
RACAI’s Linguistic Web Services

Dan Tufiş, Radu Ion, Alexandru Ceauşu, Dan Ştefănescu
Research Institute for Artificial Intelligence, Romanian Academy

13, “Calea 13 Septembrie”, Bucharest 050711, Romania
tufis@racai.ro, radu@racai.ro, aceausu@racai.ro, danstef@racai.ro

Abstract
Nowadays, there are hundreds of Natural Language Processing applications and resources for different languages that are developed
and/or used, almost exclusively with a few but notable exceptions, by their creators. Assuming that the right to use a particular
application or resource is licensed by the rightful owner, the user is faced with the often not so easy task of interfacing it with his/her
own systems. Even if standards are defined that provide a unified way of encoding resources, few are the cases when the resources are
actually coded in conformance to the standard (and, at present time, there is no such thing as general NLP application interoperability).
Semantic Web came with the promise that the web will be a universal medium for information exchange whatever its content. In this
context, the present article outlines a collection of linguistic web services for Romanian and English, developed at the Research
Institute for AI for the Romanian Academy (RACAI) which are ready to provide a standardized way of calling particular NLP
operations and extract the results without caring about what exactly is going on in the background.

1. Introduction
Software application interoperability is a long standing
goal in its own. When referring to data exchange, it is not
always easy to couple two different authored programs
which admittedly complement each other and obtain the
combined result because one will have to make sure that
the output from one program fits as input to the second
(and the problem grows in complexity with the number of
programs that have to be combined). Another issue to take
into consideration is the format of different software
resources that are used by programs. It may be the case
that different developers are creating custom resources
that are to be used by their own applications but that,
given the appropriate changes to the format, could be also
used by other applications (the best example here is the
existence of different ontologies each coded in different
knowledge representation languages but which could be
used by a variety of applications only if their format
would be the same1).

Natural Language Processing (NLP) applications and
resources make no exception. The typical NLP researcher
would search the Internet for the necessary tools and
resources for the language of interest and would then take
the time to mix all these into a functional system. When
the tools and/or resources are not to be found in the public
domain or are too expensive to acquire, he or she will
implement the necessary tools and/or resources, with the
primary concern on the correct operation and, usually,
ignoring the interoperability issues. Then the cycle is
resumed and another NLP researcher would use these
developed tools and/or resources and waste some more
time to make them work in other situations and/or
environments.

1 Of course, there is also the problem of ontology
interconnection which involves concept mapping but on a first
level, common representation formalisms should be adhered to.

It seems that one way out from this endless collect, adapt,
test and use loop is provided by the Semantic Web idea of
web services. According to Tim Berners-Lee, a web
service provides for “program integration across
application and organizational boundaries” (Berners-Lee,
2003). The integration is achieved via a standardized RPC
call interface implemented with SOAP which is
essentially built over XML. Apart from that, the software
API of the web services can be formally described with
WSDL which is also a XML language.

The great advantage of the web service concept is that the
machine hosting the actual service need not be the same
with the machine of the user of the service. This is a
concept borrowed from RPC and CORBA and extended
such that the message transport can be implemented
according to any Internet protocol such as HTTP, SMTP,
POP or TCP. One of the protocols for the message
encoding is SOAP (the latest version is 1.2) which is “a
lightweight protocol intended for exchanging structured
information in a decentralized, distributed environment”
(citation taken from W3C SOAP 1.2 specifications2).

Together, SOAP and WSDL assure the user that the web
service is readily available to use directly in any
application (provided that the user knows the URL of the
WSDL file of the web service). Thus, the time spent to
collect, adapt and test a standalone application is reduced
to minimum because the user need not: i) download the
application but merely use its interface; ii) adapt the
application because its interface is well described with
WSDL and there are software tools that given the WSDL
file, import all the semantics into the current project (see
Microsoft Visual Studio for example) and iii) test the
application because it was well tested by its creators and it
is running in the proper environment.

