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Abstract: Classification of land use and land cover from remote sensing images has been widely used
in natural resources and urban information management. The variability and complex background of
land use in high-resolution imagery poses greater challenges for remote sensing semantic segmenta-
tion. To obtain multi-scale semantic information and improve the classification accuracy of land-use
types in remote sensing images, the deep learning models have been wildly focused on. Inspired
by the idea of the atrous-spatial pyramid pooling (ASPP) framework, an improved deep learning
model named RAANet (Residual ASPP with Attention Net) is constructed in this paper, which
constructed a new residual ASPP by embedding the attention module and residual structure into the
ASPP. There are 5 dilated attention convolution units and a residual unit in its encoder. The former is
used to obtain important semantic information at more scales, and residual units are used to reduce
the complexity of the network to prevent the disappearance of gradients. In practical applications,
according to the characteristics of the data set, the attention unit can select different attention modules
such as the convolutional block attention model (CBAM). The experimental results obtained from the
land-cover domain adaptive semantic segmentation (LoveDA) and ISPRS Vaihingen datasets showed
that this model can enhance the classification accuracy of semantic segmentation compared to the
current deep learning models.

Keywords: semantic segmentation; remote sensing; convolutional block attention module; dual
attention module; residual structure

1. Introduction

With the development of sensors, the coverage provided by remote sensing images
has widened and the spatial resolution has become finer. Due to their capability to de-
scribe ground information in detail, remote sensing images have been widely used in
land resource monitoring and urban resource management [1–3]. Semantic segmentation
of a scene is the key issue during remote sensing image processing, which divides the
whole space into multiple regions of interest by clustering each pixel [4,5]. Recently, the
spatial resolution of remote sensing images has reached the centimeter level, and such
advances in technology produce more redundant image information and noise, so semantic
segmentation tasks are becoming increasingly challenging [6].

Traditional methods of semantically segmenting remote sensing images, such as the
maximum likelihood [7], minimum distance [8], and iterative self-organizing data analysis
techniques algorithm (ISODATA) [9], have been widely used for classifying land use and
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land cover. Considering only the digital number value of each pixel during classification
process, most traditional methods separate the connection between the current pixel and
surrounding ones. To some extent, their limitations are low classification accuracy and
poor adaptability to complex samples.

Deep learning has enabled considerable breakthroughs in many fields and shown
remarkable performance in image processing. With its strong ability to express features
and fit data, many different types of deep learning models are widely used in semantic
segmented tasks [10–12]. Compared with traditional classification methods, deep learning
models consider the spatial relationship between adjacent pixels, so can achieve high-
quality performance when dealing with complex geographic object samples [13]. For
semantic segmentation tasks, deep learning methods generally use convolutional neural
networks (CNNs) to capture image features and provide an initial class label for each
pixel in the image. On this basis, a series of improved deep learning models has also
been constructed [14]. For instance, to accept input images of any size, fully convolutional
networks (FCNs) use a convolutional layer instead of a fully connected layer [15]. However,
due to the existence of the pooling layer, multiple convolutions and pooling operations
continually expand the receptive field and aggregate information. The downsampling
process continuously reduces the spatial resolution of the image, thus eventually resulting
in the loss of global context information. U-net, used for medical image segmentation
proposed by Ronnerberge, combines different feature maps within the channel dimension
to form denser features [16]. However, U-net reduces the convergence speed of the network
for a larger number of sample categories. Then, when training large data sets, the amount
of calculation increases, resulting in higher training costs. Due to the complex ground
information contained in remote sensing images, many objects have similar appearances, so
can be easily confused when performing semantic segmentation tasks. The pyramid scene
parsing network (PSPNet) proposed by Zhao adopts the spatial pyramid pooling (SPP)
module through which local and global information are added to the feature map [17]. The
PSPNet enables the model to consider more global context information and promote the
fusion of multiscale features. The result is that the model effectively improves the accuracy
of semantic segmentation. Similar to PSPNet, DeeplabV3plus, proposed by Chen, also
considers more context information and has higher segmentation accuracy [18]. However,
the main difference is that it adopts the atrous-spatial pyramid pooling (ASPP) module.
DeeplabV3plus uses a simple, effective encoder–decoder structure to increase the detection
speed of the network, and it expands the receptive field and captures large amounts of
local information to achieve an accurate segmentation effect.

In remote sensing images, many different types of ground objects are mixed, which
creates challenges in semantic segmentation tasks. Therefore, to achieve the semantic
segmentation of remote sensing images, deep learning networks need to be improved to
capture important edge and texture features. Based on the native FCN, Mou et al. [19]
proposed a recurrent network in a fully convolutional network (RiFCN), using a forward
stream to generate multilevel feature maps and a backward stream to generate a fused
feature map as the classification basis. Although RiFCN performs well in semantic segmen-
tation, the constant replacement of its network parameters results in large computational
costs. Du et al. integrated the object-based image analysis method (OBIA) with the
DeeplabV3plus model [20]. This design effectively optimizes the segmentation results, but
the increase in parameters complicates the network structure, which increases the training
cost.

