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ABSTRACT  

 

 

Exosomes are secreted membrane vesicles that share structural and biochemical 

characteristics with intraluminal vesicles of multivesicular endosomes (MVEs). Exosomes 

could be involved in intercellular communication and in the pathogenesis of infectious and 

degenerative diseases. The molecular mechanisms of exosome biogenesis and secretion are, 

however, poorly understood. Using a RNA interference screen, we identified five Rab 

GTPases that promote exosome secretion in HeLa cells. Among these, Rab27a and Rab27b 

were found to act in MVE docking at the plasma membrane. The size of MVEs was strongly 

increased by Rab27a silencing, whereas MVEs were redistributed towards the perinuclear 

region upon Rab27b silencing. Thus, the two Rab27 isoforms play different roles in the 

exosomal pathway. In addition, silencing two known Rab27 effectors, Slp4 (SYTL4) and 

Slac2b (EXPH5), inhibited exosome secretion and phenocopied silencing of Rab27a and 

Rab27b, respectively. Our results therefore strengthen the link between MVEs and exosomes, 

and open ways to manipulate exosome secretion in vivo. 
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INTRODUCTION 

 

Exosomes are membrane vesicles secreted into the extracellular space by numerous cell 

types1-4. These nanometer-sized vesicles have a similar membrane orientation as the plasma 

membrane, and a canonical protein composition, mostly including proteins from the endocytic 

system, the plasma membrane and cytosol. In addition, exosomes also contain proteins 

specific of the cell type from which they originate and that are probably important for their 

extracellular functions. Based on in vitro studies, it has been proposed that exosomes could 

participate in induction of immune responses5-7, in the dissemination of viruses or prions8, 9, in 

the pathogenesis of neurodegenerative diseases10, and in mediating communication between 

tumor cells and their microenvironment11-13. However, conclusive demonstration that in vivo 

exosome secretion plays a role in any physiological process has not been provided so far, due 

to the lack of tools allowing to specifically inhibit or increase their secretion. Indeed, the 

molecular mechanisms of exosome secretion are not completely understood. 

Evidence collected during the last 20 years suggests that in most cell types, exosomes 

correspond to secreted intraluminal vesicles (ILVs) of MVEs4. ILVs are formed by inward 

budding of the limiting membrane of MVEs into the lumen of these endosomes14. The 

observation by electron microscopy (EM) of fusion profiles between MVEs and the plasma 

membrane, with the consequent release of ILVs as exosomes, has been to date the strongest 

evidence for the endosomal origin of exosomes5, 6, 15. Nevertheless, in some cell types such as 

T lymphocytes, exosomes bud at the plasma-membrane from endosome-like domains16. 

Therefore, identification of molecules that control the intracellular trafficking of MVEs and 

their fusion with the plasma membrane will improve our understanding of exosome secretion.   

Most intracellular transport pathways are controlled by conserved families of cytosolic 

proteins, including the Rab family of small GTPases. Rab proteins control different steps of 

vesicular trafficking, including budding, motility, docking to and fusion of different vesicular 

transport intermediates with acceptor membranes17. Almost 70 Rabs and Rab-like proteins 

have been identified in humans18, and a wide range of specific effector proteins that execute 

their diverse roles have also been identified19. 

We analysed here the roles that Rab proteins could play in exosome production or secretion 

by the human HeLa cell line, using an shRNA-based screen targeting human Rabs. We 

observed that knocking-down five Rab proteins (Rab2b, Rab9a, Rab5a, Rab27a and Rab27b) 

inhibited exosome secretion without major modifications in the secretion of soluble proteins 
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through the regular secretory pathway. The roles played by Rab27a and Rab27b were 

analysed further, and we evidenced both a common function in MVE docking to the plasma 

membrane, but also different and non-redundant roles in the MVE pathway. In addition, 

silencing of two known effectors of Rab27, Slp4 (synaptotagmin-like 4 = SYTL4) and Slac2b 

(exophilin 5 = EXPH5), phenocopied silencing of, respectively, Rab27a and Rab27b, 

suggesting a preferential interaction between these proteins for exosome secretion.  

 

 

  

 



 5

RESULTS 

 

 

Semiquantitative detection of exosomes in cell culture supernatants 

To screen molecules specifically involved in exosome secretion, we developed a semi-

quantitative fluorescence-activated cell scanning (FACS)-based assay allowing simultaneous 

detection of exosomes and of proteins secreted through the classical secretory pathway, in 

small volumes of cell culture supernatants. The HeLa B6H4 tumor cell line, which stably 

expresses the transactivator CIITA (driving expression of the MHC class II family genes, 

including HLA-DR) and a secreted form of chicken ovalbumin (OVA), was used. These cells 

secrete HLA-DR-positive exosomes and soluble OVA (secreted through the classical 

secretory pathway), allowing differentiation of both pathways. Exosomes present in cell 

culture supernatants were captured onto beads coated with antibodies to CD63, a tetraspanin 

strongly enriched in late endosomes and exosomes20, and detected by FACS after staining 

with anti-HLA-DR and anti-CD81 fluorescent antibodies (CD81 is another tetraspanin 

abundant on exosomes)5, 20, or Annexin V (which binds to the phosphatidylserine (PS) present 

at the surface of exosomes)21  (Fig. 1a). Membrane vesicles with a diameter ranging from 50 

to 100 nm and with the typical cup-shaped morphology of exosomes were detected by 

electron microscopy (EM) on the surface of the beads (Fig. 1b). Exosome detection was 

dependent on the number of exosome-secreting cells present in the wells (Fig. 1c, d), with a 

threshold of sensitivity of 75,000 cells/well. When supernatants from apoptotic cells (which 

secrete apoptotic blebs but not exosomes22) were used, the FACS signals were significantly 

lower than those obtained from supernatants of living cells (Fig. 1e).  

Secretion of soluble OVA in cell culture supernatants was detected using beads coated with 

anti-OVA antibodies and stained with a fluorescent anti-OVA antibody (Supplementary 

information, Fig. S1). This methodology allowed the quantitative detection of OVA from live 

cells, with a sensitivity of 30,000 cells/well.  

This FACS-based assay thus allows simultaneous quantification of CD63/CD81/HLA-

DR/PS-positive membrane vesicles (corresponding to exosomes) and of OVA produced by 

living cells in very small volumes of culture supernatants collected from 96-well plates.  

 

Role played by members of the Rab GTPase family in exosome secretion 
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A lentiviral shRNA library targeting 59 members of the Rab GTPase family was screened 

using the methodology described above as readout. Cells expressing scrambled shRNA were 

used as a control of both OVA and exosome secretion pathways (Fig. 2a). Genes for which at 

least two different shRNAs induced a significant modification in the secretion of exosomes, 

but not of OVA, were selected for two additional rounds of validation.  

Some examples of Rab proteins that did not fulfill the selection criteria are shown in Fig. 2b. 

