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Rab22a Regulates the Sorting of Transferrin to Recycling Endosomes‡
Javier G. Magadán,1,2 M. Alejandro Barbieri,2† Rosana Mesa,1 Philip D. Stahl,2 and Luis S. Mayorga1*
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Universidad Nacional de Cuyo, 5500 Mendoza, Argentina,1 and Department of Cell Biology and Physiology,

Washington University School of Medicine, St. Louis, Missouri 631102

Received 8 August 2005/Returned for modification 1 September 2005/Accepted 13 January 2006

Rab22a is a member of the Rab family of small GTPases that localizes in the endocytic pathway. In CHO
cells, expression of canine Rab22a (cRab22a) causes a dramatic enlargement of early endocytic compartments.
We wondered whether transferrin recycling is altered in these cells. Expression of the wild-type protein and a
GTP hydrolysis-deficient mutant led to the redistribution of transferrin receptor to large cRab22a-positive
structures in the periphery of the cell and to a significant decrease in the plasma membrane receptor. Kinetic
analysis of transferrin uptake indicates that internalization and early recycling were not affected by cRab22a
expression. However, recycling from large cRab22a-positive compartments was strongly inhibited. A similar
effect on transferrin transport was observed when human but not canine Rab22a was expressed in HeLa cells.
After internalization for short periods of time (5 to 8 min) or at a reduced temperature (16°C), transferrin
localized with endogenous Rab22a in small vesicles that did not tubulate with brefeldin A, suggesting that the
endogenous protein is present in early/sorting endosomes. Rab22a depletion by small interfering RNA disor-
ganized the perinuclear recycling center and strongly inhibited transferrin recycling. We speculate that Rab22a
controls the transport of the transferrin receptor from sorting to recycling endosomes.

Most macromolecules internalized by clathrin-dependent
and -independent endocytosis are delivered to sorting endo-
somes, a dynamic tubovesicular compartment with a central
role in the targeting of material to different intracellular des-
tinations (10). Within this compartment, a first segregation of
membrane-bound from soluble molecules occurs by geometri-
cal means. The narrow tubules pinching off from sorting en-
dosomes are enriched in membrane-associated molecules be-
cause of their large area-to-volume ratio. In contrast, soluble
molecules (e.g., ligands dissociated from their receptors at the
low pH of endosomes) accumulate in the vesicular portion of
sorting endosomes. Most of the material associated with tu-
bules is either transported back to the plasma membrane or
transferred to the recycling compartment. In contrast, most of
the soluble material is delivered to late endosomes. Membrane
invaginations in the sorting endosomes form intraluminal ves-
icles that are also targeted to late endosomes, providing an
efficient route to digest transmembrane proteins (e.g., recep-
tors that need to be down-regulated) (7, 25). Sorting, late, and
recycling endosomes also exchange macromolecules with the
exocytic pathway, mostly with the trans-Golgi network (TGN)
(10). The active interaction between endocytic compartments
and the cytoskeleton promotes the pinching off of tubular
structures and contributes to the positioning of organelles
within the cell (15). Sorting endosomes are found principally in
the periphery of the cell, whereas late endosomes and recycling
endosomes are more prominent in the perinuclear region. The

organization of lipid-protein domains containing specific sets
of macromolecules in the membrane of sorting endosomes
provides an additional layer of selectivity for the differential
targeting of membrane-bound compartments derived from
sorting endosomes to specific destinations (18).

The small GTPases of the Rab family are active protagonists
in the transport of macromolecules along the endocytic and
exocytic pathways. Rabs participate in vesicle budding and
interaction with the cytoskeleton. However, the best-charac-
terized function of these GTPases is in membrane fusion,
where they have an active role in tethering the compartments
that are going to fuse (17). Lately, it has been recognized that
Rabs participate in the organization of membrane domains in
membrane-bound compartments (29). Therefore, the presence
of several Rabs with overlapping distribution in sorting and
recycling endosomes is not surprising. Rab5 associates with the
plasma membrane and sorting endosomes and is necessary at
early steps in the endocytic pathway (2). Direct recycling of
receptors from these vesicles to the plasma membrane requires
Rab4 (4), while recycling via the perinuclear recycling center
depends on Rab11 (26). Kinetic studies of living cells indicate
that proteins following the recycling pathway associate early
after internalization with Rab5-positive structures. Afterward,
the internalized markers move first to Rab4- and later to
Rab11-containing compartments. Most compartments along
this route contain more than one Rab, frequently segregated in
different domains (24). Compartments containing Rab5 and
Rab4 or Rab4 and Rab11 have been described previously (24,
27). According to recent reports, Rab11 participates in the
most distal event of this pathway, the fusion of recycling en-
dosomes with the plasma membrane (27).

Rab22a is another member of the Rab family that localizes
in the endocytic pathway (12, 13, 9). Canine Rab22a (cRab22a)
colocalizes extensively with Rab5 and physically interacts with
the early endosomal antigen 1 (EEA1), one of the best-char-

* Corresponding author. Mailing address: Instituto de Histologı́a y
Embriologı́a (IHEM-CONICET), Casilla de Correo 56, 5500 Men-
doza, Argentina. Phone: 54-261-4494143. Fax: 54-261-4494117. E-mail:
lmayorga@fcm.uncu.edu.ar.

† Present address: Department of Biological Sciences, Florida In-
ternational University, University Park, Miami, FL 33199.

‡ Supplemental material for this article may be found at http://mcb
.asm.org/.
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acterized effectors of Rab5 (9). In CHO cells, expression of
green fluorescent protein (GFP)-tagged cRab22a causes a dra-
matic enlargement of sorting endosomes and delays the trans-
port of cholera toxin and cation-independent mannose-6-phos-
phate receptor to the TGN (12). In contrast, transport to
lysosomes is not significantly affected. In HeLa cells, expres-
sion of this protein alters the recycling of the major histocom-
patibility complex class I (MHC-I) to the cell surface. In con-
trast, the recycling of transferrin (Tfn) is not affected (28).
However, we have observed that Tfn accumulates in cRab22a-
containing compartments in CHO cells. The aim of the present
work was to characterize the function of Rab22a in the Tfn
recycling pathway. The results indicate that expression of the
Rab22a wild type or a GTPase-deficient mutant prevents the
transport of Tfn and its receptor to recycling endosomes in
CHO and HeLa cells. As a consequence, the recycling of Tfn
is strongly diminished. We observed that Tfn localizes with
endogenous Rab22a in early/sorting endosomes and that par-
tial depletion of the protein significantly inhibits Tfn recycling.

MATERIALS AND METHODS

Cell culture. Media and reagents for cell culture were purchased from GIBCO

BRL (Eggenheim, Germany). TRVb-1 is a CHO cell line that does not express

endogenous hamster Tfn receptor (TfnR) and has been transfected with human

TfnR (11). HeLa, HEK 293, and Vero cells were grown in Dulbecco’s modified

Eagle’s medium, TRVb-1 in Ham’s F-12 medium, and BHK-21 in �-minimal

essential medium, each supplemented with 10% heat-inactivated fetal bovine

serum (FBS), 100 U/ml penicillin, 100 �g/ml streptomycin, and 2 mM L-glu-

tamine at 37°C in a humidified atmosphere of 5% carbon dioxide in air. TRVb-1

cells were maintained under selection in the above-described medium containing

400 �g/ml G-418.

Antibodies. Mouse monoclonal anti-human TfnR antibody was purchased

from Zymed Laboratories Inc. (San Francisco, CA). Mouse monoclonal anti-�-

tubulin antibody was obtained from Sigma Chemical Co. (St. Louis, MO). Mouse

monoclonal anti-EEA1 antibody was from BD Transduction Laboratories (Lex-

ington, KY). Mouse monoclonal anti-lysobisphosphatidic acid (LBPA) antibody

was a generous gift from Jean Gruenberg (Department of Biochemistry, Uni-

versity of Geneva, Geneva, Switzerland). Rabbit polyclonal anti-cathepsin D

antibody was kindly provided by William Brown (Section of Biochemistry, Mo-

lecular and Cell Biology, Cornell University, Ithaca, NY). Alexa Fluor (546 or

488)-conjugated goat anti-mouse or anti-rabbit immunoglobulin G (heavy plus

light chains) was from Molecular Probes (Eugene, OR). Peroxidase AffiniPure

goat anti-mouse or anti-rabbit immunoglobulin G (heavy plus light chains) was

from Jackson ImmunoResearch Laboratories Inc. (West Grove, PA).

Production of purified polyclonal anti-Rab22a antibody. The peptide PSG

GKGFKLRRQPSEP corresponding to a sequence of amino acids present in the

carboxy termini of canine and human Rab22a was conjugated to keyhole limpet

hemocyanin via a cysteine group added to the amino-terminal end of the peptide.

Rabbits were immunized with the conjugate, and the serum was collected (Gen-

emed Synthesis Inc., San Francisco, CA). The antibody was affinity purified using

the peptide immobilized in an Affi-Gel 10 column (Sigma Chemical Co.).

siRNA-mediated depletion of human Rab22a. The pSuper.gfp/neo vector

(OligoEngine, Seattle, WA) (1) was used to produce small interfering RNA

(siRNA) molecules in transfected HeLa cells. The target sequence for the human

Rab22a chosen was previously described to knock down this protein in HeLa

cells (28). A 60-nucleotide-long double-stranded DNA insert containing the

human Rab22a (hRab22a) sequence (5�-AAGGACTACGCCGACTCTA-3�) as

an inverted repeat separated by a 9-nucleotide-long hairpin region was generated

by annealing two complementary sequences. As a control, a 19-nucleotide scram-

bled oligonucleotide was replaced by the hRab22-specific sequence. The double-

stranded DNAs were inserted into the BglII/XhoI site of the pSuper.gfp/neo

plasmid. Transient transfections were carried out using 1 �g of DNA and 3 �l of

Lipofectamine 2000 (Invitrogen Argentina S.A., Buenos Aires, Argentina) for

24-well culture plates, according to the instructions supplied by the manufac-

turer.

