
Rab18 Dynamics in Adipocytes in Relation to
Lipogenesis, Lipolysis and Obesity
Marina R. Pulido1,2,3, Alberto Diaz-Ruiz1,2,3, Yolanda Jiménez-Gómez1,2,3, Socorro Garcia-Navarro1,2,3,
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Abstract

Lipid droplets (LDs) are organelles that coordinate lipid storage and mobilization, both processes being especially important
in cells specialized in managing fat, the adipocytes. Proteomic analyses of LDs have consistently identified the small GTPase
Rab18 as a component of the LD coat. However, the specific contribution of Rab18 to adipocyte function remains to be
elucidated. Herein, we have analyzed Rab18 expression, intracellular localization and function in relation to the metabolic
status of adipocytes. We show that Rab18 production increases during adipogenic differentiation of 3T3-L1 cells. In addition,
our data show that insulin induces, via phosphatidylinositol 3-kinase (PI3K), the recruitment of Rab18 to the surface of LDs.
Furthermore, Rab18 overexpression increased basal lipogenesis and Rab18 silencing impaired the lipogenic response to
insulin, thereby suggesting that this GTPase promotes fat accumulation in adipocytes. On the other hand, studies of the b-
adrenergic receptor agonist isoproterenol confirmed and extended previous evidence for the participation of Rab18 in
lipolysis. Together, our data support the view that Rab18 is a common mediator of lipolysis and lipogenesis and suggests
that the endoplasmic reticulum (ER) is the link that enables Rab18 action on these two processes. Finally, we describe, for
the first time, the presence of Rab18 in human adipose tissue, wherein the expression of this GTPase exhibits sex- and
depot-specific differences and is correlated to obesity. Taken together, these findings indicate that Rab18 is involved in
insulin-mediated lipogenesis, as well as in b-adrenergic-induced lipolysis, likely facilitating interaction of LDs with ER
membranes and the exchange of lipids between these compartments. A role for Rab18 in the regulation of adipocyte
biology under both normal and pathological conditions is proposed.
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Introduction

White adipose tissue is essential for the maintenance of energy

homeostasis, in terms of its role both as an endocrine organ and as

the main energy reservoir of the body, responsible for storing

energy in the form of triglycerides (TAG) during periods of energy

excess and releasing it as free fatty acids (FFAs) to be used as an

energy source by other tissues during times of energy deprivation.

TAG accumulation (i.e., lipogenesis) and hydrolysis (i.e., lipolysis)

in adipocytes are primarily controlled by insulin and catechol-

amines [1,2,3], which, together with other endocrine and

paracrine/autocrine factors, ensure correct lipid storage and

utilization [4,5,6]. Alterations in adipocyte lipid metabolism, as

occur in obesity and lipodystrophy, are associated with insulin

resistance, which represents a major risk factor for the develop-

ment of type 2 diabetes, hepatic steatosis, hypertension and

cardiovascular disease [7,8].

Intracellularly, adjustments in lipid metabolism take place in

specialized organelles, the lipid droplets (LDs), in which TAG and

other neutral lipids accumulate in a central core that is surrounded

by a phospholipid monolayer and a coat of associated proteins

[9,10]. Specifically, besides the enzymes involved in lipid

biosynthesis [diacylglycerol acyltransferase 2 (DGAT2)] [11] and

hydrolysis [hormone-sensitive lipase (HSL), adipose triglyceride

lipase (ATGL)] [12], LDs are decorated with a range of proteins

that also contribute to the control of lipid storage and mobilization

and regulate LD biogenesis and movement [13]. Among these,

PAT (perilipin-adipophilin-Tip47) proteins [14] have been

extensively studied in terms of their association with the LD

surface and their role in controlling LD function [reviewed by 15].

In particular, perilipin has been shown to have a dual action on

LDs promoting TAG storage under basal conditions while

facilitating TAG lipolysis in response to b-adrenergic stimulation

[15]. In addition to the PAT family, recent proteomic studies

carried out on purified LDs have led to the identification of a large

number of other LD-associated proteins that belong to the

membrane traffic (e.g., Rab proteins) and fusion machineries (e.g.,

SNARE proteins) [13,16,17], which highlights the dynamic nature
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of these organelles. Therefore, it is now clear that LDs act as

integration centers of lipid metabolism in adipocytes and

understanding the intracellular mechanisms that control LD

biology holds the key to building a unified picture of the

(patho)physiological function of adipocytes.

Recently, the small GTPase Rab18 has been identified as a

novel protein associated with the LD surface in 3T3-L1 adipocytes

as well as in other LD-containing non-adipocyte cell lines

[13,16,18,19,20]. This GTPase has been found to regulate

intracellular membrane trafficking events in various different cells

types [21,22,23]. In adipocytes, the specific localization of Rab18

around LDs together with the observations that induction of

lipolysis in 3T3-L1 cells increased Rab18 recruitment to the

surface of LDs [18] and that Rab18 overexpression caused close

membrane apposition between LDs and ER-derived membranes

[20], led to the proposal that this GTPase might be involved in

mobilizing lipid esters stored in LDs. However, the exact

contribution of Rab18 to lipid metabolism and the mechanisms

regulating Rab18 function in adipose tissue remain to be

elucidated. In the present study, we show that, in addition to

mediating b-adrenergic action in adipocytes, Rab18 is a

downstream effector of the metabolic changes induced by insulin

in this cell type. Our data provide novel experimental evidence

supporting the involvement of this GTPase as a key mediator in

the bidirectional trafficking of lipids between LDs and the ER.

Finally, we explore the regulation of Rab18 expression in human

adipose tissue as a function of sex, adipose tissue localization and

obesity.

Results

Rab18 expression during differentiation of 3T3-L1 cells to
adipocytes

To analyze the expression pattern of Rab18 during the

differentiation of 3T3-L1 cells into adipocytes, we quantified

Rab18 mRNA content at 0, 3, 6, 10 and 12 days of differentiation

by quantitative RT-PCR. As shown in Fig. 1A, Rab18 expression

was significantly higher at all time points analyzed than in non-

differentiated cells, reaching a peak on day 3. At 6, 10 and 12 days

of differentiation, Rab18 mRNA levels tended to decrease,

although they remained approximately 75, 50 and 70% higher

than in non-differentiated cells. In turn, Rab18 protein content

was very low in non-differentiated cells, but it notably increased

after 3 days of differentiation and remained elevated thereafter

(Fig. 1C). To monitor adipogenesis, adiponectin gene expression

and protein content were quantified (Figs. 1B and 1C).

Regulation of Rab18 gene expression, protein content
and subcellular localization in 3T3-L1 adipocytes

In order to ascertain the specific contribution of Rab18 to

adipocyte function, we first studied how different extracellular

stimuli known to control lipid metabolism affect Rab18 production

and its subcellular localization in 3T3-L1 adipocytes. Regarding

Rab18 expression, 24-h treatments with either 100 nM insulin or

10 mM isoproterenol significantly increased Rab18 mRNA levels,

which accounted for by 183% and 108% above baseline levels,

respectively (Fig. 2A). Other treatments, such as 100 nM

dexamethasone and 10 nM GH, also tended to increase Rab18

gene expression, although these effects were not statistically

significant. Finally, exposure of 3T3-L1 adipocytes to 4.8 nM

pituitary adenylate-cyclase activating polipeptide-38 (PACAP38)

or 10 mM rosiglitazone did not alter Rab18 transcript levels. In

view of these results, we chose the strongest inductors of Rab18

expression (namely, insulin and isoproterenol) to explore their

effects on Rab18 protein content. As depicted in Fig. 2B, 24-h

treatment with either 100 nM insulin or 10 mM isoproterenol

elicited increases in Rab18 protein content of 38% and 59% as

compared to non-stimulated conditions, respectively. These data

indicate that Rab18 production is regulated by specific regulatory

inputs reaching the adipocytes and suggest that the GTPase may

form part of the intracellular machinery activated by such factors.