Silencing of Rab6a inhibited the secretion of OVA but did not affect exosome secretion, 

whereas inhibition of Rab7 or Rab11a modified neither exosome nor OVA secretion 

significantly. In contrast, five Rab proteins whose inhibition by shRNA resulted in decreased 

exosome secretion in three independent experiments, and for which most shRNA modified 

concomitantly the phenotype and the mRNA expression level (as quantified by qPCR), were 

finally selected (Fig. 2c): Rab2b, Rab5a, Rab9a, Rab27a and Rab27b. Most of these Rabs 

have been previously associated with endocytic functions, in agreement with the postulated 

endosomal origin of exosomes.  

We chose to further analyze the mechanism of inhibition of exosome secretion by Rab27a and 

Rab27b, two homologous Rab proteins (71% amino acid identity23) encoded by different 

genes, and associated with lysosome-related organelles. To ensure that Rab27 silencing 

affects total exosome secretion rather than any specific exosome-associated protein, we 

performed annexin V staining of PS on exosomes captured by CD63-coated beads (Fig. 2d). 

Silencing of both Rab27a and Rab27b decreased annexin V staining, thus showing a general 

decrease of secretion of exosome-associated lipids. 

 

Rab27a and Rab27b silencing inhibit exosome secretion without modifying their protein 

composition 

 

Inhibition of exosome secretion in cells knocked down (KD) for Rab27a and Rab27b was 

confirmed by standard techniques of exosome purification24. First, cells transfected with 

shRNA#3 for Rab27a or shRNA#1 for Rab27b were amplified to produce a large volume of 

supernatant. Expression of the respective genes was specifically and significantly 

downregulated in these cells (supplementary information, Fig. S2a). Exosomes were purified 

from cell supernatant by differential ultracentrifugation24. The total amount of secreted 

exosomes, determined by measuring total amount of proteins in the 100,000g pellet (Fig. 3a), 

or by the FACS-based assay (Fig. S2b), was significantly reduced in both KD cells, as 

compared to control cells.  
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Consistently, a reduction in the signals of several exosome markers (HLA-DR, CD63, tsg101, 

and hsc70) was observed by Western blotting performed on exosomes purified from the 

supernatant of the same number of Rab27a-KD or Rab27b-KD secreting cells, as compared to 

control cells (Fig. 3b and FigS6a). Nevertheless, all markers were detected in exosomes from 

KD cells when similar amounts of exosomal proteins where analysed (Fig. 3c and Fig.S6b). 

In addition, exosomes secreted by Rab27a- and Rab27b-KD cells showed identical size and 

morphology, as assessed by EM, as exosomes produced by control cells (Fig. 3d).  

These data show that silencing of either Rab27a or Rab27b reduces the amount of exosomes 

released in the cell-culture supernatant, but modifies neither their protein content nor their 

morphology.  

 

Different phenotypes of MVEs are observed in Rab27a and Rab27b KD cells 

 

To gain further insight into the mechanism responsible for the reduced exosome secretion in 

Rab27a and Rab27b KD cells, the subcellular distribution and the morphology of MVEs were 

investigated using CD63 as a marker. We first observed by FACS analysis that the proportion 

of intracellular vs. surface CD63 was increased in Rab27a, but not Rab27b, KD cells, as 

compared to control cells (Fig. 4a). Thus, in the absence of Rab27a, CD63 accumulates in 

internal compartments, whereas the absence of Rab27b does not induce such accumulation. 

The subcellular distribution of CD63 was then analysed by immunofluorescence imaging 

(Fig. 4b, c). In control and Rab27a KD cells, CD63-positive MVEs appeared homogenously 

distributed throughout the cell, but their size was significantly increased upon Rab27a 

silencing  (Fig. 4b upper and middle panels, Fig. 4c). In sharp contrast, Rab27b KD cells 

displayed a characteristic asymmetrical perinuclear accumulation of CD63-positive 

organelles, but without striking alteration of the size of these organelles, as compared to 

control cells (Fig. 4b lower panel, Fig. 4c). Consistently, EM analysis showed that the MVEs 

from Rab27a KD cells were significantly larger (Fig. 4d, right panel) than those from control 

cells, whereas in Rab27b KD cells, MVEs were smaller (Fig. 4d) and showed a clustered 

distribution (not shown). Thus, although silencing of either Rab27a or Rab27b impairs 

exosome secretion, the induction of different changes in the size and distribution of CD63-

positive MVEs suggests that both proteins play different roles in the pathway. 

 

Rab27a and Rab27b have different subcellular localizations 
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We thus asked whether these two proteins could function in different compartments, by 

analyzing their respective subcellular localizations. GFP-tagged versions of both Rab27a and 

Rab27b presented a donut-like pattern surrounding CD63-positive compartments (Fig. 5a). 

However, most of Rab27b, but not of Rab27a, presented a perinuclear distribution, mainly 

concentrated in a perinuclear area labeled by the Golgi-associated proteins Rab6 (Fig. 5a) and 

TGN46 (not shown). Consistently, upon EM observation, although both Rab27a and Rab27b 

were associated with the limiting membrane of MVEs, Rab27b was also observed in the 

membrane of Golgi stacks and in vesicles located in the TGN area (Fig. 5b).  

When mCherry-Rab27a and GFP-Rab27b were expressed simultaneously in HeLa cells, both 

Rab27a and Rab27b were partially associated with CD63-positive compartments (Fig. 5c), 

but Rab27b was predominantly in the perinuclear area with partial colocalization with TGN46  

(data not shown). Four groups of CD63-positive organelles could be identified based on their 

association with the Rab27 isoforms: most organelles were Rab27a-/b-, about 1/5 were 

Rab27a+/b-, and less than 10% were either Rab27a+/b+, or Rab27a-/b+. However, the 

proportion of Rab27-positive MVEs increases in the subplasmalemmal region (see below). 

Rab27a and Rab27b therefore have different subcellular distributions: Rab27b predominantly 

presents an asymmetrical perinuclear distribution in the TGN area and a minor localization 

onto CD63-positive compartments, whereas Rab27a is preferentially associated with CD63-

positive MVEs.  

 

Rab27a or Rab27b silencing reduces MVE docking to the plasma membrane 

 

To further analyze exosome secretion, we used total internal reflection fluorescence 

microscopy (TIRFM) to image MVEs in the subplasmalemmal region of live cells (Fig. 6, 

Supplementary movies 1-3, Fig. S3). In this region, around 30% and 40% of CD63-positive 

vesicles were labeled with GFP-Rab27b and GFP-Rab27a, respectively (Fig. S3a), supporting 

a possible role of both Rab27 isoforms in MVE exocytosis. Rab27b silencing significantly 

lowered MVE density (Fig. 6a), in agreement with the perinuclear relocalization of MVEs 

observed by epifluorescence microscopy (Fig. 4b). In addition, in Rab27a and Ra27b KD 

cells, MVEs were significantly less present near the borders of the cell footprint (Fig. S3b), 

suggesting that Rab27a and Rab27b promote their distribution at the cell periphery.  