Plasmids and viruses. The cDNA for canine Rab22a was kindly provided by

Marino Zerial (Max Planck Institute for Molecular Cell Biology and Genetics,

Dresden, Germany). The cRab22a wild-type and Q64L mutant sequences were

subcloned into the BamHI site of the pEGFP-C1 vector (Clontech, Palo Alto,

CA). The human cDNA clone containing the open reading frame for Rab22a

(BC063457/IMAGE, 5182786) was obtained from the American Type Culture

Collection (Manassas, VA). The human Rab22aQ64L mutant was obtained by

site-directed mutagenesis (QuikChange kit; Stratagene, La Jolla, CA). The mu-

tations were verified by sequencing the insert. The human wild-type and Q64L

mutant sequences were subcloned by PCR into the BamHI site of the pEGFP-C1

vector. The plasmid pERFP-cRab22aWT was constructed by subcloning canine

Rab22aWT into the BamHI site of the pERFP plasmid following standard

procedures. For transient expression of GFP-human Rab5aWT, the cDNA was

amplified by PCR from pUC-hRab5aWT and subcloned as a HindIII-BamHI

fragment into a pEGFP-C1 vector. The plasmid pCMV-EGFP-C3-human Rab4a

was kindly provided by Ira Mellman (Yale University School of Medicine, New

Haven, CT). The plasmid pEGFP-C1-human Rab11aWT was a generous gift of

Marı́a Isabel Colombo (IHEM-CONICET, Facultad de Ciencias Médicas, Uni-

versidad Nacional de Cuyo, Mendoza, Argentina). The original hRab11aWT

cDNA was from David Sabatini (Department of Cell Biology and Kaplan Cancer

Center, New York University School of Medicine, NY). The plasmid pEGFP-

C3-human cellubrevin was generously provided by Thierry Galli (Membrane

Traffic and Neuronal Plasticity, Institut du Fer-à-Moulin, Paris, France). Tran-

sient transfections were carried out using 1 �g of DNA and 3 �l of FuGENE 6

(Roche Applied Science, Indianapolis, IN) for 24-well culture plates, according

to the instructions supplied by the manufacturer. Experiments were performed

18 h after transfection. For colocalization studies in double transfection exper-

iments, all cRab22a-positive vesicles were counted in a single confocal plane in

at least 10 cells with low levels of expression. These vesicles (a total of about

3,000) were classified according to whether they contained the other fluorescent

protein. Results are expressed as percentages of cRab22a-positive structures

containing both proteins.

Canine Rab22a wild-type and Rab22aQ64L cDNAs from pEGFP-C1 were

subcloned into the XbaI site of the Sindbis expression vector pTOTO3�2J1. The

correct sequence and orientation of the inserts were confirmed by DNA sequenc-

ing. The recombinant Sindbis viruses (called 2JC1) were produced by Lipofectin-

mediated transfection (Invitrogen, Carlsbad, CA) of BHK-21 cells by using

capped RNAs derived from SP6 RNA polymerase transcription of XhoI-linear-

ized plasmid templates. The viruses in the medium were harvested 40 h after

transfection. Virus titers were generally between 108 and 109 PFU/ml. Virus

stocks were aliquoted and kept frozen at �80°C before use.

Indirect immunofluorescence experiments. Cells on 12-mm round glass cov-

erslips were washed three times with ice-cold phosphate-buffered saline (PBS)–

Ca2�/Mg2� (PBS, 1 mM MgCl2, and 1 mM CaCl2) and fixed with 3% parafor-

maldehyde and PBS-Ca2�/Mg2� solution at room temperature for 15 min. After

three 5-min PBS-Ca2�/Mg2� washes, the cells were permeabilized in 0.05%

saponin, 0.2% bovine serum albumin (BSA), and PBS-Ca2�/Mg2� for 15 min at

room temperature. The cells were washed three times for 5 min with 0.05%

saponin, 0.2% BSA, and PBS-Ca2�/Mg2�, and the free aldehyde groups were

quenched at room temperature for 25 min with 0.05% saponin, 50 mM NH4Cl,

0.2% BSA, 1% goat serum, and PBS-Ca2�/Mg2� solution. To immunostain

compartments containing human TfnR, EEA1, LBPA, cathepsin D, or Rab22a,

cells were incubated with the corresponding primary antibody (20 �g/ml for the

anti-Rab22a antibody and 5 �g/ml for the others) in blocking buffer (0.05%

saponin, 0.2% BSA, 1% goat serum, and PBS-Ca2�/Mg2�) overnight at 4°C.

Unbound primary antibody was removed with three 5-min washes with 0.05%

saponin, 0.2% BSA, and PBS-Ca2�/Mg2�, and the coverslips were incubated

with the appropriate secondary antibody (conjugated to Alexa Fluor 546 or 488)

diluted 1/250 (or 1/750 for Rab22a immunostaining) in blocking buffer for 1 h at

room temperature. Cells were subjected to three 5-min washes with 0.05%

saponin, 0.2% BSA, and PBS-Ca2�/Mg2�, rinsed in Millipore water for 5 min,

and mounted on coverslip slides using a ProLong Antifade kit (Molecular

Probes).

Fluorescent Tfn internalization studies. TRVb-1, HeLa, HEK 293, Vero, and

BHK-21 cells were grown on coverslips and preincubated in internalization

medium (serum-free medium containing 2 mg/ml BSA and 20 mM NaOH and

HEPES [pH 7.4]) for 60 min at 37°C, immediately prior to uptake experiments

to deplete endogenous Tfn. For continuous uptake, the cells were incubated at

37°C for 30 min in internalization medium containing 40 �g/ml tetramethylrho-

damine- or Alexa Fluor 647-conjugated human Tfn (Molecular Probes). When

indicated, the uptake was performed for 90 min at 16°C. For surface binding, the

cells were incubated with 40 �g/ml tetramethylrhodamine-conjugated human

Tfn in internalization medium for 90 min on ice. After Tfn internalization or

surface binding, the cells were washed extensively in ice-cold 0.5% BSA and PBS,

and the probe was chased at 37°C for different time periods in the presence of a

100-fold excess of unlabeled iron-saturated human Tfn (Calbiochem, San Diego,
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CA) and 100 �M deferoxamine mesylate (Sigma Chemical Co.) to prevent

fluorescent Tfn reinternalization. At the end of each time point, surface-bound

fluorescent Tfn was stripped by washing the cells three times alternately in

ice-cold 0.1% BSA and PBS and 0.1% BSA, 25 mM glacial acetic acid, and PBS

(pH 4.2). The coverslips were rinsed briefly in ice-cold PBS-Ca2�/Mg2� and fixed

with 3% paraformaldehyde and PBS-Ca2�/Mg2� solution. After three 5-min

washes with PBS-Ca2�/Mg2�, the cells were incubated with 50 mM NH4Cl in

PBS-Ca2�/Mg2� at room temperature for 15 min and processed for confocal

fluorescence microscopy. For quantification, the Tfn-associated fluorescence

(summation of all confocal planes, background subtracted) was measured in 20

cells using ImageJ free image analysis software (http://rsb.info.nih.gov/ij/; W.

Rasband, National Institutes of Health, Bethesda, MD) and expressed in arbi-

trary units/cell. For time course experiments, the results are expressed as per-

centages of fluorescence/cell observed before chasing (i.e., after the 30-min

internalization or after the 4°C binding). For colocalization studies, all Rab22a-

positive vesicles were counted in at least 10 cells for each time point. These

vesicles (a total of about 2,000) were classified according to whether they con-

tained Tfn. Results are expressed as percentages of Rab22a-positive structures

that contained Tfn.

Labeling of acidic compartments. The acidotropic dye LysoTracker Red

DND-99 (Molecular Probes) was diluted from a 1 mM stock solution to the final

working concentration (75 nM) in internalization medium. For labeling acidic

compartments, TRVb-1 living cells were incubated with the probe for 30 min at

37°C. After incubation, the coverslips were washed extensively with ice-cold

PBS-Ca2�/Mg2�, fixed with 3% paraformaldehyde and PBS-Ca2�/Mg2� solu-

tion, and processed for confocal fluorescence microscopy.

Bf treatment. Brefeldin A (BfA; Sigma Chemical Co.) was dissolved in abso-

lute ethanol at 5 mg/ml stock solution and stored at �20°C. HeLa or TRVb-1

cells were pretreated for 15 min at 37°C with 5 �g/ml BfA in internalization

medium and then continuously labeled with 40 �g/ml tetramethylrhodamine- or

Alexa Fluor 647-conjugated human Tfn for 30 min at 37°C in the presence of the

drug.