The present article will describe several linguistic web

2 http://www.w3.org/TR/soap12-part1/

327

services for English and Romanian developed at the
Research Institute for Artificial Intelligence of the
Romanian Academy (RACAI) implementing NLP
operations such as POS tagging (with its prerequisites
sentence and token splitting), lemmatization, chunking,
word linking, WordNet lookup, languages identification,
diacritics insertion (for Romanian) and Romanian
Wikipedia indexing and searching.

2. General Architecture
The POS tagging, lemmatization and chunking operations
are implemented by TTL (Ion, 2007), a Perl module
which was intended as an API for NLP applications
requiring these operations. Word linking is achieved
through LexPar (Ion 2006; Ion 2007), a lexical attraction
model linker with syntactic filtering of possible links also
written in Perl. WordNet lookup, language identification
and diacritics insertion (DIAC+, (Tufiş & Ceauşu, 2008))
are implemented in C# and were developed as standalone
applications. The indexing and search engines were
developed for the CLEF series 3 of QA evaluation
exercises.

All applications were adapted as web services using
SOAP::Lite4 in the case of Perl applications and native C#
capabilities for the ones written in C#. While Microsoft
Visual Studio supports WSDL generation on the fly, we
needed to encode function return values and signatures
using POD::WSDL5 in the case of Perl applications and
manually generate WSDL web service description.

Figure 1 depicts a dependency graph of the web services
operation. Both TTL and LexPar have been trained to
process either English or Romanian and, therefore, their
invocation requires the language code for the appropriate
selection of the linguistic resources. Thus, in an
unsupervised scenario, a generic application calling the
TTL or LexPar services should first call the Language
Identification service (described in section 7) and use the
result as an input parameter for TTL or LexPar (actually
this is a generic requirement for any of our multilingual
services). LexPar needs the XML output formatting of

3 http://www.clef-campaign.org/
4 http://www.soaplite.com/
5 http://search.cpan.org/~tareka/Pod-WSDL-0.05/

TTL in order to add word links. WordNet lookup,
searching through Romanian Wikipedia and DIAC+ are
standalone web services that do not require any further
preprocessing. The dashed line between DIAC+ and TTL
shows that the diacritics recovery web service can also
work on TTL processing output.

In what follows, we will describe each of the web services
concentrating on their programming interfaces. For the
details of their algorithms, the reader may consult the
references.

3. TTL and LexPar
TTL (Ion, 2007) is a text preprocessing module developed
in Perl. Its functions are: Named Entity Recognition (by
means of regular expressions defined over sequences of
characters), sentence splitting, tokenization, POS tagging,
lemmatization and chunking. The NER function is
included as a preprocessing stage to sentence splitting
because end of sentence markers may constitute parts of
an NE string (i.e. a period may be a part of an
abbreviation). POS tagging is achieved through the HMM
tagging technology. The POS tagger of TTL follows the
description of HMM tagger given in (Brants, 2000) but it
extends it in several ways allowing for tiered tagging, for
a more accurate processing of unknown words and also
for tagging of named entities (which are practically
labeled by the NER module before actual POS tagging).
The TTL’s tag-set is the MSD6 with its smaller superset
CTAG. (TTL tagging methodology follows the tiered
tagging approach (Tufiş, 1999) where MSDs are
recovered from an initial CTAG annotation).
Lemmatization is achieved after POS tagging by lexicon
lookup (in general, a word form and its POS tag uniquely
identify the lemma). In the case of out-of-lexicon word
forms the lemmatization is performed by a statistical
module which automatically learns normalization rules
from the existing lexical stock (for details see (Ion, 2007)).
Finally, chunking is implemented with regular
expressions over sequences of POS tags. It is not
recursive and it does not perform attachments (PPs to NPs
for instance).