Recently, the domain of embedding attention mechanisms into neural networks has
considerably advanced [21,22]. The attention mechanism is the behavior of selectively
processing signals. This is an optimization strategy for many organisms, including humans,
when processing external signals, and the mechanism behind it is called the attention
mechanism by scholars in the field of cognitive science. For example, Jun et al. designed
DANet, which introduces the dual attention (DA) module into the semantic segmentation
task [23]. DANet uses the position attention and the channel attention modules to enhance
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the expression of image features. From the perspective of the segmentation effect, the DA
module has an accurate localization ability without increasing the computational cost too
much. The convolutional block attention module (CBAM), proposed by Woo et al. [24],
similar to DA, also includes a spatial attention module and a channel attention module.
Unlike the parallel structure of the DA module, CBAM is more lightweight and has a
series structure, which considerably reduces the computational burden when training the
network. Therefore, the network performance can be effectively improved by integrating
the attention module into the semantic segmentation network of remote sensing images [25].
Guo et al. designed the multitask parallel attention convolutional network (MTPA-Net)
for the semantic segmentation of high-resolution remote sensing images via integrating
the CBAM and DA into a CNN, which effectively reduced the misclassified areas and
improved the classification accuracy [26]. Li designed a semantic segmentation network
with spatial and channel attention (SCAttNet) by embodying the CBAM into a CNN, which
also achieved accurate segmentation in the semantic segmentation task for remote sensing
images [27].

However, it is not enough only to use the attention module for network improvement.
In DeeplabV3plus, the ASPP only uses convolution blocks with atrous convolution rates of
6, 8, and 12, respectively, thereby limiting the richness of information scales and ignoring
the recognition and detection of small objects. Yang et al. designed DenseASPP [28], which
takes full advantage of the parallel and cascaded architecture of dilated convolutional
layers to obtain semantic information at more scales. However, the dense connection
method will have particularly thick features, and there may be more repetitions. The too
deep network is prone to cause overfitting and gradient disappearance. To solve the above
problems, we design a new type of ASPP and name residual ASPP, which reconstructs ASPP
with the dilated attention convolution unit and contains five dilated attention convolution
modules with atrous convolution rates of 3, 6, 12, 18, and 24 to obtain important semantic
information at more scales. The residual unit reduces the complexity of the model and
prevents the gradient from vanishing.

Our main aims and highlights in this study are as follows:

(1) We designed a novel Residual ASPP structure, which reconstructs the atrous convo-
lution unit with the dilated attention convolution unit, obtains important semantic
information at multiple scales, and reduces the complexity of the network through
the residual unit.

(2) In residual ASPP, we used different attention modules to design comparative exper-
iments and ablation experiments of CBAM and DA, and specifically compared the
similarities and differences between the two attention modules.

(3) To verify the accuracy improvements produced by the proposed methods with those
of the native DeeplabV3plus model and other deep learning models. The proposed
model achieves state-of-the-art performance on the LoveDA dataset and the ISPRS
Vaihingen dataset.

The remainder of this paper is arranged as follows: the materials and methods are
introduced in Section 2; the experimental results are illustrated in Section 3, and the
discussions and conclusions are presented in Sections 4 and 5, respectively.

2. Materials and Methods
2.1. Data Sources

We selected the land-cover domain adaptive semantic segmentation (LoveDA)
dataset [29] as the research object, which includes 5987 remote sensing images with 3 m
(high) spatial resolution, and each image has a resolution of 1024 × 1024 in the dataset.
The dataset comprises remote sensing images derived from different urban and rural areas
of Nanjing, Changzhou, and Wuhan, China. It contains 6 land-use categories, including
building, road, water, barren, forest, and agriculture. Due to the complex background,
multiscale objects, and inconsistent class distributions, the dataset presents challenges for
semantic segmentation tasks.
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2.2. Related Methods

In this section, we introduce the principle of the DeeplabV3plus model, CBAM, and
DA module, and illustrate the structure of DEAM in detail.

2.2.1. Atrous-Spatial Pyramid Pooling

ASPP is an improvement framework of SPP. The prominent difference from SPP is
that ASPP uses an atrous convolution in place of the ordinary convolution. Through this
improvement, ASPP can obtain a larger receptive field and enrich the obtained semantic
information. Compared with SPP, ASPP can obtain a larger receptive field and enrich the
obtained semantic information. The specific process of ASPP is as follows. Given a feature,
a 1 × 1 convolutional layer, a 3 × 3 convolutional layer with expansion rates of 6, 12, and
18, and an average pooling layer were input, respectively. Next, the output results were
merged as a multi-scale fusion feature map, which considered the output feature map
of ASPP.

