is a challenging task due to their

heterogeneous and diffusive shapes. Recently, 2D deep convolutional neural networks

have become popular in medical image segmentation tasks because of the utilization of

large labeled datasets to learn hierarchical features. However, few studies investigate 3D

networks for liver tumor segmentation. In this paper, we propose a 3D hybrid residual

attention-aware segmentation method, i.e., RA-UNet, to precisely extract the liver region

and segment tumors from the liver. The proposed network has a basic architecture

as U-Net which extracts contextual information combining low-level feature maps with

high-level ones. Attention residual modules are integrated so that the attention-aware

features change adaptively. This is the first work that an attention residual mechanism

is used to segment tumors from 3D medical volumetric images. We evaluated our

framework on the public MICCAI 2017 Liver Tumor Segmentation dataset and tested

the generalization on the 3DIRCADb dataset. The experiments show that our architecture

obtains competitive results.

Keywords: medical image segmentation, tumor segmentation, u-net, residual learning, attention mechanism

1. INTRODUCTION

Liver tumors, or hepatic tumors, are great threats to human health. The malignant tumor, also
known as the liver cancer, is one of the most frequent internal malignancies worldwide (6%), and
is also one of the leading death causes from cancer (9%) (WHO, 2014a,b). Even the benign (non-
cancerous) tumors may grow large enough to cause health problems. Computed tomography (CT)
is used to assist the diagnosis of liver tumors (Christ et al., 2017a). The extraction of liver and
tumors from CT is a critical task before surgical intervention in choosing an optimal approach
for treatment. Accurate segmentation of liver and tumor from medical images provides their
precise locations in the human body. Then therapies evaluated by the specialists can be provided to
treat individual patients (Rajagopal and Subbaiah, 2015). However, due to the heterogeneous and
diffusive shapes of liver and tumor, segmenting them from CT images is challenging. Numerous
efforts have been taken to tackle the segmentation task on liver/tumors. Figure 1 shows some
typical liver and tumor CT scans.

In general, liver and tumor extraction approaches can be classified into three categories:
manual segmentation, semi-automated segmentation, and automated segmentation. Manual
segmentation is a subjective, poorly reproducible, and time-consuming approach. It heavily
depends upon human recognizable features, and requires people with high-level technical skills.
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FIGURE 1 | Examples of typical 2D CT scans and the corresponding ground truth of liver/tumor extractions where red arrows indicate the tumor/lesion regions. The

typical scans are from the MICCAI 2017 Liver Tumor Segmentation (LiTS) dataset.

These factors make it impractical for real applications (Li et al.,
2015). Semi-automated segmentation requires initial human
intervention, which may cause bias and mistakes. In order
to accelerate and facilitate diagnosis, therapy planning, and
monitoring, and finally help surgeons remove tumors, it is
necessary to develop an automated and precise method to
segment tumors from CT images. However, the large scale spatial
and structural variability, low contrast between liver and tumor
regions, existence of noise, partial volume effects, complexity
of 3D-spatial tumor features, or even the similarity between
nearby organs make the automation of segmentation quite a
difficult task (Li et al., 2015). Recently, convolutional neural
networks (CNN) have been applied to many volumetric image
segmentations. A number of CNNmodels including both 2D and
3D networks have been developed. However, the 3D networks
are usually not as efficient and flexible as the corresponding 2D
networks. For instance, 2D and 3D fully convolutional networks
(FCNs) have been proposed for semantic segmentation (Long
et al., 2015). Yet due to the high computational cost and the low
efficiency of 3D convolutions, the depth of the 3D FCNs is limited
compared to that of 2D FCNs, which makes it impractical for 2D
networks to be extended to 3D networks.

To address these issues and inspired by the residual
networks (He et al., 2016) and the attention residual
learning (Wang et al., 2017), we propose a hybrid residual
attention-aware liver and tumor extraction neural network
named RA-UNet1, which is designed to effectively extract
3D volumetric contextual features of liver and tumor from
CT images in an end-to-end manner. The proposed network
integrates a residual U-Net architecture and an attention
residual learning mechanism which enables the optimization and
performance improvement on deep networks. The contributions
of our works are listed as follows: Firstly, the attention
mechanism can have the capability of focusing on specific parts
of the image. Different types of attention are possible through
stacking attention modules so that the attention-aware features
can change adaptively. Secondly, we use the 3D U-Net as the
basic architecture to capture multi-scale attention information
and to integrate low-level features with high-level ones. Besides,
RA-UNet, which directly segments the liver and tumor from 3D

1https://github.com/RanSuLab/RAUNet-tumor-segmentation.git

medical volumes, enlarges the U-Net family in 3Dmedical image
analysis. What’s more, our model does not depend on any pre-
trained model or commonly used post processing techniques,
such as 3D conditional random fields. The generalization of
the proposed approach is demonstrated through testing on the
3DIRCADb dataset (Soler et al., 2010). Our architecture achieves
competitive performances comparing with other state-of-the-art
methods on the MICCAI 2017 Liver Tumor Segmentation
(LiTS) dataset, and also shows high generalization. Our paper
is organized as follows. In section 2, we briefly review the
state-of-the-art automated liver tumor segmentation methods.
We illustrate the methodologies in detail including the datasets,
preprocessing strategy, hybrid deep learning architecture, and
training procedure in section 3. In section 4, we evaluate the
proposed algorithm, report the experimental results, compare
with some other approaches, and extend our approach to other
medical segmentation tasks. Conclusions and future works are
given in section 5.