The movements of MVEs were then analysed by tracking individual trajectories25 

(Supplementary movies 1-3). The diffusion coefficient (Dxy), an index of mobility, was 

calculated along trajectories using a rolling analysis window25. Dxy values were higher in 
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Rab27a- or Rab27b-KD cells than in controls (p<0.0001), and in Rab27b-KD than in Rab27a-

KD cells (p=0.006) (Fig. 6b). Fewer vesicles had very low Dxy values in Rab27a-KD or 

Rab27b-KD cells, suggesting that both may participate in MVE attachment (docking) at the 

plasma membrane, a process that restricts vesicle motion25-27. To set a threshold value below 

which vesicles could be considered as immobile, we plotted the distribution of instantaneous 

Dxy values (Fig. S3c). A major peak comprising the lowest values was centered around 10-4 

µm2/s (i.e. the mean Dxy of immobilized beads on our setup26). Vesicles presenting a Dxy less 

than three times this value were considered as immobile. Using this criterion, we categorized 

Dxy values computed on entire trajectories and found that the percentage of docked structures 

was significantly lowered by Rab27a and Rab27b silencing (Fig. 6c). Moreover, 82 % of the 

enlarged MVEs observed upon Rab27a silencing (see Fig. 4b) displayed a mean Dxy > 3 x 10-4 

µm2.s-1 (50 structures from 5 cells) and were thus not docked. 

To distinguish bona fide vesicle docking from other processes, we measured the duration of 

immobilization events along trajectories. Rab27a and Rab27b silencing reduced the 

percentage of vesicles that were always immobile and increased the percentage of vesicles 

never immobile (Fig 6d). Survival curves of immobilization times were best fitted with two 

exponentials, indicating the existence of two different processes (Fig. 6e). The short-lasting 

component may reflect transient tethering to the plasma membrane or phases of slow 

diffusion. We considered that long-lasting immobilization reflected MVE docking. Using this 

refined criterion of docking, we conclude that Rab27a and Rab27b silencing reduced both the 

number (0.25 and 0.28 docking event/trajectory in Rab27a and Rab27b KD cells, 

respectively, compared to 0.44 in controls) and the characteristic time (10.1, 9.3 and 15.5 s in 

Rab27a-, Rab27b-KD cells and controls, respectively) of docking events. Altogether, these 

analyses show that Rab27a and Rab27b promote the occurrence and stability of MVE 

docking. 

Another alteration was observed in Rab27b-KD cells. The proportion (39 ± 3% vs 29 ± 3% in 

control cells) and velocity (Fig. 6f) of vesicles moving rapidly along linear axes (a 

characteristic of microtubule-based motion26) were increased in Rab27b-KD (but not in 

Rab27a-KD) cells, as compared to control ones. This behavior accounts for the increased 

proportion of structures with high mean Dxy (>20 x 10-4 µm2.s-1) (Fig. 6c) observed in Rab27b 

KD. Therefore, Rab27b also negatively regulates long-range movements of MVEs. 

 

Slp4 and Slac2b are two Rab27 effectors involved in exosome production 
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Rab proteins exert their functions by interacting with multiple effectors. We observed that 7 

of the 11 Rab27 effector proteins were expressed in HeLa B6H4 cells (supplementary Table 

1). These genes were then silenced with specific shRNAs and quantification of exosomes and 

OVA was performed in cell culture supernatants using the FACS-based assay.  

Silencing of Slac2b (or exophilin-5, EXPH5), Slp4 (or synaptotagmin-like 4, SYTL4) and 

Munc13-4 significantly reduced exosome secretion, in at least 2 of the 4-5 shRNAs that target 

each gene (Fig. 7a). In the cells transduced with shRNAs against Slp4 and Slac2b, the level of 

exosome secretion paralleled the level of mRNA expression (Fig. 7b). In contrast, in the case 

of Munc13-4, although shRNAs #1, 2 and 3 decreased both exosome secretion and mRNA 

levels, shRNAs 4 and 5 strongly inhibited mRNA expression without affecting exosome 

secretion (Fig. 7a,b), suggesting off-target effects of the shRNA. Consequently, only Slac2b 

and Slp4 were chosen for further analysis, although a role of Munc13-4 in exosome secretion 

cannot be ruled out. In addition to reducing exosome secretion, knock down of the effectors 

increased OVA secretion (Fig. 7a), suggesting that they also play Rab27-independent roles in 

the conventional secretion pathway. 

Large-scale cultures of cells expressing lentiviruses #3 (Slac2b) or #3 (Slp4) where set up. 

Specific decrease of Slp4 at the protein level was confirmed by immunoblotting (Fig. 7c and 

FigS6c), but we could not specifically detect Slac2b by Western blot in B6H4 cell lysates, 

probably due to low level of expression. Exosomes secreted by the same amount of cells were 

purified from cell culture supernatants and analysed by western blot (Fig. 7d and and FigS6e): 

a significant reduction in the amount of CD63, HLA-DR and tsg101 secreted in exosomes 

was observed in Slp4- and Slac2b-KD cells. These results show that two Rab27 effectors, 

Slp4 and Slac2b, are positive regulators of exosome secretion in HeLa B6H4 cells.  

 

Slp4 and Slac2b KD are phenocopies of Rab27a and Rab27b KD cells, respectively  

 

The distribution and morphology of CD63-positive compartments was then studied in Slac2b- 

and Slp4-KD cells. In Slp4-KD cells, an intracellular accumulation of CD63 was observed 

both by FACS (Fig. 7e) and by immunofluorescence (Fig. 7f left and middle panels), 

resembling the phenotype observed in Rab27a KD cells (Fig. 4a). In contrast, Slac2b-KD 

cells did not show an accumulation of CD63 either at the cell surface or intracellularly by 

FACS, but exhibited an asymmetrical perinuclear accumulation of CD63-positive vesicles of 

normal size, mimicking the phenotype observed in Rab27b KD cells (Fig. 7f, right panel). 

Altogether, loss of function of Slp4 and Slac2b induces phenotypes that, in terms of exosome 
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secretion as well as morphology and distribution of MVEs, highly resemble those observed in 

cells KD for Rab27a and Rab27b, respectively. These observations suggest that Slp4 mediates 

the function of Rab27a, while Slac2b is required to achieve Rab27b’s function.  

Supporting this idea, in cells co-transfected with T7-tagged Slp4 or -Slac2b and GFP-tagged 

Rab27a or Rab27b, Slp4 colocalized with Rab27a on donut-like structures containing CD63 

(Fig. 8a, top panel). In contrast, Slp4 and Rab27b labeled different CD63-positive structures 

(Fig. 8a, bottom panel). The Rab27a/Slp4 interaction was also confirmed by the observation 

that Slp4 protein level was decreased in Rab27a KD (but not in Rab27b KD) (Fig. 8b and Fig. 

S6d), whereas its mRNA level was increased (Fig. 8c), suggesting a stabilizing interaction of 

Rab27a and Slp4 proteins. Due to low level of expression of endogenous Slac2b, which could 

not be detected by the available antibodies, and to poor expression of a T7-Slac2b construct in 

our cell line, we could neither determine its intracellular distribution nor its preferential 

association with Rab27b. Finally, co-silencing of Rab27a and Slp4 led to a similar phenotype 

as single silencing of each (i.e. enlarged MVEs), whereas co-silencing of Rab27b and Slp4 

induced mainly the perinuclear redistribution of MVEs typical of Rab27b-KD cells, thus 

confirming that Rab27b and Slp4 are not functionally associated (Fig. S4).  