Previously, several studies have reported that Rab18 localizes at

the surface of LDs [18,20] and that isoproterenol treatment

increases this association [18]. Inasmuch as in the present work we

have found that, like isoproterenol, insulin modulates Rab18

production in adipocytes, we asked whether this hormone could

also affect intracellular localization of Rab18. To this end, 3T3-L1

adipocytes were subjected to a 4-h treatment with 100 nM insulin

and co-immunostained with antibodies against Rab18 and the

LD-surface resident, non-exchangeable protein perilipin [24], and

visualized under a confocal microscope. As a positive control, cells

Figure 1. Rab18 expression during differentiation of 3T3-L1
cells into adipocytes. (A) Quantitative RT-PCR analysis of Rab18 mRNA
levels in 3T3-L1 cells exposed to a hormonal differentiation cocktail for 0,
3, 6, 10 and 12 days. Gene expression was expressed as the ratio of target
gene concentration to the concentration of a housekeeping gene, the
18S rRNA (2.0610867.76107 and 3.26101362.261012 Rab18 and 18S
cDNA copies, respectively, per 0.1 mg total RNA in non-differentiated
cells). Three independent experiments 6 SEM were tested for
significance using the Newman-Keul’s comparison test. *, P,0.05 vs.
non-differentiated cells. (B) To monitor adipogenesis, adiponectin mRNA
transcripts (1.6610861.36108 cDNA copies/0.1 mg total RNA in non-
differentiated cells) were also quantified. (C) Representative immunoblots
from 3 independent analyses of Rab18 and adiponectin protein content
in 3T3-L1 cell extracts during differentiation. b-actin immunosignal was
used as reference for protein charge.
doi:10.1371/journal.pone.0022931.g001
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were treated with 10 mM isoproterenol and processed for

immunocytochemistry. Figure 3A shows representative images of

cells under basal conditions and cells treated with either insulin or

isoproterenol. As shown, in non-treated cells Rab18 a certain level

of immunoreactivity was detected around the LDs, displaying a

significant degree of overlap with perilipin immunofluorescence

(PC = 0.1960.05; n = 8 cells; Fig. 3A, top panels). Insulin

administration notably enhanced Rab18 immunoreactivity around

LDs and, hence, colocalization with perilipin (PC = 0.3860.07;

n = 9 cells; Fig. 3A, mid panels). Likewise, colocalization of Rab18

and perilipin also significantly increased in response to the b-

adrenergic agonist (PC = 0.3460.04; n = 8 cells; Fig. 3A, bottom

panels). To confirm the effectiveness of the treatments, we

measured the average LD size under each condition. It was found

that LDs were significantly larger in insulin-treated cells than in

controls, which is consistent with an increase in lipid deposition,

while LDs were smaller after isoproterenol stimulation, likely due

to increased TAG lipolysis (1.3960.13, 1.8260.10, and

0.1860.02 mm2 in control, insulin- and isoproterenol-treated cells,

respectively; P,0.05).

The effect of insulin and isoproterenol on Rab18 association

with LDs was also explored using subcellular fractionation in a

sucrose density gradient followed by immunoblotting of the

resulting fractions. Under basal conditions, the Rab18 immuno-

signal was mainly localized in the perilipin-enriched and

microsomal fractions (top and bottom of the gradient respectively),

although a degree of immunoreactivity was also noticeable in some

cytosolic fractions (Fig. 3B). After insulin treatment, Rab18

immunolabeling was 43% higher in the perilipin-enriched

fractions, whereas the amount of protein present in the

Figure 2. Regulation of Rab18 gene expression and protein
content in 3T3-L1 adipocytes. (A) 3T3-L1 adipocytes were treated
with 10 mM isoproterenol (ISO), 100 nM dexamethasone (DEX), 10 nM
GH, 4.8 nM PACAP (PAC), 100 nM insulin (INS), or 10 mM rosiglitazone
(ROS) for 24 h, and Rab18 mRNA levels were evaluated by quantitative
RT-PCR. 18S rRNA expression was used as internal control
(1.7610969.26108 and 1.16101261.561011 Rab18 and 18S cDNA copies,
respectively, per 0.1 mg total RNA in untreated cells). Data represent the
average 6 SEM of 3 independent experiments. *, P,0.05 vs. untreated
cells. . (B) Quantification of Rab18 band intensity in extracts from 3T3-L1
adipocytes cultured in the presence or absence of 100 nM insulin (INS) or
10 mM isoproterenol (ISO) for 24 h s. b-actin immunostaining was used
as loading control. Data are expressed as the mean 6 SEM of 3
independent experiments. *, P,0.05 vs. untreated cells. A representative
immunoblot of Rab18 and b-actin is shown.
doi:10.1371/journal.pone.0022931.g002

Figure 3. Rab18 subcellular localization in 3T3-L1 adipocytes
under insulin or isoproterenol stimulation. (A) Confocal micro-
scope images of 3T3-L1 cells under basal conditions (top panels) or
challenged with 100 nM insulin (middle panels) or 10 mM isoproterenol
(bottom panels) for 4 h and co-immunostained for Rab18 (red) and the
LD-associated protein perilipin (green). Colocalization of the two
immunosignals can be seen in the most right panels (yellow). Scale
bars, 5 mm. (B) Immunoblots of sucrose gradients from 3T3-L1 cells
under non-stimulated conditions and after 4-h treatments with 100 nM
insulin and 10 mM isoproterenol. Perilipin and calnexin immunoreactiv-
ities were used as markers of LD-enriched fractions (light fractions) and
microsomal fractions (heavy fractions), respectively. One representative
experiment out of three with similar results is shown.
doi:10.1371/journal.pone.0022931.g003
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microsomal fraction remained the same as in control conditions.

In addition, insulin provoked a slight decrease in Rab18

immunoreactivity in cytosolic fractions. Regarding isoproterenol,

this treatment induced a 48% increase in Rab18 immunoreactivity

associated with perilipin-enriched fractions, similar to that

previously reported [18], and a concomitant decrease in the

microsomal and cytosolic fractions. In sum, these findings indicate

that, as in isoproterenol-induced b-adrenergic receptor activation,

the intracellular signaling pathway initiated by insulin involves

Rab18 recruitment to the surface of LDs, which further supports

the notion of a role for this GTPase in the metabolic response of

3T3-L1 adipocytes to this hormone.

We next examined the intracellular signaling pathways that

mediate the effect of insulin and isoproterenol in Rab18

association to LDs. In adipocytes, most of the metabolic actions

of insulin are mediated by activation of phosphatidilinositol-3-

kinase (PI3K) that phosphorylates Akt, the latter being respon-

sible for the activation of various different substrates [25,26]. We

therefore investigated whether the increase in Rab18 at the

surface of LDs induced by insulin is a consequence of activation

of PI3K/Akt by quantifying the degree of colocalization between

Rab18 and perilipin immunolabeling in cells treated with insulin

in the presence of the PI3K blocker wortmannin. This showed

that in the presence of wortmannin, insulin was prevented from

increasing colocalization of Rab18 and perilipin at the surface of

LDs (PC = 0.5060.09 vs. 0.3660.02 in insulin-treated cells in the

absence and presence of wortmannin, respectively; P,0.05;

Fig. 4A). These data indicate that insulin exerts its effect on the

intracellular localization of Rab18 via activation of the PI3K/Akt

signaling cascade. In the case of isoproterenol, its effect on

lipolysis in adipocytes is mediated by activation of b-adrenergic

receptors, which initiates the adenylate cyclase (AC)/cAMP/

protein kinase A (PKA) pathway [27]. PKA phosphorylates

hormone sensitive lipase (HSL), which then translocates to the

LD surface and triggers the enzymatic reactions that lead to fatty

acid hydrolysis [28]. In the current work, we demonstrate that

the isoproterenol-induced effect on Rab18 localization is

mediated by activation of the AC/cAMP/PKA pathway,

inasmuch as blockade of either AC by treating cells with MDL

12,330A or PKA by using H89 prior to isoproterenol

administration significantly decreased colocalization of Rab18

and perilipin immunosignals on the LD surface (PC = 0.4460.05

vs. 0.2760.03 and 0.2660.07 in isoproterenol-treated cells in the

absence and presence of MDL 12,330A or H89, respectively;

P,0.05; Fig. 4B), reaching levels comparable to those obtained

in non-treated cells.

Rab18 and LD apposition to ER membranes
In a previous study, Ozeki and coworkers [20] found that

overexpression of exogenous Rab18 induced apposition of LD and

ER membrane surfaces. Herein, we have extended these findings

concerning endogenous Rab18 by demonstrating that rapproche-

ment of Rab18-bearing LDs to ER membranes is a process

regulated by extracellular inputs reaching the adipocytes,

including both insulin and b-adrenergic stimulation. Specifically,

colocalization analysis of Rab18 and the ER markers calnexin

(Fig. 5A) and protein disulfide isomerase (PDI; Fig. 5B) revealed

that, under basal conditions, there is little colocalization between

this GTPase surrounding LDs and the ER. Accordingly, the

degree of colocalization between Rab18 and calnexin or PDI

immunoreactivities was found to be very low in non-stimulated

cells. On the other hand, after insulin or isoproterenol adminis-

tration, colocalization between Rab18 and both ER markers

notably increased.

