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Abstract. Rab5 and rab7 proteins belong to a super- 

family of small molecular weight GTPases known to be 

associated with early and late endosomes, respectively. 

The rab5 protein plays an important regulatory role in 

early endocytosis, yet the function of rab7 protein was 

previously uncharacterized. This question was ad- 

dressed by comparing the kinetics of vesicular stomati- 

tis virus (VSV) G protein internalization in baby ham- 

ster kidney cells overexpressing wild-type or dominant 

negative mutant forms of the rab7 protein (rab7N125I 

and rab7T22N). Overexpression of wild-type rab7 pro- 

tein allowed normal transport to late endosomes (man- 

nose 6-phosphate receptor positive), while the 

rab7N125I mutant caused the VSV G protein to accu- 

mulate specifically in early (transferrin receptor posi- 

tive) endosomes. Horseradish peroxidase and paramyxo- 

virus SV5 hemagglutinin-neuraminidase (HN) were 

used in quantitative biochemical assays to further dem- 

onstrate that rab7 function was not required for early 

internalization events, but was crucial in downstream 

degradative events. The characteristic cleavage of SV5 

HN in the late endosome distinguishes internalization 

from transport to later stages of the endocytic pathway. 

Mutant rab7N125I or rab7T22N proteins had no effect 

on the internalization of either horseradish peroxidase 

or SV5 HN protein. In contrast, the mutant proteins 

markedly inhibited the subsequent cleavage of the SV5 

HN protein. Taken together, these data support a key 

role for rab7, downstream of rab5, in regulating mem- 

brane transport leading from early to late endosomes. 

We compare our findings to those obtained for the 

yeast homologues Ypt51p, Ypt52p, Ypt53p, and Ypt7p. 

T 
HE late endosome represents the convergence point 
of numerous pathways. It is the delivery site of en- 
docytosed material from early endosomes and of 

newly synthesized lysosomal proteins exiting the TGN. 
Endocytosed material (both fluid phase and receptor 
bound) is internalized in coated vesicles formed-at the 
plasma membrane, which then fuse with and deliver their 
contents to the early endosomes. Here, receptors and 
ligands are uncoupled by the acidic pH and molecules may 
either recycle to the plasma membrane or be transported 
to the perinuclear late endosome (Goldstein et al., 1985; 
Yamashiro et al., 1984). In addition, there is evidence to 
suggest that it is the meeting point of both the autophagic 
route, targeting organellar and cytosolic components for 
destruction, and the phagocytic pathway, operative in spe- 
cialized cells for the uptake of large particles (Beron et al., 
1995; Desjardins et al., 1994b; Olkkonen et al., 1993; 
Rabinowitz et al., 1992). Molecules exiting the late endo- 
some can either recycle back to the TGN, with the most 
notable example being the mannose 6-phosphate receptor, 
or they can be routed to lysosomes (Griffiths et al., 1990; 
Ludwig et al., 1991; Riederer et al., 1994). The latter in- 
clude molecules destined to be degraded as well as mole- 
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cules necessary for lysosomal function. There is also evi- 
dence for recycling to the plasma membrane from the late 
endosome (Riederer et al., 1994). Such a pathway may be 
particularly relevant in antigen-presenting cells requiring a 
mechanism to return major histocompatibility complex 
class II-antigen complexes to the cell surface after their 
formation in endocytic compartments (Cresswell, 1994; 
Germain, 1994; Qiu et al., 1994). In spite of its obvious im- 
portance in pathways leading to receptor downregulation, 
lysosomal enzyme delivery, antigen processing, and recy- 
cling to the Golgi apparatus, much remains unknown 
about late endosome function and the membrane trans- 
port pathways leading to and from the late endosome. 

To address such questions one would like to be able to 
examine the consequences of specifically blocking trans- 
port to the late endosome. To date, this has only been pos- 
sible by low temperature incubation (15°C) (Draper et al., 
1984; Dunn et al., 1980, 1986) or by depolymerization of 
microtubules (Gruenberg et al., 1989; Oka and Weigel, 
1983), both of which appear to block endocytic membrane 
transport leading from early to late endosomes. Since both 
of these treatments also affect other membrane transport 
steps, they are often not suitable in experiments aimed at 
examining interfaces between the exo- and endocytic 
pathways. A solution to this difficulty is afforded by the 
advent of dominant negative mutant rab proteins as effec- 
tive tools to dissect individual membrane transport pro- 
cesses. 
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The rab proteins are members of a large GTPase family 
(>30 known members) with homology to ras (Ferro- 
Novick and Novick, 1993; Novick and Brennwald, 1993; 
Pfeffer, 1994; Zerial and Stenmark, 1993). They are known 
to be important regulators of every intracellular mem- 
brane transport step examined to date (Bucci et al., 1992; 
Huber et al., 1993; Lombardi et al., 1993; Martinez et al., 
1994; Salminen and Novick, 1987; Segev, 1991; Segev et al., 
1988; Tisdale et al., 1992; van der Sluijs et al., 1992). Regu- 
lation is effected through the cyclical binding and hydroly- 
sis of GTP. By analogy with the known structure for ras, 
the nucleotide bound state of the protein is believed to 
dictate its conformation and hence its molecular interac- 
tions (de Vos et al., 1988; Jurnak et al., 1990; Pai et al., 
1989; Tong et al., 1989). Mutations within highly con- 
served regions (present in all family members), which dis- 
rupt this nucleotide binding and hydrolysis cycle, generally 
interfere with membrane traffic in a dominant negative 
manner (Bucci et al., 1992; Martinez et al., 1994; Plutner et 
al., 1991; Riederer et al., 1994; Stenmark et al., 1994; Tis- 
dale et al., 1992; van der Sluijs et al., 1992; Walworth et al., 
1989). For example, by exchanging isoleucine for aspar- 
agine in the NKXD region, the resulting rabN---fl proteins 
fail to bind nucleotide (Bucci et al., 1992; Pind et al., 1994). 
Such mutant proteins were among the first to be used to 
demonstrate their inhibitory effect on membrane trans- 
port (Bucci et al., 1992; Tisdale et al., 1992; van der Sluijs 
et al., 1992; Walworth et al., 1989). More recently, substi- 
tution of leucine for glutamine in the WDTAGQE region 
(rabQ---~L) or exchange of asparagine for serine or threo- 
nine in the GKT/S region (rabS/T---~N) has generated mu- 
tants constitutively in the GTP or GDP-bound conforma- 
tions, respectively (Barbieri et al., 1994; Frech et al., 1994; 
John et al., 1993; Li and Stahl, 1993; Nuoffer et al., 1994; 
Pind et al., 1994; Riederer et al., 1994; Stenmark et al., 
1994; Tisdale et al., 1992). RabS/T---~N mutant proteins 
like r abN~I  have been shown to have a dominant nega- 
tive effect on transport, while the r a b Q ~ L  mutant pro- 
teins have a stimulatory effect on fusion assays, but may 
reduce recycling. It is presumed that the mutant proteins 
exert their dominant effects by remaining preferentially 
bound to limiting membrane or cytosolic factors and inter- 
fering with the initiation of new rounds of transport. Each 
conformation is thought to interact with a distinct set of 
accessory proteins, including both effectors and regulatory 
molecules (Bourne et al., 1988; Bourne et al., 1990; Li et 
al., 1994; Pfeffer, 1994). 

A number of rab proteins are associated with the en- 
docytic pathway. Rab5 (a,b,c), rab 4 (a,b), rabl8, and 
rab20 have all been localized to early endosomes (Liitcke 
et al., 1994; Simons and Zerial, 1993). Rab5 and rab4 have 
been characterized most extensively. It is clear that rab5a 
regulates the internalization of molecules via clathrin- 
coated vesicles and their subsequent delivery to early en- 
dosomes (Bucci et al., 1992). In addition, an in vitro early 
endosome fusion assay provided the first evidence that 
rab5a was an important regulator of homotypic fusion 
events between early endosomes (Gorvel et al., 1991). 
Overexpression of various mutant forms of rab5 protein 
further confirmed that rab5 was also an important regula- 
tor of early endosome fusion in vivo and that its activity in 
membrane fusion was stimulated by blocking its GTPase 

activity (Barbieri et al., 1994; Stenmark et al., 1994). Rab4 
was suggested to be the counterpart of rab5 on the recy- 
cling route, regulating membrane traffic leading from 
early endosomes back to the plasma membrane (van der 
Sluijs et al., 1991, 1992). 