The TTL web service offers the following remote
procedures (these are the actual names from the WSDL
file which is located at http://ws.racai.ro/ttlws.wsdl):
1. SentenceSplitter which takes as parameters the

language of the text to process (currently either “en”
or “ro”) and a SGML entity encoded text and returns
another string which is a list of sentences separated
by carriage return/line feed sequence (“\r\n”);

2. Tokenizer which has as parameters the language
code and a sentence and returns a list of tokens
separated by “\r\n” each token possibly carrying its
NE tag (added to the token with the tab character
“\t”) given by the NER module of the
SentenceSplitter in the case the token is a NE

6 http://nl.ijs.si/ME/V2/msd/

Figure 1: A general operation dependency graph
of the web services

Language
identification

TTL

LexPar

WordNet
browser

DIAC+

SearchRoWiki

328

(i.e. a real or integer number, a roman number,
percents, abbreviations, dates, clock times, etc.);

3. Tagger which takes the language code and a
tokenized sentence from Tokenizer and returns a
MSD POS tagged sentence which is a string with
triples of token, “\t”, MSD separated by “\r\n”;

4. Lemmatizer uses the POS tagged sentence along
with the language code and returns a lemmatized
sentence which resembles the one from the Tagger’s
output except that the token annotation is enriched
with its lemma which is separated again by a “\t”
from the MSD tag;

5. Chunker is the final operation of TTL and, beside the
language code, it takes a lemmatized sentence and
returns the same sentence with chunk information
added after the lemma annotation;

6. XCES is a helper function which calls all the
previously mentioned operations and returns an XML
representation of the result.

In principle, TTL operations are to be pipe-lined from 1 to
5, SentenceSplitter which takes the actual text as
parameter being the first function call, Tokenizer the
second function call, and so on till the Chunker operation.
Since TTL operates with SGML entities and not UTF-8
representation of the text, the user is required to transform
the input text from UTF-8 to SGML by calling
UTF8toSGML helper function of the TTL web service and
convert the response back to UTF-8 with the reverse
function SGMLtoUTF8. The conversion cannot be
automatically made because the web service cannot know
how many calls are stacked and thus, when to convert
back to the UTF-8 encoding.

To get a feel of how the TTL web service is invoked, here
is a short example written in Perl using the SOAP::Lite
package. We exemplify the process with the English
sentence “This is a simple example of a web service
remote execution.”.

use SOAP::Lite;

my($soap) = SOAP::Lite->new()->

 uri('http://ws.racai.ro/pdk/ttlws')->

 proxy('http://ws.racai.ro/');

print(

 $soap->Chunker("en",

 $soap->Lemmatizer("en",

 $soap->Tagger("en",

 $soap->Tokenizer("en",

 $soap->SentenceSplitter("en", "This is

a simple example of a web service

remote execution.")

 ->result()

) #end Tokenizer call.

 ->result()

) #end Tagger call.

 ->result()

) #end Lemmatizer call.

 ->result()

) #end Chunker call.

 ->result()

); #end print

We have set the URI of the TTL web service which is its
universal identifier over the Internet with the uri method
of the newly created SOAP object. Then, we have
specified the physical URL of the web server which hosts
the service with the proxy method. We are now ready to
call all the TTL’s public procedures. By writing
$soap->Chunker(...) for instance, the SOAP::Lite
package does all the hard work for us: it encodes the
method call and its input parameters into a SOAP message,
it sends the message to the service web server and
receives from it another SOAP message which encodes
the procedure’s return value. It parses the SOAP message
response and extracts the result which then it presents to
us with the result() method call. So, the result of
running this sample code looks like this:

This Pd3-s this

is Vmip3s be Vp#1

a Ti-s a Np#1

simple Afp simple Np#1,Ap#1

example Ncns example Np#1

of Sp of Pp#1

a Ti-s a Pp#1,Np#2

web Ncns web Pp#1,Np#2

service Ncns service Pp#1,Np#2

remote Afp remote Pp#1,Np#2,Ap#2

execution Ncns execution Pp#1,Np#2

. PERIOD .

Information on each line was added from left to right:
token, MSD tag, lemma and chunking information.
Regarding the chunks, every token has a list of the chunks
it belongs to. The order of the chunks in the list signifies
chunk inclusion (e.g. the token 'service' belongs to the
noun phrase no. 2 which is embedded into the
prepositional phrase no. 1).