Rab18 contribution to lipogenesis
To investigate the specific contribution of Rab18 to LD

physiology, we carried out Rab18 overexpression and silencing

studies in 3T3-L1 cells. For overexpression experiments, cells were

transiently transfected with a vector coding for either Rab18 or the

constitutive active mutant Rab18(Q67L) fused to GFP. In all cases,

transfection efficiency was over 90% as assessed by fluorescence

microcopy (data not shown). Supplementary Fig. S1 (panel A)

shows the intracellular distribution of GFP-Rab18 in 3T3-L1

adipocytes under basal conditions and after insulin treatment. As

shown, exogenously expressed Rab18 mainly localized around a

particular population of Oil-Red O labeled LDs, similar to the

pattern found for endogenous Rab18. The specific GFP-Rab18

Figure 4. Intracellular signaling pathways mediating the effect
of insulin and isoproterenol on Rab18 association with LDs. (A)
Representative confocal images of 3T3-L1 adipocytes treated with
100 nM insulin for 4 h in the absence (top panels) or presence of the
PI3K blocker wortmannin (1 mM). (B) Representative confocal images of
3T3-L1 adipocytes treated with 10 mM isoproterenol for 4 h in the
absence (top panels) or presence of the PKA blocker H89 (1 mM; middle
panels) or the adenylate cyclase blocker MDL 12,330 (1 mM; bottom
panels). After treatment, cells were co-immunostained for Rab18 (red)
and perilipin (green). Colocalization of the two proteins is shown in the
images on the far right (yellow). Scale bars, 5 mm.
doi:10.1371/journal.pone.0022931.g004
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distribution around LDs can be seen in more detail in the rendered

image (Fig. S1, panel B), which illustrates Oil-Red O stained LDs,

one showing a ring-shaped coating of GFP-Rab18. Similar to what

had been previously observed in non-transfected cells, insulin

increased mean LD size in mock-transfected 3T3-L1 cells, an

effect that was not observed when cells were challenged with

isoproterenol (Fig. S1, panel C). Specifically, comparison of the

average LD size from GFP-expressing cells versus GFP-Rab18-

expressing cells revealed that, in the latter group, LDs were

significantly larger than in mock-transfected cells both under basal

conditions and after insulin administration or isoproterenol

treatment (Fig. S1, panel C). The strong effect of insulin on LD

size in Rab18-overexpressing cells as compared to GFP-transfect-

ed cells is noteworthy, and suggests that Rab18 may facilitate

insulin-mediated lipid uploading into LDs.

Quantification of the lipogenic activity in Rab18-expressing

3T3-L1 cells revealed that, under basal conditions, Rab18

overexpression provoked a 38% increase in triglyceride content,

and this seemed to be a maximal level, as insulin treatment was

unable to induce further increases. The stimulatory effect of

Rab18 on basal lipogenesis was reproduced by transfection of cells

with the constitutively active mutant Rab18(Q67L) (Fig. 6A).

For silencing studies, 3T3-L1 cells were transfected with a

synthetic siRNA, which reduced Rab18 mRNA levels by 60%, as

evaluated by real-time RT-PCR, and lowered endogenous levels

of Rab18 protein by 70%, as assessed by immunoblotting (Fig. 6B).

As shown in Fig. 7C, reduction in Rab18 expression did not

modify basal lipogenic activity but abrogated insulin-stimulated

lipogenesis. Overall, results from our overexpression and silencing

studies suggest that Rab18 facilitates triglyceride accumulation in

LDs.

Rab18 contribution to lipolysis
Given the increased association of Rab18 with the surface of

LDs upon stimulation of lipolysis ([18] and our present data), we

assessed how Rab18 overexpression and knock-down affect the

lipolytic activity of adipocytes. Specifically, we found that GFP-

Rab18 overexpression induced a 44% increase in glycerol release

under basal conditions, mimicking the effect of forskolin in mock-

transfected cells (Fig. 7A). Moreover, forskolin did not cause any

further enhancement in the lipolytic activity of cells. Likewise,

Rab18 constitutive active mutant Rab18(Q67L) also significantly

increased basal lipolysis to the same extent as seen with the wild-

type GTPase (Fig. 7A). In order to ascertain whether this effect

was restricted to fully differentiated cells, we overexpressed GFP-

Rab18 at an early stage of the differentiation process (4 days),

when cells already present b-adrenergic receptors [29] and

adenylate-cyclase activity is enhanced in response to isoproterenol

[30], and evaluated the effect of forskolin on lipolysis two days

after transfection. These results revealed that Rab18 overexpres-

sion exerted the same effect on the lipolytic rate in cells

differentiated for 6 days (data not shown) as those differentiated

for 10 days.

Regarding the effect of Rab18 silencing on lipolysis, glycerol

release was unaltered in untreated cells while forskolin adminis-

tration failed to stimulate lipolysis, as compared to cells transfected

with the negative control siRNA (Fig. 7B). These results provide

strong evidence for a role for Rab18 in TAG hydrolysis and,

together with the data obtained on insulin, suggest that this

GTPase is a molecular player common to the lipolytic and

lipogenic pathways converging in LDs.

Rab18 expression in human adipose tissue
We assessed the expression of Rab18 in both subcutaneous and

omental adipose tissue samples from lean (BMI = 21.861.3 kg/

m2; n = 8 men and 4 women) and obese (BMI = 48.262.6 kg/m2;

n = 16 men and 18 women) individuals. This latter group was

Figure 5. Effects of insulin and isoproterenol on Rab18
localization in relation to the ER. Representative confocal images
of 3T3-L1 adipocytes under basal conditions or treated with 100 nM
insulin or 10 mM isoproterenol for 4 h. After treatment, cells were co-
immunostained for Rab18 (red) and the ER markers calnexin (A) or
protein disulfure isomerase (B). In all cases, regions of interest containing
a group of Rab18-positive LDs are presented. The colocalization channel
was isolated using Imaris 6.4 (Bitplane) and shown alone in the images on
the far right. Scale bars, 2 mm. To quantify the degree of colocalization,
Pearson’ coefficients were calculated for each experimental condition
and represented as the mean 6 SEM of, at least, 10 cells per experimental
group. *, P,0.05 vs. untreated cells.
doi:10.1371/journal.pone.0022931.g005
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Figure 6. Effect of Rab18 overexpression and silencing on insulin-induced lipogenesis. (A) The effect of Rab18 overexpression on basal and
insulin-induced lipogenic activity in 3T3-L1 adipocytes was assessed by transfecting cells with GFP-tagged versions of wild-type Rab18 or the
constitutively active mutant Rab18(Q67L) for 48–72 h. In parallel, a group of cells (controls) were transfected a vector expressing GFP alone. GFP
fluorescence served to confirm transfection efficiencies higher than 90% for each experiment prior to further experimental manipulation. After 4-h
treatment, cells were lysed and intracellular TAG content was quantified. TAG content was normalized to total protein content and expressed as the
mean 6 SEM of 6 independent experiments. (B) Rab18 silencing was achieved by transfecting 3T3-L1 cells with a mouse Rab18 specific siRNA. As control,
a group of cells were transfected with a scramble negative control siRNA. Rab18 knock down was confirmed by quantitative RT-PCR and Western blot.
(C) After 72 h, cells were challenged to 100 nM insulin for 4 h, harvested and lysed. TAG was content quantified as indicated above and expressed as the
mean 6 SEM of 6 independent experiments. *, P,0.05 and **, P,0.01 vs. untreated control cells. #, P,0.05 vs. insulin-treated control cells.
doi:10.1371/journal.pone.0022931.g006

Figure 7. Effect of Rab18 overexpression and silencing on forskolin-induced lipolysis. (A) The effect of Rab18 overexpression on basal and
forskolin-induced lipolysis was evaluated by transfecting 3T3-L1 adipocytes with GFP-tagged, wild-type Rab18 or the constitutively active mutant Rab18(Q67L)
for 48–72 h. In each experiment, a group of cells (controls) were transfected a vector expressing GFP alone. GFP fluorescence served to confirm transfection
efficiencies higher than 90% for each experiment prior to further experimental manipulation. After 30 min in the presence or absence of forskolin, the culture
medium was collected and glycerol release measured with Free Glycerol Reagent kit (Sigma-Aldrich). Glycerol concentration in the medium was normalized to
total protein and expressed as the mean 6 SEM of 5 independent experiments. (B) Rab18 silencing was achieved by transfecting 3T3-L1 cells with a mouse
Rab18 specific siRNA. After 72 h, cells were challenged with 50 mM forskolin for 30 min. Glycerol release was quantified as indicated above and expressed as
the mean 6 SEM of 5 independent experiments. *, P,0.05 vs. untreated control cells. #, P,0.05 vs. forskolin-treated control cells.
doi:10.1371/journal.pone.0022931.g007
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divided into normoglycemic (NG; n = 5 men and 6 women),

insulin resistant (IGT; n = 5 men and 6 women), and type 2

diabetic (T2D; n = 6 men and 6 women) subjects. We first

explored the subcellular distribution of the GTPase in isolated

mature adipocytes from lean individuals, finding that Rab18

immunoreactivity is associated with the surface of LDs in

adipocytes from both omental and subcutaneous fat (Fig. S2).

Consistently, RT-PCR analysis revealed that Rab18 mRNA is

expressed in both adipose tissue depots, but transcript levels of the

GTPase were higher in subcutaneous adipose tissue than in

omental fat irrespective of the sex of the individual (Table S1). On

the other hand, Rab18 gene expression levels were higher in both

fat depots in lean women with respect to lean men, although

differences between the sexes only reached statistical significance

in omental adipose tissue (Table S1).