Three rab proteins, rab7, rab9, and rab24, have been 
shown to be associated with late endosomes (Chavrier et 
al., 1990; Lombardi et al., 1993; Olkkonen et al., 1993). No 
rab proteins have been localized to lysosome as yet. Rab24 
is also partially associated with the endoplasmic reticulum, 
and has therefore been speculated to be involved in au- 
tophagicprocesses (Olkkonen et al., 1993). Rab9 has been 
shown to regulate transport from the late endosome to the 
TGN (Lombardi et al., 1993; Riederer et al., 1994). The 
function of rab7, however, has previously remained un- 
characterized. The yeast homologue, Ypt7p, has been al- 
ternately suggested to regulate transport from early to late 
endosomes (Wichmann et al., 1992) or from late endo- 
somes to the vacuole (Schimm611er and Riezman, 1993). 
Given the subcellular localization of the rab7 protein, we 
considered it probable that it would function either in 
transport from early to late endosomes or alternatively in 
transport from late endosomes to lysosome. Therefore, we 
developed a series of morphological and biochemical as- 
says which have allowed us to trace the transport of en- 
docytic markers along the entire endocytic pathway, and 
have established that rab7 is an important regulator of late 
endocytic membrane transport leading from early to late 
endosomes. 

Materials and Methods 

Antisera, Antibodies, and Reagents 

Reagents for SDS-PAGE were purchased from BioRad Laboratories 
(Hercules, CA), except acrylamide which was obtained from National Di- 
agnostics (Atlanta, GA). Reagents for immunofluorescence experiments 
included Mowiol 4-88 from Calbiochem (La Jolla, CA); saponin, 1,4-diaza- 
bicyclo-[2,2,2]-octane (DABCO), Triton X-100, and paraformaldehyde 
from Sigma Chem. Co. (St. Louis, MO); all secondary antibodies and de- 
tection reagents from Vector Laboratories (Burlingame, CA); and pri- 
mary antibodies from the following sources: Monoclonal I1 (8G5Fll), 
recognizing an ectoplasmic epitopc of the vesicular stomatitis virus 
(VSV) 1 G protein (Lefrancios and Lyles, 1982), was kindly provided by 
Douglas Lyles (The Bowman Gray School of Medicine, Wake Forest Uni- 
versity, Winston-Salem, NC). Monoclonal P5D4, recognizing a cytoplasmic 
epitope of the VSV G protein (Kreis and Lodish, 1986), was provided by 
Thomas Kreis (Universit6 de Gen~ve, Geneva, CH). Monoclonal 4A1, 
recognizing hamster lysosomal glycoprotein 120, was a gift from Jean 
Gruenberg (Universit6 de Gen~ve, Geneva, CH). Monoclonal lb, recog- 
nizing both intact and cleaved paramyxovirus SV5 HN (Ng et al., 1989; 
Randall et al., 1987), was generously provided by Robert Lamb (North- 
western University, Evanston, IL). Polyclonal antisera to the following an- 
tigens were kindly supplied by: Bernard Hoflack (EMBL, Heidelberg, 
FRG), rabbit anti-bovine mannose 6-phosphate receptor (Ludwig et al., 
1991); Kathryn Howell (University of Colorado School of Medicine, Den- 
ver, CO), rabbit antisera directed against the ectoplasmic domain of VSV 
G protein (Gruenberg et al., 1989); Marino Zerial (EMBL, Heidelberg, 
FRG), rabbit anti-canine -rab5 (Chavrier et al., 1990), -rab7 (Chavrier et 
al., 1990), and -rab9 (Lombardi et al., 1993); and Suzanne Pfeffer (Stan- 
ford University, Stanford, CA), goat anti-human transferrin receptor. Re- 
agents for biotinylation experiments included [35S]methionine from Am- 
ersham Corp. (Arlington Heights, IL); 2-mercaptoethanesulfonic acid 
(MESNA) from Sigma Chem. Co.; Pansorbin ® from Calbiochem; sulfo- 
NHS-biotin, sulfo-NHS-SS-biotin, and immobilized streptavidin from 

1. Abbreviations used in this paper: HN, hemagglutinin-neuraminidase; 
MESNA, 2-mercaptoethanesulfonic acid; VSV, vesicular stomatitis virus. 
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Pierce Biochemical Corp. (Rockford, IL). Reagents for immunoblotting 
included: monoclonal 4F11 directed against the carboxy terminus of rab5 
(Bucci et al., 1994) and a polyclonal antisera (R4) directed against the car- 
boxy terminus of rab7 (Qiu et al., 1994) (these reagents were routinely 
used to monitor the overexpression of rab proteins by immunoblotting); 
HRP-conjugated antibodies and chemiluminescence detection reagents 
(ECL TM) from Amersham Corp. Lipofectamine for transfections was ob- 
tained from GIBCO BRL (Gaithersburg, MD). Horseradish peroxidase 
was from Boehringer Mannheim (Indianapolis, IN). [ct-32p]GTP (3,000 Ci/ 
mmol) was obtained from Amersham Corp. All other reagents were from 
Sigma Chem. Co. unless otherwise noted. 

Cells, Cell Culture, and Transient 
Infection/ Transf ection 

The baby hamster kidney, BHK21, cell line was obtained from Amer. 
Type Culture Collection (Rockville, MD). BHK21 cells were grown in 
Glasgow's modified Eagle's medium (G-MEM) supplemented with 5% 
FCS, 2 mM glutamine, 50 U/ml penicillin, 50 ixg/ml streptomycin, and 2.6 
g/ml tryptose phosphate broth at 37°C in a 5% CO2 incubator. All tissue 
culture reagents were from GIBCO BRL. Cells were split 1:3 and grown 
for 24 h to 80% confluence, and were passaged again 18 h before transfec- 
tion such that they were never more than 70-80% confluent on the day of 

Figure 1. Kinetics of VSV G internalization. BHK cells were induced to overexpress VSV G protein using a recombinant  T7 polymerase 

vaccinia virus infection/transfection scheme. 5 h posttransfection VSV G protein present at the cell surface was labeled by binding 

monoclonal  I1 at 4°C. Internalization of the VSV G prote in-ant ibody complexes was induced by returning the cells to 37°C for 0, 5, 10, 

20, 30, or 60 min. At  each time point samples were transferred to ice, fixed, and the internalized VSV G prote in-ant ibody complexes 

were detected with an FITC labeled anti-mouse antibody. The time of internalization is noted in the upper  left-hand corner of each 
panel. 
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Figure 2. Colocal izat ion of  

V S V  G pro te in  with late en- 

dosomes  and lysosomes af- 

ter  60 min of  internalization.  

B H K  cells t ransiently over-  

expressing V S V  G pro te in  

were  induced  to internalize 

the  pro te in  by binding a (a) 

monoclona l  I1 or  (b) poly- 

clonal ant ibody directed 

against VSV G prote in  at 4°C 

and subsequent ly  rewarming  

cells to 37°C for 60 min. Af-  

ter  this internal izat ion per iod,  cells were  fixed, and processed  for confocal  microscopy.  (a) Sample  double  s ta ined with an FITC-labe led  

an t i -mouse  an t ibody  to de tec t  the  V S V  G pro te in -an t ibody  complexes  and a polyclonal  ant ibody d i rec ted  against  mannose  6-phos- 

pha te  recep tor  visualized with a (1:4) rhodamine :Texas  red  mixture  of  labeled secondary  ant ibodies  or  (b) sample  double  s ta ined with 

an FITC- labe led  an t i - rabb i t  an t ibody  to de tec t  the  V S V  G p ro t e i n - an t i body  complexes  and a monoclona l  an t ibody  against lgp 120 vi- 

sualized with a (1:4) rhodamine :Texas  red  mixture  of  labeled secondary  antibodies.  The  images  shown rep resen t  four,  0.5 ~ m  sections. 

transfection. After washing once with serum-free medium, cells were in- 
fected with T7 RNA polymerase-recombinant vaccinia virus (vTFT.3) 
(Fuerst et al., 1986). Infection was carried out with 5-10 plaque forming 
units (p.f.u.) cell at 37°C for 30 min with occasional agitation. Cells were 
then washed twice with serum-free medium, and transfected with plasmids 
containing cDNA under the control of the bacteriophage T7 promoter using 
Lipofectamine reagent according to the manufacturer's instructions (GIBCO 
BRL); 1 p~g DNA/9 ~1 lipofectamine. The pAR-G and pGEMrab7 plas- 
mids were transfected at a ratio of 0.3:0.7. The total amount of DNA used 
in each transfection was held constant and control samples were trans- 
fected with pGEM3 vector lacking an insert. 