2. RELATED WORKS

In the past decades, various applications have been developed
via computer-aided methods in medical/biomedical image
processing, cellular biology domains (Zeng et al., 2017; Hong
et al., 2020a,b; Song et al., 2020a,b, 2021). Recently, with the
advance of artificial intelligence, deep learning has been used in a
number of areas such as natural language processing, anti-cancer
drug response prediction, and image analysis (Liu et al., 2017; Su
et al., 2019; Zeng et al., 2020). Some have achieved state-of-the-art
performances in medical imaging challenges (Litjens et al., 2017;
Jin et al., 2019).

2.1. Deep Learning in Medical Image
Analysis
Unlike the traditional methods that use hand-crafted features,
deep neural networks (DNNs) are able to automatically learn
discriminative features. The learned features which contain
hierarchical information have the ability to represent each level
of the input data. Among those methods, CNN is one of the most
popular methods and has shown impressive performance for 3D
medical image analysis tasks. Multi-scale patch-based and pixel-
based strategies were proposed to improve the segmentation
performance. For instance, Zhang et al. (2015) proposed a
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method which used a deep CNN for segmenting brain tissues
using multi-modality magnetic resonance images (MRI). Li
et al. (2015) presented an automatic method based on 2D
CNN to segment lesions from CT slices and compared the
CNN model with other traditional machine learning techniques,
which included AdaBoost (Collins et al., 2002), random forests
(RF) (Breiman, 2001), and support vector machine (SVM) (Furey
et al., 2000). This study showed that CNN still had limitations on
segmenting tumors with uneven densities and unclear borders.
Pereira et al. (2016) proposed a CNN architecture with small
kernels for segmenting brain tumors on MRI. This architecture
reached Dice similarity coefficient metrics of 0.78, 0.65, and 0.75
for the complete, core, and enhancing regions respectively. Lee
et al. (2011) presented a CNN-based architecture that could learn
from provided labels to construct brain segmentation features.
However, due to low memory requirements, low complexity of
computation, and lots of pre-trained models, most of the latest
CNN architectures including the methods reviewed above used
2D slices from 3D volumes for carrying out the segmentation
task. However, the spatial structural organizations of organs
are not considered, and the volumetric information is not fully
utilized. Therefore, 3D automatic segmentation which makes full
use of spatial information is urgently needed for surgeons.

2.2. 3D Convolutional Neural Networks
In order to sufficiently add 3D spatial structures into CNN
for 3D medical image analysis, 3D CNN which considers axial
direction of the 3D volumes has recently been proposed in
medical imaging field. Shakeri et al. (2016) proposed a 2D CNN
architecture to detect tumors from a set of brain slices. Then
they additionally applied a 3D conditional random field (CRF)
algorithm for post processing in order to impose volumetric
homogeneity. This is one of the earliest studies that used CNN-
related segmentation on volumetric images. Çiçek et al. (2016)
learned from sparsely sequential volumetric images by feeding a
U-Net with 2D sequential slices. 3D CNN-based segmentation
methods were then employed in a large scale. Andermatt et al.
(2016) used a 3D recurrent neural network (RNN) with gated
recurrent units to segment gray and white matters in a brain MRI
dataset. Dolz et al. (2017) investigated a 3D FCN for subcortical
brain structure segmentation in MRI images. They reduced the
computational and memory costs, which were quite severe issues
for 3D CNN, via small kernels with a deeper network. Bui
et al. (2017) proposed a deep densely convolutional network
for volumetric brain segmentation. This architecture provided
a dense connection between layers. They concatenated feature
maps from fine and coarse blocks, which allowed to capture
multi-scale contextual information. The 3D deeply supervised
network (DSN), which had a much faster convergence and
better discrimination capability, could be extended to other
medical applications (Dou et al., 2016). Oktay et al. (2018)
proposed a novel attention gate model called attention U-
Net for medical imaging which could learn to concentrate
on target structures of different shapes and sizes. However,
due to hardware limitations, 3D convolutional medical image
segmentation is still a bottleneck.