When the mRNA data from the three groups of obese

individuals were analyzed together, no differences for Rab18

levels were observed as a function of sex (Table S1). Similar Rab18

mRNA levels were observed in the two fat depots in obese women

whereas in obese men Rab18 transcript levels were higher in

subcutaneous than in omental fat (Table S1). Specifically, Rab18

expression in omental adipose tissue was upregulated by 237, 154

and 188% in normoglycemic, insulin resistant and T2D obese

women, respectively, whereas no significant differences were found

in the subcutaneous depot between lean and obese women

(Figs. 8A and 8B). In contrast, Rab18 mRNA levels were higher in

both omental and subcutaneous fat in obese men than in lean men

(Fig. 8C and 8D), although the greatest differences in Rab18

mRNA content between obese and lean patients were found in the

former depot. Further, Rab18 transcript content in omental

adipose tissue from T2D men, though numerically higher than

that observed in lean men, was not significantly different from

either this group or the levels observed in the other groups of obese

patients (Fig. 8C).

Finally, the protein expression of Rab18 in adipose tissue

samples from lean and obese individuals exhibited a similar

pattern to that observed in the gene expression analysis (Fig. 8E).

Discussion

LDs are highly dynamic and complex organelles specialized in

intermembrane lipid transport and responsible for lipid metabo-

lism [16]. Several independent proteomic studies aimed at

isolating and characterizing the protein composition of the LD

surface have strongly supported this view, as they led to the

identification of a plethora of proteins, many of which are directly

related to intracellular membrane trafficking and fusion events (i.e.,

Rab, SNARE and motor proteins) [17,31,32,33]. Herein, we

provide experimental evidence supporting a role for a member of

the Rab family, Rab18, in adipogenesis as well as in mediating the

lipogenic and lipolytic actions of insulin and isoproterenol,

respectively, on 3T3-L1 adipocytes. Moreover, we have identified

the intracellular pathways responsible for the Rab18 association

with LDs and provided experimental evidence that this process

entails rapprochement of LDs to ER membranes. Finally, we have

demonstrated, for the first time, the presence of Rab18 in human

adipose tissue and showed that the expression of this GTPase is

correlated to obesity.

Studies in differentiating 3T3-L1 cells, the cell line most

commonly used to study adipogenesis, revealed that Rab18

mRNA reached a maximal level on day 3 of differentiation,

coinciding with the appearance of late differentiation markers (i.e.

lipogenic and lipolytic enzymes, as well as several LD-coating

proteins such as perilipin), which are responsible for the

maintenance of the adipocyte phenotype in 3T3-L1 cells

[34,35]. In addition, Rab18 protein content progressively

increased during differentiation. These data indicate that, as

previously suggested for other Rab proteins (namely, Rab3A and

Rab3D) [36,37], Rab18 may play a role in the differentiation of

3T3-L1 fibroblasts to mature adipocytes. Notably, we found that

insulin, a key component of the hormonal cocktail employed to

induce this process in 3T3-L1 adipocytes [38], up-regulated

Rab18 expression and increased Rab18 protein content in these

cells. Furthermore, this hormone also triggered Rab18 association

with LDs, a process that seems to be mediated by activation of the

key upstream regulator of the metabolic actions induced by insulin

in adipocytes, PI3K [25]. Similar to the pattern observed herein

for Rab18, previous studies have reported that insulin induces

other coating proteins to localize with LDs, including S3–12

[39,40] and OXPAT [41]. Moreover, it has been shown that

insulin, via PI3K, induces the activation and intracellular

redistribution in adipocytes of another member of the Rab family,

Rab4, which is involved in GLUT-4 vesicle trafficking [42]. These

findings suggest that Rab proteins and, in particular Rab18, may

be part of the intracellular machinery transducing the metabolic

effects of insulin in this cell type. In line with this notion, the

increase in Rab18 association with LDs induced by insulin

concurred with the stimulation of intracellular TAG accumulation

evoked by this hormone and, in addition, this later effect was

inhibited in Rab18-silenced cells. These data support the view that

insulin-induced recruitment to LDs may contribute to the

lipogenic action of this hormone. A role for Rab18 in promoting

lipogenesis is further backed by our observations of the increased

lipogenic rate and LD size evoked by the overexpression of this

GTPase in 3T3-L1 cells.

Intriguingly, the effects of insulin on the expression and

intracellular localization of Rab18 were strikingly similar to those

induced by b-adrenergic receptor activation which, as is widely

known and also shown in this study, has an opposite effect to that

of insulin on lipid metabolism. Moreover, Rab18 overexpression

increased TAG hydrolysis at both early and late stages of 3T3-L1

cell differentiation, and Rab18 silencing blunted forskolin-

stimulated lipolysis in differentiated 3T3-L1 cells. Overall, these

data provide evidence for the participation of this GTPase in the

regulation of lipolysis. When these results are viewed together with

those obtained concerning the response to insulin, a role for

Rab18 as a common mediator in lipogenic and lipolytic processes

seems plausible. Although this dual contribution of Rab18 to the

regulation of lipid metabolism may seem paradoxical, other

proteins have been shown to affect these antagonistic processes in

a similar manner. For example, ATGL and its coactivator CGI-

58, besides their well-known role in TAG hydrolysis [43], also

exhibit acyltransferase activity and, therefore, are able to promote

lipogenesis [44,45,46]. However, the relative contribution of these

contrasting functions remains unknown so far. In the case of

Rab18, our findings that both insulin and isoproterenol increased

the colocalization of this GTPase with ER markers, which is

consistent with previous observations obtained in 3T3-L1 cells

overexpressing Rab18 [20], suggest that the ER is the joining-

point that enables Rab18 action to affect lipolysis and lipogenesis.

In line with this, when lipid homeostasis demands fatty acid

storage via insulin-induced lipogenesis, fatty acids are taken up by

cytosolic fatty acid binding proteins and transported into the ER

lumen for further processing to triglycerides [reviewed in

15,24,47]. Finally, lipid esters are loaded into LDs by a process

that, although not yet well understood, appears to rely upon

interaction of the surface of LDs with specialized regions of ER

membranes [13]. On the other hand, during b-adrenergic
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receptor-induced lipolysis, the products derived from triglyceride

hydrolysis are thought to be unloaded into the ER lumen as a

result of the apposition and direct contact of the LD phospholipid

monolayer and the ER membrane, which will ultimately cause

depletion of LD lipid content and, eventually, LD regression [13].

Thus, given the close physical and functional interactions between

LDs and ER membranes, combined with the general function of

Rab GTPases in intracellular membrane trafficking [48], it is

tempting to speculate that the presence of Rab18 on LDs may

entail bringing LDs and ER membranes together, which would

facilitate lipid loading and/or unloading from and to the ER

reservoir depending on the metabolic demands of adipocytes.

Consistent with this idea, a role for Rab18 in regulating tethering

and/or fusion events on ER membranes has been recently

proposed [21,22,23]. Mechanistically, Rab proteins accomplish

their functions by activating downstream effectors that ultimately

affect the molecular machinery of a particular process [49]. For

example, Rab27A is involved in controlling trafficking of secretory

granules in a wide variety of secretory cells through interaction

with cell-type- and tissue-specific Rab27A effectors [50]. In

particular, when Rab27A recruits Slp4-a, cells dramatically

decrease their hormone secretion rate [51], whereas when

Rab27A binds rabphilin, the secretory activity of the cells greatly

increases [52]. In this scenario, it is plausible that, depending on

Figure 8. Assessment of Rab18 expression levels in human adipose tissue in relation to obesity and insulin resistance. Omental and
subcutaneous adipose tissue samples were obtained from the abdominal region of women (A and B) and men (C and D) with different degrees of
obesity and/or insulin-resistance: lean, obese normoglycemic (NG), obese with impaired glucose tolerance (IGT) and obese type 2 diabetic (T2D)
patients. After removal, tissue samples were processed for total RNA extraction. Rab18 expression was evaluated by quantitative RT-PCR using
specific primers for human Rab18. The expression of human 18S rRNA in each sample was evaluated as an internal housekeeping gene. Absolute
cDNA copy number for lean patients were 2.1610561.76105 Rab18 copies and 6.66101065.561010 18S copies in omental fat from women,
5.9610463.16104 Rab18 copies and 5.76101061.561010 18S copies in omental fat from men, 4.9610463.26104 Rab18 copies and
1.16101066.96109 18S copies in subcutaneous fat from women, and 5.2610462.06104 Rab18 copies and 2.86101061.36109 18S copies in
subcutaneous fat from men. *, P,0.05 vs. lean subjects. (E) Rab18 protein content in omental and subcutaneous adipose tissue samples from lean
and obese women and men. In each blot, the b-actin immunosignal from the same sample was used as internal control.
doi:10.1371/journal.pone.0022931.g008
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the extracellular input reaching adipocytes (i.e. insulin or

catecholamines), Rab18 interacts with different effector proteins,

which in turn results in the repositioning of LDs to appropriate

locations relative to specific subdomains of the ER specialized in

either lipogenesis or lipolysis [13,16]. Alternatively, given the

demonstrated heterogeneity of LDs within cells in terms of their

repertoire of coating proteins [12], lipogenic or lipolytic stimuli

may target Rab18 to distinct LD subpopulations specialized in

lipid storage or breakdown. Unfortunately, the specific Rab18

effectors in adipocytes remain to be identified. Ongoing

experiments in our laboratory are focused on the identification

of Rab18 interacting proteins in adipose tissue, which would pave

the way for a better understanding of Rab18 function in relation to

lipid metabolism.