Recombinant proteins were first detected 3 h posttransfection and 
reached significant levels by 5-6 h with no differences seen : hydroxyurea 
(Bucci et al., 1992). For all experiments, infected/transfected cells were 
routinely incubated for 5-6 h at 37°C in a 5% CO2 incubator. Under these 
conditions, more than 90% of the BHK cells were observed to overex- 
press the exogenous proteins (VSV G protein, SV5 HN, wild-type or mu- 
tant rab 5, rab7, and rab9 proteins) as monitored by immunofluorescence 
(see Fig. 4). 

Plasmids encoding wild-type (pAR-G) (Whitt et al., 1989) and temper- 
ature-sensitive forms (pGtsO45-2/T7) (Gallione and Rose, 1985) of VSV 
G-protein were kindly provided by John Rose (Yale University, New Ha- 
ven, CT) and Marino Zerial, respectively. Plasmids encoding rab5 (Chavrier 
et al., 1990), rab5N133I (Gorvel et al., 1991), rab7 (Chavrier et al., 1990), 
rab7N125I, rab9 (Lombardi et al., 1993), and rab9N124I were the kind gift 
of Marino Zerial. Rab7T22N was generated by PCR mediated site- 
directed mutagenesis using the following, primer: GITGGTAAGAACT- 
CACTCATGAACC (changed bases are underlined). The nucleotide se- 
quence was confirmed using the Sequenase system (USB, Cleveland, 
OH). The plasmid pGEM3-HN encoding SV5 HN (Ng et al., 1989; Pater- 
son et al., 1985) was a gift from Robert Lamb. 

GTP Ligand Overlay Blotting 

Sf9 cells were infected with recombinant baculoviruses encoding wild-type 
rab7, rab7T22N, or rab7N125I proteins. Cells were lysed in SDS-PAGE 
sample buffer and the proteins were resolved on 12.5% polyacrylamide 
gels (10 Ixg total protein/lane). Subsequently, proteins were transferred to 
nitrocellulose membranes (Schleicher and Schuell, Keene, NH) in 10 mM 
CAPS [3-(cyclohexylamino)-propanesulfonic acid] (Calbiochem), pH 11 
containing 5% methanol, using a Genie blotter (Idea Scientific, Minneap- 
olis, MN) at 500 mA for 30 min. Immediately after transfer the membrane 
was incubated in Blot buffer (50 mM sodium phosphate, pH 7.5, 10 p,M 
MgCI2, 0.3% Tween 20, 2 mM DTI', 4 ~M ATP) for 30 min at room tem- 
perature, and then probed with 1 p.Ci/ml [ct-32p]GTP in Blot buffer for 2 h. 
After six 2-min washes with Blot buffer, the blot was wrapped wet and 
exposed to film. The same blot was stripped to remove the bound 
[a-32P]GTP and reprobed with anti-rab7 antibodies as described below. 

VSV G Protein Internalization Assay 

BHK cells were grown on 15-mm square coverslips in 35-mm dishes (for 
immunofluorescence staining experiments) and transfected as described 

above with pAR-G to induce overexpression of VSV G protein. After a 
5-6 h incubation at 37°C, cells were transferred to ice and quickly washed 
with ice cold serum-free medium. An excess of polyclonal antiserum or 
monoclonal I1 directed against the ectoplasmic domain of VSV G protein 
was added and cells were incubated at 4 ° for 30 min. The unbound anti- 
bodies were removed by washing cells three times on ice with cold serum- 
free medium. Subsequently, cells were warmed up to 37°C for various 
lengths of time to allow internalization of the VSV G-antibody complexes. 
Ceils were then permeabilized and fixed for immunofluorescence staining. 
VSV G-antibody complexes were visualized by staining with either Texas 
red- or FITC-conjugated secondary antibodies. 

Immunofluorescence Microscopy 

BHK cells were grown on 15-mm square coverslips for 18 h before use. 
Cells were washed once with PBS- and permeabilized with 0.5% saponin 
(Sigma) in 80 mM Pipes-KOH (pH 6.8), 5 mM EGTA, I mM MgCI 2 for 5 
min. Cells were then fixed with 3% paraformaldehyde in PBS + for 15 min 
at room temperature. After fixation cells were washed with 0.5% saponin 
in PBS + for 5 min, and free aldehyde groups were quenched with 50 mM 
NH4CI in PBS + for 10 min. Cells were washed with 0.5% saponin in PBS 
for 5 min, and then incubated with the primary antibody in PBS contain- 
ing 0.5% saponin for 20 min. The anti-rab antibodies could be used to de- 
tect only the overexpressed protein with little to no contribution of endog- 

Figure 3. GTP-binding  activity of  rab7 wild-type and mutan t  pro-  

teins. Who le  cell lysates were  p repa red  f rom Sf9 cells which were  

left (1) uninfec ted  or  infected with recombinan t  baculoviruses en-  

coding (2) wild-type rab7, (3) rab7N125I,  or  (4) rab7T22N. The  

prote ins  were  resolved by S D S - P A G E ,  t ransfer red  to nitrocellu- 

lose and p robed  with radiolabeled G T P  ([a-a2p]GTP, 1-4). Af t e r  

s t r ipping the  same blot  was r e p r o b e d  with rab7 specific ant ibod-  

ies (anti-rab7, 1-4) as a control  for equal  pro te in  loading. 
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enous protein staining by using a dilution 50-fold greater than that 

required to detect the endogenous protein (Fig. 4) (Bucci et al., 1992). Af- 

ter rinsing cells three times with 0.5% saponin in PBS (5 min/each), they 
were incubated with goat anti-rabbit Texas red or horse anti-mouse FITC 

in PBS containing 0.5% saponin for 20 min to allow detection of primary 
antibody binding. Cells were then washed once with PBS containing 0.5% 

saponin and three times with PBS (5 min/each). The coverslips were then 
mounted on glass slides in Mowiol 4-88 (Calbiochem) and viewed with a 

Zeiss Axiophot fluorescence microscope. For double immunofluores- 

cence, the secondary antibodies were added sequentially such that any 
cross-reactivity was minimized. 

Confocal Microscopy and Digital Imaging 

For confocal analysis, cells were fixed and stained as above, except that a 

mixture of goat anti-rabbit rhodamine to goat anti-rabbit Texas red (1:4) 

was used as a detection reagent to provide an optimal signal in the 
rhodamine channel with no cross-over from the FITC channel. Cells were 

then postfixed with 4% paraformaldehyde in PBS + for 30 min and 
quenched with 50 mM NH4C1 in PBS +. The coverslips were mounted on 
glass slides in PBS containing 50% glycerol and 1 mg/ml DABCO. For 

long-term storage and to prevent evaporation, the edges were sealed with 
nail polish. Confocal imaging was performed using a Zeiss confocal micro- 

scope (fitted with an Ar laser with a band at 488 nm for FITC and an He- 
Ne laser with a band at 543 nm for rhodamine) and a 63x (1.4 NA) oil im- 

mersion lens (Zeiss). A series of 0.5 ~m sections was collected along the 

z-axis of each sample. Each image was 512 x 512 pixels and extended fo- 
cus images were produced using the image processing package on the 
Zeiss confocal. Images were transferred as .tiff files to Adobe Photoshop 

where individual sections were combined and colorized before printing on 
a Tektronix Phaser 440 color printer. 

Figure 4. C o e x p r e s s i o n  of  

V S V  G p ro t e in  wi th  R a b 7  

wi ld- type  and  m u t a n t  pro-  

teins.  B H K  cells were  

co t r ans fec t ed  with a p lasmid  

encod ing  V S V  G p ro t e in  an d  

e i ther  (a-b) a cont ro l  

( p G E M  lacking an  inser t )  

p lasmid ,  ( c -d )  a p lasmid  en-  

cod ing  wild- type rab7,  or  ( e -  

f )  a p lasmid  en co d in g  

rab7N125I  as descr ibed  in 

Mate r i a l s  and  Me th o d s .  (a, c, 

and  e) V S V  G p ro t e in  was  

de t ec t ed  wi th  m o n o c l o n a l  I1, 

fol lowed by an FITC- labe led  

a n t i - m o u s e  an t ibody.  (b, d, 

a n d  f )  O v e r e x p r e s s e d  rab7 

p ro te ins  were  v isual ized us- 

ing an  affinity-purified poly- 

c lonal  an t i - rab7  an t ibody  (di- 

lu ted  to de tec t  on ly  the  over-  

exp re s sed  rab7 pro te in ,  n o t e  

tha t  no  s ta in ing  was o b s e r v e d  

in the  cont ro l  s amp le  [b] ex- 

p re s s ing  on ly  e n d o g e n o u s  

rab7 pro te in) ,  fo l lowed by a 

T e x a s  r ed  labe led  an t i - r ab b i t  

an t ibody.  