2.2.2. Convolutional Block Attention Module

CBAM is a lightweight attention module for feed-forward convolutional neural net-
works, and it can be seamlessly integrated into any CNN architecture (Figure 1). It sepa-
rately and sequentially infers the attention maps through the channel and spatial dimen-
sions. The specific process is as follows: First, input feature map F into the channel attention
module to obtain the intermediate feature map and multiply the intermediate feature map
by the feature map F to obtain the feature map F1. Then, input the feature map F1 into the
spatial attention module; the output intermediate feature map is multiplied by the feature
map F1 to obtain the final feature map F2. The main process is as follows:

F1 = Mc(F)⊗ F (1)

F2 = Ms(F1)⊗ F1 (2)
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In the channel attention module, the input feature F is input to the maximum pooling
(Maxpool) and the average pooling (Avgpool) layer, respectively, to generate two different
features. Both features were then forwarded to the multilayer perceptron (MLP) to produce
the channel attention map Mc(F). The formula is as follows:

Mc(F) = σ(MLP(Avgpool(F)) + MLP(Maxpool(F))) (3)

where, Mc(F) represents the channel attention map, σ represents the sigmoid function.
The channel attention module compresses the spatial dimension of the input feature

map, uses the Avgpool and Maxpool operations to aggregate the channel information
from the feature map, and generates two different pieces of spatial contextual information.
After their matrix addition, the result is multiplied by the input feature. These operations
improve the effectiveness of the information of the important features and enhance the
expressiveness of features.
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In the spatial attention module, two feature maps are generated by aggregating the
channel information of a feature map by using Avgpool and Maxpool operations and are
then concatenated and convolved by a standard convolution layer (including convolution,
normalization, and ReLU activation function) to produce the spatial attention map Ms(F1).
The processing is as follows:

Ms(F1) = σ
(

f 7×7([Avgpool(F1); Maxpool(F1)])
)

(4)

where Ms(F1) represents the spatial attention map, f 7×7 represents a convolutional layer
with a 7 × 7 kernel.

2.2.3. Dual Attention Module

The DA module also has a position attention module and a channel attention module,
but it adopts a parallel instead of a series architecture (Figure 2). The process involves
inputting the feature maps into the position attention module and the channel attention
module separately, then their output feature maps are added element by element to obtain
the output feature map of the DA module.
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In the position attention module, first, we fed local feature A into a convolution layer
to generate three new feature maps: B, C, and D. Then, we reshaped them to C × N
(N = H × W). After, we performed a matrix multiplication between the transpose of C and
B, and applied a SoftMax layer to calculate the spatial attention map S. Then, we performed
a matrix multiplication between D and the transpose of S and reshaped the result to
C × H × W. Finally, we multiplied it by a scale parameter α and performed an element-
wise sum operation with the features A to obtain the final output feature map E.

The process can be represented by the following formula:

Sji =
exp

(
Bi·Cj

)
∑N

i=1 exp
(

Bi·Cj
) (5)

Ej = α ∑N
i=1

(
SjiDi

)
+ Aj (6)

where Sji is the ith position’s impact on the jth position, Bi represents the ith position of
feature map B, Cj represents the jth position of feature map C, Ej represents the jth position
of feature map E, Di represents the ith position of feature map D, Aj represents the jth
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position of feature map A, and α is initialized as 0 and gradually learns to assign more
weight.

Because the output feature map E at each position is a weighted sum of the features
across all positions and original features, feature map E has a global contextual view and
selectively aggregates contexts according to the spatial attention map, thus enhancing the
expressiveness of the spatial information. The principle of the channel attention module is
similar to that of the position attention module. The only difference is that the input feature
map A is not used to generate features B, C, and D, but is directly used to calculate the
channel attention map X, and the scale parameter β is used to calculate the final output
feature E. The process can be represented as:

Xji =
exp

(
Ai·Aj

)
∑C

i=1 exp
(

Ai·Aj
) (7)

Ej = β ∑N
i=1

(
Xji Ai

)
+ Aj (8)

where Xji represents the ith channel’s impact on jth channel, Aj represents the jth position
of feature map A, and β gradually learns a weight from 0.

2.3. Framework of the RAANet

The proposed framework of RAA-Net is shown in Figure 3. It consists of two parts:
encoder and decoder.
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In the encoder, a low-level feature and a high-level feature are output. The low-level
feature is extracted by the Xception backbone network, and it mainly contains shallow
information such as the outline and shape features. The high-level feature is processed
by the backbone network and the residual ASPP, and it mainly contains deep information
such as the texture and color features.

In residual ASPP, the original features are input into 5 dilated attention convolution
units and a residual unit, respectively. Each dilated attention convolution unit was com-
posed of an atrous convolution module and an attention module, while the residual unit
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was composed of 1 × 1 convolution modules and attention modules. Among them, the
dilated convolution rates of the five dilated convolutional attention are 3, 6, 12, 18, and 24,
respectively, and the size of the convolution kernel is 3 × 3. Then, the output of each dilated
attention convolution unit is matrix added with the output of the residual unit respectively
to obtain five output feature maps of the residual ASPP. Finally, the five feature maps are
merged with the concatenation operation and the merged result is then input into the 1 × 1
convolution module. The high-level features are obtained eventually through the above
operations.