2.3. Liver Tumor Segmentation
As for liver tumor detection in 3D volumetric images, not many
explorations have been made using the CNN-based methods.
Lu et al. proposed a method based on 3D CNN to carry out
the probabilistic segmentation task and used graph cut to refine
the previous segmentation result. However, as tested only on
one dataset, the generality of this architecture still needs to
be validated (Lu et al., 2017). Christ et al. (2017a) proposed
a cascaded FCNs (CFCNs) to segment liver and its lesions in
CT and MRI images, which enabled segmentation for large
scale medical trials. They trained the first FCN to segment
the liver and trained the second FCN to segment its lesions
based on the predicted liver region of interest (ROI). This
approach reached a Dice score of 94%. Additionally, Christ
et al. (2017b) also predicted hepatocellular carcinoma (HCC)
malignancy using two CNN architectures. They took a CFCN
as the first step to segment tumor lesions. Then they applied
a 3D neural network called SurvivalNet to predict the lesions’
malignancy. This method achieved an accuracy of 65% with
a Dice score of 69% for lesion segmentation and an accuracy
of 68% for tumor malignancy detection. Kaluva et al. (2018)
proposed a fully automatic 2-stage cascaded method for liver
and tumor segmentation based on the LiTS dataset, and they
reached global Dice scores of 0.923 and 0.623 on liver and
tumor, respectively. Bi et al. (2017) integrated 2D residual
blocks into their network and gained a Dice score of 0.959.
Moreover, Li et al. (2018) built a hybrid densely connected U-
Net for liver and tumor segmentation, which combined both
2D and 3D features on liver and tumor. They reached Dice
scores of 0.961 and 0.722 on liver and tumor segmentation,
respectively. Pandey et al. (2018) reduced the complexity of a
deep neural network by introducing ResNet-blocks and obtained
a Dice score of 0.587 on tumor segmentation. Recently, Tang
et al. (2020) proposed a two-stage framework for 2D liver
and tumor segmentation. The proposed network explicitly
captured complementary objects (liver and tumor) and their
edge information to preserve the organ and lesion boundaries.
Heker and Greenspan (2020) introduced transfer learning and
joint learning to improve the network’s generalization and
robustness for liver lesion segmentation and classification.
Seo et al. (2019) modified the U-Net with Object-Dependent
high-level features for the liver tumor segmentation challenge.
However, as mentioned earlier, most of them segmented the
liver or lesion regions based on 2D slices from 3D volumes.
The spatial information has not been taken into account to the
maximum extent.

Recently, attention based image classification (Wang
et al., 2017) and semantic segmentation architectures (Chen
et al., 2016) have attracted a lot of attention. Some medical
imaging tasks have used the attention mechanism to solve
the issues in real applications. For instance, Schlemper
et al. (2019) proposed an attention-gated networks for real-
time automated scan plane detection in fetal ultrasound
screening. The integrated self-gated soft-attention mechanisms,
which can be easily incorporated into other networks,
achieved good performances. Overall, it is expected that
3D deep networks combined with the attention mechanism
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FIGURE 2 | Overview of the proposed pipeline of liver and tumor segmentation. (A) A simple version of 2D RA-UNet (RA-UNet-I) is employed for coarse localization of

a liver region within a boundary box. (B) The 3D RA-UNet (RA-UNet-II) is designed for hierarchically extracting attention-aware features of liver volume of interest (VOI)

inside the liver boundary box. (C) RA-UNet-II is responsible for an accurate tumor extraction which is inside the liver VOI. (D) The overall architecture of RA-UNet.

would achieve a good performance for liver/tumor
extraction tasks.

3. METHODOLOGY

3.1. Overview of Our Proposed Architecture
The first time that an attention mechanism was introduced in
semantic image segmentation was in Chen et al. (2016), which
combined share-net with attention mechanisms and achieved
good performances. More recently, the attention mechanism is
gradually applied to medical image segmentation (Oktay et al.,
2018; Schlemper et al., 2019). Inspired by residual attention
learning (Wang et al., 2017) and U-Net (Ronneberger et al.,
2015), we propose the RA-UNet that for the liver and tumor
segmentation tasks. Our overall architecture for segmentation is
depicted in Figure 2. The proposed architecture consists of three
main stages which extract liver and tumor sequentially. Firstly,
in order to reduce the overall computational time, we used a 2D
residual attention-aware U-Net (RA-UNet) named RA-UNet-I to
obtain a coarse liver boundary box. Next, a 3D RA-UNet, which
is called RA-UNet-II, was trained to obtain a precise liver volume
of interest (VOI). Finally, the obtained liver VOI was sent to a
second RA-UNet-II to extract the tumor region. The designed
network can handle volumes in various complicated conditions
and obtain desirable results in different liver/tumor datasets.

3.2. Datasets and Materials
In our study, we used the public Liver Tumor Segmentation
Challenge (LiTS) dataset to evaluate the proposed architecture.
This dataset has a total of 200 CT scans containing 130 scans
as training data and 70 scans as test data, both of which have
the same 512 × 512 in-plane resolution but with different
numbers of axial slices in each scan. These training data and
their corresponding ground truth are provided by various clinical
sites around the world, while the ground truth of the test data is
not available.

Another dataset named 3DIRCADb is used as an external
test dataset to validate the generalization and scalability of our
model. It includes 20 enhanced CT scans and the corresponding
manually segmented tumors from European hospitals. The
number of axial slices, which have 512× 512 in-plane resolution,
differs for each scan.