Immunoprecipitation and Immunoblotting 

BHK cells grown on 35-mm dishes were lysed in 500 p,1 RIPA buffer (1% 
NP-40, 0.5% deoxycholate, 0.1% SDS, 50 mM Tris-HC1, pH 7.4, 150 mM 

NaCI) with 1 mM PMSF added fresh. The lysate was incubated for 1 h on 

ice with a 1:1 mixture of monoclonal anti-VSV G antibodies I1 and P5D4. 
A polyclonal rabbit anti-mouse antibody was subsequently added, and in- 

cubation continued for 1 h followed by Pansorbin for an additional hour 

coupled with occasional vortexing. The immune complexes were collected 

by centrifugation, washed once with RIPA buffer, and then three times 
with high salt RIPA buffer (500 mM NaCl), and twice more with RIPA 

buffer. For analysis, samples were heated to 95°C for 5 min in SDS-PAGE 
sample buffer (50 mM Tris-HCl, pH 6.8, 2.5 mM EDTA, 2% SDS, 7% 

glycerol and 0.01% bromophenol blue), and separated on 10% SDS-poly- 
acrylamide gels. 

For immunoblot analysis, samples separated on 10% SDS-polyacryl- 

amide gels were transferred onto a PVDF (Millipore, Bedford, MA) 

membrane. The membrane was blocked for i h with 3% newborn-calf se- 
rum in TBS-T (150 mM NaC1, 20 mM Tris-HCl, pH 7.4 and 0.1% Tween- 
20), and then probed according to manufacturer 's instructions (ECL TM, 
Amersham). 

Exocytosis of VSV G Protein 

BHK cells were seeded and infected with vTFT.3 as described above. Af- 
ter 30 min cells were transfected with pGtsO45-2/T7, a construct encoding 

a temperature-sensitive mutant form of VSV G protein, and incubated at 
39°C for 5 h. Under these conditions VSV G tsO45 protein accumulated in 
the ER (de Silva et al., 1990). To monitor the kinetics of VSV G tsO45 
protein transport to the cell surface, the cells were transferred to permis- 

sive temperature, 31°C, for various lengths of time and subsequently sub- 
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jected to surface biotinylation as detailed below. For analysis, cells were 

lysed in 500 ~1 RIPA buffer and 20 p,l of the lysate was reserved and used 

to analyze the total VSV G and rab7 content by immunoblotting. 250 txl 

lysate was subjected to immunoprecipation with a mixture of anti-VSV G 

antibodies as outlined in the previous section to recover the VSV G tsO45 

protein. The immunoprecipitates were boiled in 40 Izl of 10% SDS to re- 

lease bound VSV G tsO45 protein. Each sample was diluted with 400 tJ.l 

Solubilization buffer and incubated for 60 min at 4°C with streptavidin- 

Sepharose (Pierce) to precipitate the biotinylated VSV G tsO45 protein. 

The biotinylated VSV G tsO45 protein was released from the streptavi- 

din-Sepharose by boiling in SDS-PAGE sample buffer, resolved by SDS- 

PAGE on 10% gels, and transferred to PVDF membranes. The amount of 

VSV G tsO45 protein or rab7 protein in each fraction was quantified by 

immunoblotting with monoclonal P5D4 and polyclonal R4, respectively. 

HRP Internalization and Activity Measurements 

BHK cells grown on 6-cm dishes were transfected with the plasmids en- 

coding wild-type or mutant rab7 proteins for 5 h. Cells were washed 

quickly three times with warm serum free GMEM. Serum free GMEM 

containing 5 mg/ml HRP was added to each plate (1 ml/each) and the cells 

were transferred to 37°C for times ranging from 1-15 min. At the end of 

each time point the cells were transferred to ice and washed with 4 ml/dish 

as follows: quickly three times with cold PBS+/0.1% BSA, 5 min with 

PBS+/10% serum, 1 min with PBS+/1% serum, five times 30 s with PBS+/ 

0.1% BSA, rinse PBS +. The cells were scraped from the dish in i ml PBS/ 

0.1% Triton X-100. HRP activates were measured by diluting 100 ixl of 

each postnuclear supernatant to a final volume of 1 ml in Reaction Buffer 

(50 mM sodium phosphate, pH 5, 0.1% Triton X-100, 0.1% peroxide, 0.1 

The Journal of Cell Biology, Volume 131, 1995 1440 



Figure 5. Rab7N125I  and  

R a b 7 T 2 2 N  act as d o m i n a n t  

nega t ive  inhib i tors  of  V S V  G 

t r anspo r t  to late e n d o s o m e s  

and  lysosomes .  (A)  Wi ld - type  

rub7 (rab7wt) or  rab7N125I  

m u t a n t  (rab7N1251) pro te ins  

were  coexp re s sed  wi th  V S V  G 

pro te in  in B H K  cells, as de-  

scr ibed in Mater ia l s  and  M e t h -  

ods.  T h e  kinet ics  o f  V S V  G 

pro te in  in te rna l iza t ion  was 

m o n i t o r e d  as in Fig. 1 (us ing  

m o n o c l o n a l  11) and  indiv idual  

t ime  po in t s  b e t w e e n  0 and  60 

min  are  shown.  Th e  V S V  G 

p r o t e i n - a n t i b o d y  c o m p l e x e s  

were  de t ec t ed  with a Tex as  

r e d - l a b e l e d  a n t i - m o u s e  anti-  

body.  (B)  (a-b) Wild- type  

rub7, (c-d) rab7N125I ,  or  (e-f) 
r ab7T22N pro te ins  were  coex-  

p re s sed  wi th  V S V  G pro te in  in 

B H K  cells. R e p r e s e n t a t i v e  

s amp le s  af ter  60 min  V S V  G 

pro te in  in te rna l iza t ion  were  

s t a ined  for (a, c, and  e) V S V  G 

pro te in  o r  (b, d, and  f)  ove rex-  

p re s sed  rub7 prote in .  

mg/ml o-dianisidine) and incubating the reactions for 10 min at room tem- 

perature. Reactions were stopped by the addition of 20 ill 4% sodium 
azide and OD measured at 460 nm. The total amount of protein was de- 

termined using BioRad DC protein assay (BioRad Labs.). 

Cell Surface Biotinylation 

Sulfo-NHS-biotin or sulfo-NHS-SS-biotin stock solutions (100 mg/ml in 
DMSO) were stored at -20°C and were diluted to I mg/ml in PBS, pH 8.5 

containing 1 mM MgCl2 and 1 mM CaC12 just before use. All reactions 
and washes were conducted with cells on ice in a 4°C room using ice cold 

solutions. BHK cells were washed twice with PBS ÷ (PBS containing 1 mM 

MgCl2 and 1 mM CaCl2) before addition of 0.5 ml of the diluted biotinyla- 
tion reagent. Cells were incubated three times for 10 min with fresh biotinyla- 
tion reagent and agitation and subsequently the reaction was quenched by 

incubating with 50 mM glycine in PBS ÷ twice for 10 min each. Cells were 

then washed three times with PBS +. In the cases where sulfo-NHS-SS-bio- 
tin was used to biotinylate cell surface proteins, the subsequent treatment 

with the reducing agent MESNA resulted in efficient removal of cell sur- 
face biotin. This was accomplished by treating cells three times 30 min 

with 20 mM MESNA in 50 mM Tris-HCl (pH 8.6) containing 100 mM NaCl, 

0.2% (wt/vol) BSA, 1 mM MgCl2, and 1 mM CaC12 (Smythe et al., 1992). 