XCES is another function of TTL which turns the vertical
text format exemplified above into an XML encoding,
resembling XCES format7. For our recurrent example, the
result of invoking the XCES function is suggested below:

<seg lang="en">

<s id="example.1">

 <w lemma="this" ana="Pd3-s">

 This</w>

 <w lemma="be" ana="Vmip3s" chunk="Vp#1">

 is</w>

 <w lemma="a" ana="Ti-s" chunk="Np#1">

 a</w>

 <w lemma="simple"ana="Afp"chunk="Np#1,Ap#1">

 simple</w>

 <w lemma="example" ana="Ncns"chunk="Np#1">

 example</w> ...

Lexpar (Ion 2006; Ion 2007) is a word linker. A link
between two syntactico-semantic related words in a

7 http://www.cs.vassar.edu/XCES/

329

sentence is an approximation of a dependency relation as
described in (Mel’čuk, 1988) with the difference that the
orientation and labeling are missing. A link structure of a
sentence (called a linkage) is constructed with a Lexical
Attraction Model (Yuret, 1998). We have improved the
convergence properties of a LAM with a syntactic filter
that rejects links are not syntactically valid (e.g. a link
between an adverb and a determiner).

The LexPar web service is hosted on the same machine as
TTL (its WSDL file is at http://ws.racai.ro/lxpws.wsdl)
and it provides only one function: LinkSentence. This
function generates the linkage of the tokenized, tagged
and chunked sentence. The input parameters of this
function are the XCES encoding of the sentence to be
processed and the language code. and returns the same
XML encoding enriched with the linkage information.
The output in the case of our example is given below:

<seg lang="en">

 <s id="example.1">

 <w lemma="this" ana="Pd3-s" head=”1”>

 This</w>

 <w lemma="be" ana="Vmip3s" chunk="Vp#1">

 is</w>

 <w lemma="a" ana="Ti-s" chunk="Np#1" head=”5”>

 a</w>

 <w lemma="simple" ana="Afp" chunk="Np#1,Ap#1"

 head=”5”>simple</w>

 <w lemma="example" ana="Ncns" chunk="Np#1"

 head=”1”>example</w>

 ...

We can see that for all but one tokens there is a head
attribute. This attribute has an integer as its value which
indicates the position in the sentence (0 based numbering)
to which the token is linked (the naming of the attribute
does not imply that the token with the head information is
actually the head of the relation). The token without this
attribute (in our example the verb be) is the root of the
linkage. The linkage of the sentence is almost always a
connected graph (and it is always a planar and acyclic
graph). The cases in which the graph is not connected
occur whenever the syntactic filter wrongly rejects correct
links. However, this rarely happens because in the vast
majority of cases the rejected links are indeed incorrect.

4. DIAC+
The main task of the DIAC+ web service is diacritics
recovery in Romanian texts (Tufiş & Ceauşu, 2008). For
Romanian, automatic restoration of the diacritics is a real
challenge, both because of their frequency (every third
word might contain at least one diacritical character) and
due to their significant contribution to the morpho-lexical
and semantic disambiguation of the words. As the
majority of Romanian texts published on the web don't
use the diacritics, for the researchers (and not only)
relying on web data this is a long-time expected service.
The diacritics recovery web service is an integrated
processing flow including tokenization, sentence splitting,

tiered tagging, lemmatization, etc. The pre-processing
steps are not the ones used in TTL (although they could
be), but were adapted for a better integration with MS
Office for which the diacritics recovery service was
designed and optimized for speed and memory. These
steps are implemented in C# exploiting very useful pieces
of code existing in the .NET libraries. Among the major
differences with respect to TTL, we can mention:
tokenization does not merge compound lexical items,
tiered tagging is a two steps maximum entropy classifier,
the lexicon is indexed by the non-diacritical form of the
words, etc.

The morpho-syntactical descriptions, as encoded in the
MSD tags, are used to disambiguate between several
possible word forms that may or may not contain
diacritics. This approach relies on a wide-coverage
dictionary and an accurate tagging method (tiered tagging)
to ensure high precision since overlooking or improperly
adding the diacritical signs may change the meaning of
the sentence. There are also other approaches, most of
them based on a character language model, but they
cannot provide the same degree of precision (for further
details see (Tufiş & Ceauşu, 2008) in this volume).