Scanning laser confocal microscopy. The cells were examined with a Nikon C1

laser scanning confocal unit (Nikon D-Eclipse C1) attached to an upright fluo-

rescence microscope (Nikon Eclipse E600) with a 63�, 1.4 Plan Apochromat

objective (Nikon). The images were collected by using separate filters for each

fluorochrome viewed (Alexa Fluor 488 and GFP, �excitation � 488 nm and

�emission � 515 nm; tetramethylrhodamine and Alexa Fluor 546, �excitation � 568

nm and �emission � 585 nm). Images were acquired digitally and processed using

the operation software EZ-C1 for the Nikon C1 confocal microscope. Labeled

cells with Alexa Fluor 647 fluorophore were analyzed with an MRC1024 Bio-Rad

confocal microscope (Bio-Rad Laboratories) with a 63�, 1.4 numerical aperture

bright-field objective and the filter set at a �excitation of 647 nm and a �emission of

680 nm. Bandpass emission filters were used for the green and red channels and

a longpass filter for the far red channel. Fluorescent dyes were imaged sequen-

tially to eliminate cross talk between the channels. Images were merged and

aligned using Adobe Photoshop 7.0 (Adobe Systems, Mountain View, CA), and

fluorescence quantification was carried out using ImageJ software.
125I-Tfn uptake and recycling. Holo-human Tfn was iodinated (1 � 106 to 2 �

106 cpm/�g) using chloramine T (Sigma Chemical Co.). TRVb-1 cell monolayers

in 35-mm dishes (5 � 105 cells/dish) were infected with recombinant Sindbis

viruses (2JC1, 2JC1-GFP-cRab22aWT, or 2JC1-GFP-cRab22aQ64L) at a mul-

tiplicity of infection of 50 PFU/cell in 200 �l PBS containing 1% FBS. Virus

absorption was conducted at 4°C for 1 h. The infection mixtures were then

replaced by 3 ml of Ham’s F-12 medium containing 3% FBS, and the cells were

incubated in a 37°C incubator for 8 h. After three washes with PBS at room

temperature, the cells were incubated for 60 min at 37°C in internalization

medium to deplete endogenous Tfn. For continuous uptake, the cells were

incubated at 37°C for 30 min in internalization medium containing 6 �g/ml
125I-Tfn. For surface binding, the cells were incubated with 6 �g/ml 125I-Tfn in

internalization medium for 90 min on ice. After Tfn internalization or surface

binding, the cells were washed extensively in ice-cold 0.5% BSA and PBS, and

the probe was chased at 37°C for different time periods in the presence of a

100-fold excess of unlabeled iron-saturated human Tfn and 100 �M deferox-

amine mesylate. At each chase time, the medium was collected and the radio-

activity was analyzed in a 	-counter to measure the amount of recycled Tfn. Cell

surface-bound 125I-Tfn was stripped by washing the cells three times alternately

in ice-cold 0.1% BSA and PBS and in 0.1% BSA, 25 mM glacial acetic acid, and

PBS (pH 4.2). The acid washes were pooled and counted. Approximately 90 to

95% of the surface-bound 125I-Tfn was removed by the acid wash. To measure

intracellular 125I-Tfn, the cells were lysed in 1% Triton X-100 (Sigma Chemical

Co.). Total cell-associated 125I-Tfn was determined by adding surface-bound,

recycled, and intracellular radioactivity. Nonspecific binding of 125I-Tfn was

determined by incubating the cells in internalization medium containing 6

�g/ml 125I-Tfn and a 100-fold excess of unlabeled human Tfn for 90 min at

4°C. Cell surface-bound 125I-Tfn was stripped by acid washes. These washes

were pooled and counted. Nonspecific values were less than 10% of the

specific binding.

Whole-cell lysates and Western blot analysis. TRVb-1 cell monolayers in

35-mm dishes (5 � 105 cells/dish) were infected with recombinant Sindbis viruses

as described above. After 8 h of infection, cell monolayers were washed with

ice-cold PBS and lysed in ice-cold lysis buffer (1% Nonidet P-40, 10% glycerol,

50 mM HEPES, 100 mM NaCl [pH 7.2]) containing a protease inhibitor cocktail

(Sigma Chemical Co.). The lysates were vortexed and clarified by centrifugation

at 16,000 � g for 15 min at 4°C. Protein concentration in lysates was determined

using the bicinchoninic acid protein assay (Pierce Biotechnology Inc., Rockford,

IL). The supernatants containing the cytosolic fraction of proteins were sepa-

rated on 12% sodium dodecyl sulfate-polyacrylamide gels (25 �g protein per

lane) and transferred to nitrocellulose membranes (Schleicher & Schuell, Keene,

NH). Nonspecific binding was blocked by incubation of the membranes with 5%

nonfat milk, 0.5% Tween 20, and PBS for 1 h at 37°C. The primary and secondary

antibodies were diluted in blocking buffer and incubated overnight at 4°C and 1 h

at room temperature. After each incubation step, the blots were washed five

times for 7 min with 0.5% Tween 20 and PBS. Bound primary antibodies were

visualized using peroxidase-conjugated secondary antibodies and an ECL detec-

tion system (Amersham Pharmacia Biotech, Piscataway, NJ).

Modeling of Tfn transport. Differential equations for Tfn transport in a two-

endosomal compartment model have been described previously (see reference 21

and the supplemental material therein). Data were fitted to the model by mini-

mization of 
[(predicted values � observed values)2]. Rate constants were iter-

atively adjusted during the minimization process. These constants were defined

as described previously (21). Statistical comparison of fits was performed by

Fisher’s F test as described in reference 14.

RESULTS

In CHO cells, the TfnR is trapped in Rab22a-containing

vesicles. Three major routes are followed by proteins and lipids
exiting sorting endosomes. Some macromolecules are directed
to lysosomes, others are directed to the TGN, and another set
is recycled back to the cell surface. We have observed that
expression of GFP-cRab22a in CHO cells causes a striking
enlargement of the sorting endosomes (13). In these cells,
transport to lysosomes is not disrupted. In contrast, a remark-
able delay in transport from endosomes to the TGN was ob-
served (12). We wondered whether cRab22a expression affects
the recycling of macromolecules to the cell surface, the other
major route. Specifically, we were interested in Tfn recycling
that has been well characterized in TRVb-1 cells, a CHO cell
line stably expressing the human TfnR.

According to published results, in TRVb-1 cells, TfnRs localize
predominantly in the recycling center, and a minor percentage is
present in early endosomes scattered throughout the cell. This
pattern of distribution was observed in untransfected cells (Fig.
1B and E) or cells expressing GFP alone (Fig. 1B). However,
the distribution of the receptor was strikingly different in cells
expressing cRab22aWT or the Q64L mutant. In these cells,
most of the TfnR localized in large cRab22a-containing endo-
somes in the periphery of the cell (Fig. 1E and H). These
observations indicate that in CHO cells, expression of cRab22a
alters the distribution of TfnR that is trapped in large cRab22a-
containing vesicles.

Rab22a affects the intracellular distribution of other pro-

teins involved in recycling. The TfnR traverses a complex
intracellular route to transport Tfn in and out of the cell. We
wondered whether other molecules that participate in TfnR
transport are affected by cRab22a overexpression in CHO
cells. For these experiments, cRab22aWT was subcloned in the
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pERFP vector and coexpressed with other proteins cloned in
different pEGFP vectors. RFP-cRab22aWT has an intracellu-
lar localization identical to that of GFP-cRab22aWT (when
coexpressed in the same cells, they show virtually complete
colocalization) (data not shown). hRab5a (Fig. 2A to C) and
hRab4a (Fig. 2E to G) were found in cRab22a-containing
vesicles. Also, cRab22a presented a very prominent colocaliza-
tion with human cellubrevin, an R-SNARE that participates in
the recycling of the TfnR to the cell surface (Fig. 2I to K). It is
interesting to observe that the distribution pattern of these
three proteins was altered by cRab22a overexpression. When
expressed alone, hRab5a was present in small scattered vesi-
cles (Fig. 2D). Coexpression with cRab22a caused a significant
increase in the size of the hRab5a-containing vesicles (com-
pare insets in Fig. 2A to D). hRab4a and human cellubrevin
localized preferentially to the perinuclear region when ex-
pressed alone (Fig. 2H and L). Expression of cRab22a redis-
tributes most of hRab4a (Fig. 2E to G) and human cellubrevin
(Fig. 2I to K) to peripheral large vesicles containing cRab22a.
The effect on hRab11a was less prominent. This small GTPase
remained in a large percentage in a perinuclear region, which
is its normal localization (Fig. 2M to O). However, the amount

of hRab11a-positive vesicles in the periphery increased in cells
expressing cRab22a. Most of these vesicles also contained
cRab22a. It is worth mentioning that these effects were ob-
served at all levels of expression. However, more dramatic
redistributions of hRab4a, human cellubrevin, and hRab11a
were observed in cells with a high content of cRab22a. Figure
2 shows cells with medium levels of expression. Colocalization
was high even in cells where cRab22a-associated fluorescence
was low (86%, 88%, 74%, and 69% of cRab22a-positive vesicles
contained hRab5a, hRab4a, human cellubrevin, and hRab11a,
respectively) (see Fig. S1 in the supplemental material).

Overexpression of Rab22a prevents recycling of Tfn in CHO

cells. We observed that expression of cRab22a in CHO cells
causes a striking redistribution of TfnR from the pericentriolar
region to large cRab22a-containing vesicles. To assess whether
this alteration in receptor distribution affected Tfn recycling,
cells transfected with pEGFP-C1, pEGFP-C1-cRab22aWT, or
pEGFP-C1-cRab22aQ64L were incubated for 30 min at 37°C
with tetramethylrhodamine-labeled Tfn to load all intracellular
compartments. The cells were then washed and incubated in
medium with an excess of unlabeled Tfn to follow the recycling
of this protein to the medium.

FIG. 1. Expression of Rab22aWT or Rab22aQ64L redistributes the TfnR in CHO cells. TRVb-1 cells were transiently transfected with
pEGFP-C1 (A to C), pEGFP-C1-cRab22aWT (D to F), or pEGFP-C1-cRab22aQ64L (G to I). Eighteen hours later, the cells were fixed and
labeled with a monoclonal anti-human TfnR antibody and analyzed in a confocal microscope. Images (summation of all confocal planes) were
merged and aligned using Adobe Photoshop 7.0. Bars, 10 �m.