SV5 HN Protein Internalization Assay 

BHK cells were grown on 35-mm dishes and transfected as above with the 

construct encoding the SV5 hemagglutinin-neuraminidase (HN) gene. Af- 
ter a 4.5-h incubation at 37°C, cells were washed once with warm methio- 

nine-free medium and incubated in the same medium for an additional 30 
min at 37°C. Cultures were then metabolically labeled by incubating with 

0.5 ml [35S]methionine (100 ~Ci/ml) containing medium for 30 min at 

37°C. Incorporation of radioactive label was terminated by adding me- 

dium containing 100-fold excess of unlabeled methionine and cells were 
incubated for one additional hour at 37°C. The HN protein present at the 
cell surface was labeled with sulfo-NHS-SS-biotin at 4°C as described 

above. Cells were then returned to 37°C for various lengths of time to al- 

low HN internalization. A control group was maintained at 4°C through- 

out. At the end of the incubation period, one group of cells was treated 
with MESNA as described above while one group was left untreated. The 

disulfide-linked biotin label on the cell surface was sensitive to MESNA 

treatment, enabling us to distinguish between intracellular and cell surface 
pools. For analysis, cells were transferred to ice, washed quickly with cold 
PBS ÷, and lysed through the addition of 500 txl RIPA buffer (1% NP-40, 

0.5% deoxycholate, 0.1% SDS, 50 mM Tris-HC1, pH 7.4, 150 mM NaC1) 
with 1 mM PMSF added fresh. HN was immunoprecipitated with mono- 

clonal lb and immune complexes were recovered using Pansorbin ®. The 

precipitates were boiled in 40 ~l 10% SDS to release the immunoprecipi- 
tared HN protein for analysis. One-fifth of this volume was analyzed di- 

rectly by SDS-PAGE and the remainder of each sample was diluted with 
400 ixl Solubilization buffer (10 mM Tris-HC1, pH 8.0, 5 mM EDTA, 150 
mM NaCI, 1% Triton X-100, 0.2% BSA) and incubated for 60 min at 4°C 
with streptavidin-Sepharose to precipitate the biotinylated HN. The bio- 

tinylated HN was released from the streptavidin-Sepharose by boiling in 
SDS-PAGE sample buffer and analyzed by SDS-PAGE on 10% polyacryl- 
amide gels. The internalization of HN and the appearance of specific deg- 

radation fragments were detected by autoradiography. 
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Figure 6. Distribution of endocytic markers in cells overexpressing dominant negative mutant forms of rab7. Untransfected control cells 
(BHK) and cells overexpressing wild-type rab7 (rab7wt) or the mutant forms (rab7N125I, rab7T22N) were fixed 6 h posttransfection. 
Replicate samples were stained with antibodies specific for transferrin receptor (TFR), mannose 6-phosphate receptor (MPR), and lyso- 
somal glycoprotein 120 (lgp120). Transfection efficiencies in all cases were >90% as confirmed by staining with antibodies specific for 
rab7 (anti-rab, inset panels). 

Quantification of  s v 5  H N  Internalization and Cleavage 

Quantification of ass-labeled samples was accomplished by exposing gels 

to phosphoimager plates and analyzing the photo-stimulated lumines- 

cence on a Fuji Bioimager equipped with MacBas software. The formulas 
for determining the percentages of SV5 HN biotinylated, internalized, and 

cleaved are as follows: % Biotinylated HN={[BHN + (Bfras. X 66/34)]1.25/ 

[TaN + (Tfrag ' X 66/34)]5}, where biotinylated (B) and total (T) values for 
intact SV5 HN (HN) (66-kD) and the 34-kD cleavage fragment (Frag.) 

were quantified from the corresponding B and T lanes (representative gel 
shown in Fig. I1 C) without ( - )  MESNA treatment. % Internalized HN = 

{[B.~ + (Bfrag ' )< 66/34)]l.25/[THN + (Tfrag ' × 66/34)]5}/ % Biotinylated 
HN, where biotinylated (B) and total (T) values for intact SV5 HN (HN) 
and the 34-kD cleavage fragment (Frag.) were quantified from the corre- 
sponding B and Tlanes (Fig. 11 C) with (+) MESNA treatment. % Inter- 

nalized HN Cleaved = {Bfrag" × 66/34)/[BHN + (Bfrag ' X 66/34)]}, where bi- 
otinylated (B) values for intact SV5 HN (NH) and the 34-kD cleavage 

fragment (Frag.) were quantified from the corresponding B lanes (Fig. 11 

C) with (+) MESNA treatment. 

Results 

VSV G Protein as an Endocytic Transport Marker 

To assess the in vivo function of rab7 in endocytic mem- 
brane transport, an endocytic marker which would allow 
tracing of the pathway leading from the cell surface to ly- 
sosomes was required. VSV G protein was selected for this 
purpose for several reasons. Most importantly, previous 
work had shown that the synchronous transport of VSV G 

protein to lysosomes could be triggered by antibody medi- 
ated cross-linking of the protein at the cell surface (Gruen- 
berg et al., 1989). In addition, expression of high levels of 
the cell surface VSV G protein in a manner compatible 
with the simultaneous overexpression of wild-type and 

mutant forms of rab7 was possible. Finally, the detection 
of VSV G protein was readily possible using numerous, 
available monoclonal antibodies (Kreis and Lodish, 1986; 
Lefrancios and Lyles, 1982). 

Transient overexpression of recombinant VSV G pro- 
tein was achieved by infecting BHK cells with a recombi- 
nant vaccinia virus expressing T7 RNA polymerase (Fuerst 
et al., 1986) and subsequent transfection with a plasmid 
encoding VSV G protein (Whitt et al., 1989) under the 
control of the T7 promoter (Fuerst et al., 1986). VSV G 
protein was readily detectable at the cell surface 5-6 h post- 
transfection and accessible to a monoclonal antibody 
added at 4°C (Fig. 1, 0 min). Transfer of the cells to 37°C 
initiated VSV G protein internalization and the internal- 
ized complexes were detected by the addition of a labeled 
secondary antibody after fixation. The fact that the VSV G 
protein remained in a stable association with the antibody 
throughout the 60-min time course (shown in Fig. 1) was 
confirmed by demonstrating that surface-biotinylated 
VSV G protein colocalizes with the anti-VSV G antibody 
over the entire time course (data not shown). After 5 min 
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Figure 7. Effect of other endocytic Rab proteins on the transport of VSV G protein to late endosomes. (A) Wild-type rab5 (rab5wt) or 
mutant rab5N133I and (B) wild-type rab9 (rab9wt) or mutant rab9N124I were coexpressed with VSV G protein in BHK cells. Cells 
were induced to internalize the VSV G protein by binding monoclonal I1 at 4°C and subsequently rewarming the cells to 37°C for 60 
rain. The localization of internalized VSV G protein-antibody complexes was monitored after fixation using Texas red-conjugated anti- 
mouse antibody (left-hand panels). The overexpressed rab proteins were detected using specific polyclonal antisera to: (A, right-hand 
panels) rab5 and (B, right-hand panels) rab9 proteins (diluted to reveal only the overexpressed proteins) followed by an FITC- 
conjugated anti-rabbit antibody. 

the v s v  G protein-ant ibody complexes were detected in 

small, disperse endosomes underlying the cell surface (Fig. 

1, 5 rnin). Progressively, the internalized VSV G prote in-  

antibody complexes were transported to later endocytic 

structures characterized by their perinuclear localization 

(Fig. 1, 10-30 rain). After  60 min, the VSV G protein-  

antibody complexes were exclusively localized to these 

perinuclear endocytic structures (Fig. 1, 60 rain). A t  this 
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Figure 8. Exocytosis is unaffected by the overexpression of wild- 
type or mutant rab7 proteins. Wild-type rab7 or rab7N125I mu- 
tant proteins were coexpressed with the temperature-sensitive 
VSV G tsO45 protein in BHK cells. Cells were maintained at 
39°C (nonpermissive temperature) for 5 h to allow accumulation 
of VSV G protein in the ER. Subsequently, cells were shifted to 
31°C (permissive temperature) for 0, 0.5, 1, 2, and 4 h. (A) The 
cell surface delivery of VSV G tsO45 protein as a function of time 
was monitored by surface biotinylation as described in Materials 
and Methods. (B) A measure of the total VSV G tsO45 and rab7 
protein present in the lysates was obtained by immunoblotting 
with monoelonal P5D4 (anti-VSV G protein) and polyclonal R4 
(anti-rab7 protein). (C) Densitometric quantification of the cell 
surface appearance of VSV G protein shown in A. 

60-min time point the VSV G protein-antibody complexes 

were found to be substantially colocalized with the late en- 
dosomal marker, mannose 6-phosphate receptor (Griffiths 
et al., 1990; Klumperman et al., 1993; Ludwig et al., 1991) 
(Fig. 2 a), and to a small extent with the lysosomal marker, 
lysosomal glycoprotein (lgp) 120 (Hatter  and Mellman, 
1992; Honing and Hunziker, 1995) (Fig. 2 b). Degradation 
of the antibody and the VSV G protein in lysosomes pre- 
cluded detection of greater colocalization after delivery to 
lysosomes even after longer incubation times. Since rab7 
was known to be localized to the late endosome (Chavrier 
et al., 1990), it was expected that it would be involved in 

transport to or from this compartment. Therefore, the 
time course of VSV G protein internalization shown in 
Fig. 1 was considered suitable for the study of rab7 func- 

tion in vivo. 