3.3. Data Preprocessing
For a medical image volume, Hounsfield units (HU) is a
measurement of relative densities determined by CT. Normally,
the HU values range from −1,000 to 1,000. Because tumors
grow on the liver tissue, the surrounding bones, air, or irrelevant
tissues may disturb the segmentation result. Hence, an initial
segmentation was used to filter out those noises, leaving the
liver region clean which is yet to be segmented. In terms of
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TABLE 1 | Typical tissues radiodensities of human body.

Tissue HU

Air −200+

Bone 400+

Liver 40∼50

Water 0 ± 10

Blood 3∼14

convenience and efficiency, we took a global windowing step as
our data preprocessing strategy.

We list the typical radiodensities of some main tissues in
Table 1, which shows that these tissues have a wide range of HU
values. From the table, the HU value for air is typically above
−200; for bone, it is the highest HU values among these tissues;
for liver, it is from 40 to 50HU; for water, it is approximately from
0 to 10 HU; and for blood, it is from 3 to 14 HU.

In this article, we set the HU window at the range from
−100 to 200. With such a window, irrelevant organs and tissues
were mostly removed. The first rows of Figure 3 shows the 3D,
coronal, sagittal, and axial plane views of the raw volumes of
LiTS and 3DIRCADb, respectively. The second rows show the
preprocessed volumes with irrelevant organ removed. It can be
seen that most of the noise has been removed. The distribution
of HU values before and after windowing is illustrated on the
left and right of the third rows in Figure 3 where Frequency
denotes the frequency of HU values. We applied the zero-mean
normalization and min-max normalization on the data after the
windowing. No further image processing was performed.

3.4. RA-UNet Architecture
3.4.1. U-Net as the Basic Architecture

Our RA-UNet has an overall architecture similar to the standard
U-Net, consisting of an encoder and a decoder symmetrically
on the two sides of the architecture. The contextual information
is propagated by the encoder within the rich skip connections
which enables the extraction of hierarchical features with more
complexities. The decoder receives features that have diverse
complexities and reconstructs the features in a coarse-to-fine
manner. An advantage is that the U-Net introduces long-range
connections through the encoder part and the corresponding
decoder part, so that different hierarchical features from the
encoder can be merged to the decoder which makes the network
much more precise and expansible.

3.4.2. Residual Learning Mechanism

The network depth is of crucial importance. However, gradient
vanishing is a common problem in a very deep neural network
when carrying out back propagation, which results in poor
training results. In order to overcome this problem, He et al.
proposed the deep residual learning framework to learn the
residual of the identity map (He et al., 2016). In our study,
residual blocks are stacked except the first layer and the last layer
(Figure 2D) to unleash the capability of deep neural networks.
The stacked residual blocks solve the gradient vanishing problem

at the structural level of the neural network by using identity
mappings as the skip connections. The residual units directly
propagate features from early convolution to late convolution
and consequently improve the performance of the model. The
residual block is defined as:

ORi,c(x) = x+ f i,c(x) (1)

where x denotes the first input of a residual block, OR denotes
the output of a residual block, i ranges over all spatial positions,
c ∈ {1, . . . ,C} indicates the index of channels, C is the total
number of channels, and f represents the residual mapping to
be learned.

The residual block consists of three sets of combinations of
a batch normalization (BN) layer, an activation (ReLU) layer,
and a convolutional layer. A convolutional identity mapping
connection is used to ensure the accuracy as the network goes
“deeper” (He et al., 2016). The detailed residual unit is illustrated
in Figure 4.

3.4.3. Attention Residual Learning Mechanism

The performance will drop if only naive stacking is used for the
attention modules. This can be solved by the attention residual
learning proposed by Wang et al. (2017). The attention residual
mechanism divides the attention module into a trunk branch and
a soft mask branch, where the trunk branch is used to process the
original features and the soft mask branch is used to construct the
identity mapping. The output OA of the attention module under
attention residual learning can be formulated as:

OAi,c(x) = (1+ Si,c(x))Fi,c(x) (2)

where S(x) has values in [0,1]. If S(x) is close to 0, OA(x)
will approximate the original feature maps F(x). The soft mask
branch S(x), which selects identical features and suppresses
noised from the trunk branch, plays the most important role in
the attention residual mechanism.

The soft mask branch has an encoder-decoder
structure which has been widely applied to medical image
segmentation (Ronneberger et al., 2015; Çiçek et al., 2016;
Alom et al., 2018). In the attention residual mechanism, it is
designed to enhance good features and reduce the noises from
the trunk branch. The encoder in the soft mask branch contains
a max-pooling operation, a residual block, and a long-range
residual block connected to the corresponding decoder, where
an element-wise sum is performed following a residual block
and an up-sampling operation. After the encoder and decoder
parts of the soft mask, two convolutional layers and one Sigmoid
layer are added to normalize the output. Figure 5 illustrates the
attention residual module in detail.