Based on our findings on Rab18 in 3T3-L1 cells and given the

relationship between human obesity and obesity-associated T2D

and altered adipocyte lipid metabolism [53], we examined Rab18

in human adipose tissue in subjects with different metabolic

conditions. To our knowledge, this is the first report on the

characterization of a member of the Rab family in human fat in

relation to sex, depot, degree of adiposity and insulin sensitivity. In

particular, we have demonstrated that, similarly to what is seen in

3T3-L1 cells ([18] and this study), Rab18 also coats the surface of

LDs in human adipocytes. We found both sex- and depot-related

differences in Rab18 expression in non-obese subjects, with

women vs. men and subcutaneous vs. omental adipose tissue

showing higher mRNA and protein levels of this GTPase. These

differences might reflect the distinct, sex-dependent metabolic

activity of omental and subcutaneous adipose tissue [54]. Further,

it has been shown that, compared with omental adipocytes,

subcutaneous adipocytes in non-obese women are larger, have

higher LPL activity, and are more lipolytic on an absolute basis,

which may underlie the higher fat storage capacity in this depot in

women [55]. Additionally, in both sexes subcutaneous adipocytes

are more sensitive to insulin actions than visceral adipocytes

[reviewed by 56], yet the opposite holds true for catecholamines

[54,56]. On the other hand, no differences sex-related differences

in Rab18 gene expression were detectable in obese individuals,

mainly due to the significant upregulation of Rab18 mRNA levels

observed in both fat depots in morbidly obese men. Indeed, except

for the subcutaneous depot in women, obesity was associated with

an increase in Rab18 expression, which suggests that upregulation

of this GTPase may be an appropriate response to managing

energy excess. Nevertheless, these results were unexpected as

recent studies in humans, based either on microarray data [57]

and on the analysis of the expression of specific proteins involved

in lipolysis (i.e. HSL; [58]) or lipogenesis (i.e. FAS; [59]), suggest

that both processes are decreased in severely obese subjects. In this

scenario, it is tempting to speculate that the enhanced expression

of Rab18 in obese individuals is an adaptive response to overcome

the alterations in lipid metabolism occurring in obesity. Finally,

although we observed a tendency toward lower Rab18 mRNA

expression in obese T2D individuals compared to obese NG and

IGT patients (specifically in omental fat in men), there does not

appear to be an apparent association between the expression of

this GTPase and insulin sensitivity.

In conclusion, our data provide novel insights concerning the

distribution and function of Rab18 in adipocytes. Specifically,

through its interaction with the surface of LDs and, most likely,

with ER membranes, Rab18 regulates adipocyte lipid metabolism

in response to both lipogenic (insulin) and lipolytic (b-adrenergic)

inputs. In humans, Rab18 is associated with the surface of LDs in

adipocytes and its expression in adipose tissue, which displays sex-

and depot-related differences, correlates with increased adiposity,

providing evidence for the participation of this GTPase in the

regulation of human adipocyte biology under both normal and

pathological conditions.

Materials and Methods

Cell culture and in vitro experimental setups
3T3-L1 cells [obtained from the American Type Culture

Collection (Manassas, VA)] were differentiated into adipocytes, as

previously described [60]. Briefly, 100% confluent cells (day 0)

were incubated in DMEM containing 10% FBS, 0.5 mM

isobutylmethylxanthine (IBMX), 0.25 mM dexamethasone and

10 mg/ml insulin for 72 h (day 3). The medium was replaced by

DMEM with 10% FBS and 10 mg/ml insulin for an additional 72-

h period (day 6) and was then exchanged by DMEM without

insulin until day 10, when all the experiments were carried out.

Rab18 and adiponectin mRNA expression and protein content

during adipocyte differentiation were assessed in 3T3-L1 cells at

days 0, 3, 6 and 10 of differentiation. The hormonal control of

Rab18 expression in 3T3-L1 cells was evaluated at day 10 of

differentiation by preincubating cells in 1 ml serum-free culture

medium for 2 h and then treating them with 10 mM isoproterenol,

100 nM dexamethasone, 10 nM GH, 4.8 nM PACAP38, 100 nM

insulin, or 10 mM rosiglitazone. After a 24-h treatment period,

cells were resuspended in 1 ml TRIzol Reagent (Invitrogen Corp.,

Barcelona, Spain) and processed for RNA analysis. After

treatment of cells with 100 nM insulin or 10 mM isoproterenol

for 24 h, Rab18 protein and adiponectin levels were determined

by Western blot using an anti-rat Rab18 antibody (1:500;

Calbiochem, Barcelona, Spain) and an anti-mouse adiponectin

antibody (1:5000; Chemicon Int. CA).

The effect of insulin and isoproterenol on the intracellular

distribution of Rab18 and the contribution of different compo-

nents of the corresponding signaling pathways were investigated

by immunocytochemistry. Specifically, 3T3-L1 cells were treated

with insulin (100 nM) in the presence or absence of the PI3K

inhibitor wortmannin (1 mM) for 4 h. Parallel cultures were

exposed to isoproterenol (10 mM) alone or in combination with the

AC blocker MDL 12,330A (1 mM) or with the PKA blocker H89

(1 mM) for 4 h. All inhibitors were added alone to cell cultures

90 min prior to the 4-h combined treatment.

Quantification of Rab18 gene expression by real-time
RT-PCR

For studies in 3T3-L1 cells, 2 mg of total RNA were used for RT

and subsequent real-time PCR using SYBR Green tagging

quantification in an iCycler IQ PCR detection system (Bio-Rad,

Madrid, Spain). The specific primer pair used for Rab18 was 59-

CTCTGAAGATACTCATCATCGG-39 sense and 59-CCTCT-

CTTGACCAGCTGTATCCCA-39 antisense, which amplify a

185-bp fragment, and that used for adiponectin was 59-GTC-

CCGGAATGTTGCAGTAG-39 sense and 59-TGGAGAAGC-

CGCTTATGTGT-39 antisense. As an endogenous reference

gene, the 18S small subunit ribosomal RNA gene was amplified in

parallel to Rab18 using the specific primer pair 59-CCCATTC-

GAACGTCTGCCCTAT-39 sense and 59-TGCTGCCTTCC-

TTGGATGTGGTA-39 antisense, which amplify a 137-bp

fragment.

Immunocytochemistry
3T3-L1 adipocytes were fixed with 4% paraformaldehyde

(15 min), incubated with PBS containing 0.1% saponin and 1%

BSA (1 h at RT), and exposed to anti-rat Rab18 antibody (1:500;

Calbiochem) or anti-human Rab18 (1:100; Sigma Aldrich) in
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combination with guinea pig anti-human perilipin (1:100; Progen,

Heidelberg, Germany). When Rab18 was used in combination

with mouse monoclonal anti-human calnexin (1:50; Abcam,

Cambridge, UK) or mouse monoclonal anti-rat protein disulfide

isomerase (PDI) (1:50; Abcam), cell permeabilization was assessed

with PBS containing 0.3% Triton-X-100 and 1% BSA (1 h at

RT). After incubation of cells with the primary antibodies

overnight at 4uC, the immunoreaction was revealed with an

anti-rabbit Alexa594-conjugated secondary antibody (1:500;

Invitrogen Corp.) alone or in combination with anti-guinea pig

or anti-mouse Alexa488-conjugated secondary antibodies (1:500;

Invitrogen Corp.). Samples were visualized under a TCS-SP2-

AOBS confocal laser scanning microscope (Leica Corp., Heidel-

berg, Germany). Image stacks were deconvoluted using the

Huygens Essential software package (version 2.4.4; (SVI, Hilver-

sum, The Netherlands). The degree of colocalization was

estimated by determining an overlapping pixel map of the two

fluorescent channels (i.e., a mask) using the Colocalization Finder

plugin for ImageJ 1.32 (NIH, Bethesda, MA), as previously shown

[61] and Imaris 6.4 (Bitplane, Zurich, Switzerland). The

colocalization was then quantified using Pearson’s coefficient

(PC), a value that is not sensitive to the intensity of the background

or that of the overlapping pixels. This coefficient takes a value

between 21 and +1, with 21 representing no overlap whatsoever

between images and +1 a perfect overlap of the channels. Negative

control samples without the primary antibody were included to

assess non-specific staining.