Mutant Rab Proteins Exhibit Altered GTP Binding 

Two mutants were generated each bearing a single amino 
acid substitution in conserved regions of rab7. The mutant 
rab7N125I was generated by site-directed mutagenesis, 
predicated on the knowledge that the analogous mutation 
in ras (Nl16I) results in a protein which acts as a dominant 
negative inhibitor, on account of its reduced guanine nu- 
cleotide-binding activity (Der et al., 1986; Feig et al., 1986; 
Sigal et al., 1986). The rab7T22N mutant was generated by 
substituting N for T in the GKT/S region. In ras, this muta- 
tion alters the coordination of the Mg 2+ required for GTP 

binding (Milburn et al., 1990; Schlichting et al., 1990), and 
analogous substitutions in other rab proteins lead to the 
accumulation of the protein in the GDP-bound conformer 
(Li and Stahl, 1993; Pind et al., 1994). Ligand overlay blot- 
ting with [ct-32p]GTP revealed that, as expected, both mu- 

tant proteins exhibited a marked reduction in GTP bind- 

ing relative to the wild-type protein (Fig. 3). 

Concomitant Overexpression of  V S V  G Protein and 
Wild-Type or Mutant Rab 7 Proteins 

The simultaneous overexpression of VSV G protein and 
wild-type or mutant rab7 (rab7N125I) was achieved by 

cotransfecting cells with plasmids containing the corre- 
sponding cDNAs under the control of the T7 promoter 
(Fuerst et al., 1986). Under the conditions used, greater 
than 90% of the cells were transfected (Fig. 4 and data not 
shown). Plasmids encoding wild-type or rab7N125I pro- 
teins were cotransfected in a 2.3-fold excess over pAR-G 
to ensure that all cells expressing VSV G protein would 
also overexpress the rab7 proteins. Fig. 4 illustrates that 
this is the case. The rab7 proteins were overexpressed up 
to 50-fold above endogenous levels. Similar transfection 
efficiencies and overexpression levels were obtained for 
rab7T22N (data not shown and Fig. 6, inset panel). Stain- 
ing with highly dilute antibody precluded detection of the 
endogenous protein allowing only overexpressed protein 

to be monitored (see Fig. 4). 

Rab 7N125I and Rab 7T22N Act as Dominant 
Negative Inhibitors of V S V  G Protein Transport to 
Late Endosomes 

To investigate the function of rab7 protein in endocytosis, 
the wild-type protein or mutant rab7N125I or rab7T22N 
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proteins were overexpressed in BHK cells, and their influ- 
ences on VSV G protein internalization were monitored. 
The internalization of VSV G protein was not dramati- 
cally altered upon overexpression of the wild-type rab7 
protein (Fig. 5 A, left hand panels and 5 B, panel a). After 
a 60-min incubation period the bulk of the VSV G protein 
was present in the perinuclear late endosomes. In contrast, 
overexpression of the mutant rab7N125I protein dramati- 
cally inhibited the transport of internalized VSV G protein 
to the perinuclear late endosomes (Fig. 5 A, right hand 
panels and 5 B, panel c). As a result, the protein remained 
at the cell surface and in disperse, peripheral endosomes 
even after a 60-min incubation period at 37°C. Similarly, 
the rab7T22N mutant protein also acted as a dominant 
negative inhibitor, blocking transport to late endosomes 
(Fig. 5 B, panel e). 

Each sample was costained with anti-rab7 antibodies to 
allow definitive identification of transfected cells. Repre- 
sentative samples at the 60-rain time point showing the 
double staining with anti-VSV G protein and anti-rab7 an- 
tibodies are shown in Fig. 5 B. VSV G protein staining was 
seen to overlap at least in part with the rab7 positive endo- 
somes when wild-type rab7 protein was overexpressed, 
(Fig. 5 B, panels a-b). However, this was not the case upon 
overexpression of the mutant proteins (Fig. 5 B, panels c-Y3. 

Distribution of Endocytic or Lysosomal Markers Is 
Unaffected by Short-Term Overexpression of Wild-Type 
or Dominant Negative Mutant Rab 7 Proteins 

Conceivably the observed block in VSV G protein trans- 
port, induced by the overexpression of the rab7 mutant 
proteins, might be the consequence of either a failure to 
form late endosomes and lysosomes or a failure of mole- 
cules in transit to reach their destination. A failure to form 
late endosomes and lysosomes would be expected to cause 
a redistribution or even the disappearance of markers typ- 
ically associated with late endosomes and lysosomes. If, on 
the other hand, rab7 merely interferes with the delivery of 
molecules in transit the distribution of other endocytic 
markers would be relatively unaffected. To address this is- 
sue, normal and transfected BHK cells overexpressing 
wild-type or mutant rab7 proteins were stained with anti- 
bodies against transferrin receptor (early endosome 
marker), mannose 6-phosphate receptor (late endosome 
marker), or lgpl20 (lysosomal marker). The results illus- 
trated in Fig. 6 show that there are no dramatic alterations 
in the distributions of any of the markers tested 6 h post- 
transfection. Under these experimental conditions, the ex- 
ogenous rab7 proteins are known to be overexpressed at 
high levels beginning at 3.5 h posttransfection. Therefore, 
it appears that short-term overexpression of dominant 
negative mutant tab7 proteins does not lead to the disap- 
pearance of identifiable late endosomes and lysosomes. 

Specificity of the Membrane Transport Block 
Induced by Overexpression of Dominant Negative 
Mutant Rab 7 Proteins 

To confirm that the effects of the dominant negative mu- 
tant rab7 proteins on VSV G protein internalization were 
indeed specific, a number of control experiments were 
conducted. First, the delivery of VSV G protein to perinu- 

clear late endosomes after 60 min at 37°C was examined 
upon overexpression of wild-type and mutant forms of two 
other rab proteins associated with the endocytic pathway, 
rab5 and rab9 (Bucci et al., 1992; Lombardi et al., 1993). 
Upon overexpression of the wild-type rab5 and rab9 pro- 
teins, transport of VSV G protein was normal (Fig. 7 A 
and B, respectively). The mutant rab5N133I protein 
caused the VSV G protein to remain largely at the cell sur- 
face (Fig. 7 A), as expected given the demonstrated role of 
rab5 in regulating uptake from the cell surface (Bucci et 
al., 1992). Thus, rab5 and rab7 both appear to affect the 
endocytic route leading from the cell surface. On the other 
hand, rab9, which together with rab7 is localized to late 
endosomes, has been shown to regulate transport from 
late endosomes to the trans-Golgi network (Lombardi et 
al., 1993; Riederer et al., 1994). Hence, overexpression of 
mutant rab9N124I would not be expected to affect the in- 
ternalization of the VSV G protein. This was indeed the 
case as shown in Fig. 7 B. 

The effect of rab7N125I on the exocytosis of VSV G 
protein was also examined as an additional control for 
specificity. For this purpose cells were cotransfected with a 
temperature-sensitive mutant form, VSV G tsO45 (Gal- 
lione and Rose, 1985). At the nonpermissive temperature 
of 39°C, this protein is synthesized, but is not properly as- 
sembled and hence accumulates in the endoplasmic reticu- 
lum (Doms et al., 1987). The subsequent return of cells to 
the permissive temperature of 31°C allows assembly and 
results in the synchronous transport of the VSV G tsO45 
protein to the cell surface (Doms et al., 1987), permitting 
the kinetics of cell surface transport to be measured. 

The kinetics of VSV G tsO45 protein transport to the 
cell surface was measured in cells coexpressing wild-type 
rab7 or rab7N125I by transferring cells to the permissive 
temperature of 31°C for increasing lengths of time. Subse- 
quent cell surface biotinylation was used to demonstrate a 
linear increase in cell surface appearance of VSV G tsO45 
between 30 and 240 min (Fig. 8, A and C), which was 
unchanged irrespective of whether wild-type rab7 or 
rab7N125I was overexpressed as much as 50-fold (Fig. 8 
B). The total amount of VSV G tsO45 protein expressed 
was found to be similar in all samples examined (Fig. 8 B). 

The results of these control experiments suggest that the 
inhibition of VSV G protein transport to late endosomes 
induced by rab7N125I is indeed specific, affecting only this 
membrane transport step and not other endocytic or exo- 
cytic membrane transport events. 