These observations thus show that Rab27a and Slp4 function together in the MVE and 

exosome pathway of HeLa cells. By contrast, although silencing of Slac2b induces a 

phenocopy of Rab27b-KD cells, we could not demonstrate, for technical reasons, the 

functional interaction between these two proteins.  
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DISCUSSION 

 

 

Three major results are presented here. First, we have set up an assay allowing medium-scale 

screens of the molecular machinery involved in exosome secretion. Second, using this assay, 

we identified several Rab family members, including Rab27a and Rab27b, that play a role in 

exosome secretion. Third, we found that Rab27a and Rab27b serve both common and 

different roles, most likely via the Slp4 and Slac2b effector proteins respectively, in the 

intracellular trafficking of multivesicular endosomes leading to exosome secretion.  

The identification of Rab GTPases that affect both the morphology and distribution of CD63-

positive MVEs and exosome secretion confirms the endocytic origin of exosomes, previously 

proposed by elegant EM studies5, 15. In addition, since reducing mRNA expression of Rab27 

genes to less than 20% of the control induced over 50% reduction of exosome secretion, the 

majority of secreted exosomes originate from a Rab27-dependent secretion event, probably 

due to fusion of late endocytic compartments with the plasma membrane. In addition to 

Rab27, three other Rabs related to the endocytic pathway were identified in this study as 

potentially involved in exosome secretion: Rab9 and Rab5 participate in the trafficking of late 

and early endosomes, respectively17, 28 and Rab2, although generally described between 

endoplasmic reticulum and Golgi apparatus, is phylogenetically closer to Rab4, Rab11 and 

Rab1429, which are associated with the endocytic pathway. Surprisingly, other Rabs 

associated with the endocytic system, Rab7 or Rab11, did not modify exosome secretion. 

These observations suggest that a specific subset of MVEs participates in the generation of 

exosomes, as recently proposed in dendritic cells30. 

Rab27a and Rab27b have been previously involved in the regulated secretion of secretory 

granules (i.e. compartments of Golgi origin)31-33 and of lysosome-related organelles in mast 

cells 34, platelets 35, and cytolytic T lymphocytes36. In this study, we found that Rab27a and 

Rab27b play a key role in exosome secretion by promoting the targeting of MVEs to the cell 

periphery and their docking at the plasma membrane.  

Functional redundancy between Rab27a and Rab27b depends on the cell type and/or the 

secretory process studied34, 35, 37. Interestingly, we show here that in the HeLa cell line, 

Rab27a and Rab27b perform different and non-redundant tasks in the exosomal pathway.  

The phenotype of MVEs induced by Rab27b silencing (inhibition of docking, clustering in 

the perinuclear area and high velocity movements along microtubules), is similar to the 

phenotype of secretory granules31 and melanosomes38, 39 induced by silencing Myosin Va, a 
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downstream effector of Rab27a, and suggests that Rab27b mediates the transfer of MVEs 

from microtubules to the actin-rich cortex and their retention at the cell periphery. In addition, 

the smaller size of MVEs observed by EM in Rab27b KD cells suggests that Rab27b could 

participate in the transfer of membranes from TGN to MVEs, as previously proposed40. 

In contrast, Rab27a silencing reduces docking of MVEs and increases their size. This could 

be due to lack of motor linkage, resulting in apparently enlarged compartments. Alternatively, 

either Rab27a is required for docking and vesicles fuse with each other instead of fusing with 

the plasma membrane when Rab27a is absent, or Rab27a prevents fusion of CD63-positive 

compartments with each other or with other vesicular intermediates, and its absence leads to 

the formation of enlarged compartments whose size physically impairs docking to the plasma 

membrane.  

In addition, we show here that silencing of the Rab27 effectors Slp4 and Slac2b phenocopies 

the silencing of Rab27a and Rab27b, respectively, and that Slp4 preferentially associates with 

Rab27a, rather than with Rab27b, and thus regulates the Rab27a-dependent docking event 

leading to exosome secretion in HeLa cells. The preferential interaction of Rab27b with 

Slac2b in HeLa cells could not be demonstrated here, although it has been previously 

demonstrated in vitro41.  

Finally, we must stress that this work was performed using the HeLa model cell line: the 

physiological processes at work in HeLa may not be identical to those of other cell types. 

However, mouse dendritic cells deficient for both Rab27a and Rab27b secrete half the amount 

of exosomes than their wild-type counterparts (Fig. S5) and our preliminary data suggest that 

silencing of Rab27a in a mouse tumor cell line also leads to reduced exosome secretion (A. 

Bobrie, M.O. and C.T., unpublished data). Thus, the Rab27 subfamily is probably also 

important in exosome secretion by other cell types. 

Overall, the possibility to specifically inhibit exosome secretion without affecting the regular 

secretory pathway of soluble proteins paves the way to manipulate their secretion in vivo, to 

eventually answer the long-lasting question of the physiological functions played by 

exosomes in vivo. 
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FIGURE LEGENDS 

 

Figure 1: Semi-quantitative detection of exosomes in cell culture supernatants. 

 

 

(a) Schematic drawing of the technical approach used to selectively capture and stain 

exosomes present in cell culture supernatants by using anti-CD63-coated beads and FACS 
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detection. (b) EM image of exosomes present on the surface of anti-CD63-coated beads after 

incubation with supernatant from B6H4 cells. Scale bar 250 nm. (c) Representative flow 

cytometry dot-plots showing HLA-DR/CD81 (top) and Annexin V (bottom) stainings of 

exosomes captured by beads incubated with supernatants from increasing numbers of cultured 

cells. Percent of positive beads are indicated inside the positive region. (d) Dose-response 

curve of HLA-DR/CD81 (left) and Annexin V (right) staining of exosomes captured by beads 

incubated with 66 different supernatants. (e) Specific detection of exosomes secreted by live 

cells, as compared to membranes secreted by apoptotic cells. A total of 50,000 cells either 

UV-irradiated or untreated were seeded in a 96-wells plate. After 12h incubation, exosome 

depleted-medium was added and 24h later supernatants were incubated with anti-CD63-

coated beads and analysed by FACS.   
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Figure 2: Modulation of exosome and OVA secretion by members of the Rab family.  
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(a) Exosome secretion (black bar), measured as HLA-DR/CD81 staining and OVA secretion 

(white bars) by cells transduced with a control shRNA. Data are mean±s.d. of 3 experiments 

(in each experiment, 100% = mean of 3 independent wells). (b) Exosome and OVA secretion 

and specific mRNA levels of cells transduced with different shRNAs (each bar represents a 

different shRNA) targeting Rab proteins that were not selected as hits in the screen, either 

because neither exosome nor OVA secretion were modified (Rab7, Rab11a) or because only 

OVA secretion was inhibited (Rab6a). Mean values of two independent experiments are 

shown. (c) Exosome and OVA secretion, and specific mRNA levels in cells transduced with 

shRNAs targeting Rab family members that were selected as candidate hits because at least 

two shRNAs significantly affected exosome without affecting OVA secretion. Data are 

mean±s.d. from measures performed in supernatants from five (Rab2b, Rab9a and Rab5a) or 

nine 5Rab27a and Rab27b) wells present in different plates. (d) Exosome secretion by control 

and Rab27a- or Rab27b-KD cells was also evaluated by detection of exposed PS with 

Annexin V. Data are mean±s.d. from measures performed in supernatants from three different 

wells present in different plates Arrows in c and d indicate the shRNAs that were chosen for 

further characterization. Asterisks indicate statistically significant differences from the 

control. *P<0.05, ** P<0.01, *** P<0.001 (one-way ANOVA followed by Tukey’s post test). 