In general, the attention residual mechanism can keep the
original feature information through the trunk branch and pay
attention to those liver tumor features by the soft mask branch.

3.4.4. Loss Function

The weights are learnt by minimizing the loss function. We
employed a loss function based on the Dice coefficient proposed
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FIGURE 3 | Comparison between the raw CT scans (first row), windowed (second row) scans, and histograms of HU (third row) before and after windowing.

(A) Shows the comparison on LiTS. (B) Shows the comparison on 3DIRCADb.
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in Milletari et al. (2016) in this study. The loss L is defined
as follows:

L = 1−
2
∑N

i=1 sig i
∑N

i=1 s
2
i +

∑N
i=1 g

2
i

(3)

where N is the number of voxels, si and g i belong to the binary
segmentation and binary ground truth voxel sets, respectively.
The loss function measures the similarity of two samples directly.

3.5. Liver Localization Using RA-UNet-I
The first stage aimed to locate the 3D liver boundary box. A
2D version RA-UNet-I was introduced here to segment a coarse
liver region, which can reduce the computational cost of the
subsequent RA-UNet-II, remove the redundant information, and
provide more effective information. It worked as a “baseline” to
limit the scope of the liver.

We down sampled the slices to 256×256 and fed the
preprocessed slices into the trained RA-UNet-I model. Next, we
stacked all the slices in their original sequence. Afterwards, a
3D connected-component labeling (Hossam et al., 2010) was
employed. The connected component labeling, which is used for
determining specific regions and measure the size of regions,
is a procedure for assigning a unique label to each connected
component in an image. Then the largest component was chosen

FIGURE 4 | Sample of a residual block in the dashed window. An identity

mapping and convolutional blocks are added before the final feature output.

as the coarse liver region. Finally, we interpolated the liver region
to its original volume size with a 512× 512 in-plane resolution.

Connected component labeling is a procedure for assigning a
unique label to each connected component in an image.

3.6. Liver Segmentation Using RA-UNet-II
The RA-UNet-II was a 3D model which fully utilized the
volume information and captured the spatial information. The
3D U-Net type architecture (Çiçek et al., 2016) merges the low
resolution and high resolution features to generate an accurate
segmentation. Meanwhile, using large image patches (224 × 224
× 32) for training provides much richer contextual information
than using small image patches, which usually leads to more
global segmentation results.

As shown in Table 2, the network went down from the top
to the bottom in the encoder, and reversed in the decoder.
During the encoding phase, the RA-UNet-II received liver
patches and passed them down to the bottom. During the
decoding phase, lower features were passed from the bottom
to the top with resolution doubled through the up-sampling
operation. Note that the long-range connection between the
encoder and the decoder was realized by the attention block.
We then combined the features from the attention blocks with
those from the corresponding up-sampling level in the decoder
via concatenation. Then the concatenated features were passed
on to the decoder. Finally, an activation layer (i.e., Sigmoid) was
used to generate the final probability map of liver segmentation.

The RA-UNet-II has fewer parameters than the traditional
U-Net (Ronneberger et al., 2015). With this architecture, the
number of parameters has been largely decreased to only 4M
training parameters. During the training phase, we interpolated
the liver boundary box in the x−y plane to a fixed size (i.e.,
224×224) and randomly picked 32 slices successively in the z
direction to form the training patches. The RA-UNet-II was
employed on each CT patch to generate 3D liver probability
patches in sequence. Then, we interpolated and stacked those
probability patches to be restored to the original size of the
boundary box. A voting strategy was used to generate the final
liver probability of the VOI from overlapped sub-patches. A
3D connected-component labeling was used and the largest

FIGURE 5 | The architecture of the attention residual module. (A) The attention residual module contains a trunk branch and a soft mask branch. The trunk branch

learns original features while the soft mask branch focuses on reducing noises and enhancing good features. (B) The soft mask branch contains a stack of

encoder-decoder blocks. D denotes the depth of skip connections. In our network, we set D to 0,1,2,3 according to the specific location of the attention residual block.
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TABLE 2 | Architecture of the proposed RA-UNET-II in liver localization stage.

Encoder Output size Decoder Pre-operation Output size

Input 224× 224× 32× 1 Att1 [Res4], depth=0 14× 14× 2× 256

Conv1 224× 224× 32× 32 Res7 [Up1, Att1] 14× 14× 2× 256

Pooling 112× 112× 16× 32 Up2 28× 28× 4× 256

Res1 112× 112× 16× 32 Att2 [Res3], depth=1 28× 28× 4× 128

Pooling 56× 56× 8× 32 Res8 [Up2, Att2] 28× 28× 4× 128

Res2 56× 56× 8× 64 Up3 56× 56× 8× 128

Pooling 56× 56× 4× 64 Att3 [Res2], depth=2 56× 56× 8× 64

Res3 28× 28× 4× 128 Res9 [Up3, Att3] 56× 56× 8× 64

Pooling 14× 14× 2× 128 Up4 112× 112× 16× 64

Res4 14× 14× 2× 256 Att4 [Res1], depth=3 112× 112× 16× 32

Pooling 7× 7× 1× 256 Res10 [Up4, Att4] 112× 112× 16× 32

Res5 7× 7× 1× 512 Up5 224× 224× 32× 32

Res6 7× 7× 1× 512 Conv2 [Up5, Conv1] 224× 224× 32× 32

Up1 14× 14× 2× 512 Conv3 224× 224× 32× 1

Here [ ], long range connection; [,], concatenate operation; Conv, convolution; Up, up-sampling; Res, residual block; Att, attention block.