Overexpression of Dominant Negative Mutant 
Rab7 Proteins Causes VSV G Protein to Accumulate 
in Early Endosomes 

Both rab7N125I and rab7T22N behaved as dominant neg- 
ative mutants and blocked VSV G protein transport to the 
perinuclear late endosomes, suggesting that rab7 might 
regulate transport from early to late endosomes. If this is 
indeed the case, the transport marker would be expected 
to accumulate in early endosomes upon overexpression of 
the mutant proteins. To demonstrate this definitively, we 
took advantage of the fact that incubation of cells at 15°C 
allows internalization of markers into early endosomes but 
prevents transport to late endosomes (Draper et al., 1984; 
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Dunn et al., 1980, 1986). As shown in Fig. 9A (panel a), in- 
ternalized VSV G protein colocalizes exclusively with 
transferrin receptor, a marker of early endosomes, in cells 
incubated at 15°C for 1 h. Little or no VSV G protein can 
be detected in mannose 6-phosphate receptor positive late 
endosomes (Fig. 9 A, panel b). However, upon transfer of 
the cells back to 37°C for 30 min, the VSV G protein exits 
the transferrin receptor positive early endosomes (Fig. 9 
A, panel c) and significantly colocalizes with mannose 

6-phosphate receptor positive late endosomes (Fig. 9 A, 
panel d). 

Upon overexpression of wild-type or mutant rab7N125I 
proteins, VSV G protein can be seen to accumulate in dis- 
perse early endosomes when the cells are maintained at 
15°C (Fig. 9 B, panels a, and e). However, a dramatic dif- 
ference is observed when these cells are subsequently 
transferred back to 37°C (Fig. 9 B, panels b, and 1). In cells 
overexpressing the wild-type rab7 protein, VSV G protein 

is transported to the larger perinuclear late endosomes 
within 30 rain (Fig. 9 A, panel d and Fig. 9 B, panel b), 
while in cells overexpressing the mutant rab7N125I pro- 
tein, the VSV G protein remains in the peripheral early 
endosomes (Fig. 9 B, panel 3'). Thus, rab7 does not appear 
to regulate internalization into early endosomes, but rather 
serves to regulate a later event, transport from early to late 

endosomes. 

Double staining with anti-rab7 antibody was used to 
confirm overexpression of the wild-type or mutant rab7 
proteins in all cells shown (Fig. 9"B, panels c-d, g-h). The 
fact that rab7 was highly overexpressed and it most likely 
recycles between early endosomes, carrier vesicles, and 
late endosomes, made colocalization with VSV G protein 
difficult. Therefore, we used colocalization of VSV G pro- 
tein with transferrin receptor or M6PR as indicators of its 
early or late endosomal localization. 

Rab 7 Function Is Not Required for Early 
Internalization Events but Is Crucial for Later 
Degradative Events 

Data thus far presented would suggest that rab7 functions 
downstream of rab5. To prove this more directly, bio- 
chemical assays measuring the effects of rab7 on early or 
late endocytic events were employed. HRP was used to 
monitor the kinetics of fluid phase internalization. Ad- 

ditionally, SV5 HN, a paramyxovirus envelope protein, 
was used as an integral membrane transport marker to 
monitor both internalization and subsequent degradation 
events. 

BHK cells overexpressing wild-type rab7 or rab7N125I 

proteins were monitored for their capacity to internalize 
the fluid phase marker HRP as compared to uninfected 

Figure 9. VSV G protein accumulates in early endosomes upon overexpression of mutant rab7N125I. VSV G protein was overexpressed 
in BHK cells alone or together with wild-type rab7 or rab7N125I proteins. Cells were induced to internalize the VSV G protein by bind- 
ing monoclonal I1 at 4°C and subsequently rewarming the cells to 15°C for 60 min. At the end of this time, cells were either transferred 
directly to 4°C or first returned to 37°C for 30 min. Cells were then fixed and stained. (A) Confocal images of samples double stained 
with an FITC-labeled anti-mouse antibody to visualize VSV G protein-antibody complexes and (a, and c) a polyclonal antibody di- 
rected against transferrin receptor (rhodamine) to identify early endosomes or (b, and d) a polyclonal antibody against mannose 6-phos- 
phate receptor (rhodamine) to identify late endosomes. Each image shows a 1-~m section. (a-b) Cells overexpressing only VSV G pro- 
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tein and maintained at 15°C for 60 min. (c-d) Cells overexpressing both VSV G protein and wild-type rab7 returned to 37°C for 30 min. 
(B) Cells overexpressing VSV G protein and (a-d) wild-type rab7 or (e-h) rab7N125I. The samples shown in the left hand panels were 
processed for fluorescence microscopy immediately after the 60-min incubation period at 15°C. The samples shown in the right hand 
panels were returned to 37°C for 30 min, immediately after the 15°C incubation and before fixation. Panels a-b, and e-f  show VSV G 
protein localization and panels c--d and g-h overexpressed rab7 protein staining. 
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Figure 10. Rab7 does not  affect the kinetics of  shor t - te rm H R P  

internalization. Mock-transfected cells (square) and cells overex- 
pressing wild-type rab7 (diamond), or rab7N125I (circle) were al- 
lowed to consititutively internalize HRP for varying lengths of 
time and were subsequently processed as detailed in Materials 
and Methods. The HRP activities of individual samples were 
measured and normalized to protein concentration. Each data 
point shown for cells overexpressing rab7 represents the average 
value of 4-6 independent trials and includes the SD. The data 
points shown for mock-transfected cells represent the average of 
two independent trials. 

control cells. The kinetics of short term HRP internaliza- 
tion were found to be identical in all cases (Fig. 10). For 
further confirmation, experiments were performed using 
SV5 HN as a transport marker. 

SV5 HN has the advantage over VSV G protein that it is 
internalized into coated vesicles even in the absence of an- 
tibody cross-linking (Ng et al., 1989). In addition, the pro- 
tein is cleaved upon internalization, transiently giving rise 
to two distinct cleavage products which can be detected by 
available antibodies (Randall et al., 1987). These frag- 

ments are completely degraded after longer internaliza- 
tion periods (Ng et al., 1989). The kinetics of SV5 HN deg- 
radation are consistent with the notion that the cleavage 
fragments are formed in the late endosomes and complete 
degradation ensues upon delivery to lysosomes (Ng et al., 

1989). 
The cloned SV5 HN gene (Paterson et al., 1985) was 

used to overexpress the protein in a manner analogous to 
that used for the VSV G protein. BHK cells overexpress- 
ing SV5 HN in conjunction with wild-type or mutant rab5 
and rab7 proteins were metabolically labeled and sub- 
jected to cell surface biotinylation at 4°C using NHS-SS- 
biotin as described under Materials and Methods. Under 
the conditions used ,-~10% of the total 35S-labeled HN 

could be biotinylated (data not shown). After biotinyla- 
tion, the cells were transferred to 37°C for 1 h and a con- 
trol group was maintained at 4°C for the same period. This 
time point was selected since the reported tl/z for the deg- 
radation of HN is ,'-~75-90 min (Leser et al., 1996). At the 
end of this time period, lysates were prepared from sam- 

pies ___ treatment with the reducing agent MESNA (cleave 
cell surface accessible NHS-SS-biotin) and the SV5 HN 
protein in each sample was recovered by immunoprecipi- 
tation. The fraction of biotinylated SV5 HN protein was 
quantified by subsequently isolating the biotinylated protein 
on streptavidin agarose. Thus, both the total and the inter- 
nalized biotinylated SV5 HN protein could be quantified. 
In addition, since the antibody recognized both the intact 
and a cleaved form of the protein, it was possible to distin- 
guish between factors affecting internalization and those 
affecting degradation. A more detailed description of the 
experimental design is given under Materials and Methods. 

Fig. 11 shows the results of such biotinylation experi- 
ments. In the absence of warming to 37°C after biotinyla- 
tion, little to no biotinylated SV5 HN was detected intra- 
cellularly (data not shown). In contrast, upon warming to 
37°C for 1 h up to 23% of the cell surface biotinylated HN 
was internalized (Fig. 11 A). Cleavage of HN was also 
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Figure 11. SV5 HN internalization and degradation are differentially affected by dominant negative mutant forms of rab7. SV5 HN was 
expressed in BHK cells either alone (control) or together with wild-type (rab7wt), or mutant rab7N125I or rab7T22N proteins, as de- 
scribed in Materials and Methods. SV5 HN was pulse-labeled with [35S]methionine and allowed to reach the cell surface during a 1-h in- 
cubation at 37°C. Cell surface proteins, including SV5 HN, were modified with sulfo-NHS-SS-biotin at 4°C as detailed in the Materials 
and Methods. Cells were then returned to 37°C for 1 h to allow internalization of the biotin-labeled HN. One group of duplicate samples 
was then incubated with the reducing agent MESNA (+), while a second group was left untreated ( - ) .  See Materials and Methods for 
details. (A) Percentages of internalized, biotinylated HN quantified using a Fuji Bioimager. Each bar and associated SD is representa- 
tive of three independent trials. (B) Percentages of cleaved HN quantified using a Fuji Bioimager and calculated using the formulas de- 
scribed in Materials and Methods. Each bar and associated SD is representative of three independent trials. (C) A representative auto- 
radiograph used for the quantification shown in A-B.  SV5 HN was recovered from cell lysates by immunoprecipation with a specific 
anti-SV5 HN monoclonal, lb. One-fifth of each immunoprecipitated sample was analyzed directly by SDS-PAGE using 10% gels (T 
lanes), the remainder of each sample was treated with streptavidin-agarose to recover the biotinylated HN (B lanes) before analysis by 
SDS-PAGE. The large amount of immunoglobulin present in the T lanes is responsible for the increased mobility of all bands in these 
lanes. After electrophoresis, the gel was subjected to autoradiography. Intact SV5 HN migrated with an apparent molecular weight of 66 
kD and a specific cleavage fragment was detected at 34 kD. A 45-kD band observed most strongly in the immunoprecipitated samples 
(T, - ,  +) was not internalized (see B, + MESNA lanes), and therefore was not considered relevant in the evaluation of the experiment. 

readily detected at this time point (Fig. 11 C, Frag. 34 kD).  