Exo, exosomes.  
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Figure 3: Large-scale purification and characterization of exosomes secreted by Rab27a 

and Rab27b-KD cells.  

 

 

(a) The total amount of proteins in the exosomal pellet purified from large-scale cultures of 

stably-transduced cells was quantified by Bradford assay, and reported to the number of 

secreting cells. The mean±s.d. from 4 independent experiments are  shown. (b) 

Characterization of exosomal proteins by immunoblotting. Purified exosomes secreted by 

equal amounts of control or KD cells were analysed by immunoblotting for the presence of 

CD63, tsg101, HLA-DR, hsc70, and gp96 proteins. A total of 130,000 cells were lysed and 

used for comparison (CL). One representative experiment out of four is shown. Histogram 

shows quantification of signal intensity of HLA-DR, hsc70 and tsg101 proteins in exosomes 

secreted by 20 million KD cells, normalized to the value obtained with exosomes from 
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control cells (mean±s.d. of 3 independent experiments for HLA-DR, 4 for tsg101, 2 for 

hsc70). (c) Equal amounts of total exosomal proteins (quantified by Bradford assay) secreted 

by either control or KD cells were analysed by immunoblotting for presence of CD63, tsg101, 

HLA-DR, and gp96 proteins, and compared to cell lysates. (d) Exosomes purified from cell 

culture supernatant were negatively stained and analysed by EM. Scale bar, 200 nm. Data 

were analyzed by one-way ANOVA followed by Tukey’s pot test. *= p<0.05, **= p<0.01, 

***= p<0.001 
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Figure 4: Effect of Rab27a and Rab27b KD on the intracellular distribution of CD63-

positive compartments.  

 

 

(a) Control, Rab27a- and Rab27b-knockdown cells were stained with anti-CD63 antibodies 

with (total) or without (surface) permeabilization, and analysed by FACS. Histograms from 

one representative experiment out of four are shown (dashed-line empty histograms 

correspond to isotype-controls). (b) Three-dimensional deconvolution fluorescence 

microscopy of control, Rab27a- and Rab27b-knockdown cells stained with anti-CD63 (green) 

and DAPI (nucleus, blue). Scale bar: 17.5 μm. Zooms are x 3.8. (c) Quantification of the size 

and distribution of CD63-positive vesicles in control (white bars), Rab27a (black bars) and 

Rab27b(grey bars)-knockdown cells: mean size of individual CD63-positive compartments 

(left ; means±s.d. of 9796, 8247 and 9072 vesicles counted in 14 control, 15 Rab27a- and 20 
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Rab27b-knockdown cells, respectively) and percentage of cells with asymmetrical 

distribution (right, mean±s.d. of four experiments ; a total of 144, 222 and 227 cells, 

respectively) are represented. (d) Left, electron micrographs of ultrathin cryosections of 

control, Rab27a-knockdown or Rab27b-knockdown cells immunogold-labelled with anti-

HLA-DR (10nm of gold) and anti-CD63 antibodies (15nm of gold). Scale bar, 250 nm. Right, 

the surface area of individual CD63-positive multivesicular compartments was on randomly 

taken electron micrographs was measured. Asterisks indicate statistically significant 

differences. *= P<0.05, **= P <0.01, ***= P <0.001 (one-way ANOVA followed by Tukey’s 

post test).  
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Figure 5: Differential intracellular distribution of Rab27a and Rab27b.  

 

 

(a) 3D deconvolution fluorescence microscopy of cells transiently transfected with GFP-

Rab27a (left panel) or GFP-Rab27b (right panel) -encoding plasmids, and subsequently 

stained with anti-CD63 and anti-Rab6 antibodies. Arrows point at CD63-positive 

compartments with GFP-Rab27 staining. Scale bar: 10 μm. Zoom: x 2.3. (b) Electron 

micrographs of ultrathin cryosections of GFP-Rab27a- (left panel) or GFP-Rab27b- (right 

panel) transfected cells, immunogold-labeled with anti-CD63 (15 nm gold) and anti-GFP 



 25

(10nm gold) antibodies. Bar, 500 nm. Arrows indicate Rab27 association with the limiting 

membrane of MVEs and arrowheads indicate the localization of Rab27b in the Golgi 

apparatus area. (c) Confocal fluorescence microscopy of cells doubly transfected with 

mCherry-Rab27a- and GFP-Rab27b-encoding plasmids, and subsequently stained with anti-

CD63. Scale bar: 10 μm. Zoom: x 8. 
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Figure 6: Effect of Rab27a and Rab27b KD on the mobility of CD63-positive 

compartments in the subplasmalemmal region analysed by TIRF microscopy.  

 

 

(a) Right, representative TIRFM images showing GFP-CD63 distribution in control, Rab27a- 

and Rab27b-knockdown cells. Scale bar: 5 μm. Left, vesicle density in the subplasmalemmal 

region detected by TIRFM (data are the mean±s.e of vesicles quantified in 18 control, 19 
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Rab27a- and 20 Rab27b-knockdown cells, Mann-Whitney, **,P= 0,0042). (b) Effect of 

Rab27a and Rab27b knockdown cells on vesicle motion. Mean diffusion coefficient (Dxy) 

values of individual trajectories obtained for at least 400 vesicles in control, Rab27a- and 

Rab27b-knockdown cells are shown. Red bars: median and interquartile ranges (**= p<0.01, 

***= p<0.001, Kruskal Wallis test, followed by Dunn’s post test,). (c-f) Entire trajectories 

were analyzed using a rolling analysis window: black bars, control: 12 cells, 499 trajectories; 

grey bars, Rab27a knockdown: 10 cells, 415 trajectories; white bars, Rab27b knockdown: 12 

cells, 528 trajectories. (c) Data show the mean ± s.e.m of Dxy values computed on entire 

trajectories. Rab27a and Rab27b silencing reduced the percentage of vesicles with Dxy < 3 x 

10-4 µm2/s that are presumably docked (*P=0.0479, **P=0.0079). (d) Data show the 

percentage of vesicles that were always (grey bars) or never (black bars) docked (Dxy < 3 x 

10-4 μm2/s) in control, Rab27a- and Rab27b-knockdown cells. *P=0.0147, **P=0.0086. (e) 

Further characterization of docking events. Immobilization periods were detected as in (d) 

and their duration was measured. Logarithmic plots of survival curves for immobilization 

times are shown (control, black line; Rab27a knockdown, dashed line; Rab27b knockdown, 

gray line). The best fit was obtained with the sum of two exponentials (r2>0.998) and was 

significantly different in Rab27 knockdown cells compared to control cells (p < 0.0001; extra 

sum-of-squares F-test). (f) Rab27b knockdown increases mobility along microtubules. The 

mean ± s.e.m velocity of vesicles during periods of directed motion is shown(*P=0.011).  
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Figure 7: Effect of Rab27 effector proteins on exosome secretion.  
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(a) FACS analysis of exosome (HLA-DR/CD81 staining, black bars) and OVA (white bars) 

secretion by cells transduced with shRNA to  Rab27 effector proteins (3 to 5 viruses/gene). 