FIGURE 6 | Tumor patch extraction results. The green arrows point to the

tumor regions and the red boxes show the patches used for training.

component was chosen on the merged VOI to yield the final
liver region.

3.7. Extraction of Tumors Based on
RA-UNet-II
Tumor region extraction was similar to liver segmentation but no
interpolation and resizing were performed. Because the size of the
tumor is much smaller than that of the liver, the original tumor
resolution was used to avoid losing small lesions. Furthermore,
in order to solve the data imbalance issue and learn more
effective tumor features, we picked patches on both tumor and
its surroundings non-tumor regions for training as shown in
Figure 6. Note that only those in the liver VOIs would be
the candidate patches for training. We extracted the tumors
following a similar routine as for the liver segmentation step
except the use of interpolation. Subsequently, a voting strategy
is used again on the merged VOI to yield the final tumor
segmentation. At last, we filtered out those voxels which were not
in the liver region.

3.8. Evaluation Metrics
We evaluated the performance of the proposed approach
using the metrics introduced in Heimann et al. (2009).
The evaluation metrics include the Dice score (DS) (Wu
et al., 2016) consist of Dice global (Dice score computed
on all combined volumes denoted with DG) and Dice
per case (mean Dice score per volume denoted with DC),
Jaccard similarity coefficient (Jaccard), volumetric overlap
error (VOE), relative volume difference (RVD), average
symmetric surface distance (ASSD), and maximum surface
distance (MSD).

3.9. Implementation Details
The RA-UNet architecture was constructed using the
Keras (Chollet, 2015) and the TensorFlow (Abadi et al.,
2015) libraries. All the models were trained from scratch.
The parameters of the network were initialized with random
values and then they were trained with back-propagation
based on Adam (Kingma and Ba, 2014) with an initial
learning rate (LR) of 0.001, β1=0.9, and β2=0.999. The learning
rate would be reduced to LR×0.1 if the network went to
plateau after 20 epoches. We used 5-fold cross-training on
the LiTS training dataset, and evaluated the performance
on the LiTS test dataset. To demonstrate the generalization
of our RA-UNet, we also evaluated the performance on the
3DIRCADb dataset using the well-trained weights from the
LiTS training dataset. For the liver and tumor training, the
total numbers of epoches were set at 50 and 50 for each fold,
respectively. An integration operation by a voting strategy
is implemented to ensemble all the prediction results of 5
models. The training of all the models was performed with
an NVIDIA 1080Ti GPU. In our experiments, it took about
100/40 min to train an epoch of our 3D RAUNet for liver/tumor
segmentation, respectively.
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FIGURE 7 | Liver localization using RA-UNet-I. From left to right the figure

shows the preprocessed slice, and the final boundary box which restricts the

liver region. (A) A typical slice from the LiTS validation dataset. (B) A typical

slice from the 3DIRCADb dataset. The RA-UNet-I enables the coarse

localization of liver regions.

4. EXPERIMENTS AND RESULTS

4.1. Liver Volume of Interest Localization
In order to reduce the computational cost, we first down-sampled
the input slices to a 256× 256 pixel in-plane resolution. Secondly,
we used all the slices which have liver in the images together with
1/3 of those randomly picked slices without liver as the training
data. There are a total of 32,746 slices with liver which were used,
including 23,283 slices for training and 9,463 slices for validation.
Note that 5-fold training was not employed at this stage, because
our goal at this stage was to obtain a coarse liver boundary box
and reduce the computational time.

After stacking all the slices and employing the 3D connected-
component labeling, we calculated the 3D boundary box of the
slices with liver, and extended 10 pixels in coronal, sagittal, and
axial directions to ensure that the entire liver region was included.
Figure 7 shows the liver localization results from RA-UNet-I.
It demonstrates that the attention mechanism has successfully
constrained the liver region. Note that this stage aims to reduce
the computational cost for precisely segmenting liver and tumor
by RA-UNet-II.

4.2. Liver Segmentation Using RA-UNet-II
RA-UNet-II allowed the network to go “deeper.” However, the
implementation of a 3D convolution is still limited by the
hardware and memory requirements (Prasoon et al., 2013). In

order to balance the computational cost and efficiency, we first
carried out interpolation in the region inside the liver boundary
box to the size of 224×224×M, where M was the axial length of
the liver boundary box. Then we cropped the volumetric patches
(224×224×32) randomly from each boundary box, which was
constrained by the liver boundary box. Totally, 4,077/1,019
patches were selected for training/validation.