The cleavage product was not formed in control cells main- 

tained at 4°C indicating that internalization is required for 

cleavage (data not shown). Quantification of  three inde- 

pendent  trials revealed that HN internalization was similar 

irrespective of  whether wild-type rab7 or the mutants 

rab7N125I or rab7T22N were overexpressed (Fig. 11 A). 

The percentages of HN internalized in all cases were simi- 

lar to mock-transfected controls (Fig. 11 A,  control). The 

situation was different when the degradation of HN was 

quantified. Overexpression of rab7N125I or rab7T22N de- 

creased the degradation of HN by 50% at the 60-min time 

point (Fig. 11 B). The percentage of  HN degraded in cells 

overexpressing wild-type tab7 was similar to that mea- 

sured in mock-transfected control cells. These assays, us- 

ing two different markers, confirm that rab7 has no influ- 

ence on early endocytic events including internalization, 

but rather affects transport to late endosomes where deg- 

radation is initiated. 

D i s c u s s i o n  

In this study, we demonstrate that rab7 is functionally dis- 

tinct from rab5 and rab9, serving to regulate transport 

from early to late endosomes. This was accomplished by 

transiently overexpressing the wild-type rab7 or mutant  

rab7N125I and rab7T22N proteins, and subsequently 

monitoring their effects on exocytosis and various stages 

of endocytosis. Both mutant  proteins behaved as domi- 

nant negative inhibitors of  membrane transport from early 

to late endosomes. Their overexpression resulted in an ac- 

cumulation of  the transport marker, VSV G protein, in 

early endosomes and reduced the late endocytic cleavage 

of SV5 HN by 50% as compared to mock-transfected cells 

and cells overexpressing wild-type rab7 protein. The find- 

ing that the mutant  proteins did not completely block 

transport to late endosomes is consistent with other stud- 

ies using mutant  rab proteins which generally decreased 

the rate of any single membrane  transport step under in- 
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vestigation between 50 and 66% (Bucci et al., 1992; Mar- 
tinez et al., 1994; Stenmark et al., 1994). On the other 
hand, the mutant proteins had no apparent effect on early 
internalization events known to be regulated by rab5 (Bar- 
bieri et al., 1994; Bucci et al., 1992; Gorvel et al., 1991; Li 
and Stahl, 1993). Both the transport of VSV G protein to 
early endosomes in cells incubated at 15°C and the short- 
term internalization of HRP were unchanged by the pres- 
ence of the mutant proteins. 

Parallel findings have been reported in the yeast system 
where Ypt51p, Ypt52p, Ypt53p, and Ypt7p are thought to 
be functional homologues of the mammalian rab5a, rab5b, 
rab5c, and rab7 proteins, respectively (Singer-Krtiger et 
al., 1994; Wichmann et al., 1992). Internalization and deg- 
radation of the yeast pheromone a-factor were used as a 
measure of delivery to the vacuole, the principle degrada- 
tive organelle in yeast. A null ypt51ypt52ypt53 mutant 
inhibited internalization (Singer-Krtiger et al., 1994). In 
contrast, a null ypt7 mutant had no effect on a-factor inter- 
nalization, but rather delayed its degradation three-fold 
(Wichmann et al., 1992). This data coupled with the fact 
that ypt51ypt52ypt53 and ypt7 mutants accumulated e~-factor 
in early or late endosomes, respectively, led to the sugges- 
tion that Ypt51p, Ypt52p, and Ypt53p function upstream 
of Ypt7p (Schimm611er and Riezman, 1993; Singer-Krtiger 
et al., 1994). In spite of this similarity some questions remain. 

YPT7 was initially described as being required for trans- 
port from early to late endosomes in yeast (Wichmann et 
al., 1992). However, a more recent report has implicated 
Ypt7p in a later event mediating transport from the late 
endosome to the vacuole of yeast (Schimm611er and Riez- 
man, 1993). One issue which remains unresolved is 
whether rab7 might also regulate transport from the late 
endosomes to lysosomes in mammalian cells. To date, no 
rab proteins have been found associated with lysosomes 
yet transport from late endosomes to lysosomes in vitro is 
blocked by GTP~/S, implicating GTPases in this process 
(Mullock et al., 1994). It is possible that rab7 is important 
for both transport events. Our current assays cannot ex- 
clude this possibility, assuming transport was blocked at 
the first point of rab7 action upon overexpression of the 
dominant negative mutant protein. It is also possible that 
additional rab family GTPases and/or isoforms are in- 
volved in late endocytic membrane transport, as has been 
shown to be the case for early endocytic events. For exam- 
ple, seven rab proteins have been localized to early endo- 
somes (rab5a, b, and c; rab4a and b, rabl8 and rab20) and 
shown to be important for plasma membrane internaliza- 
tion, early endosome fusion, and recycling from the early 
endosome (Bucci et al., 1992, 1994; Ltitcke et al., 1994; Si- 
mons and Zerial, 1993; van der Sluijs et al., 1991, 1992). 

Two models have been proposed to describe endocytic 
processes and a large body of supporting data exists for 
each (Aniento et al., 1993; Dunn and Maxfield, 1992; 
Gruenberg et al., 1989; Stoorvogel et al., 1991). The "mat- 
uration model" proposes that clathrin-coated vesicles 
formed from the plasma membrane gradually mature to 
give rise to lysosomes (Dunn and Maxfield, 1992; Helenius 
et al., 1983; Murphy, 1991). The "vesicle shuttle model" 
proposes that early and late endosomes and lysosomes are 
unique compartments interconnected by vesicular mem- 
brane transport (Helenius et al., 1983; Ludwig et al., 1991). 

Our findings favor a model involving vesicular transfer 
from early to late endosomes. Evidence is presented for 
the involvement of a rab  protein in this step. Rab proteins 
are known to be key regulators of vesicle budding and fu- 
sion events (Bourne, 1988; Nuoffer et al., 1994; Pfeffer, 
1994; Pind et al., 1994; Walworth et al., 1989). Therefore, a 
vesicular intermediate is most likely required. Further- 
more, if a "maturation" pathway was inhibited by the 
dominant negative mutant rab7 proteins, it might be ex- 
pected to influence the formation of late endosomes and 
lysosomes and consequently the distribution of associated 
markers (Dunn and Maxfield, 1992; Ward et al., 1995). No 
such changes in the steady state distributions of either 
mannose 6-phosphate receptor (late endosomes) or of ly- 
sosomal glycoprotein 120 (lysosomes) were observed up to 
2.5 h after the mutant rab7 protein was overexpressed at 
high levels. Assuming that the time frame analyzed is suffi- 
cient for late endosomes and lysosomes to turn over, this 
finding too would seemingly contradict the maturation 
model and lend support to the vesicle shuttle model. Anal- 
ysis of the long-term effects of overexpressing wild-type or 
mutant forms of rab7 in stable, inducible cell lines (Press, 
B., and A. Wandinger-Ness, unpublished data) will be use- 
ful in shedding further light on this issue. 

In summary, rab7 has been shown to be an important 
regulator of transport to the late endosome. Therefore, it 
is expected to be an invaluable tool in dissecting late endo- 
some-associated functions. In addition to antigen-process- 
ing activities (Benaroch et al., 1995; Qiu et al., 1994; Sand- 
erson et al., 1994), the late endosome has also been 
implicated in phagocytosis (Desjardins et al., 1994a; Des- 
jardins et al., 1994b), and pathogen uptake (Beron et al., 
1995). It is conceivable that rab7, in combination with the 
rab5 mutant proteins, and serve as tools to dissect the im- 
portant intermediates in these pathways and address is- 
sues pertaining to their compartmentalization. 
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