In the decoder, the low-level and high-level features output by the encoder are received.
First, the low-level features are input into the attention module and the 1 × 1 convolutional
layer to obtain a refined low-level feature map. Second, a fused feature map is obtained
by using the concatenation operation to merge the high-level features after upsampling
processing and the shallow features. Finally, the fused feature map is input into the
3 × 3 convolutional layer, and the upsampling process is performed to obtain the prediction
basis of the network.

In the model, we use the improved Xception convolutional network as the feature
extraction network, and the atrous convolution rates of the ASPP are 6, 12, and 18. We
use DiceLoss [30] and cross-entropy loss (CELoss) [31] as the combined loss function. The
related loss function formulas are as follows:

I = ∑N
i=1 tiyi (9)

U = ∑N
i=1(ti + yi) (10)

Ldice = 1 − I + ε

U − I + ε
(11)

LCE = −∑K−1
i=0 yi log(ŷi) (12)

Total Loss = LCE + Ldice (13)

where N represents the total number of samples; ti represents the target value; yi represents
the predicted value; I represents sum of target value times predicted value; U represents
sum of target value plus predicted value; ε represents the smoothing coefficient, which
takes a value of 1 × 10−5 in this paper; K indicates the number of categories; ŷ is the
predicted probability distribution, and y is the real probability distribution.

3. Experimental Results

The LoveDA dataset was selected to provide the sample data for the segmentation
task. All selected images were divided into training, validation, and test datasets, with
2365, 591, and 682 images, respectively. These images were inputted into DeeplabV3plus,
DADP, and CBAMDP for training, and then the effects of three semantic segmentation
methods were compared.

3.1. Evaluation Criteria

We used the mean intersection-over-union (mIoU), mRecall, mPrecision, and F1 scores
to evaluate the overall impact of different attention models on the DeeplabV3plus network.
Detailed explanations of TP, FP and FN are listed in Table 1

The IoU is the ratio of the intersection and union of the predicted result and ground
truth in the segmentation of land-use types. The mIoU is a standard evaluation, which is
the average IoU of all land-use types. The following formulas are used to calculate the two
metrics:

IoU =
TP

FN + FP + TP
(14)

mIoU =
1

k + 1

k

∑
i=0

TP
FN + FP + TP

(15)
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The Recall is used to evaluate the ability of a classifier to find all positive samples,
whereas mRecall is the average recall of all types, which are calculated as follows:

Recall =
TP

TP + FN
(16)

mRecall =
1

k + 1 ∑k
i=0

TP
TP + FN

(17)

The Precision indicates the ability of a classifier to label a sample as positive that is
positive, whereas mPrecision is the average precision of all types, which are calculated as
follows:

Precision =
TP

TP + FP
(18)

mPrecision =
1

k + 1 ∑k
i=0

TP
TP + FP

(19)

Table 1. Description of the preliminary calculations used to evaluate the segmentation methods.

Index Description

True positive (TP) Regions with overlap between the ground truth and predicted results
False positive (FP) Nonoverlapped regions in the predicted results
False negative (FN) Nonoverlapped regions in the ground truth

The F1 score is defined as the harmonic mean of recall and precision; it pays attention
to the precision and recall and provides an overall measurement of the performance of a
change detection model. A higher F1 score represents more accurate performance, which is
calculated as follows:

F1 =
2∗Precision ∗ Recall
Precision + Recall

(20)

3.2. Determination of Loss Function

The decision of a suitable loss function is an important premise for deep learning model
selection. The loss function describes the degree of disparity between the predicted result
and the ground truth, and the value of the loss function directly reflects the performance of
the model. Using different loss functions for the same model will bring different effects.
Therefore, to ensure that the model achieves the best effect, it is necessary to select an
appropriate loss function. CELoss is the most popular loss function used for multiclass
classification, which is suitable for situations where each type in the dataset is independent
but not mutually exclusive. DiceLoss is usually used for the loss evaluation of datasets
with similar samples. Focal loss [32] is a more suitable choice for dealing with difficult
datasets with imbalanced data distribution. Thus, in this study, we focused on three loss
functions, CELoss, CELoss + DiceLoss [33], and FocalLoss + DiceLoss, to determine which
was most suitable for the dataset we selected.