The web service description is available at
http://nlp.racai.ro/WebServices/TextProcessingWebServi
ce.asmx?WSDL. The web service exposes only one
function - process that takes three arguments: the first
identifies the text to be processed, the second specifies
whether lemmatization is requested or not and the last
argument determines whether the spelling correction will
be applied or not. The result of the web service is
provided as a vertical text, each line containing in a
tab-delimited format a word-form, its associated
morpho-syntactic description, and the corresponding
lemma. For example, for the non-diacritical text “Nu poti
spala cu lacrimi un rau profund” (approx: “Tears cannot
make good a profound damage”) the web service returns:

Nu Qz nu

poţi Vmm-2s putea

spăla Vmnp spăla

cu Spsa cu

lacrimi Ncfp-n lacrimă

un Timsr un

rau Ncms-n rău|râu

profund Afpms-n profund

In the exemplified output, the word "rau" remained
unchanged (it could be recovered either as râu ("river") or
rău ("damage") as the lemma column shows). This is a
semantic ambiguity (the morpho-syntactic descriptors are
identical for the two interpretations) and is beyond the
ability of the current system (and of the most existing
systems).

A sample client of the web service is available at
http://nlp.racai.ro/WebServices/TextProcessing.aspx. Via
this interface a user can send archived files to be

330

processed and retrieve the archived results. Archived
content is used in order to minimize bandwidth
requirements.

5. WordNet Browser
The Wordnet browser is a web service that allows
browsing through aligned wordnets. For now, only the
Princeton 2.0 and the Romanian WordNets are available
but the web service can be easily extended with wordnets
for different languages or even with wordnets of different
versions. Table 1 shows the main figures for the statistics
of the aligned wordnets available in the wordnet browser
web service. As the figures for Romanian wordnet are
continuously changing, one should check the latest
statistics at http://nlp.racai.ro/wnbrowser/ (click on the
RoWordnet Statistics tab).

 Princeton

WordNet 2.0
Romanian
WordNet

Synsets: 115424 47797
- nouns 79689 36017
- verbs 13508 9555
- adjectives 18563 1391
- adverbs 3664 834

Number of literals 203147 72532

Unique literals 153236 42499

Relations:
- hypernym 94842 46487
- holo_part 8636 4302
- category_domain 6166 2956
- holo_member 12205 1519
- near_antonym 7642 2642
- be_in_state 1296 646
- holo_portion 787 362
- also_see 3240 692
- verb_group 1748 1464
- causes 218 181
- subevent 409 348
- similar_to 22196 1337

Table 1: Princeton and Romanian wordnets statistics

The data of both wordnets is stored in XML files with
records like:

<SYNSET><ID>ENG20-12977363-n</ID>

<POS>n</POS>

<SYNONYM>

<LITERAL>cvintilion<SENSE>1</SENSE></LITERAL>

</SYNONYM>

<DEF>un milion de cvadrilioane</DEF>

<ILR>ENG20-12969974-n<TYPE>hypernym</TYPE>

</ILR>

<DOMAIN>number</DOMAIN>

<SUMO>PositiveInteger<TYPE>@</TYPE></SUMO>

<SENTIWN><P>0.0</P><N>0.0</N><O>1</O></SENTIWN>

</SYNSET>

Each record is indexed by literal and synset id. This
simple representation allows the client of the web service
to search for both literals and synsets.

As the example above shows, the Romanian WordNet
contains not only the Princeton WordNet specific data but
also the IRST DOMAIN (Bentivogli et al, 2004), SUMO
(Niles & Pease, 2001) and SentiWordnet (Esuli &
Sebastiani, 2006) annotations. Currently these
annotations can be visualized on the web browser
available at http://nlp.racai.ro/wnbrowser/.

A common usage scenario for the current wordnet web
service is to translate a word from Romanian to English or
vice-versa: i) the client application queries the web
service for all ids of the synsets containing a given literal
in the source language; ii) the client queries for all the
synsets labeled by the returned ids in the target language;
iii) the client application extracts the literals from the
target language synsets. The literals from the last
processing stage are the possible translations of the given
literal.