2598 MAGADÁN ET AL. MOL. CELL. BIOL.

 o
n
 J

a
n
u
a
ry

 1
0
, 2

0
1
4
 b

y
 W

a
s
h
in

g
to

n
 U

n
iv

e
rs

ity
 in

 S
t. L

o
u
is

h
ttp

://m
c
b
.a

s
m

.o
rg

/
D

o
w

n
lo

a
d

e
d

 fro
m

 

http://mcb.asm.org/
http://mcb.asm.org/


After a 30-min uptake, untransfected and transfected cells
presented intense Tfn labeling. However, in untransfected cells
or cells expressing GFP alone, Tfn accumulated in the recy-
cling center and in small vesicles throughout the cytoplasm
(Fig. 3B and E). In contrast, in cells expressing cRab22aWT or
cRab22aQ64L (data not shown), Tfn localized in large
cRab22a-containing endosomes in the periphery of the cell
(Fig. 3E). With subsequent incubations, Tfn rapidly disap-
peared from untransfected cells (data not shown) and from
GFP-expressing cells (Fig. 3H). However, cells expressing
cRab22aWT (Fig. 3K) or the Q64L mutant (data not shown)
retained Tfn for more than 1 hour. Quantification of the mor-
phological data showed that during the first few minutes, all
cells recycled Tfn at the same rate (Fig. 3M). However, after a

1-hour chase, about 50% of the internalized Tfn was still
present in cells expressing cRab22a (wild type or Q64L mu-
tant), whereas the label was barely detectable in cells express-
ing GFP (Fig. 3M). Note that 70% to 80% of cRab22a-positive
vesicles retained Tfn throughout the chase period (Fig. 3N).

To further confirm the effects of cRab22a expression, recy-
cling was measured biochemically using radiolabeled Tfn. Cells
were treated with Sindbis viruses containing cRab22a (wild type
and Q64L mutant) to obtain high percentages of cRab22a-ex-
pressing cells. The levels of expression were similar in both cell
lines as estimated by Western blotting (Fig. 4A). The amount of
endogenous Rab22a was about one-fifth of that of the recom-
binant canine protein (Fig. 4A). The recycling results shown in
Fig. 4B and C are qualitatively and quantitatively similar to

FIG. 2. Several proteins that participate in Tfn recycling are redistributed by expressing Rab22a. TRVb-1 cells were cotransfected with
pERFP-cRab22aWT and pEGFP-C1-hRab5aWT (A to C), pCMV-EGFP-C3-hRab4aWT (E to G), pEGFP-C3-human cellubrevin (I to K), or
pEGFP-C1-hRab11aWT (M to O). Eighteen hours later, cells were fixed and the distribution of the fluorescent proteins was recorded in a confocal
microscope. As a control, cells transfected with the same pEGFP constructs alone are shown in the right panels (D, H, L, and P). To facilitate
comparisons, the same magnification is shown in insets for single- and double-transfected cells. Images (single confocal plane) were merged and
aligned using Adobe Photoshop 7.0. Bars, 10 �m.
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FIG. 3. Expression of Rab22a inhibits the recycling of fluorescent Tfn. TRVb-1 cells transfected with pEGFP-C1, pEGFP-C1-cRab22aWT, or
pEGFP-C1-cRab22aQ64L were incubated for 30 min at 37°C with tetramethylrhodamine-labeled Tfn. The cells were then washed and incubated
in prewarmed internalization medium containing an excess of unlabeled Tfn for 0, 5, 15, 30, or 60 min at 37°C. Cells were fixed, and the distribution
of the fluorescent proteins was recorded in a confocal microscope. After a 30-min uptake, both untransfected and transfected cells presented
intense Tfn labeling. However, in untransfected cells (B and E) or cells expressing GFP alone (B), Tfn accumulated in the recycling center and
in small vesicles throughout the cytoplasm. In contrast, in cells expressing cRab22aWT, Tfn localized in large cRab22a-containing endosomes in
the periphery of the cell (D to F). When the cells were chased for 60 min, Tfn disappeared from untransfected cells and GFP-expressing cells (H).
However, cells expressing cRab22aWT retained Tfn in cRab22a-positive compartments (J to L). Images (summation of all confocal planes) were
merged and aligned using Adobe Photoshop 7.0. Bars, 10 �m. Quantification of the morphological data for cells expressing GFP (white circles),
GFP-cRab22aWT (gray triangles), or GFP-cRab22aQ64L (black triangles) is shown in panel M. Note that cRab22a-positive structures retain Tfn
throughout the chase period in cells expressing GFP-cRab22a (wild type, gray bars; Q64L, black bars) (N). The data in panels M and N represent
the means � standard errors of the means from three independent experiments quantified as explained in Materials and Methods.
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those obtained with fluorescent Tfn (Fig. 3M). The initial rates
of recycling were similar for all cells (Fig. 4B and C). However,
after a 30-min chase, most of the protein had recycled into the
medium in untransfected cells or cells expressing GFP,
whereas about 60% of the Tfn initially bound to the cells was
retained in cells expressing cRab22aWT or cRab22aQ64L.

These observations indicate that cRab22aWT and the GTPase-
deficient mutant retain Tfn in cRab22-positive vesicles and pre-
vent the normal recycling of this molecule to the cell surface.

Rab22a expression causes retention of Tfn in a compart-

ment with slow recycling kinetics. To assess the effect of
cRab22a on a single wave of internalization, TRVb-1 cells
expressing GFP, GFP-cRab22aWT, or GFP-cRab22aQ64L were

incubated with tetramethylrhodamine-conjugated Tfn at 4°C.
Afterward, the cells were washed and transferred to 37°C. At
different time periods, cells were acid washed to eliminate
surface-bound fluorescent Tfn and subsequently fixed. At 4°C,
before the acid wash, Tfn was confined to the plasma mem-
brane (Fig. 5B and E). Note that the labeling was less intense
in cells expressing cRab22a proteins. After a very short period
of chase at 37°C (�2 min), Tfn was found in small vesicles
lacking cRab22a (data not shown). A few minutes later (�5
min), Tfn localized in cRab22a-positive compartments (data
not shown). With longer incubation periods, Tfn disappeared
from untransfected cells whereas it was retained in transfected
cells in cRab22a-positive endosomes (Fig. 5H and K). A cell-

FIG. 4. Expression of Rab22a inhibits the recycling of 125I-Tfn. (A) To assess cRab22a expression level, uninfected TRVb-1 cells (uninfected)
or cells infected with 2JC1 (vector), 2JC1-GFP-cRab22aWT (cRab22aWT), or 2JC1-GFP-cRab22aQ64L (cRab22aQ64L) were solubilized and
analyzed by Western blotting using a polyclonal anti-Rab22a-specific antibody (20 �g/ml) (top panel). To estimate loading, the samples were
analyzed with a monoclonal anti-�-tubulin antibody (0.2 �g/ml) (bottom panel). (B and C) Uninfected TRVb-1 cells (gray circles) or cells infected
with 2JC1 (white circles), 2JC1-GFP-cRab22aWT (gray triangles), or 2JC1-GFP-cRab22aQ64L (black triangles) were incubated with 6 �g/ml
125I-Tfn for 30 min at 37°C. The cells were washed, and the probe was chased for different periods of time in the presence of an excess of unlabeled
Tfn. At each chase period, the medium was collected and counted in a 	-counter to measure the amount of recycled Tfn. Cell surface-bound
125I-Tfn was stripped by an acid-wash method and counted. Surface-associated Tfn represented less than 10% of the total radioactivity (data not
shown). Intracellular Tfn was measured in cell lysates. (B) Intracellular Tfn at different chase periods. (C) Recycled Tfn at different chase periods.
The data represent the means � standard errors of the means from two independent experiments carried out in duplicate.
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FIG. 5. The rate of Tfn internalization is not affected by Rab22a, but recycling is impaired. TRVb-1 cells transfected with pEGFP-C1-
cRab22aWT or pEGFP-C1-cRab22aQ64L were incubated for 90 min at 4°C with tetramethylrhodamine-labeled Tfn. The cells were then washed
and incubated in medium containing an excess of unlabeled Tfn for 0, 5, 15, 30, or 60 min at 37°C. Surface-bound fluorescent Tfn was removed
by the acid-wash method (except at 0 min). Cells were fixed, and the distribution of the fluorescent proteins was recorded in a confocal microscope.
After the binding period at 4°C, all Tfn was present in the cell surface, both in untransfected cells (B and E) and cells expressing cRab22aWT (B) or
cRab22aQ64L (E). Note that surface binding was lower in transfected cells (B and E). Despite the low initial binding, Tfn was present only in cells
expressing cRab22aWT (G to I) or the Q64L mutant (J to L) after a 60-min chase period. In these cells, Tfn was retained in cRab22a-positive
structures. Images (summation of all confocal planes) were merged and aligned using Adobe Photoshop 7.0. Bars, 10 �m. Quantification of the
morphological data from three experiments for cells expressing GFP (white circles), GFP-cRab22aWT (gray triangles), or GFP-cRab22aQ64L
(black triangles) is shown in panel M (means � standard errors of the means).
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associated fluorescence quantification of the images is shown
in Fig. 5M. At early time points, no significant differences were
observed, suggesting that the internalization rate was unaf-
fected by expression of cRab22a. In contrast, at late time
points, a significant amount of the initially bound Tfn (about
50%) was found only in cRab22a-expressing cells. Sindbis vi-
rus-infected cells were used to carry out the same kinds of
experiments with radiolabeled Tfn. The results in Fig. 6A to C
show that Tfn is normally internalized from the cell surface in
cells expressing cRab22a but that recycling to the medium is
delayed. A prediction from this conclusion is that the amount of
TfnR on the cell surface should decrease in these cells. This
prediction is consistent with the reduced Tfn binding at 4°C ob-
served in Fig. 5A to F. Fluorescence quantification of these im-
ages showed a 60% reduction of the surface labeling (Fig. 7A).
Quantification of the cell-associated 125I-labeled Tfn after
binding at 4°C in virus-infected cells showed a similar reduc-
tion of Tfn receptors on the cell surface (Fig. 7B).