Mean±s.d. of three independent experiments is shown. (b) Specific inhibition of Slp4, Slac2b 

and Munc13-4 gene expression, as assessed by qRT-PCR. Results from 2 experiments 

performed in triplicates, expressed as percent of mRNA expression of control cells are shown. 

(c) Immunoblot (left panel) and quantification (right panel) of Slp4 protein level in Slp4 and 

Slac2b KD cells. Tubulin was used as a loading control. (d) Exosome secretion by B6H4 cells 

stably transduced with scrambled shRNA (Control), Slp4 shRNA #3, or Slac2b shRNA #3.  

Exosomes secreted by 9 million cells (Exo), or 30 μg of total cell lysates (CL) were analysed 

by immunoblotting for presence of CD63, tsg101, HLA-DR and gp96 proteins. One 

representative experiment of three is shown. The relative amount of HLA-DR and tsg101 

secreted in exosomes was quantified by signal intensity measurement (right panel). Results 

are expressed as the mean±SD of ratio to control cells in 3 independent experiments. (e) 

FACS analysis of Slp4 KD, Slac2b KD and control cells stained in parallel with anti-CD63 

antibodies after permeabilization (total) or not (surface). Representative histograms (left 

panels, thin-lined empty histograms correspond to isotype-controls) of three independent 

experiments are shown. (f) Three-dimensional deconvolution fluorescence microscopy of 

control, Slp4-, and Slac2b knockdown cells stained with anti-CD63 (green) and DAPI 

(nucleus, blue). Upper panels, representative images of control, Slp4- and Slac2b-knockdown 

cells. Scale bars, 10 μm. Zooms are  x 2.5. Lower panels: quantification of CD63-positive 

vesicles size (left panel, mean±SD of 10106, 11430 and 11404 vesicles from 20 control, 21 

Slp4- and 23 Slac2b-knockdown cells, respectively) and cells with asymmetrical distribution 

of CD63-positive vesicles (right panel, mean±SD of 2 independent experiments, a total of  

107 control, 86 Slp4- and 115 Slac2b-knockdown cells). *= p<0.05, **= p<0.01, ***= 

p<0.001(one-way ANOVA followed by Tukey’s post test).  KD, knockdown. For full scans 

of blots in c and d, see Supplementary information, Fig.S6.   
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Figure 8: Interaction between Slp4 and Rab27a.  
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(a) 3D deconvolution fluorescence microscopy of cells doubly transfected with T7-Slp4 and 

either GFP-Rab27b-(top panel) or GFP-Rab27a-(bottom panel) encoding plasmids, and 

subsequently stained with anti-CD63 and anti–Slp4 antibodies. Arrows point at zoomed areas 

(x8). (b-c) Slp4 expression levels in cells KD for either Rab27a or Rab27b. Slp4 protein 

levels were evaluated by immunoblotting in cells KD for either Rab27a or Rab27b (b). A 

representative blot (left panel) and the quantification of the relative mean intensity±s.d. of 

three independent blots normalized to tubulin levels (right panel) are shown. Uncropped 

western blots are shown in Fig. S8b. (c) The level of expression of Slp4-specific mRNA in 

cells KD for either Rab27a or Rab27b was analysed by qPCR and normalized to the level of 

expression of GAPDH. Mean values±s.d. of three independent experiments are shown. Data 

were analyzed byone-way ANOVA followed by Tukey’s pot test. Stars indicate statistically 

significant differences with control cells. *= p<0.05, **= p<0.01, ***= p<0.001 

 

  

METHODS 

 

Cells and reagents 

HeLa-CIITA cells42 were stably transfected with pcDNA3 encoding the OVA cDNA fused to 

the signal peptide of MFG-E8/lactadherin13, and a subclone named B6H4 was selected. These 

cells were cultured in DMEM containing 4.5 g glucose/l (Invitrogen) 10% fetal calf serum 

(Abcys), 2 mM glutamine, 100 IU/ml penicillin, 100 µg/ml streptomycin, 300 µg/ml 

hygromycin B (Calbiochem), 500 µg/ml geneticin (Invitrogen).  

Plasmids used for transient transfections (performed with Bio-Rad gene pulser II 42) include 

pEGFPC3-Rab27a43, pEGFPC3-Rab27b23, pEGFP-bos-CD6344, pT7-Slp445, mCherry-

Rab27a generated by PCR from pcDNA3.1mcherry46 and pEGFPC3-Rab27a, and cloned into 

pCMVMyc vector38 (A.H. Hume, unpublished).  

Lentiviruses expressing shRNA were obtained from the RNAi consortium (TRC) and 

produced as previously described47. Sequences of the shRNA used for large scale cultures are: 

Rab27a: GCTGCCAATGGGACAAACATA, Rab27b : CCCAAATTCATCACTACAGTA, 

Slp4 : CCTCCCTTTACATGGAAAGAT; Slac2b : CCCAAACTAGAAGAAGTTCTT. 

Antibodies for FACS analysis: mouse anti-human CD63 (FC-5.01, Zymed) and goat anti-

OVA (ICN) for coupling to beads, PE-conjugated anti-HLA-DR (L243, BD) and anti-CD81 

(BD), rabbit anti-OVA (Sigma) coupled to Alexa488 according to manufacturer instruction 
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(Pierce). For immunoblotting: goat anti-tsg101 (Santa Cruz), rat anti-gp96 and –hsc70 

(Stressgen), mouse anti-CD63 (Zymed), -HLA-DR (clone 1B5), and -Rab27a (clone 4B1243), 

rabbit anti-Rab27b35, -Slp433, and -Slac2b33, and HRP-conjugated secondary antibodies 

(Jackson Immunoresearch). For immunofluorescence and immunoEM: mouse anti-CD63 

(Zymed), rabbit anti-Rab6 (Santa Cruz) and –GFP (Invitrogen), Alexa488-anti-mouse and 

Cy3-anti-rabbit (Jackson Immunoresearch), DAPI (Molecular Probes).  

 

Immunoadsorbtion and detection of exosomes by FACS 

Anti-human CD63 or anti-OVA antibodies were coupled to 4 μm aldehyde-sulfate beads 

(Invitrogen) by incubating 35 μg of antibody with 1x108 beads followed by blocking of 

remaining activated groups with PBS-4% BSA.  

Cell culture supernatants were cleared by centrifugations at 1,200 rpm (for 5 min) and 4,000 

rpm (for 20 min). Cleared supernatants (100 μl) were incubated with 20,000 anti-CD63 and 

20,000 anti-OVA coupled beads overnight at room temperature with 6,500 rpm shaking. 