Figure 4 shows the loss value curves of the three kinds of loss functions. The ranges
of loss values are different in the three functions. The maximum value of CELoss is
around 17.5, CELoss + DiceLoss is around 12, and CELoss + DiceLoss is around 8. When
CELoss is in the 24th generation, the loss value shows a steady downward trend, and
it begins to converge in the 90th generation. FocalLoss + DiceLoss shows a slow de-
cline trend in the 26th generation and begins to converge in the 90th generation, and
CELoss + DiceLoss appears as a slow downward trend in the 23rd generation and con-
verges in the 90th generation. In terms of the changing trend of the loss value, the loss
function combination of CELoss + DiceLoss makes the loss value control in a smaller range,
and it is easier to converge.
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Figure 4. Comparison of DeeplabV3plus loss curve using different loss functions.

Next, we compared the evaluation indicators of the three loss functions. As shown
in Table 2, when we used DiceLoss + CELoss, the model had the highest accuracy; the
mIoU, mRecall, mPrecision, and F1score were 74.34%, 85.75%, 84.53%, and 85.16%, re-
spectively, which were 1.01%, 2.07%, 0.56%, and 1.34% higher than those of the original
CELoss, respectively, and which were 1.66%, 2.99%, 0.97%, and 2% higher than those of the
FocalLoss + DiceLoss, respectively. The findings illustrated that the addition of DiceLoss
was beneficial to solving the problem produced by similar samples in the dataset, and
positively impacted model performance. Therefore, we used CELoss + DiceLoss for model
training.

Table 2. Comparison of DeeplabV3plus segmentation results using different loss functions.

Loss Function mIoU (%) mRecall (%) mPrecision (%) F1-Score (%)

CELoss 73.33 83.68 83.97 83.82
CELoss + DiceLoss 74.34 85.75 84.53 85.16

FocalLoss + DiceLoss 72.68 82.76 83.56 83.16

3.3. Results of Ablation Experiment

To verify the overall structure effectiveness of the proposed module, ablation exper-
iments are conducted in this paper. The baseline structure is selected as the ASPP with
expansion rates of 3, 6, 12, 18, and 24. Based on it, DA, CBAM, and residual structure are
added, and the improvement effect of each module on ASPP is analyzed in detail.

Table 3 shows the results of the ablation experiments, according to each indicator,
and the improvement of ASPP by DA and CBAM was 0.98%, 0.75%, 1.13%, 0.95%, and
1.4%, 1.06%, 1.09%, 1.08%, respectively. It shows that adding the attention module to
5 ASPP units can get a lot of improvement, and the improvement effect of CBAM is better
than that of DA. When the residual structure is added, the improvement of ASPP + DA
and ASPP + CBAM is different. Compared with ASPP + DA, the structure of ASPP + DA
+ Res is improved by 0.63%, 0.34%, 0.22%, 0.28%, respectively, and compared with the
ASPP + CBAM, the structure of ASPP + CBAM + Res is improved by 1.04%, 0.4%, 1%,
and 0.7%, respectively. When the ASPP structure is more complex, CBAM has a greater
advantage.

Table 3. Comparison of segmentation results using different ASPP structure.

Method mIoU (%) mRecall (%) mPrecision (%) F1-Score (%)

ASPP 74.84 85.48 84.66 85.06
ASPP + DA 75.82 86.23 85.79 86.01

ASPP + CBAM 76.24 86.54 85.75 86.14
ASPP + DA + Res 76.05 86.25 86.01 86.12

ASPP + CBAM + Res 77.28 86.94 86.75 86.84
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The results of ablation experiments show that the residual structure and attention
module have a significant improvement in ASPP. When the attention module and ASPP
are simply connected, the improvement effect of CBAM and DA is not much different, but
when the complexity of ASPP increases, CBAM has a greater advantage.

3.4. Visualization of Features

There are three types of feature maps displayed in Figure 5. The first type is the low-
level feature maps of the DeeplabV3plus, RAANet (DA), and RAANet (CBAM), respectively.
Compared with DeeplabV3plus, the feature maps of the latter two contain richer boundary
information, which results in a clearer outline of each land-use category.
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The second type is the feature maps of five convolutional blocks in ASPP. In each
feature map, the hotspot areas displayed by DeeplabV3plus are relatively balanced and
cover almost all areas in the image. The hotspot areas displayed by RAANet (DA) are
mainly concentrated in the bottom left barren and a few buildings, while that of RAANet
(CBAM) are mainly concentrated on a single building and the bottom barren in the image.

The third type is the total output feature maps of ASPP. It can be found that the
hot spots of RAANet (CBAM) clearly show the results of the classification of land-use
categories, while RAANet (DA) are mainly concentrated in barren and buildings. The
hotspot area of DeeplabV3plus is relatively sparse and mainly concentrated in the buildings.
In the final prediction results, RAANet (DA) is more accurate for the prediction of the
lower-left barren, RAANet (CBAM) achieves a better prediction effect for the building and
road prediction, and DeeplabV3plus has a poor prediction effect on this image. Overall,
RAANet (CBAM) contains richer semantic information, followed by RAANet (DA) and
DeeplabV3plus last.