Figure 8 shows the liver segmentation based on RA-UNet-II,
which indicates that our proposed network has the ability to learn
3D contextual information and could successfully extract the liver
from adjacent slices in an image volume. After the 3D connected-
component labeling was carried out, the liver region was precisely
extracted by selecting the largest region.

As shown in Table 3, our method reached up to 0.961 and
0.977 Dice scores on the LiTS test dataset and the 3DIRCADb
dataset, respectively. It reveals that RA-UNet yields remarkable
liver segmentation results. Then we can extract tumors from the
segmented liver regions.

4.3. Extraction of Tumors Based on
RA-UNet-II
Tumors were tiny structures compared to livers. Therefore, no
interpolation or resizing was applied to tumor patch sampling
to avoid information loss from image scaling. It was difficult to
decide what size of patch for training could reach a desirable
performance. In order to determine the patch size, we set
the patch size of 32×32×32, 64×64×32, and 128×128×32,
respectively to test the performance of tumor segmentation.
Results showed that 128×128×32 patch-sized data achieved the
best tumor segmentation performance. The larger the patch
size was, the richer context in formation the patches could
provide. Due to the limitation of computational resources,
128×128×32 was chosen empirically for tumor patches. We
randomly picked 150 patches from each liver volume in the
boundary box. Totally, 14,160/3,540 patches were chosen from
LiTS as training/validation datasets. As shown in Table 4, our
method reached 0.595 and 0.830 Dice scores on the LiTS test
dataset and the 3DIRCADb dataset, respectively. Figure 9 shows
the tumor segmentation results in detail.

Figure 10 shows the liver/tumor segmentation results. It
shows that liver regions which are large in size are successfully
segmented and tumors that are tiny and hard to detect can
be identified by the proposed method as well. Due to the low
contrast with the surrounding livers and the extremely small
size of some tumors, the proposed method still has some false
positives and false negatives for tumor extraction.

4.4. Comparison With Other Methods
There were several submissions about liver and tumor
segmentations to the 2017 ISBI and MICCAI LiTS challenges.
We reached a Dice per case of 0.961, Dice global of 0.963, Jaccard
of 0.926, VOE of 0.074, RVD of 0.002, ASSD of 1.214, and MSD
of 26.948, which is a desirable performance on the LiTS challenge
for liver segmentation. For tumor segmentation evaluation,
our method reached a Dice per case of 0.595, Dice global of
0.795, Jaccard of 0.611, VOE of 0.389, RVD of −0.152, ASSD of
1.289, and MSD of 6.775. Compared with other methods, Bellver
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FIGURE 8 | Liver segmentation results based on RA-UNet-II. (A) From the LiTS validation dataset and (B) is from the 3DIRCADb dataset. From left to right, the first

row of each subplot shows the liver in the green boundary box, magnified liver region, the liver segmentation results, and the corresponding ground truth. The second

and the third rows show the probability heat map of liver segmentation results. The darker the color, the higher the probability of the liver region. Note that the ground

truth contains liver in gray and tumor in white.
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TABLE 3 | Evaluation results of the liver segmentation on the LiTS test dataset

and the 3DIRCADb dataset.

LiTS 3DIRCADb

DC 0.961 0.977

Jaccard 0.926 0.977

VOE 0.074 0.045

RVD 0.002 −0.001

ASSD 1.214 0.587

MSD 26.948 18.617

TABLE 4 | Scores of the tumor segmentation on the LiTS test dataset and the

3DIRCADb dataset.

LiTS 3DIRCADb

DC 0.595 0.830

Jaccard 0.611 0.744

VOE 0.389 0.255

RVD −0.152 0.740

ASSD 1.289 2.230

MSD 6.775 53.324

et al. (2017) and Pandey et al. (2018) methods reached tumor
Dice per case at 0.587 and 0.59, respectively, which were 2D
segmentation methods. Our approach outperformed these two
methods. The detailed results and all the performances are listed
in Table 5. It is worth mentioning that our method for precise
segmentation of liver and tumor was a full 3D technique with a
much deeper network.

4.5. Generalization of the Proposed
RA-UNet
To show the generalization of the proposed method, we used
the weights well-trained on LiTS and tested on the 3DIRCADb
dataset. Some works concentrated on liver segmentation, and
there were a few about tumor segmentation. Hence, we listed the
results of some approaches in Table 6. Our methods reached a
Dice per case of 0.977, Jaccard of 0.977, VOE of 0.045, RVD of
−0.001, ASSD of 0.587, and MSD of 18.617, which quantitatively
show that our method performed significantly better than all
the other methods on liver segmentation. Since most of the
works aimed at liver segmentation, few of them displayed tumor
segmentation results, we only compared with Christ et al. (2017a)
on the 3DIRCADb dataset. It was worth mentioning that our
method reached a mean Dice score of 0.830 on livers with tumors
compared to a mean Dice score of 0.56 for the method by
Christ et al. (2017a). The visualization of typical performance was
illustrated in Figures 8B, 9B, 10B, which qualitatively indicated
that our method produced precise segmentation performance.