Western blot analysis
Protein extracts were obtained from cells lysed in buffer

containing 50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1%

Triton-X-100, 1 mM EDTA, and 1 mg/ml anti-protease cocktail,

and then 150 mg of total protein was loaded onto 12.5% SDS-

PAGE gels. Rabbit polyclonal antibodies against rat Rab18

(Calbiochem) and b-actin (Sigma-Aldrich, London, UK) were

dispensed overnight at 4uC and peroxidase-conjugated secondary

antibodies were administered for 1 h at room temperature. The

immunoreaction was visualized using ECL plus (GE Healthcare,

Buckinghamshire, UK) and band intensities were assessed using

ImageJ 1.32 (NIH). Data were normalized to the corresponding b-

actin band intensities.

Subcellular fractionation
Subcellular fractionation was performed as previously described

[62]. 3T3-L1 adipocytes were incubated in the presence or

absence of 100 nM insulin and 10 mM isoproterenol for 4 h.

Then, cells were rinsed with Ca2+- and Mg2+-free medium (D-

PBS; Invitrogen Corp.) and resuspended in 3 ml lysis buffer

containing 25 mM Tris-HCl, 100 mM KCl, 1 mM EDTA, 5 mM

EGTA and 1 mg/ml anti-protease cocktail (pH 7.4). Cells were

disrupted and mixed with an equal volume of lysis buffer

containing 1.08 M sucrose and extracts were centrifuged at

1,500 g for 10 min. Supernatants were transferred to a 12-ml

ultracentrifuge tube and sequentially overlaid with 2 ml each of

0.27 M and 0.135 M sucrose buffer and, finally, free-sucrose

solution containing 25 mM Tris-HCl, 1 mM EDTA, and 1 mM

EGTA (pH 7.4). After centrifugation at 130,000 g (1 h, 4uC), 8

fractions of 1.5 ml each were collected. After protein precipitation,

extracts from each fraction were analyzed by Western blot as

described above.

Electroporation
3T3-L1 adipocytes were electroporated as previously described

[63]. Briefly, cells cultured on 150-mm Petri dishes were

mechanically resuspended, washed twice with D-PBS and

submerged into 100 ml D-PBS containing 50 mg of the corre-

sponding plasmids or 2 nmol siRNAs. Electroporation was

performed in 2-mm thick electroporation cuvettes using a Gene

Pulser Xcell (Bio-Rad), which delivered a 500 mF pulse at 110 V.

After electroporation, cells were plated onto 35-mm dishes and

allowed to recover in DMEM supplemented with 10% FBS for

48–72 h. For overexpression analysis, cells were electroporated

with a phrGFP expression vector (mock-transfected cells), or with

expression vectors coding for GFP-Rab18 or for a constitutively

active mutant of Rab18 [namely, Rab18(Q67L)] fused to GFP,

and cultured for 48 h prior to the experiments. For silencing

studies, 2 nmols of a Rab18-targeted commercial double stranded

siRNA oligonucleotide (Applied Biosystems-Ambion, Austin, TX)

or a specific scramble negative control siRNA purchased from the

same company were used. After electroporation, cells were kept in

culture for 72 h before measuring lipolytic and lipogenic activities.

GFP-Rab18 overexpression was confirmed by fluorescence

microscopy and Western blot, and Rab18 silencing rate was

estimated by quantitative RT-PCR and Western blot.

Analysis of LD number and size
3T3-L1 adipocytes were electroporated with either the GFP

plasmid (i.e., mock-transfected cells) or with the GFP-Rab18

overexpression vector and cultured for 48 h. After that, cells were

maintained in serum-free medium for 2 h, and incubated in the

presence or absence of 10 mM isoproterenol or 100 nM insulin for

1 h. Then, cells were fixed with 4% paraformaldehyde, washed

with 60% isopropanol and incubated with Oil Red O solution

(Sigma-Aldrich) for 30 min. Samples were then visualized by

confocal microscopy. Ten cells per experimental condition were

randomly selected and the average LD number and size per cell

was estimated using ImageJ 1.32 (NIH).

Assessment of lipogenesis and lipolysis
Lipogenesis was measured in 3T3-L1 cells either overexpressing

GFP, GFP-Rab18 or GFP-Rab18(Q67L) vectors or silenced for

Rab18 expression, treated or not with 100 nM insulin for 4 h.

Cells were lysed in RIPA buffer (0.1% SDS, 1% Triton-X-100,

5 mM EDTA, 1 mM Tris HCl, 150 mM NaCl and 1%

deoxycholate; pH 7.4) and intracellular triglycerides quantified

using an InfinityTM Triglycerides Liquid Stable Reagent kit

(Thermo Electron Corp., Grenoble, France). Triglyceride levels

were normalized to total protein content.

Lipolysis was also quantified in overexpressing or silenced cells.

To this end, cells were incubated in the presence or absence of

50 mM forskolin for 30 min and extracellular glycerol measured by

using a Free Glycerol Reagent kit (Sigma-Aldrich). In this case,

intracellular protein content was used for normalization.

Human studies
Samples of omental and subcutaneous adipose tissue were

obtained from the abdominal region of 46 Caucasian individuals

(24 men and 22 women) undergoing either a Roux-en-Y gastric

bypass (n = 34) or laparoscopic surgery procedures (Nissen

fundoplication for hiatus hernia repair or cholecystectomies)

(n = 12). Body mass index (BMI) was calculated as weight in

kilograms divided by the square of height in meters and obesity

was classified according to body mass index (BMI$30 kg/m2.

Obese patients were classified into three groups [normoglycemic

(NG), with impaired glucose tolerance (IGT) or type 2 diabetes

(T2D)] following the criteria of the Expert Committee on the

Diagnosis and Classification of Diabetes, based on both fasting

serum glucose concentrations and 2-h plasma glucose levels
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following an oral glucose tolerance test [64]. Subjects with T2D

were not on insulin therapy or on medication likely to influence

endogenous insulin levels. Immediately after removal, samples

were washed in DMEM (Invitrogen Corp.) and divided into 2–3

pieces, which were either frozen in liquid nitrogen and stored at

280uC for subsequent gene expression analysis or immediately

processed for the separation of mature adipocytes. All investiga-

tions reported were carried out in accordance with the principles

of the Declaration of Helsinki as revised in 2008. The

experimental design was approved by the Ethical Committees

responsible for research of the Clı́nica Universidad de Navarra

(Pamplona, Spain), Hospital Clı́nico Vı́rgen de la Victoria

(Málaga, Spain) and Hospital Universitario Reina Sofı́a (Córdoba,

Spain). Written informed consent was obtained from all

participating patients.

All samples from the different patients were processed separately

and considered as individual observations. RNA was extracted

from each adipose sample using an RNeasy lipid tissue kit (Qiagen

Madrid, Spain) following the manufacturer’s protocol. Integrity

and concentration of RNA were checked with a 2100 Bioanalyzer

(Agilent Technologies, Santa Clara, CA). The expression levels of

the Rab18 gene, and of 18S ribosomal RNA (rRNA) as

housekeeping gene, were measured by RT-PCR using an

iCyclerTM Real-Time PCR System (Bio-Rad Laboratories).

Specifically, 1 mg of total RNA was reverse transcribed in a 20-

ml final volume using random hexamers (Roche, Barcelona, Spain)

as primers and 200 units of M-MLV reverse transcriptase

(Invitrogen Corp.). Real-time PCR was carried out with 1 ml of

cDNA and 24 ml of reaction mixture [12.5 ml of 2 X SYBR Green

Supermix (Bio-Rad)], 9.5 ml of RNase-free water and 1 ml of the

corresponding primers (Rab18: sense, 59-CCCTGAAGATCCT-

CATCATCGG-39; antisense, 59-CCTCTCTTGACCAGCAG-

TATCCCA-39 and 18S: sense, 59-CCCATTCGAACGTCTG-

CCCTATC-39; antisense, 59-TGCTGCCTTCCTTGGATG-

TGGTA-39). After an initial hold of 2 min at 94uC, samples were

cycled 40 times at 94uC for 15 s and at 61uC for 15 s. For

quantitative analysis, a standard curve-based method was used for

relative real-time PCR data processing. The expression of Rab18

gene was normalized to that of the housekeeping gene. All

measurements were performed in duplicate and the average values

were calculated. Controls consisting of reaction mixture without

cDNA were negative in all runs.

An additional set of adipose tissue samples from lean and obese

women and men was employed for assessment of Rab18 protein

levels. To this end, tissues were homogenized and levels of Rab18

protein were assessed by immunoblotting as described earlier for

3T3-L1 cells.