3.5. Comparison of Model Performance

We evaluated the overall performance of the three models using mIoU, mRecall,
mPrecision, and F1 score to determine whether the integration of the attention module
enhanced the expressiveness of the spatial and channel information from the images. As
shown in Figure 6, the mIoU, mRecall, mPrecision, and F1 score of RAANet (DA) were
improved by 1.71%, 1.5%, 1.48%, and 0.96%. RAANet (CBAM) was more accurate, with mIoU,
mRecall, mPrecision, and F1 score improved by 2.94%, 1.19%, 2.22%, and 1.68%, respectively.
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To further compare the performance of the three models, we selected the mIoU,
mRecall, and mPrecision indices to measure the segmentation results for different land-use
categories.

Table 4 shows the IoU values for each category of the three models. Although the
DA module had a positive impact on mIoU, its impacts on the IoU values of water were
negative, with values reduced by 7%. The impacts of other categories were the opposite,
and the IoU values increased by 3%, 4%, 4%, 3%, and 5%, respectively. RAANet (DA) raised
the prediction accuracy of the background, building, road, barren, forest, and agriculture
categories, but showed reduced prediction accuracy for the water category. The RAANet
(CBAM) improved the IoU values of each category prediction by 4%, 4%, 2%, 1%, 3%,
3%, and 4%, respectively. RAANet (CBAM) obtained higher accuracy in predicting each
category.

Table 4. IoU comparison of DeeplabV3plus, RAANet (DA), and RAANet (CBAM).

Method
IoU (%)

Background Building Road Water Barren Forest Agriculture

DeeplabV3plus 65 65 74 83 73 61 77
RAANet (DA) 68 67 76 76 78 64 82

RAANet (CBAM) 69 70 76 84 75 64 81

Table 5 shows the recall values for each category of the three models. Compared
with the DeeplabV3plus, RAANet (DA) has obvious shortcomings in water, which reduces
the recall value of water by 8%, but increased the prediction of other categories by 3%,
1%, 3%, 3%, and 3% respectively. In terms of RAANet (CBAM), it increased the detection
accuracy of the background, building, road, and agriculture categories by 4%, 3%, 2%, and
3%, respectively.
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Table 5. Recall comparison of DeeplabV3plus, RAANet (DA), and RAANet (CBAM).

Method
Recall (%)

Background Building Road Water Barren Forest Agriculture

DeeplabV3plus 77 80 83 90 87 80 89
RAANet (DA) 80 81 86 82 90 82 92

RAANet (CBAM) 81 83 85 90 87 80 92

The results showed that RAANet (DA) reduced the number of the correctly predicted
pixels in the water category but increased in the other categories. RAANet (CBAM) correctly
predicted more pixels in the background, building, road, and agriculture categories. The
RAANet (DA) performed better in the road, barren, and forest categories than the other
two models, but was lowest in the water category. The RAANet (CBAM) was best in the
background and building categories.

Table 6 showed the precision values for each category of the three models. Compared
with native DeeplabV3plus, RAANet (DA) had higher precision for building, barren, forest,
and agriculture, which were increased by 3%, 2%, 3%, and 3%, respectively. The RAANet
(CBAM) increased the recognition accuracies by 4%, 6%, 6%, and 6% for the background,
building, road, barren, forest, and agriculture categories, respectively. However, the
RAANet (CBAM) reduced precision by 2% for the road and water categories.

Table 6. Precision comparison of DeeplabV3plus, RAANet (DA), and RAANet (CBAM).

Method
Precision (%)

Background Building Road Water Barren Forest Agriculture

DeeplabV3plus 81 79 87 91 81 72 85
RAANet (DA) 81 82 87 91 83 75 88

RAANet (CBAM) 81 83 85 89 87 78 91

The results show that RAANet (DA) and RAANet (CBAM) increase the number of
real positive pixels that are correctly predicted positive in building, barren, forest, and
agriculture categories, but RAANet (CBAM) reduces the number of real positive pixels that
are predicted positive in road and water categories. RAANet (DA) has a bigger advantage
in precision.

We compared the results predicted by the models with attention with those of the
original model to verify whether the segmentation accuracy was improved. The real
geographic object labels, the predicted results of the RAANet (DA) and RAANet (CBAM),
and the prediction results of the original model are shown in Figure 7.

There are errors in the Ground Truth, such as the fifth image in which there is forest
and agriculture, but this is not embodied in Ground Truth. Consequently, Ground Truth
cannot be directly used as the evaluation criterion. Both Ground Truth and images were
considered in this analysis. Incorrect judgments in the predicted results for remote images
were produced by the native DeeplabV3plus. Water, agriculture background, and barren
were often confused. This appearance was shown in Figure 7(1b,2b,4b).