For example, one can first check what wordnet sources
are available using the function GetSources(). The web
service will return the array of strings which, for the
moment, contains "wn20-en" and "wn20-ro". If we want
the translation of the Romanian word “biografie” the first
step would be to call the function: GetLiteral(string
source, string literal, int level). If the argument
level is bigger than 0, then the synset relations will be
recursively expanded with the related synsets for n levels.
The call GetLiteral("wn20-ro", "biografie", 0) will
have the following result:

<Result source="wn20-ro" literal="biografie">
<SYNSET><ID>ENG20-06113482-n</ID>
<POS>n</POS>
<SYNONYM>
<LITERAL>biografie<SENSE>1</SENSE></LITERAL>
<LITERAL>viaţă<SENSE>16</SENSE></LITERAL>
</SYNONYM>
<DEF>Expunere (scrisă şi comentată) a vieţii unei
persoane.</DEF><BCS>1</BCS>
<ILR>ENG20-06111883-n<TYPE>hypernym</TYPE>
</ILR>
<DOMAIN>telecommunication</DOMAIN>
<SUMO>Biography<TYPE>+</TYPE></SUMO>
<SENTIWN><P>0.0</P><N>0.0</N><O>1</O></SENTIWN>
</SYNSET>
</Result>

The function GetSynset(string source, string
ili, int level), allows for ILI-code based synsets
retrieval. The call to GetSynset("wn20-en",
"ENG20-06113482-n",0) will return the following result:

<SYNSET><ID>ENG20-06113482-n</ID>
<POS>n</POS>
<SYNONYM>
<LITERAL>biography<SENSE>1</SENSE></LITERAL>
<LITERAL>life<SENSE>8</SENSE></LITERAL>
<LITERAL>life story<SENSE>1</SENSE></LITERAL>
<LITERAL>life history <SENSE>1</SENSE></LITERAL>
</SYNONYM>
<ILR><TYPE>hypernym</TYPE>ENG20-06111883-n
</ILR>
<DEF>an account of the series of events making up

331

a person's life</DEF><BCS>1</BCS>
<SUMO>Biography<TYPE>+</TYPE></SUMO>
<DOMAIN>telecommunication</DOMAIN>
<SENTIWN><P>0.0</P><N>0.0</N><O>1</O></SENTIWN>
</SYNSET>

The web service description is available at
http://nlp.racai.ro/wnbrowser/Wordnet.asmx?wsdl and a
user friendly interface implementing a web service client
can be found at http://nlp.racai.ro/wnbrowser/. In the
future versions of this service, new functions will be
added to allow queries on aligned wordnets using
different criteria like synset relations, domains, SUMO
information, etc.

6. SearchRoWiki
SearchRoWiki (Search Romanian Wikipedia) is a web
service originally developed for the Romanian shared task
at CLEF 2007. The web service searches through the
collection of 43000 Romanian documents available on
Wikipedia8 and it is based on a C# port of the Lucene
search engine9. The web service was designed to use the
results of a query analysis (specified as a disjunction of
weighted Boolean terms) to retrieve a list with
documents/sections that best match the query.

On the indexing side, SearchRoWiki uses the TTL and
LexPar web services (presented in section 3) to annotate
the available documents. The functions controlling the
indexing stage were not made public. There were
considerable improvements when we used the Romanian
tokenizer instead of Lucene’s default tokenizer because
most of the words with hyphen and the abbreviations were
handled in a consistent manner. Since lexical
normalization (stemming or lemmatization) improves the
recall of an information retrieval system this web service
invokes TTL lemmatization. Instead of filtering the index
terms using a stop words list, SearchRoWiki uses the
information from POS-tagging to keep only the content
words (nouns, main verbs, adjectives, adverbs and
numerals). In addition, the web service uses the sentence
and chunk annotation to insert phrase boundaries into the
term index; a phrase query cannot match across different
chunks or sentences.