The kinetics of recycling in CHO cells have been modeled by
assuming the existence of two compartments (E1 and E2, which
correspond to early and recycling endosomes, respectively, in
untreated cells) from which Tfn can be transported back to the
medium (Fig. 6D) (21). By using the same equations describing
the transit of the ligand between compartments, we have op-
timized the rate constants to fit our experimental data obtained
in uninfected cells and cells infected with control Sindbis vi-
ruses (Fig. 6F). The values of the constants for these cells are
listed in Table 1. Differences in the published values were
minor and may be attributed to the fact that CHO cytoplasts
instead of entire cells were used (21). In contrast, in cells
expressing cRab22aWT or the Q64L mutant (similar results
were obtained for both proteins, and the fitting was performed
by combining both sets of data) (Fig. 6G), some rate constants
changed dramatically whereas others were not affected. Arrival
to and recycling from the early compartment (E1) were not
significantly changed (Table 1). In contrast, there was almost
no recycling from E2 to the plasma membrane (k3 � 0), and
the kinetics of return from E2 to E1 was also very slow (Table
1 and Fig. 6E). Therefore, in cRab22a-expressing cells, the
properties of the second intracellular compartment E2 were
completely different from those of recycling endosomes. This
indicates that expression of cRab22a forces Tfn into a com-
partment that behaves as a sink from which recycling is very
slow.

Tfn is retained in early compartments of the endocytic path-

way. The kinetic analysis indicates that in CHO cells expressing
cRab22aWT or cRab22aQ64L, Tfn is delivered to a special
intracellular compartment with low recycling rate constants.
On the other hand, the morphological observations indicate
that Tfn is retained in a cRab22a-positive compartment (Fig. 3
and 5). According to previous results, most cRab22a-labeled
structures are accessible to molecules internalized by fluid
phase and receptor-mediated endocytosis after a short period
of uptake (�5 min), indicating that these structures are early/
sorting endosomes (9, 12, 13). To confirm the nature of the
compartments in which Tfn was retained, we performed triple
staining experiments with some specific markers. For these
experiments, intracellular Alexa Fluor 647-conjugated Tfn was
allowed to reach a steady state by a 30-min uptake at 37°C,
followed by a 60-min chase in the continuous presence of an

excess of unlabeled Tfn. After fixation, the cells were immu-
nolabeled with different antibodies or incubated with the
acidotropic dye LysoTracker Red DND-99. The results indi-
cate that most Tfn-containing compartments were positive for
EEA1 and cRab22a, indicating that Tfn was retained in early/
sorting endosomes (Fig. 8A to D). In contrast, very little co-
localization with LBPA (Fig. 8E to H), cathepsin D (Fig. 8I to
L), or LysoTracker Red (Fig. 8M to P) was observed, indicat-
ing that Tfn was not mistargeted to late endosomes or lyso-
somes. Similar results were obtained with the cRab22aQ64L
mutant, although some colocalization between Tfn and cathep-
sin D in cRab22a-positive vesicles was observed in these cells
(data not shown). These observations indicate that in cells
expressing cRab22aWT or the Q64L mutant, Tfn is retained
mostly in early compartments of the endocytic pathway.

Tfn is retained in a compartment that is not affected by

brefeldin A. The large cRab22a-containing compartments are
likely early/sorting endosomes. Another possibility is that they
are deformed recycling endosomes that have lost their peri-
nuclear localization. BfA promotes mixing and tubulation of
several membrane-bound structures. In particular, recycling
endosomes form a prominent tubulated, perinuclear compart-
ment (22). To assess whether Tfn was retained in a recycling
compartment sensitive to BfA, cells expressing GFP alone,
GFP-cRab22aWT, or GFP-cRab22aQ64L (data not shown)
were loaded with fluorescent Tfn in the continuous presence of
BfA. In untransfected cells or in cells transfected with pEGFP-
C1, BfA caused the appearance of Tfn-loaded tubules in the
pericentriolar region (Fig. 9B and untransfected cells in Fig.
9E). However, in cells expressing cRab22aWT or the Q64L
mutant (data not shown), Tfn/cRab22a-containing compart-
ments did not tubulate (Fig. 9E). Tubules were also evident in
BfA-treated cells expressing hRab4aWT, human cellubrevin,
or hRab11aWT (Fig. 9J, N, and R). However, in cells coex-
pressing RFP-cRab22aWT and GFP-hRab4aWT (Fig. 9G to I)
or GFP-human cellubrevin (Fig. 9K to M), Tfn was found in
compartments containing both overexpressed proteins that did
not tubulate with BfA. When cRab22aWT and hRab11aWT were
coexpressed, the perinuclear structures containing hRab11a and
Tfn but not cRab22a were found to be tubulated. In contrast,
compartments in the periphery containing hRab11a, cRab22a,
and Tfn remained as round structures (Fig. 9O to Q). More-
over, cRab22a appears to have a phenotype dominant over
those of hRab4a and human cellubrevin, since the distribution
of Tfn in cotransfected cells resembled that observed in cells
expressing cRab22a alone. From these experiments, we con-
clude that overexpression of cRab22a causes the retention of
Tfn in enlarged endosomes that are not affected by BfA. These
structures are enriched in several proteins that participate in
recycling and sorting, suggesting that they are modified sorting
endosomes.

Rab22a expression affects Tfn intracellular transport in

HeLa cells. In a recent paper, it was shown that overexpression
of cRab22a in HeLa cells affects the recycling of MHC-I mol-
ecules from endosomes to the plasma membrane whereas the
recycling of Tfn is not altered (28). Reports from this and other
laboratories have shown that the phenotype of HeLa cells
expressing cRab22a is very different from that observed in
CHO cells (9, 28). To analyze the effect of our constructs on Tfn
recycling in HeLa, this cell line was transfected with pEGFP-C1,
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FIG. 6. Rab22a expression retains Tfn in a compartment with slow recycling kinetics. Uninfected TRVb-1 cells (gray circles) or cells infected with
2JC1 (white circles), 2JC1-GFP-cRab22aWT (gray triangles), or 2JC1-GFP-cRab22aQ64L (black triangles) were incubated with 6 �g/ml 125I-Tfn for 90
min at 4°C. The cells were washed, and the probe was chased for different periods of time in the presence of an excess of unlabeled Tfn. At each chase
time period indicated, the medium was collected and counted to measure recycled Tfn. Cell surface-bound 125I-Tfn was stripped by an acid-wash method
and counted. Intracellular Tfn was measured in cell lysates. The results for surface-bound (A), intracellular (B), and recycled (C) 125I-Tfn from two
independent experiments carried out in duplicate are shown at different chase periods. Data in panels A to C from uninfected cells and cells infected with
control Sindbis viruses were combined and adjusted to a kinetic model depicted in panel D. Experimental and predicted values are shown in panel F.
Data in panels A to C from cells overexpressing cRab22a (wild type or Q64L mutant) were combined and adjusted to a kinetic model depicted in panel
E (see text). Experimental and predicted values are shown in panel G. For panels F and G, large scattered symbols correspond to experimental data, and
small continuous symbols correspond to predicted values. Percentages of Tfn that are cell surface bound (turquoise), recycled to the medium (light blue),
and intracellular (E1 and E2) (gray) and the predicted values for E1 (violet) and E2 (red) are shown.
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pEGFP-C1-cRab22aWT, or pEGFP-C1-cRab22aQ64L and im-
munostained with a monoclonal anti-human TfnR antibody. In
most cells, the cRab22a wild type and the Q64L mutant were
found in small vesicles in the perinuclear region and in the cell
periphery (Fig. 10E and H). These vesicles only seldom contained
TfnR labeling (Fig. 10E to J), very different from the images
shown in Fig. 1 for TRVb-1 cells. Also, note that the distribution
of TfnR was not significantly altered in HeLa cells expressing
cRab22aWT or cRab22aQ64L proteins (Fig. 10F and I).

Most of the studies carried out with Rab22a overexpression
have used the canine protein. Human and canine Rab22a have
a perfect match except for three amino acids in the carboxy-
terminal domain (Fig. 10A). We wondered whether the lack of
effect of cRab22a in TfnR distribution could be due to the fact
that some Rab22a-interacting proteins in HeLa cells do not
recognize the canine protein. Rab6A and Rab6A� differ in only
three amino acids, and yet, they have different functions in the
retrograde transport (6). Consequentially, we decided to clone
hRab22a in pEGFP-C1 vector and to generate the Q64L mu-
tant. When these proteins were expressed in HeLa cells,
hRab22aWT and hRab22aQ64L were found in large round-
shaped vesicles (Fig. 10K and N). Colocalization with the TfnR
was prominent especially for the Q64L mutant (Fig. 10K to P).
hRab22a was also found in long tubular structures lacking
TfnR (left insets in Fig. 10N to P). To test whether hRab22a
could affect the recycling of Tfn in the HeLa cell line, the cells
were allowed to internalize tetramethylrhodamine-conjugated
Tfn for 30 min and were then incubated for different periods of
time at 37°C in the presence of an excess of unlabeled protein.
Under these conditions, cells expressing hRab22aWT (data
not shown) and hRab22aQ64L (Fig. 11A to L) retained Tfn in
hRab22a-positive structures. Quantification of the morpholog-
ical data showed that initially, all cells recycled Tfn with the

same kinetics. Afterward, about 50% of the internalized Tfn
was retained in cells expressing hRab22a (wild type or Q64L
mutant) whereas it disappeared from cells expressing GFP
(Fig. 11M). The effect was very similar to that observed with
cRab22a in TRVb-1 cells (compare Fig. 3M and 11M). In
HeLa cells, 70% to 80% of hRab22a-positive vesicles retained
Tfn throughout the chase period (Fig. 11N).