The identify accuracy of RAANet (DA) on the water was great better than the native
DeeplabV3plus, which can be shown in Figure 7(1b,2b,5b). However, RAANet (DA)
increased the number of pixels where the background was incorrectly judged as barren, as
shown in Figure 7(5c). In addition, the ability to distinguish between agriculture and forest
was weak, as shown in Figure 7(4c). The identification accuracy of CBAM on images was
best. In short, RAANet has better performance in the loveDA dataset than Deeplabv3plus,
and the prediction effect is more accurate. The overall performance of RAANet (CBAM) is
higher than that of RAANet (DA), but RAANet (DA) performs better in Precision.
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Figure 7. Prediction results of the DeeplabV3plus, RAANet (DA), and RAANet (CBAM). (1–5) repre-
sents five random parts of the experimental sample, (a) represents the ground truth, (b) represents the
results of the DeeplabV3plus model, (c) represents the results of the RAANet (DA), and (d) represents
the results of the RAANet (CBAM).

4. Discussion

To assess the performance of the improved DeeplabV3plus model embedded with the
attention module, in this study, we selected the classic effective PSPNet and U-Net semantic
segmentation models with the same loss function for comparison. After using these models
to train and predict the dataset that we established, we comparatively analyzed the results
according to several indicators such as mIoU and mPrecision.

All indicator values of each model are listed in Table 7. RAANet (CBAM) performed
the best in terms of the mIoU, mRecall, and mPrecision of the considered models, producing
results 3.02%, 2.3%, and 2.37% higher than PSPNet, respectively, and 7.07%, 7.59%, and
5.54% higher than U-Net, respectively. The RAANet (DA) model produced a result of 1.79%,
1.61%, and 1.54% higher than PSPNet and 5.84%, 6.9%, and 4.71% higher than U-Net.
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Table 7. Indicator values of different semantic segmentation models.

Method mIoU (%) mRecall (%) mPrecision (%)

RAANet (DA) 76.05 86.25 86.01
RAANet (CBAM) 77.28 86.94 86.84

PSPNet 74.26 84.64 84.47
U-Net 70.21 79.35 81.30

We selected the land use categories of remote sensing images as an example and
applied the different models to determine the differences in the predictions produced by
RAANet (DA), RAANet (CBAM), PSPNet, and U-Net. The results are shown in Figure 8.
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Figure 8. Prediction results of the different semantic segmentation models. (1–3) represents three
random parts of the experimental sample.

In the prediction results of the first image, both PSPNet and U-Net misjudged the
background as the road or barren category, while RAANet (CBAM) and RAANet (DA) have
made the wrong predictions for some buildings, resulting in a certain loss of the building
prediction results. In the second image, RAANet (DA), PSPNet, and U-Net misidentified
some backgrounds as the forest or agriculture category, while RAANet (DA), RAANet
(CBAM), and PSPNet predicted the agriculture, forest, and barren more accurately. In image
3, RAANet (DA) and U-Net recognize the agriculture in the lower left part of the image as
the forest category. For the prediction of denser buildings, PSPNet and U-Net have poor
prediction effects on the building boundary. Overall, RAANet (DA) and RAANet (CBAM)
outperform PSPNet and U-Net in prediction performance and have higher prediction
accuracy.

Figure 9 shows the details of where agriculture, barren, forest, and background cate-
gories were misidentified by RAANet (DA) and RAANet (CBAM). The images show that
some areas of agriculture, barren, forest, and background had similar colors and textures,
and the borders of agriculture, barren, and forest adjacent to the background were not obvi-
ous. This led to a chaotic distribution of agriculture, barren, forest, and background in the
prediction, and when the boundaries between the categories were not clear, misjudgments
were prone to occur.



Remote Sens. 2022, 14, 3109 15 of 18

Remote Sens. 2022, 14, x FOR PEER REVIEW 15 of 18 
 

 

building prediction results. In the second image, RAANet (DA), PSPNet, and U-Net 

misidentified some backgrounds as the forest or agriculture category, while RAANet 

(DA), RAANet (CBAM), and PSPNet predicted the agriculture, forest, and barren more 

accurately. In image 3, RAANet (DA) and U-Net recognize the agriculture in the lower 

left part of the image as the forest category. For the prediction of denser buildings, PSPNet 

and U-Net have poor prediction effects on the building boundary. Overall, RAANet (DA) 

and RAANet (CBAM) outperform PSPNet and U-Net in prediction performance and have 

higher prediction accuracy. 

Figure 9 shows the details of where agriculture, barren, forest, and background cate-

gories were misidentified by RAANet (DA) and RAANet (CBAM). The images show that 

some areas of agriculture, barren, forest, and background had similar colors and textures, 

and the borders of agriculture, barren, and forest adjacent to the background were not 

obvious. This led to a chaotic distribution of agriculture, barren, forest, and background 

in the prediction, and when the boundaries between the categories were not clear, mis-

judgments were prone to occur. 

 

Figure 9. Prediction results of RAANet (DA) and RAANet (CBAM) for agriculture, barren, and for-

est. (1–3) represents three random parts of the experimental sample. 