For the isolation of mature adipocytes, freshly isolated

subcutaneous and omental samples were incubated in Krebs-

Ringer Hepes medium (119 mM NaCl, 4.7 mM KCl, 1.2 mM

MgSO4, 2.5 mM CaCl2, 1.2 mM KH2PO4, 20 mM Hepes

pH 7.4, 2 mM glucose, 2% BSA) with 400 a.u./ml of collagenase

(Sigma-Aldrich) at 37uC for 1 h in a shaking bath. Undigested

tissue was removed by filtering through a sterile 100 mm pore Cell

Strainer (BD Falcon, CA) and centrifuged at 600 g for 10 min to

separate the floating mature adipocyte layer. Mature adipocytes

were washed with DMEM and then processed for Rab18

immunostaining as described above.

Statistical analysis
Data from 3T3-L1 cells were obtained from a minimum of

three replicate wells per treatment from, at least, three

independent experiments. Average LD size was assessed from

200–300 LDs from 10 randomly selected cells per experimental

condition. Single comparisons were performed using the Student’s

t test, while multiple comparisons were assessed by one-way

ANOVA followed by a Newman-Keuls test using GraphPad Prism

4 (La Jolla, CA). Differences were considered statistically

significant if P,0.05.

Supporting Information

Figure S1 Associated with Figure 6. Effect of Rab18

overexpression on LD size. (A) GFP (top panels) or GFP-

Rab18 (bottom panels) transfected 3T3-L1 adipocytes were

incubated in the absence (left panels) or presence of 100 nM

insulin (middle panels) or 10 mM isoproterenol (right panels) for

1 h. LDs were visualized by Oil-Red-O staining as indicated in

‘‘Material and Methods’’. GFP was always found diffuse within

cells irrespective of the treatment, whereas GFP-Rab18

accumulated, at different extent, around LDs that exhibit an

ample range of sizes. Scale bars, 5 mm. (B) High magnification

3D reconstruction of Oil-Red-O-stained LDs within a cell

expressing GFP-Rab18. Twenty confocal slices of a 3T3-L1

adipocyte were projected in a single image and a region of

interest renderized using Imaris 6.4. software (Bitplane, Zurich,

Switzerland). As shown, exogenous Rab18 adopts a ring-like

distribution around LDs, similarly to that observed for

endogenous Rab18. Scale bar, 0.25 mm. (C) Analysis of the

average LD size revealed that Rab18 overexpression induces a

general increase in LD size irrespective of the treatment. Data

are presented as the mean 6 SEM of, at least, 200 LDs per

experimental group. *, P,0.05, **, P,0.01, and ***, P,0.001

vs. groups indicated in the graph.

(TIF)

Figure S2 Associated with Figure 8. Rab18 localization in

dispersed, mature human adipocytes. Representative confocal

images of human adipocytes from omental (top panels) and

subcutaneous (bottom panels) fat depots. Adipose tissue samples

were enzymatically and mechanically dispersed as indicated in

‘‘Material and Methods’’. Then, cells were processed for

immunostaining against Rab18. A single middle plane is shown.

Rab18 immunoreactivity was found around the large LD

characteristic of mature adipocytes, as well as around small LDs

(insets). DAPI was used for labeling nuclei. Scale bars; 20 mm.

(TIF)

Table S1 Associated with Figure 8. Rab18 cDNA copy

number/18S cDNA copy number in omental and subcutaneous

adipose tissue from lean and obese women and men, as

determined by quantitative RT-PCR. Values represent means 6

SEM of, at least, 4 individuals, a, P,0,05 vs. omental adipose

tissue from lean men; b, P,0,05 vs. omental adipose tissue from

lean women; c, P,0,05 vs. omental adipose tissue from lean men;

d, P,0,001 vs. omental adipose tissue from obese men.

(DOCX)

Acknowledgments

We thank Maria Ortega-Bellido for her technical assistance.

Author Contributions

Conceived and designed the experiments: MRP RV-M MMM. Performed

the experiments: MRP SG-N AD-R YJ-G. Analyzed the data: MRP AD-R

YJ-G RV-M. Contributed reagents/materials/analysis tools: FT JL-M GF.

Wrote the manuscript: MRP FG-N RV-M MMM. Critical revision of the

article for important intellectual content: GF FT JL-M.

Rab18 Function in Adipocytes

PLoS ONE | www.plosone.org 11 July 2011 | Volume 6 | Issue 7 | e22931



References

1. Jaworski K, Sarkadi-Nagy E, Duncan RE, Ahmadian M, Sul HS (2007)

Regulation of triglyceride metabolism. IV. Hormonal regulation of lipolysis in

adipose tissue. Am J Physiol Gastrointest Liver Physiol 293: G1–4.

2. Kersten S (2001) Mechanisms of nutritional and hormonal regulation of
lipogenesis. EMBO Rep 2: 282–286.

3. Langin D (2006) Adipose tissue lipolysis as a metabolic pathway to define
pharmacological strategies against obesity and the metabolic syndrome.

Pharmacol Res 53: 482–491.

4. Ahmadian M, Duncan RE, Sul HS (2009) The skinny on fat: lipolysis and fatty
acid utilization in adipocytes. Trends Endocrinol Metab 20: 424–428.

5. Ahmadian M, Wang Y, Sul HS (2010) Lipolysis in adipocytes. Int J Biochem
Cell Biol 42: 555–559.

6. Duncan RE, Ahmadian M, Jaworski K, Sarkadi-Nagy E, Sul HS (2007)

Regulation of lipolysis in adipocytes. Annu Rev Nutr 27: 79–101.

7. Fruhbeck G (2008) Overview of adipose tissue and its role in obesity and

metabolic disorders. Methods Mol Biol 456: 1–22.

8. Trayhurn P, Wood IS (2005) Signalling role of adipose tissue: adipokines and

inflammation in obesity. Biochem Soc Trans 33: 1078–1081.

9. Fujimoto T, Ohsaki Y (2006) Cytoplasmic lipid droplets: rediscovery of an old
structure as a unique platform. Ann N Y Acad Sci 1086: 104–115.

10. Murphy DJ (2001) The biogenesis and functions of lipid bodies in animals, plants
and microorganisms. Prog Lipid Res 40: 325–438.

11. Kuerschner L, Moessinger C, Thiele C (2008) Imaging of lipid biosynthesis: how

a neutral lipid enters lipid droplets. Traffic 9: 338–352.

12. Ducharme NA, Bickel PE (2008) Lipid droplets in lipogenesis and lipolysis.

Endocrinology 149: 942–949.

13. Zehmer JK, Huang Y, Peng G, Pu J, Anderson RG, et al. (2009) A role for lipid
droplets in inter-membrane lipid traffic. Proteomics 9: 914–921.

14. Kimmel AR, Brasaemle DL, McAndrews-Hill M, Sztalryd C, Londos C (2010)
Adoption of PERILIPIN as a unifying nomenclature for the mammalian PAT-

family of intracellular lipid storage droplet proteins. J Lipid Res 51: 468–471.

15. Brasaemle DL (2007) Thematic review series: adipocyte biology. The perilipin

family of structural lipid droplet proteins: stabilization of lipid droplets and
control of lipolysis. J Lipid Res 48: 2547–2559.

16. Goodman JM (2008) The gregarious lipid droplet. J Biol Chem 283:

28005–28009.

17. Liu P, Ying Y, Zhao Y, Mundy DI, Zhu M, et al. (2004) Chinese hamster ovary

K2 cell lipid droplets appear to be metabolic organelles involved in membrane
traffic. J Biol Chem 279: 3787–3792.

18. Martin S, Driessen K, Nixon SJ, Zerial M, Parton RG (2005) Regulated
localization of Rab18 to lipid droplets: effects of lipolytic stimulation and

inhibition of lipid droplet catabolism. J Biol Chem 280: 42325–42335.

19. Martin S, Parton RG (2006) Lipid droplets: a unified view of a dynamic

organelle. Nat Rev Mol Cell Biol 7: 373–378.

20. Ozeki S, Cheng J, Tauchi-Sato K, Hatano N, Taniguchi H, et al. (2005) Rab18
localizes to lipid droplets and induces their close apposition to the endoplasmic

reticulum-derived membrane. J Cell Sci 118: 2601–2611.

21. Dejgaard SY, Murshid A, Erman A, Kizilay O, Verbich D, et al. (2008) Rab18

and Rab43 have key roles in ER-Golgi trafficking. J Cell Sci 121: 2768–2781.

22. Lutcke A, Parton RG, Murphy C, Olkkonen VM, Dupree P, et al. (1994)
Cloning and subcellular localization of novel rab proteins reveals polarized and

cell type-specific expression. J Cell Sci 107(Pt 12): 3437–3448.

23. Vazquez-Martinez R, Cruz-Garcia D, Duran-Prado M, Peinado JR, Castano JP,

et al. (2007) Rab18 inhibits secretory activity in neuroendocrine cells by
interacting with secretory granules. Traffic 8: 867–882.

24. Wolins NE, Brasaemle DL, Bickel PE (2006) A proposed model of fat packaging
by exchangeable lipid droplet proteins. FEBS Lett 580: 5484–5491.