In conclusion, expression of Rab22a also affects Tfn trans-
port in HeLa cells. For some still-unknown reason, this cell
line seems to be able to distinguish between canine and
human Rab22a, with the canine isoform causing only a mi-
nor effect on Tfn transport. In contrast, the human protein
strongly affects TfnR distribution and Tfn recycling. To assess
whether this was a cell-specific effect, several cell lines were
transfected with human and canine Rab22aQ64L and were
allowed to internalize fluorescent Tfn for 30 min at 37°C. The
human protein caused the formation of large ring-shaped
structures loaded with Tfn in all cells. The phenotype was
stronger for hRab22aQ64L than for cRab22aQ64L in HEK
293 (human) and Vero (African green monkey) cells, suggest-
ing that other cell lines can also distinguish between the two
proteins. In contrast, both proteins have the same strong effect
on TRVb-1 (Chinese hamster) and BHK-21 (Syrian golden
hamster) cells (see Fig. S2 in the supplemental material).

Endogenous Rab22a associates with compartments contain-

ing internalized Tfn. Expression of the Rab22a wild type and
the GTPase-deficient mutant strongly affects the morphology
of endosomes. Moreover, it inhibits Tfn recycling and pro-
motes the redistribution of TfnR to large Rab22a-containing
vesicles. Therefore, the distribution of these recombinant pro-
teins may not reflect the normal localization of endogenous
Rab22a. To assess the localization of this protein, an anti-
Rab22a-specific antibody was optimized for immunofluores-
cence assays. Note that the peptide used for raising the anti-
body is common for cRab22a and hRab22a. Under the conditions
used, the labeling in CHO and HeLa cells was completely
blocked by preincubation with the Rab22a peptide (see Fig. S3
in the supplemental material). In CHO cells, endogenous
Rab22a was found in small vesicles and in short tubules (Fig.
12A to C) (see Fig. S3 in the supplemental material). Colocal-
ization with Tfn was observed principally in vesicular structures

FIG. 7. Rab22a expression diminishes TfnR on the cell surface.
(A) Cell surface fluorescence in cells treated as described in the legend
to Fig. 5 (i.e., 4°C Tfn binding without chase) was quantified in tran-
siently transfected cells with pEGFP-C1 vector (white bar) and cells
expressing GFP-cRab22aWT (gray bar) or GFP-cRab22aQ64L (black
bar). The results are expressed in arbitrary units per cell. (B) Cell
surface-bound 125I-Tfn was measured in cells treated as explained in
the legend to Fig. 6 (i.e., 4°C Tfn binding without chase) infected with
2JC1 (white bar), 2JC1-GFP-cRab22aWT (gray bar), or 2JC1-GFP-
cRab22aQ64L mutant (black bar) and normalized for protein content.
Values represent the means � standard errors of the means from three
(A) or two (in duplicate) (B) independent experiments.

TABLE 1. Rate constants for Tfn trafficking in control
and Rab22a-expressing cellsa

Variable
Rate constant (min�1) for Tfn trafficking

Control cRab22a overexpression

k1 0.1863 0.3005*
k�1 0.0188 0.0898NS

k2 0.2274 0.1786NS

k�2 0.2274 0.0075**
k3 0.1201 1.00 � 10�6**
k4 0.1018 0.1384NS

a The rate constants (k) adjusted to the experimental data shown in Fig. 6F
(control column) and in Fig. 6G (cRab22a overexpression column) are shown.
Comparisons among rate constants in control and cRab22a-expressing cells are
shown in the right column (*, P � 0.01; **, P � 0.0001; NS, P  0.05). To assess
whether a rate constant was significantly affected by cRab22a expression, the
value obtained in uninfected cells (control column) was maintained fixed, and the
other five rate constants were adjusted to fit the data in cRab22a-expressing cells
(Fig. 6G). The final sum of squares was compared with the sum of squares
obtained when the six constants were freely adjusted (14).
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(Fig. 12A to C). In HeLa cells, Rab22a was also observed in
small vesicles and, as previously described (28), in prominent
long tubules that did not contain Tfn (Fig. 12G to I) (see Fig.
S3 in the supplemental material). Note that very little Rab22a
was present in the perinuclear recycling center (Fig. 12A to C
and G to I) and that upon BfA treatment, Rab22a distribution
was not affected (Fig. 12D to F and J to L). In the treated cells,
Tfn localized with Rab22a in round vesicles but not in the
tubular structures induced by the drug. All these results sug-
gest that Rab22a is not present in perinuclear recycling endo-
somes. To better define the compartments within the Tfn path-
way that contain endogenous Rab22a, TRVb-1 cells were
incubated at 4°C with the protein and then warmed up to 37°C
for different periods of time. Very scarce colocalization was
observed at 0, 1, and 2 min of chase (data not shown). The

amount of vesicles containing both Rab22a and Tfn was max-
imal after 5 to 8 min (cells after an 8-min chase are shown in
Fig. 12M to O). After 16 min, a large percentage of Tfn was
found in a perinuclear localization with low colocalization with
Rab22a (data not shown), suggesting that the endogenous
GTPase is present in compartments upstream of the recycling
endosomes. The same protocol could not be used with HeLa
cells because the fluorescence signal after the 4°C binding was
low. However, consistent with a distribution in early/sorting
endosomes, improved Rab22a colocalization with Tfn was ob-
served when the transport to the perinuclear endosomes was
delayed by performing the uptake at 16°C (Fig. 12P to R). In
conclusion, our results indicate that Tfn enters in Rab22a-
containing vesicles before being transported to the perinuclear
recycling center.

FIG. 8. Tfn is retained in early endocytic compartments in Rab22a-expressing cells. TRVb-1 cells expressing GFP-cRab22aWT (green channel)
were labeled with Alexa Fluor 647-conjugated Tfn (blue channel) for a 30-min uptake at 37°C, followed by a 60-min chase period. Cells were fixed
and immunostained (red channel) with antibodies recognizing EEA1 (A to D), LBPA (E to H), or cathepsin D (I to L). Acidic compartments were
labeled with LysoTracker Red DND-99 (M to P). Images (single confocal plane) were merged and aligned using Adobe Photoshop 7.0. Bars, 10 �m.
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FIG. 9. Tfn is retained in a Rab22a-containing compartment that does not tubulate with brefeldin A. TRVb-1 cells expressing GFP (A to C),
GFP-cRab22aWT (D to F), GFP-hRab4aWT (J), GFP-human cellubrevin (N), or GFP-hRab11aWT (R) were allowed to internalize tetramethyl-
rhodamine-labeled Tfn for 30 min at 37°C in the continuous presence of BfA (5 �g/ml). Cells coexpressing RFP-cRab22aWT and GFP-hRab4aWT
(G to I), GFP-human cellubrevin (K to M), or GFP-hRab11aWT (O to Q) received the same treatment but using Alexa Fluor 647-labeled Tfn.
Cells were fixed, and fluorescence images were recorded in a confocal microscope. Images (summation of all confocal planes) were merged and
aligned using Adobe Photoshop 7.0. Bars, 10 �m.
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FIG. 10. Expression of canine and human Rab22a differentially affects TfnR subcellular distribution in HeLa cells. The carboxy-terminal
sequences of human and canine Rab22a are shown in panel A. Differences between the proteins are labeled in red. HeLa cells were transiently
transfected with pEGFP-C1 (B to D), pEGFP-C1-cRab22aWT (E to G), pEGFP-C1-cRab22aQ64L (H to J), pEGFP-C1-hRab22aWT (K to M),
or pEGFP-C1-hRab22aQ64L (N to P). Eighteen hours later, the cells were fixed and labeled with a monoclonal anti-human TfnR antibody. The
distribution of the fluorescent proteins was recorded in a confocal microscope. Images (summation of all confocal planes) were merged and aligned
using Adobe Photoshop 7.0. Bars, 10 �m.
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FIG. 11. Expression of human Rab22a inhibits the recycling of Tfn in HeLa cells. HeLa cells transfected with pEGFP-C1, pEGFP-C1-
hRab22aWT, or pEGFP-C1-hRab22aQ64L were incubated for 30 min at 37°C with tetramethylrhodamine-labeled Tfn. The cells were then washed
and incubated in medium containing an excess of unlabeled Tfn for 0, 5, 15, 30, or 60 min at 37°C. Cells were fixed, and the distribution of the
fluorescent proteins was recorded in a confocal microscope. After a 30-min uptake, untransfected and transfected cells presented intense Tfn
labeling. However, in untransfected cells (B), Tfn accumulated in the recycling center and in small vesicles throughout the cytoplasm. In contrast,
in cells expressing hRab22aQ64L, Tfn localized in large hRab22a-containing endosomes in the periphery of the cell (A to C). When cells were
chased for 30 or 60 min, Tfn disappeared from untransfected cells (silhouettes in panels H and K). However, cells expressing hRab22aQ64L
retained Tfn in hRab22a-positive compartments (D to L). Images (summation of all confocal planes) were merged and aligned using Adobe
Photoshop 7.0. Bars, 10 �m. Quantification of the morphological data for cells expressing GFP (white circles), GFP-hRab22aWT (gray triangles),
or GFP-hRab22aQ64L (black triangles) is shown in panel M. hRab22a-positive structures retain Tfn throughout the chase period in cells
expressing GFP-hRab22aWT (gray bars) or GFP-hRab22aQ64L (black bars) (N). The data in panels M and N represent the means � standard
errors of the means from three independent experiments quantified as summarized in Materials and Methods.
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FIG. 12. Distribution of endogenous Rab22a in CHO and HeLa cells. In TRVb-1 (A to F and M to O) or HeLa (G to L and P to R) cells,
tetramethylrhodamine-labeled Tfn was internalized for 30 min at 37°C (A to L) in the presence (D to F and J to L) or absence (A to C and G
to I) of BfA (5 �g/ml), bound at 4°C and internalized for 8 min at 37°C (M to O), or internalized at 16°C for 90 min (P to R). At the end of the
incubation, cells were fixed and immunolabeled with an affinity-purified anti-Rab22a antibody (see Fig. S3 in the supplemental material).
Fluorescence images were recorded in a confocal microscope. Images (summation of all confocal planes) were merged and aligned using Adobe
Photoshop 7.0. Bars, 10 �m.
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Rab22a depletion by siRNA affects Tfn recycling in HeLa