Beads were washed twice in PBS-2% BSA and incubated with PE-anti-HLA-DR + PE-anti-

CD81 and Alexa488-anti-OVA (all at 1:100 dilution) for 30 min on ice. Beads were washed 

twice in annexin V buffer (BD Biosciences) and incubated with APC-conjugated annexin V 

(1:10) for 10 minutes. Beads were acquired on a FACSCalibur (BD) and data were analysed 

with FlowJo software (Tree Star). Threshold of negative staining was obtained with beads 

incubated with unconditioned medium, and for each culture condition, arbitrary units (AU) of 

exosome or OVA secretion were calculated as a percentage of positive beads x MFI of 

positive beads. To rule out detection of apoptotic blebs, a total of 50,000 cells either UV-

irradiated or untreated were seeded in a 96-wells plate. After 12h incubation, exosome 

depleted-medium was added and 24h later supernatants were incubated with anti-CD63-

coated beads and analysed by FACS.   

 

Lentiviral infection and screening procedure 

 

HeLa B6H4 cells were plated in 96 well round-bottom plates at 2,500 cells per well (day 

zero). At day 1, cells were infected with lentiviral vectors in the presence of 8 μg/ml 

polybrene and 5 μg/ml puromycin was added at day 2. Medium was replaced with exosome-

depleted medium at day 4. Supernatants were collected 48 h later for OVA and exosome 

quantification, and the amount of live cells in each well was determined using Cell titer blue 
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reagent viability assay (Promega). OVA and exosome secretions per well were normalized to 

the number of viable cells, and only wells containing at least 75,000 cells were analysed. In 

each experiment, the basal level of exosome or OVA secretion (= control) was calculated as 

either A.U. of cells transduced with control scrambled shRNA, or mean of A.U. of one entire 

plate. A candidate gene was defined as a hit if two or more shRNAs modified A. U. of 

exosome secretion, in duplicate, by more than one standard deviation from the control. 

Results are presented as percent of A.U. of control. 

 

Quantitative RT-PCR 

 

RNAs were isolated from each well at day 5 after lentiviral infection with the Qiagen RNeasy 

Mini Kit and 200 ng were reverse transcribed with AMV RT (Finnzymes). 1/10th of cDNA 

was used for each PCR reaction, performed with SYBRgreen (Thermo Scientific) on ABI 

PRISM 7900 real-time thermal cycler (Applied Biosystems). Primer sequences for each gene 

were either retrieved from Primer Bank (http://pga.mgh.harvard.edu/primerbank/) or designed 

using Primer3 (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi). Cycle thresholds 

(Ct) were normalized to Ct of GAPDH and fold enrichments were calculated as compared to 

the control shRNA-transduced cells values.  

 

Exosome purification 

 

Cells were cultured in “exosome-depleted medium” (complete medium depleted of FCS-

derived exosomes by overnight centrifugation at 100,000 g)  for 48 hours and exosomes were 

purified by filtration on 0.22-μm pore filters, followed by ultracentrifugation at 100,000g as 

described24. In each exosome preparation, the concentration of total proteins was quantified 

by Bradford assay (BioRad).  

 

Electron microscopy  

 

Exosomes fixed in 2% paraformaldehyde were loaded on Formwar/carbon-coated EM grids. 

Samples were post-fixed in 1% glutaraldehyde, contrasted and embedded as previously 

described5. For immunolabeling, cells were fixed with 2% paraformaldehyde in 0.2 M 

phosphate buffer pH 7.4 and processed for ultrathin sectioning and immunolabeling with the 

indicated antibodies and protein A coupled to 10 or 15 nm gold particles (Cell Microscopy 
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Center, The Netherlands) as described previously5. Sections were observed at 80kV with a 

CM120 Twin Philipps electron microscope (FEI Company, The Netherlands) and digital 

acquisitions were made with a numeric camera (Keen View; Soft Imaging system, Germany). 

Quantification of the surface of MVBs was performed on at least 40 CD63-positive 

multivesicular compartments present in randomly taken pictures analysed using the iTEM 

software (Olympus). 

 

Immunoblotting 

 
Cells were lysed in 50 mM Tris, pH 7.5, 0.3 M NaCl, 0.5% Triton X-100, 0.1% sodium azide, 

with a cocktail of antiproteases (Roche), and cleared from nuclei by centrifugation at 13,000 

rpm for 5 min. Protein extracts were separated on 4%–12% SDS-PAGE, blotted on 

Immobilon (Millipore), and HRP-conjugated secondary antibodies were revealed using 

chemoluminescence substrate (Roche). Images were acquired using Chemidoc XRS 

(BioRad), intensity of the bands was quantified using QuantityOne software (Biorad) and 

results were expressed as the ratio with control cells.  

 

Flow Cytometry 

 

For surface labeling, cells were stained with antibodies diluted in PBS-0.5% BSA on ice. For 

intracellular + surface staining, cells fixed with 1% paraformaldehyde, were quenched with 

PBS-0.1M glycine, permeabilized using PermWash reagent (BD), and stained with antibodies 

diluted in permeabilization buffer. Cells were acquired on a FACScalibur and analysed using 

FlowJo software. 

 

Immunofluorescence Microscopy 

 

Cells (1 x 105) were seeded on glass coverslips for 18h, fixed in 4% paraformaldehyde, 

quenched with 0.1 M glycine, permeabilized in PBS-0.2% BSA-0.05% saponin, and 

incubated with primary and secondary fluorescent antibodies. The coverslips mounted with 

Fluoromount-G (Southern Biotechnology Associates) were examined under a motorized 

upright wide-field microscope (Leica DMRA2) equipped for image deconvolution. 

Acquisition was performed using a x100 objective (PL APO HCX, 1.4 NA) and a high-

sensitive cooled interlined CCD camera (Roper CoolSnap HQ). Z-positioning was 
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accomplished by a piezo-electric motor (LVDT, Physik Instrument) and Z-series of images 

were taken every 0.2 µm. Images were acquired with Metamorph Software. Vesicle sizes 

were calculated with the Multidimensional Image Analysis (MIA) interface based on wavelet 

decomposition48, running under MetaMorph (Universal Imaging Corporation). Briefly, 

fluorescent objects corresponding to MVE were detected as fluctuations that are 20-fold 

larger than the noise. The watershed function was routinely applied in order to precisely 

detect individual structures in dense regions. The diameter of each structure was calculated 

from the sum of pixels assuming a spherical shape. Alternatively, images were acquired with 

Zeiss confocal microscope (LSM Axivert 720) using 6 3 × 1.4 NA oil immersion objective. 

Image acquisition and Image analysis were performed in the PICT IbiSA Imaging Facility 

(Curie Institute). Brightness and contrast of the images displayed in Figures 4b, 5a, 7f and 8a 

were adjusted for better visualisation according to the journal’s guidelines for presentation of 

digital data. 

Quantification of asymmetrical distribution of CD63-positive vesicles was performed 

manually in a double blind setting. Asymmetry was defined as a concentration of the CD63-

staining in one side of the nucleus (covering less than 50% of the nucleus diameter).  