25. Kanzaki M (2006) Insulin receptor signals regulating GLUT4 translocation and

actin dynamics. Endocr J 53: 267–293.

26. Pessin JE, Saltiel AR (2000) Signaling pathways in insulin action: molecular

targets of insulin resistance. J Clin Invest 106: 165–169.

27. Razani B, Lisanti MP (2001) Two distinct caveolin-1 domains mediate the
functional interaction of caveolin-1 with protein kinase A. Am J Physiol Cell

Physiol 281: C1241–1250.

28. Brasaemle DL, Levin DM, Adler-Wailes DC, Londos C (2000) The lipolytic

stimulation of 3T3-L1 adipocytes promotes the translocation of hormone-
sensitive lipase to the surfaces of lipid storage droplets. Biochim Biophys Acta

1483: 251–262.

29. Guest SJ, Hadcock JR, Watkins DC, Malbon CC (1990) Beta 1- and beta 2-

adrenergic receptor expression in differentiating 3T3-L1 cells. Independent
regulation at the level of mRNA. J Biol Chem 265: 5370–5375.

30. Lai E, Rosen OM, Rubin CS (1981) Differentiation-dependent expression of
catecholamine-stimulated adenylate cyclase. Roles of the beta-receptor and G/F

protein in differentiating 3T3-L1 adipocytes. J Biol Chem 256: 12866–12874.

31. Bartz R, Zehmer JK, Zhu M, Chen Y, Serrero G, et al. (2007) Dynamic activity

of lipid droplets: protein phosphorylation and GTP-mediated protein translo-
cation. J Proteome Res 6: 3256–3265.

32. Cermelli S, Guo Y, Gross SP, Welte MA (2006) The lipid-droplet proteome

reveals that droplets are a protein-storage depot. Curr Biol 16: 1783–1795.

33. Fujimoto Y, Itabe H, Sakai J, Makita M, Noda J, et al. (2004) Identification of

major proteins in the lipid droplet-enriched fraction isolated from the human
hepatocyte cell line HuH7. Biochim Biophys Acta 1644: 47–59.

34. Cornelius P, MacDougald OA, Lane MD (1994) Regulation of adipocyte
development. Annu Rev Nutr 14: 99–129.

35. Ntambi JM, Young-Cheul K (2000) Adipocyte differentiation and gene
expression. J Nutr 130: 3122S–3126S.

36. Baldini G, Hohl T, Lin HY, Lodish HF (1992) Cloning of a Rab3 isotype
predominantly expressed in adipocytes. Proc Natl Acad Sci U S A 89:

5049–5052.

37. Baldini G, Scherer PE, Lodish HF (1995) Nonneuronal expression of Rab3A:

induction during adipogenesis and association with different intracellular

membranes than Rab3D. Proc Natl Acad Sci U S A 92: 4284–4288.

38. Klemm DJ, Leitner JW, Watson P, Nesterova A, Reusch JE, et al. (2001) Insulin-

induced adipocyte differentiation. Activation of CREB rescues adipogenesis
from the arrest caused by inhibition of prenylation. J Biol Chem 276:

28430–28435.

39. Wolins NE, Quaynor BK, Skinner JR, Schoenfish MJ, Tzekov A, et al. (2005)

S3–12, Adipophilin, and TIP47 package lipid in adipocytes. J Biol Chem 280:
19146–19155.

40. Wolins NE, Skinner JR, Schoenfish MJ, Tzekov A, Bensch KG, et al. (2003)

Adipocyte protein S3–12 coats nascent lipid droplets. J Biol Chem 278:
37713–37721.

41. Wolins NE, Quaynor BK, Skinner JR, Tzekov A, Croce MA, et al. (2006)
OXPAT/PAT-1 is a PPAR-induced lipid droplet protein that promotes fatty

acid utilization. Diabetes 55: 3418–3428.

42. Shibata H, Omata W, Kojima I (1997) Insulin stimulates guanine nucleotide

exchange on Rab4 via a wortmannin-sensitive signaling pathway in rat
adipocytes. J Biol Chem 272: 14542–14546.

43. Lafontan M, Langin D (2009) Lipolysis and lipid mobilization in human adipose

tissue. Prog Lipid Res.

44. Jenkins CM, Mancuso DJ, Yan W, Sims HF, Gibson B, et al. (2004)

Identification, cloning, expression, and purification of three novel human
calcium-independent phospholipase A2 family members possessing triacylgly-

cerol lipase and acylglycerol transacylase activities. J Biol Chem 279:
48968–48975.

45. Kralisch S, Klein J, Lossner U, Bluher M, Paschke R, et al. (2005) Isoproterenol,
TNFalpha, and insulin downregulate adipose triglyceride lipase in 3T3-L1

adipocytes. Mol Cell Endocrinol 240: 43–49.

46. Montero-Moran G, Caviglia JM, McMahon D, Rothenberg A, Subramanian V,

et al. (2010) CGI-58/ABHD5 is a coenzyme A-dependent lysophosphatidic acid

acyltransferase. J Lipid Res 51: 709–719.

47. Brown DA (2001) Lipid droplets: proteins floating on a pool of fat. Curr Biol 11:

R446–449.

48. Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev

Mol Cell Biol 2: 107–117.

49. Grosshans BL, Ortiz D, Novick P (2006) Rabs and their effectors: achieving

specificity in membrane traffic. Proc Natl Acad Sci U S A 103: 11821–11827.

50. Fukuda M (2006) Rab27 and its effectors in secretory granule exocytosis: a novel

docking machinery composed of a Rab27 effector complex. Biochem Soc Trans

34: 691–695.

51. Tsuboi T, Fukuda M (2006) The Slp4-a linker domain controls exocytosis

through interaction with Munc18-1 syntaxin-1a complex. Mol Biol Cell 17:
2101–2112.

52. Tsuboi T, Fukuda M (2005) The C2B domain of rabphilin directly interacts with
SNAP-25 and regulates the docking step of dense core vesicle exocytosis in PC12

cells. J Biol Chem 280: 39253–39259.

53. Lewis GF, Carpentier A, Adeli K, Giacca A (2002) Disordered fat storage and

mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr

Rev 23: 201–229.

54. Shi H, Seeley RJ, Clegg DJ (2009) Sexual differences in the control of energy

homeostasis. Front Neuroendocrinol 30: 396–404.

55. Tchernof A, Belanger C, Morisset AS, Richard C, Mailloux J, et al. (2006)

Regional differences in adipose tissue metabolism in women: minor effect of
obesity and body fat distribution. Diabetes 55: 1353–1360.

56. Wajchenberg BL (2000) Subcutaneous and visceral adipose tissue: their relation
to the metabolic syndrome. Endocr Rev 21: 697–738.

57. Hurtado Del Pozo C, Calvo RM, Vesperinas-Garcia G, Gomez-Ambrosi J,
Fruhbeck G, et al. (2010) Expression Profile in Omental and Subcutaneous

Adipose Tissue from Lean and Obese Subjects. Repression of Lipolytic and

Lipogenic Genes. Obes Surg.

58. Berndt J, Kralisch S, Kloting N, Ruschke K, Kern M, et al. (2008) Adipose

triglyceride lipase gene expression in human visceral obesity. Exp Clin
Endocrinol Diabetes 116: 203–210.

59. Ortega FJ, Mayas D, Moreno-Navarrete JM, Catalan V, Gomez-Ambrosi J,
et al. (2010) The gene expression of the main lipogenic enzymes is

downregulated in visceral adipose tissue of obese subjects. Obesity (Silver

Spring) 18: 13–20.

60. Xie Y, Kang X, Ackerman WEt, Belury MA, Koster C, et al. (2006)

Differentiation-dependent regulation of the cyclooxygenase cascade during
adipogenesis suggests a complex role for prostaglandins. Diabetes Obes Metab 8:

83–93.

61. Momboisse F, Lonchamp E, Calco V, Ceridono M, Vitale N, et al. (2009)

betaPIX-activated Rac1 stimulates the activation of phospholipase D, which is
associated with exocytosis in neuroendocrine cells. J Cell Sci 122: 798–806.

Rab18 Function in Adipocytes

PLoS ONE | www.plosone.org 12 July 2011 | Volume 6 | Issue 7 | e22931



62. Yu W, Cassara J, Weller PF (2000) Phosphatidylinositide 3-kinase localizes to

cytoplasmic lipid bodies in human polymorphonuclear leukocytes and other

myeloid-derived cells. Blood 95: 1078–1085.

63. Williams D, Pessin JE (2008) Mapping of R-SNARE function at distinct

intracellular GLUT4 trafficking steps in adipocytes. J Cell Biol 180: 375–387.
64. Genuth S, Alberti KG, Bennett P, Buse J, Defronzo R, et al. (2003) Follow-up

report on the diagnosis of diabetes mellitus. Diabetes Care 26: 3160–3167.

Rab18 Function in Adipocytes

PLoS ONE | www.plosone.org 13 July 2011 | Volume 6 | Issue 7 | e22931