In the SearchRoWiki index there are different fields for
the surface form of the words and their corresponding
lemmas. This kind of distinction applies to titles and
document text resulting in four different index fields: title
word form (title), title lemma (ltitle), document
word form (text) and document lemma (ltext).

To achieve better precision in ranking the documents and
their content, the web service uses two indexes: i) one for
the documents (43486 documents, 694467 terms) and ii)
one for the sections of the documents (90819 sections,
700651 terms). The hit list returned from the web service
is a list of sections that match the query. The sections
(paragraphs) are sorted and ranked using the documents
index.

8 http://ro.wikipedia.org/
9 http://lucene.apache.org/

Another feature of the SearchRoWiki web service is the
possibility to find the maximal conjunctive query given a
set of Boolean terms. The web service will first try to
match all of the query terms against the document index.
If the search does not have a result, the system will
recursively try to match n - 1 of the conjunctive terms
until the query returns at least one result from the
document index. The returned documents from the
conjunctive Boolean query are used to select the
corresponding sections in which the query terms occur.
The sections are ranked using a new query with terms of
the maximal conjunctive Boolean query. The terms of this
new query are joined with the disjunction operator.

For example, the call to GetResults("ltitle:\"Twin
Peaks\" AND ltext:\"Twin Peaks\"") will search for all
the documents with words “Twin Peaks” both in the title
and in the document body. The web service returns an
XML document containing all the sections where the
query terms appear. The sections are grouped and ranked
based on the score of the documents.

The web service description is available at
http://nlp.racai.ro/WebServices/SearchRoWikiWebServic
e.asmx?WSDL and a sample client can be found at
http://nlp.racai.ro/WebServices/SearchRoWiki.aspx.

7. Language Identification
The Language Identification web service is derived from
a stand alone application that was initially aimed at
autonomously collecting web data for English and
Romanian. It was also meant to check whether all the
paragraphs/sentences in a given, presumably,
monolingual corpus where indeed written in the
respective language. This is, for instance, how we
clean-up the Romanian part of the 22-language parallel
corpus JRC-Acquis (Steinberger et al., 2006). Currently,
the web service distinguishes among the 22 languages of
the European Union., present in the JRC-Acquis parallel
corpus. The function takes as its sole parameter a string
consisting of a fragment of text and returns a string in
which one can find the language code for that text and a
confidence score for the classification. The Language
Identification service can be easily extended with
arbitrary new languages because the implementation is
language independent, trainable on language specific data.
The training module is not available as a web service, but
an user interested in having a new language included in
the Language Identification engine may contact the
administrator (ws-admin@racai.ro) of the web service
platform and send training data. The new language will be
added as soon as possible.

 Most developers construct their applications for language
identification using N-gram or Markov chains approaches.
We have taken a different approach. Given training texts
in different languages (approx. 1.5Mb of text for each
language), a training module counts the prefixes (the first

332

3 characters) and the suffixes (4 characters endings) for all
the words10 in the texts, for each language. Thus, for every
language two models are constructed. The models will
contain the weights (percentages) of prefixes and suffixes
in the texts representing a language. In the prediction
phase, for a new text, two models are built on the fly in a
similar manner. These models are then compared with the
stored models representing each language for which the
application was trained. The comparison is performed
using the following functions:

where:
gp (gs) – the number of prefixes (suffixes) in the input text
model (MT) which also exist in the language model ML;
tp (ts) – the number of prefixes (suffixes) in MT;
pL (sL) - the weight of prefix p (suffix s) in ML;
pT (sT) - the weight of prefix p (suffix s) in MT;

The total score for a language is:

We used α = 1 and β = 2. The best score wins. The WSDL
description of the Language Identification web service is
to be found at the following URL:
http://nlp.racai.ro/webservices/LangIdWebService.asmx?
WSDL. There is also a web application that uses the
Language Identification web service which is located at
http://nlp.racai.ro/webservices/LanguageId.aspx.