We also tested the performance of RAANet (DA) and RAANet (CBAM) on the ISPRS 

Vaihingen dataset and compared them with the recent class-wise FCN(C-FCN) model 

[34]. The experimental results are shown in Tables 8 and 9. In the IoU, RAANet (DA) 

achieves the highest scores in Imp.Suf (impervious surface) and LowVeg, which are 1.87% 

and 1.27% higher than C-FCN. RAANet (CBAM) achieves the highest scores in building, 

tree, and car, which are 3.2%, 1.2%, and 0.2% higher than C-FCN. However, RAANet (DA) 

scores lower than C-FCN in building and car, with a difference of 0.66% and 0.81%. In the 

average IoU score, RAANet (CBAM) achieves the highest score of 73.47%, which is higher 

than C-FCN by 1.12%. 

  

Figure 9. Prediction results of RAANet (DA) and RAANet (CBAM) for agriculture, barren, and forest.
(1–3) represents three random parts of the experimental sample.

We also tested the performance of RAANet (DA) and RAANet (CBAM) on the ISPRS
Vaihingen dataset and compared them with the recent class-wise FCN(C-FCN) model [34].
The experimental results are shown in Tables 8 and 9. In the IoU, RAANet (DA) achieves
the highest scores in Imp.Suf (impervious surface) and LowVeg, which are 1.87% and 1.27%
higher than C-FCN. RAANet (CBAM) achieves the highest scores in building, tree, and car,
which are 3.2%, 1.2%, and 0.2% higher than C-FCN. However, RAANet (DA) scores lower
than C-FCN in building and car, with a difference of 0.66% and 0.81%. In the average IoU
score, RAANet (CBAM) achieves the highest score of 73.47%, which is higher than C-FCN
by 1.12%.

Table 8. Quantitative comparison of IoU (%) with C-FCN on ISPRS Vaihingen challenge test set.

Model
IoU (%)

Imp.Suf Building LowVeg Tree Car AVG

C-FCN 78.02 84.22 63.52 73.42 62.59 72.35
RAANet (DA) 79.89 83.56 64.79 74.36 61.78 72.87

RAANet (CBAM) 78.64 87.42 63.88 74.62 62.79 73.47

Table 9. Quantitative comparison of F1-score with C-FCN on ISPRS Vaihingen challenge test set.

Model
F1-Score

Imp.Suf Building LowVeg Tree Car AVG

C-FCN 87.55 91.36 77.32 84.52 76.83 83.52
RAANet (DA) 88.49 90.79 78.49 85.11 76.17 83.61

RAANet (CBAM) 87.94 94.27 77.98 85.49 77.29 84.59

In the F1-score, RAANet (DA) and RAANet (CBAM) are also higher than those of C-FCN.
The scores of RAANet (DA) on Imp.Suf, LowVeg, and tree are 0.94, 1.17, and 0.59 higher than
C-FCN. RAANet (CBAM) scores higher than C-FCN in every category, and RAANet (CBAM)
achieves the highest F1-score score of 84.59, which is higher than C-FCN by1.07.
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5. Conclusions

In this study, we conducted semantic segmentation experiments using high-spatial-
resolution remote sensing images. A novel semantic segmentation network framework,
RAANet, is proposed in this paper. The specific effects of the CBAM module and the DA
module on RAANet are also compared and analyzed based on the LoveDA dataset. The
conclusions are drawn as follows:

(1) The attention module can effectively improve RAANet by enhancing important
features and suppressing unnecessary features;

(2) In the DeeplabV3plus network framework, the scheme of replacing ASPP with Re-
sASPP is adopted, and a very effective model performance improvement is obtained;

(3) From the perspective of land use categories, the role of the RAANet (CBAM) differs
from that of the RAANet (DA). RAANet (CBAM) has a better prediction effect on
background, building, road, water, and forest categories, while RAANet (DA) has a
better prediction effect on the road, barren, and forest categories.

RAANet (CBAM) performed very well in the LoveDA dataset and ISPRS Vaihingen
dataset. The mIoU score of the LoveDA dataset is 77.28, which is 2.94% higher than that
of DeeplabV3plus, and the mIoU score of the ISPRS Vaihingen dataset is 73.47, which is
higher than C-FCN by 1.12%.
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ASPP Atrous-Spatial Pyramid Pooling
CBAM Convolutional Block Attention Model
RAANet Residual ASPP with Attention Net
CELoss Cross Entropy Loss
CNN Convolutional Neural Networks
DA Dual Attention
FCN Fully Convolutional Networks
C-FCN Class-wise FCN
IoU Intersection-over-Union
ISDAOTA Iterative Self-Organizing Data Analysis Techniques Algorithm
MLP Multilayer Perceptron
MTPA-Net Multitask Parallel Attention Convolutional Network
OBIA Object-Based Image Analysis method
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RiFCN Recurrent Network in Fully Convolutional Network
SCAttNet Semantic Segmentation Network with Spatial and Channel Attention
SPP Spatial Pyramid Pooling
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