cells. Tfn enters into Rab22a-positive structures along its in-
tracellular route, and overexpression of Rab22a profoundly
alters the Tfn pathway. We wondered whether endogenous
Rab22a plays an active role in the transport of this protein. To
address this point, HeLa cells were transfected with pSuper.
gfp/neo vector with a sequence directed against hRab22a (28).
Transfected cells were identified by the expression of GFP.
In these cells, immunofluorescence against the endogenous
Rab22a was strongly reduced (see Fig. S4 in the supplemental
material), indicating that the expression of the protein was
inhibited by the siRNA. No effect was observed when cells
were transfected with pSuper.gfp/neo vector encoding a scram-
bled siRNA (see Fig. S4 in the supplemental material). In cells
with low levels of endogenous Rab22a, the TfnR was distrib-
uted in vesicles scattered in the cytoplasm. The perinuclear
recycling center (present in cells transfected with scrambled
siRNA) was not observed (compare Fig. 13A and B). Consis-
tent with these observations, after a 30-min continuous uptake,
Tfn localized preferentially in peripheral vesicles, and the re-
cycling center was disorganized (compare Fig. 13C and D).
The number of cells with well-organized perinuclear recycling
centers was reduced from 75% to 80% in untransfected cells or
cells expressing an irrelevant siRNA to 25% in cells with low
levels of Rab22a (Fig. 13H). When cells were incubated with
an excess of unlabeled Tfn after the 30-min uptake, recycling
was significantly reduced in Rab22a-depleted cells (compare
Fig. 13E and F). Note that Tfn was retained in small vesicles in
the periphery of the cell and never arrived to the perinuclear
region (Fig. 13F). A quantification of the images showed that
all cells recycled approximately the same amount of Tfn during
the first few minutes. However, about 50% of the internalized
protein remained cell associated after 60 min of chase in cells
expressing the hRab22a siRNA, whereas it was almost com-
pletely recycled in untransfected cells or cells expressing
scrambled siRNA (Fig. 13G). These observations indicate that
Rab22a actively participates in the intracellular transport of
Tfn, likely in the step between sorting and recycling endo-
somes.

DISCUSSION

Tfn is transported in most cells through a well-defined re-
cycling pathway. Diferric Tfn binds to the TfnR on the cell
surface, is internalized in coated vesicles, and is delivered to
sorting endosomes. At the mildly acidic pH of this compart-
ment, the iron is released from the protein and the TfnR,
together with apo-Tfn, is recycled directly to the plasma mem-
brane or transported to the recycling endosomes, from which
they are delivered to the cell surface (10). This pathway is
shared for several integral membrane proteins that are trans-
ported in and out of the cell surface hundreds of times during
their life span, avoiding being digested in late endocytic com-
partments. Several Rabs are important for Tfn intracellular
transport. Rab5 is a key element for transport between the
plasma membrane and sorting endosomes and for homotypic
fusion among endosomes. Rab4 is necessary for the efficient
recycling from sorting and recycling endosomes (5, 24, 27).
Rab11 participates in the secretory and recycling pathways (3,
19). In the recycling pathway, it plays a role distal to Rab4,

likely in the fusion of vesicles with the plasma membrane (24,
27). Results from several laboratories indicate that, in addition
to Rab5, Rab4, and Rab11, several other members of the Rab
family are important for Tfn intracellular transport. Expression
of Rab15WT and the Q67L mutant in TRVb-1 cells inhibits
Tfn internalization but does not affect Tfn receptor recycling,
suggesting that this Rab behaves as a negative regulator for Tfn
uptake (30). Upon transfection of HeLa cells with Rab14Q70L,
a fraction of each cell’s TfnR is shifted from the TGN toward
a peripheral localization, favoring a role of Rab14 in TGN-to-
early endosome transport (8). In the same cell line, expression
of Rab21T33N decreases Tfn uptake, suggesting that this Rab
is also involved in early steps of endocytosis (23).

Expression of cRab22aWT or cRab22aQ64L in CHO cells
causes a strong effect on the Tfn pathway. TfnRs are depleted
from the cell surface and accumulate in cRab22a-positive com-
partments in the periphery of the cell. Quantitative analysis of
radioactive and fluorescent Tfn uptake indicates that the ki-
netics of internalization was not affected. However, a large
percentage of Tfn was trapped inside the cell. The effect was
notable only for chase periods longer than 15 min, indicating
that recycling from early compartments was not significantly
retarded. The intracellular transport of Tfn has been modeled
in CHO cytoplasts microsurgically created (21). The model
considers two intracellular endocytic compartments: E1 (early
endosomes) and E2 (recycling endosomes), from which Tfn
can be recycled to the cell surface. The kinetic constants for
internalization and recycling adjusted to our results are com-
parable to those reported previously. In CHO cells expressing
cRab22aWT or the Q64L mutant, the kinetics of transport
from the plasma membrane to E1 and from E1 back to the cell
surface were not strongly affected by the expression of cRab22a.
In contrast, transport from E2 to E1 or to the cell surface was
dramatically reduced. Therefore, E2 behaves as a sink in which
Tfn is trapped. The morphological observation that Tfn in
these cells colocalizes with cRab22a indicates that E2 is a
cRab22a-positive compartment. No colocalization was ob-
served with several late endosome/lysosome markers, indicat-
ing that Tfn was not routed to lysosomes. Indeed, markers
internalized by fluid phase (dextran and horseradish peroxi-
dase) (12, 13) or receptor-mediated endocytosis (epidermal
growth factor and Tfn) (9, 12) arrive at the large cRab22a-
labeled compartments after short periods of time (�5 min)
(Fig. 3 and 5). They are also positive for EEA1, Rab5a, and
Rab4a (Fig. 2 and 8) (see Fig. S1 in the supplemental material)
(9). All this evidence indicates that E2 is an early endocytic
compartment. TfnR and cellubrevin, two proteins that nor-
mally localize in recycling endosomes, were also redistributed
to peripheral cRab22a-positive compartments. Only Rab11a
conserved most of its perinuclear localization; although, at
high cRab22a expression levels, it was also found preferentially
in cRab22a-positive compartments. BfA, which is known to
tubulate recycling endosomes, did not change the morphology
of cRab22a-positive structures. Interestingly, in cells co-
expressing cRab22aWT and Rab4a or cellubrevin, these pro-
teins, which normally localize to BfA-sensitive compartments,
were redistributed to BfA-resistant, cRab22a-positive struc-
tures. The results indicate that many markers of sorting endo-
somes and recycling endosomes are retained in enlarged
cRab22a-positive endosomes that probably correspond to the
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E2 compartment defined by kinetic studies. In contrast, wild-
type cRab22a does not affect the morphology and function of
late endocytic structures. This protein is excluded from com-
partments enriched in human Rab7 (12), LysoTracker Red, or
cathepsin D (Fig. 8).

In HeLa cells, cRab22a participates in the recycling of
MHC-I (28). MHC-I is internalized in nonclathrin-coated ves-
icles and recycled through a different pathway than Tfn in this
cell line (16). It has been reported that expression of different
mutants of canine Rab22a does not alter Tfn recycling in HeLa

cells (9, 28), a result that is consistent with our own observa-
tions (Fig. 10). However, when the human Rab22a wild type or
the GTPase-deficient mutant are replaced by the canine pro-
teins, Rab22a-expressing cells showed altered distribution of
the TfnR and impaired Tfn recycling (Fig. 11). These obser-
vations suggest that the minor differences between the canine
and human Rab22a present in the carboxy-terminal domain
are recognized by some Rab22a-interacting proteins in the
human cell line. The dissimilar effects of human and canine
Rab22a in HEK 293 and Vero cells were also observed (see

FIG. 13. Knockdown of endogenous Rab22a alters Tfn recycling in HeLa cells. HeLa cells transfected with pSuper.gfp/neo-scrambled siRNA
(A, C, and E) or with pSuper.gfp/neo-human Rab22a siRNA (B, D, and F) were grown for 6 days in the presence of 400 �g/ml G-418. Transfected
and untransfected cells were fixed and immunostained with an anti-TfnR antibody. Alternatively, the cells were first incubated for 30 min at 37°C
with tetramethylrhodamine-labeled Tfn and then washed and incubated in medium containing an excess of unlabeled Tfn for 0, 5, 15, 30, or 60
min at 37°C. Cells were fixed, and the distribution of the fluorescent proteins was recorded in a confocal microscope. Images (summation of all
confocal planes) were merged and aligned using Adobe Photoshop 7.0. Bars, 10 �m. siRNA for Rab22a altered the subcellular localization of TfnR
(compare panels A and B) and Tfn (30-min uptake, 0-min chase) (compare panels C and D). A substantial amount of Tfn was retained in these cells
after a 60-min chase (compare panels E and F). All cells shown in panels A to F expressed GFP (data not shown), indicating that untransfected cells were
efficiently eliminated by selection in the presence of G-418. Quantification of the amount of cell-associated Tfn for untransfected cells (white circles) or
cells expressing scrambled siRNA (gray circles) or Rab22a-specific siRNA (black triangles) was performed as summarized in Materials and Methods and
shown in panel G. Cells with a well-defined perinuclear recycling center (labeled by a 30-min continuous uptake of Tfn) were counted using a regular
fluorescence microscope (at least 350 cells in 35 different fields were classified for each condition) and expressed as a percentage of the total number of
cells analyzed (white, gray, and black bars represent untransfected, scrambled siRNA, and hRab22a-specific siRNA groups, respectively) (H). The data
in panels G and H represent the means � standard errors of the means from three independent experiments.