8. Future Work and Conclusions
Recently (January 2008) it was launched a very large
European project aimed at constructing a research
language resources and tools infrastructure devoted
primarily to scholars in Humanities and Social Sciences.
A crucial work-package of this project, called CLARIN11,
is dedicated to establishing language resources and tools
(LRT) federations, building registry infrastructure and
promoting the generalization of linguistic web services
and workflow services. Although for its construction
phase, the CLARIN project is supposed to deal mostly
with the infrastructural aspects, a series of experiments
are planned in order to assess the validity of major future
development lines and estimate the costs for an
operational and persistent multilingual LRT infrastructure
for all European languages and several other languages in
the world.

There are several other language-processing tools (a
collocation identifier, a predicate-argument extractor, a

10 For words with 4 characters or less, the considered prefix and
suffix will be the word itself.
11 http://www.clarin.eu/

sentence aligner of parallel corpora, two different word
aligners for parallel texts, an advanced search engine and
a question answering system for Romanian) that are
already implemented as stand-alone applications and
which we plan to include into the web services platform.
The future developments of our present linguistic web
services platform as well as the assurance of the
interoperability with other existing web service platforms
will be our major responsibilities in the CLARIN project.

The access to the web services is research license-based
and up to now it was used by various colleagues from
Bulgaria, Canada, Denmark, France, Italy, The
Netherlands, Romania and USA for processing Romanian
texts totalizing more than 2 billion words.

9. References
Bentivogli, L., Forner, P., Magnini, B., Pianta, E. (2004).

Revising WordNet Domains Hierarchy: Semantics,
Coverage, and Balancing. In Proceedings of COLING
2004 Workshop on "Multilingual Linguistic Resources".
Geneva, Switzerland, pp. 101--108.

Berners-Lee, T. (2003). Web Services and Semantic Web:
Integrating Applications. Talk at the Twelfth
International World Wide Web Conference. Budapest,
Hungary.

Brants, T. (2000). TnT – A Statistical Part-Of-Speech
Tagger. In Proceedings of the 6th Applied NLP
Conference ANLP-2000. Seattle, WA, pp 224--231.

Esuli, A., Sebastiani, F. (2006). SentiWordNet: A publicly
Available Lexical Resourced for Opinion Mining, In
Proceedings of LREC2006. Genoa, Italy, pp. 417--422.

Ion, R., Barbu Mititelu, V. (2006). Constrained Lexical
Attraction Models. In Proceedings of the Nineteenth
International Florida Artificial Intelligence Research
Society Conference. Menlo Park, Calif.: AAAI Press,
pp. 297--302.

Ion, R. (2007). Word Sense Disambiguation Methods
Applied to English and Romanian. PhD thesis (in
Romanian). Romanian Academy, Bucharest.

Mel’čuk, I.A. (1988). Dependency Syntax: Theory and
Practice. Albany, NY: State University of New York
Press.

Niles I., Pease, A. (2001) Towards a Standard Upper
Ontology. In Proceedings of the 2nd International
Conference on Formal Ontology in Information
Systems (FOIS-2001). Ogunquit, Maine, pp. 2--9.

Steinberger, R., Pouliquen, B., Widiger, A., Ignat, C.,
Erjavec, T., Tufiş, D., Varga D. (2006). The
JRC-Acquis: A multilingual aligned parallel corpus
with 20+ languages. In Proceedings of the 5th
International Conference on Language Resources and
Evaluation (LREC'2006). Genoa, Italy, pp.2142--2147.

Tufiş, D. (1999). Tiered Tagging and Combined
Classifiers. In F. Jelinek, E. Nth (Eds.), Text, Speech
and Dialogue, Lecture Notes in Artificial Intelligence.
Springer, pp. 28--33.

Tufiş, D., Ceauşu, A. (2008). DIAC+: A Professional
Diacritics Recovering System. In this volume.

Yuret, D. (1998). Discovery of linguistic relations using
lexical attraction. PhD thesis, Department of Computer
Science and Electrical Engineering, MIT.

()()∑
∈

−−∗∗⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

TMp
TLL

P

P
p ppp

t
gS 1

4

()()∑
∈

−−∗∗⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

TMs
TLL

S

S
s sss

t
gS 1

4

βα
βα

+

∗+∗
= sp

t

SS
S

333