 

Evanescent wave fluorescence microscopy (TIRFM) 

 

B6H4 cells stably expressing shRNA were transfected with GFP-CD63-encoding plasmid 36h 

before analysis by TIRFM. TIRF imaging was performed on a custom setup as described 

previously26. The penetration depth δ  of the evanescent field used to excite the fluorophore 

was set to 150 nm. Frames were acquired at 10 Hz in stacks of 450 images with an exposure 

time of 100 ms. One pixel corresponds to 107.5 nm. The density of GFP-CD63 structures was 

evaluated using MIA48. The quantification was performed on regions devoid of TGN-like 

labeling and expressed as the number of observed CD63-positive structures divided by the 

size of the cell footprint. From stacks of images, 2-dimensional (x, y) trajectories were 

obtained by single particle tracking using MIA software. Mean square displacement (MSD) in 

the x,y plane was calculated as described25, 49. The diffusion coefficient Dxy was then 

calculated as Dxy = s/4 with s being the slope of the linear fit of the first 15 points of the MSD 

curve. To measure Dxy variations along a given trajectory, a rolling analysis window of 2.5 s 

was used as described25. Using this method, a Dxy value was attributed to each point of the 

trajectory. Immobilization periods correspond to portions of trajectories during which Dxy < 3 

x 10-4 µm2.s-1. Survival curves for immobilization times (i.e. the number of events/trajectory 
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lasting at least the indicated immobilization time) were computed for each cell and averaged 

over the different cells. The best fit for the curves was obtained with the sum of 2 

exponentials, fN(t) =N1 exp(-t/τ1) + N2 exp(-t/τ2), using SigmaPlot (Systat Software, USA). N1 

and N2 represent the abundance of each component, τ1 and τ2 their time constants. Portions of 

trajectories displaying directed motion were detected by inspection of x vs t and y vs t plots 

and selected using locally written routines (MatLab, The MathWorks, USA). Frame-to-frame 

rates of movement were calculated and averaged over each period of directed motion. 

 

Statistical analyses 

Data were analysed using GraphPad Prism (GraphPad Software). Normality of the data was 

tested using the Kolmogorov-Smirnov test. Based on the normality test, either one-way 

ANOVA followed by Tukey’s post test or Kruskal Wallis followed by Dunn’s post test were 

used for multiple comparison analyses. Values are given as mean ± S.D. in all figures except 

Fig.6 : mean ±S.E.  
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Supplementary Informations : 

Supplementary Figure S1: Semi-quantitative detection of OVA in cell culture 

supernatants. (a) Representative flow cytometry dot-plots showing the detection of OVA 

present in the supernatants collected from cultures of increasing numbers of cells, after 

capture onto anti-OVA-coated beads and staining with Alexa488-anti-OVA Ig.  (b) Dose-

response curve of OVA staining, obtained by quantification of 66 experimental conditions. (c) 

Comparison of the signal obtained following OVA staining in supernatants collected from 

cultures of either live or UV-irradiated cells collected 24 h after seeding 50,000 cells/well in a 

96-well plate.  

 

Supplementary Figure S2: Further characterization of cells stably transduced with 

Rab27a- or Rab27b-specific shRNAs. (a) Specific extinction of RAB27A (respectively 

RAB27B) gene expression by Rab27a-specific virus 3 (respectively Rab27b-specific virus 1), 

with no effect on RAB27B (respectively RAB27A) gene expression, as shown by quantitative 

RT-PCR with primers specific for each gene. (b) Representative dot plot showing HLA-

DR/CD81 (top panel) and Annexin V (bottom panel) staining on large-scale supernatants 

from cells transduced with Rab27a-specific virus 3 and Rab27b-specific virus 1. 

 

 

Supplementary Figure S3: Morphology of MVEs in the subplasmalemmal region. (a) 

Colocalisation of GFP-Rab27a or GFP-Rab27b and CD63 (labeled with anti-mouse Cy3) 

observed by TIRFM. Quantification of colocalisation was performed on 10 cells per 

condition. Scale bar: 5 μm. Zoom: x2.5. (b) Rab27a and Rab27b silencing increase the 

distance of the vesicles to the border of the cells. The areas of the cell footprints (yellow), and 

of the minimal polygon encompassing all vesicles (red) were measured. Representative 

images of control, Rab27a KD and Rab27b KD cell are shown. The ratio of the vesicles area / 

total cell area was calculated in 23 control cells, 23 Rab27a KD cells and 25 Rab27b KD 

cells. (c) GFP-CD63 vesicles were tracked and diffusion coefficients Dxy were computed 

along the trajectories. Shown is the distribution of Dxy pooled from 118 trajectories monitored 

in 7 control cells. Values above 30 x 10-4 µm2.s-1 were omitted. An example of a vesicle 
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exhibiting a directed motion (0-5 s) followed by a docking period (5-10 s, 15-25 s) is 

presented in the inset.  

 

Supplementary video-movies:  

Video 1 for a CTRL cell, video 2 for a Rab27a KD cell and Video 3 for a Rab27b KD cell. 

Images were acquired by TIRFM at 10 Hz for 40 s. Movies are accelerated 4 times.  

 

Supplementary Figure S4: Effect of double-silencing of Rab27a or Rab27b and Slp4 on 

the morphology of CD63-positive MVEs.  
B6H4 stably expressing shRNA to either Rab27a or Rab27b were transfected with a plasmid 

encoding EGFP and a shRNA to Slp4. Four days later, cells were fixed and stained with anti-

CD63, and morphology of CD63 compartments was manually quantified in GFP-expressing 

cells. (a) Quantification of cells presenting enlarged CD63+ compartments. Single KD of 

Rab27a and double KD of Rab27a and Slp4 induce the same phenotype (enlarged MVEs). (b) 

Quantification of cells presenting asymmetrical perinuclear accumulation of CD63+ 

compartments. Slp4 KD does not induce asymmetrical distribution of MVEs, whereas both 

single KD of Rab27b and double Rab27b+Slp4 KD induce this phenotype. For each 

condition, 20 cells were evaluated in a blind manner. 

 

Supplementary Figure S5: Exosome secretion by bone marrow-derived dendritic cells 

(BMDCs) from Rab27a/Rab27b double knock-out mice.  

Dendritic cells were differentiated from bone marrow precursors in the presence of GM-CSF. 

At day 10 after the onset of culture, cells were cultured in exosome-depleted medium for 24h, 

before collection of supernatant and purification of exosomes by ultracentrifugation. WT and 

Rab27a/b-KO cells contained more than 75% of BMDCs, and less than 10% of mature 

BMDCs, as assessed by FACS staining for CD11c, Gr1, MHC Class II. Purified exosomes 

secreted by equal amounts of control or KO cells were analysed by immunoblotting for 

presence of CD9, tsg101, MFG-E8, MHC class II, and gp96 proteins. A total of 30 or 10 μg 

cells were lysed and used for comparison. One representative experiment of four is shown. 

Histogram shows quantification of signal intensity of CD9, tsg101, MFG-E8, and MHC II 

proteins in exosomes secreted by 5.8 million cells from the KO mice, normalized to the value 

obtained with exosomes from control cells (mean±SD of 4 experiments). 
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Supplementary Figure S6: Uncropped Western blots corresponding to Figures 3b, 3c, 

7c, 8b, and 7d. 

Western blots corresponding to Figures 3b (a), 3c (b), 7c (c), 7d (e) and 8b (d) were 

hybridized consecutively with antibodies in the displayed order. Position of molecular weight 

markers (kDa) is indicated. Bands corresponding to the specific protein are highlighted by an 

arrow. 

 

 
 
 
 
 
 