2612 MAGADÁN ET AL. MOL. CELL. BIOL.

 o
n
 J

a
n
u
a
ry

 1
0
, 2

0
1
4
 b

y
 W

a
s
h
in

g
to

n
 U

n
iv

e
rs

ity
 in

 S
t. L

o
u
is

h
ttp

://m
c
b
.a

s
m

.o
rg

/
D

o
w

n
lo

a
d

e
d

 fro
m

 

http://mcb.asm.org/
http://mcb.asm.org/


Fig. S2 in the supplemental material). Some highly homolo-
gous Rab proteins can interact with different proteins. For
example, Rab6A and Rab6A� differ in only three amino acids
and have different effectors and function within the same cell
(6). As described for the canine protein (28), we observed that
hRab22a also labels Tfn-negative tubules that have been im-
plicated in MHC-I transport, suggesting that the canine pro-
tein interacts correctly with effectors in this pathway.

Our results with overexpressed proteins are consistent with
a role for Rab22a in the intracellular transport of Tfn. This
methodological approach has been used extensively to charac-
terize the role of most Rabs in membrane transport; however,
overexpression may introduce several artifacts, such as mistar-
geting the protein to other compartments, altering the steady-
state condition of intracellular pathways, and affecting the
function of other Rabs by cross talking between Rab-interact-
ing proteins (e.g., GAPs, GEFs, and common effectors). To
address these problems, we have localized the endogenous
Rab22a and assessed the effect of depletion of this protein by
siRNA. Our results show a significant colocalization between
Tfn and endogenous Rab22a in early/sorting endosomes in
both TRVb-1 and HeLa cells (Fig. 12). Very little endogenous
Rab22a was present in the recycling center. Rab22a was also
present in tubular structures—especially prominent in HeLa
cells—that were depleted of Tfn and may correspond to com-
partments involved in MHC-I transport (28). Depletion of
endogenous Rab22a by siRNA using a previously described
human sequence (28) disorganized the perinuclear recycling
center. More importantly, this treatment caused a 50% inhibi-
tion of Tfn recycling (Fig. 13). This is a very strong effect for a
protein that can recycle directly from early/sorting endosomes,
a process that, according to our results, is not affected by
Rab22a overexpression or depletion. A similar level of inhibi-
tion is obtained by overexpressing the dominant-negative mu-
tant of Rab11, a well-known Rab involved in Tfn recycling.
Weigert et al. have shown that siRNA with the same human
sequence for Rab22a significantly diminishes the recycling of
Tfn and strongly reduces the recycling of MHC-I (28). Al-
though those authors concluded that Rab22a is active only in
the recycling of MHC-I, our interpretation of their and our
data is that this GTPase is involved in both pathways. In con-
clusion, the experiments with overexpressed proteins, endoge-
nous Rab22a, and Rab22a depletion indicate that Rab22a
plays an important role in the intracellular transport of Tfn in
many cells.

We favor the idea that Rab22a controls the exit from sorting
endosomes. Previously, we have shown that in CHO cells, the
expression of cRab22aWT or cRab22aQ64L retains in modi-
fied sorting endosomes macromolecules that are transported
to the TGN (e.g., cation-independent mannose-6-phosphate
receptor and cholera toxin) (12). Now, we report that in cells
with abnormal (high or low) levels of Rab22a, Tfn is normally
internalized from the cell surface and directed to functional
early endosomes from which it can recycle back to the cell
surface. These endosomes may represent very early compart-
ments, with low Rab22a concentrations, that can normally re-
cruit and segregate Rab4-enriched domains that will pinch off
and recycle material to the plasma membrane. Eventually,
these structures will fuse with Rab22a-positive endosomes. In
cells overexpressing Rab22a, transport out of these modified

endosomes is probably delayed by enhanced homotypic fusion
that would prevent the segregation of membrane domains ca-
pable of interacting with a different compartment (18, 20, 29).
Therefore, these enlarged endosomes will accumulate Tfn
bound to its receptor and other membrane proteins involved in
recycling and retrograde transport to the TGN (9, 12). In cells
with Rab22a depleted, the transport to perinuclear recycling
endosomes is delayed and Tfn is retained in sorting endo-
somes. These cells may have also impaired the recycling of
other molecules, such as MHC-I. In brief, Rab22a is emerging
as an important factor involved in the sorting of a large set of
macromolecules that are transported to different intracellular
destinations.

ACKNOWLEDGMENTS

This work was partly supported by an International Research
Scholar Award from the Howard Hughes Medical Institute and by a
grant from ANPCyT, Argentina, to L.S.M. and by NIH GM 042259
and the NSF U.S.-Argentina Cooperative Research Award to
P.D.S. J.G.M. is a CONICET fellow (Argentina) and has received
support from IUBMB and the Journal of Cell Science for training visits
to the P.D.S. laboratory.

We thank E. Peters, A. Medero, and M. Furlán for excellent tech-
nical assistance, J. Gruenberg and W. Brown for antibodies, and M.
Zerial, I. Mellman, M. I. Colombo, and T. Galli for plasmids. We
thank M. I. Colombo and M. T. Damiani for critical reading of and
helpful comments on the manuscript.

REFERENCES

1. Brummelkamp, T. R., R. Bernards, and R. Agami. 2002. A system for stable
expression of short interfering RNAs in mammalian cells. Science 296:550–
553.

2. Bucci, C., R. G. Parton, I. H. Mather, H. Stunnenberg, K. Simons, B.
Hoflack, and M. Zerial. 1992. The small GTPase Rab5 functions as a regu-
latory factor in the early endocytic pathway. Cell 70:715–728.

3. Chen, W., Y. Feng, D. Chen, and A. Wandinger-Ness. 1998. Rab11 is re-
quired for trans-Golgi network-to-plasma membrane transport and a pref-
erential target for GDP dissociation inhibitor. Mol. Biol. Cell 9:3241–3257.

4. Daro, E., P. van der Sluijs, T. Galli, and I. Mellman. 1996. Rab4 and
cellubrevin define different early endosome populations on the pathway of
transferrin receptor recycling. Proc. Natl. Acad. Sci. USA 93:9559–9564.

5. De Renzis, S., B. Sonnichsen, and M. Zerial. 2002. Divalent Rab effectors
regulate the sub-compartmental organization and sorting of early endo-
somes. Nat. Cell Biol. 4:124–133.

6. Echard, A., F. J. Opdam, H. J. de Leeuw, F. Jollivet, P. Savelkoul, W.
Hendriks, J. Voorberg, B. Goud, and J. A. Fransen. 2000. Alternative splic-
ing of the human Rab6A gene generates two close but functionally different
isoforms. Mol. Biol. Cell 11:3819–3833.

7. Gruenberg, J., and H. Stenmark. 2004. The biogenesis of multivesicular
endosomes. Nat. Rev. Mol. Cell Biol. 5:317–323.

8. Junutula, J. R., A. M. De Maziere, A. A. Peden, K. E. Ervin, R. J. Advani,
S. M. van Dijk, J. Klumperman, and R. H. Scheller. 2004. Rab14 is involved
in membrane trafficking between the Golgi complex and endosomes. Mol.
Biol. Cell 15:2218–2229.

9. Kauppi, M., A. Simonsen, B. Bremnes, A. Vieira, J. Callaghan, H. Stenmark,
and V. M. Olkkonen. 2002. The small GTPase Rab22 interacts with EEA1
and controls endosomal membrane trafficking. J. Cell Sci. 115:899–911.

10. Maxfield, F. R., and T. E. McGraw. 2004. Endocytic recycling. Nat. Rev. Mol.
Cell Biol. 5:121–132.

11. McGraw, T. E., L. Greenfield, and F. R. Maxfield. 1987. Functional expres-
sion of the human transferrin receptor cDNA in Chinese hamster ovary cells
deficient in endogenous transferrin receptor. J. Cell Biol. 105:207–214.

12. Mesa, R., J. Magadán, A. Barbieri, C. López, P. D. Stahl, and L. S. Mayorga.
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2614 MAGADÁN ET AL. MOL. CELL. BIOL.

 o
n
 J

a
n
u
a
ry

 1
0
, 2

0
1
4
 b

y
 W

a
s
h
in

g
to

n
 U

n
iv

e
rs

ity
 in

 S
t. L

o
u
is

h
ttp

://m
c
b
.a

s
m

.o
rg

/
D

o
w

n
lo

a
d

e
d

 fro
m

 

http://mcb.asm.org/
http://mcb.asm.org/

	Rab22a regulates the sorting of transferrin to recycling endosomes
	Recommended Citation

	tmp.1406690364.pdf.Szjua