5. CONCLUSION

To summarize our work, we have proposed an effective
and efficient hybrid architecture for automatic extraction of

FIGURE 9 | Tumor segmentation results based on RA-UNet-II. (A) From the

LiTS validation dataset, and (B) is from the 3DIRCADb dataset. From left to

right, the first row of each subplots indicates the raw images, segmentation

results of liver tumor, and the corresponding ground truth. The second and the

third rows show the probability heat map of tumor segmentation results.

liver and tumor from CT volumes. We introduce a new
3D residual attention-aware liver and tumor segmentation
neural network named RA-UNet, which allows the extraction
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FIGURE 10 | Automatic liver and tumor segmentation with RA-UNet. The green regions indicate the correctly extracted liver, the yellow regions are the wrongly

extracted liver, the blue color depicts the correctly extracted tumor regions, and the red color means wrongly extracted tumor. The first row of each subplot shows

four slices from different volumes in the axial view and the second row of each subplot shows the corresponding 3D view of the entire liver/tumor segmentation

results. (A) From the LiTS dataset. (B) From the 3DIRCADb dataset.

TABLE 5 | Segmentation results compared with other methods on the LiTS test dataset.

LiTS liver LiTS tumor

Dimension DC DG Jaccard VOE RVD ASSD MSD DC DG Jaccard VOE RVD ASSD MSD

Kaluva et al. (2018) 2D 0.912 0.923 0.850 0.150 −0.008 6.465 45.928 0.492 0.625 0.589 0.411 19.705 1.441 7.515

Bi et al. (2017) 2D 0.959 – 0.922 – – – – 0.500 – 0.388 – – – –

Li et al. (2018) 2.5D 0.961 0.965 – 0.074 −0.018 1.450 27.118 0.722 0.824 – 0.366 4.272 1.102 6.228

MEDDIIR Unknown 0.950 0.955 – 0.094 0.047 1.597 28.911 0.658 0.819 – 0.380 −0.129 1.113 6.323

Yuan (2017) 2D 0.963 0.967 – 0.071 −0.010 1.104 23.847 0.657 0.820 – 0.378 0.288 1.151 6.269

Summer Unknown 0.941 0.945 – 0.108 −0.066 6.552 152.350 0.631 0.786 – 0.400 −0.181 1.184 6.367

Proposed method 3D 0.961 0.963 0.926 0.074 0.002 1.214 26.948 0.595 0.795 0.611 0.389 −0.152 1.289 6.775

of 3D structures in a pixel-to-pixel fashion. The proposed
network takes advantage of the strengths from the U-Net,
the residual learning, and the attention residual mechanism.

Firstly, attention-aware features change adaptively with the
use of attention modules. Secondly, the residual blocks are
stacked into our architecture which allows the architecture to
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TABLE 6 | Segmentation results compared with other methods on the 3DIRCADb dataset.

3DIRCADb liver 3DIRCADb tumor

Dimension DC Jaccard VOE RVD ASSD MSD DC

Christ et al. (2017a) 2D 0.943 – 0.107 −0.014 1.6 24 0.56

Ronneberger et al.

(2015)

2D 0.729 – 0.39 0.87 19.4 119 –

Li et al. (2013) 2D 0.945 – 0.068 −0.112 1.6 28.2 –

Eapen et al. (2015) 3D – – 0.0554 0.0093 0.78 15.6 –

Lu et al. (2017) 3D – – 0.0936 0.0097 1.89 33.14 –

Proposed method 3D 0.977 0.977 0.045 −0.001 0.587 18.617 0.83

go deeply and solve the gradient vanishing problem. Finally,
the U-Net is used to capture multi-scale attention information
and integrate low-level features with high-level features. To
the best of our knowledge, this is the full 3D model and the
first time that the attention residual mechanism is implemented
in the medical imaging tasks. Fewer parameters are trained
by the attention residual mechanism. The proposed method
enlarges the U-Net family for 3D liver and tumor segmentation
tasks, which is crucial for real-world applications. The effective
system includes three stages: liver localization by the RA-
UNet-I, precise segmentation of liver, and tumor lesion by
the RA-UNet-II. More importantly, the trained network is a
general segmentation model working on both the LiTS and the
3DIRCADb datasets.

Overall, our method achieved competitive performances
in liver tumor challenge, and exhibits high extension and
generalization ability in another tumor segmentation dataset.
The proposed model has great potential to be applied to other
modalities of medical images. It may also assist surgeons to
find treatment for novel tumors. The limitation of the proposed
method is the training time because the 3D convolutions
require larger parameters than the 2D convolutions. In future
work, we aim to further improve the architecture, making the
architecture much more general to other tumor segmentation
datasets and more flexible to common medical imaging tasks.
What’s more, reducing computational cost and developing a
lightweight architecture for speeding training time are also
under consideration.
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