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BACKGROUND: Prior research has reported disparities in environmental exposures in the United States, but, to our knowledge, no nationwide studies
have assessed inequality in noise pollution.

OBJECTIVES: We aimed to a) assess racial/ethnic and socioeconomic inequalities in noise pollution in the contiguous United States; and b) consider
the modifying role of metropolitan level racial residential segregation.

METHODS:We used a geospatial sound model to estimate census block group–level median (L50) nighttime and daytime noise exposure and 90th per-
centile (L10) daytime noise exposure. Block group variables from the 2006–2010 American Community Survey (ACS) included race/ethnicity, educa-
tion, income, poverty, unemployment, homeownership, and linguistic isolation. We estimated associations using polynomial terms in spatial error
models adjusted for total population and population density. We also evaluated the relationship between race/ethnicity and noise, stratified by levels
of metropolitan area racial residential segregation, classified using a multigroup dissimilarity index.

RESULTS: Generally, estimated nighttime and daytime noise levels were higher for census block groups with higher proportions of nonwhite and
lower-socioeconomic status (SES) residents. For example, estimated nighttime noise levels in urban block groups with 75% vs. 0% black residents
were 46.3 A-weighted decibels (dBA) [interquartile range (IQR): 44:3–47:8 dBA] and 42:3 dBA (IQR: 40:4–45:5 dBA), respectively. In urban block
groups with 50% vs. 0% of residents living below poverty, estimated nighttime noise levels were 46:9 dBA (IQR: 44:7–48:5 dBA) and 44:0 dBA
(IQR: 42:2–45:5 dBA), respectively. Block groups with the highest metropolitan area segregation had the highest estimated noise exposures, regard-
less of racial composition. Results were generally consistent between urban and suburban/rural census block groups, and for daytime and nighttime
noise and robust to different spatial weight and neighbor definitions.

CONCLUSIONS: We found evidence of racial/ethnic and socioeconomic differences in model-based estimates of noise exposure throughout the United
States. Additional research is needed to determine if differences in noise exposure may contribute to health disparities in the United States. https://doi.
org/10.1289/EHP898

Introduction
A growing body of evidence links environmental noise—a bio-
logic stressor usually generated by mechanized sources: transpor-
tation, industry, power generation, power tools, and air-
conditioning—to hearing loss and other health outcomes (Basner
et al. 2014). The human body initially reacts to noise with activa-
tion of the central nervous system, even while asleep. This can
result in release of stress hormones and increased blood pressure,
heart rate, and cardiac output (Evans et al. 1995; Lercher 1996).
While individual noise sensitivities differ, the World Health
Organization (WHO) estimated a “no observed effect level” for
average outdoor nighttime noise of 30 A-weighted decibels
(dBA) based on evidence that sleep is not disturbed by noise
below 30 (dBA) (WHO 2009). The Federal Highway

Administration noise abatement criteria near hospitals and
schools is 70 dBA, a recommendation that balances health, com-
munication, and economic interests (U.S. DOT 2015). Exposure
to these noise levels has been associated with impaired cognitive
performance (Clark et al. 2012) and behavioral problems in chil-
dren (Hjortebjerg et al. 2016), as well as hypertension (van
Kempen and Babisch 2012), type 2 diabetes (Sørensen et al.
2013), cardiovascular disease (Gan et al. 2012), and reduced
birth weight (Gehring et al. 2014). The WHO (2011) has
estimated >1million disability adjusted life years are lost
annually in Western Europe due to environmental noise, at-
tributable primarily to annoyance and sleep disturbance. The
WHO calculation was based on estimated noise exposures and
previous research on associations between noise and health
outcomes.

Environmental noise is typically measured as sound pressure
level, a logarithmic quantity expressed in decibels (dB); for
example, an increase of 3 dB is a doubling of sound energy.
With every 5.5-dB increase, the proportion of individuals
highly annoyed by residential noise exposure appears to dou-
ble (ANSI 2003). Measurements of sound pressure level are
commonly adjusted by A-weighting to reflect how humans
perceive sound across frequency, denoted as dBA (Murphy
and King 2014). Because sound levels vary over time, metrics
describing the statistical behavior of the variation are utilized.
The energy average, or equivalent, indicator is abbreviated
Leq. Multiple exceedance levels are used to characterize mag-
nitude, rate of occurrence, and duration of environmental
noise. The L50 is the noise level exceeded half of the time,
whereas the L10 is the level exceeded 10% of the time.
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Like other exposures, the impact of noise varies by intensity,
duration, and frequency. Noise sensitivity or degree of reactivity
to the same level of noise can differ from person to person and by
source of noise (Janssen et al. 2011; van Kamp et al. 2004). Time
of day may also play a role, such that associations between noise
and health outcomes appear to be stronger for noise exposure
during the night vs. day (Basner et al. 2014). Despite evidence of
noise-related adverse health effects, the most recent nationwide
noise pollution estimates were made by the U.S. Environmental
Protection Agency (U.S. EPA) in 1981 (Simpson and Bruce
1981). By extrapolating the U.S. EPA’s 1981 estimate of the
prevalence of noise exposure to the current U.S. population,
Hammer et al. (2014) estimated that 145.5 million Americans ex-
perience annual noise levels that exceed those recommended
to protect public health with an adequate margin of safety.
Moreover, the distribution of noise is not uniform across com-
munities, and some groups may have heightened vulnerability to
noise (van Kamp and Davies 2013). The spatial distribution of
noise exposure may contribute to health disparities seen in the
United States and elsewhere.

A body of environmental justice literature from the United
States suggests that air pollution and exposure to hazardous waste
often follows a social gradient such that racial/ethnic minorities,
the poor, and the undereducated endure greater exposure (Bell
and Ebisu 2012; Hajat et al. 2015; Mohai and Saha 2007). A
more limited body of scholarship from Europe frames environ-
mental injustices by social categories, but not usually race/ethnic-
ity, finding, for example, that those in the 10% most deprived
areas in England are the most exposed to chemical, metal, and
waste facilities (Laurent 2011; Walker et al. 2005). Researchers
theorize that in the United States, communities of color and the
poor are disproportionately exposed to environmental hazards
due to a variety of factors, including weak regulatory enforce-
ment in marginalized neighborhoods and lack of capacity to
engage in land use decision-making, which may contribute to the
concentration of potentially hazardous mobile and stationary
emission sources in these communities (Morello-Frosch 2002;
Pulido 2000).

Only a few studies have evaluated community-level inequal-
ity in exposure to estimated noise pollution. Studies in
Minneapolis and St. Paul, Minnesota (Nega et al. 2013) and
Montreal, Quebec, Canada (Carrier et al. 2016; Dale et al. 2015)
found that lower neighborhood socioeconomic status (SES) or a
higher proportion of minority race/ethnicities was associated with
higher noise levels. Outside the United States and Canada, results
have been mixed and more focused on SES than race/ethnicity as
an explanatory variable. In Hong Kong, Lam and Chan (2008)
reported a weak, but statistically significant, association between
lower income and educational attainment and higher noise expo-
sure at the street block level. Haines et al. (2002) estimated noise
exposure at 123 schools near the Heathrow Airport in the United
Kingdom, and found in a subanalysis that a higher proportion of
students eligible for free lunch was associated with higher noise
exposure. In nearby Birmingham, a higher proportion of black
residents at the enumeration district level was weakly associated
with estimated daytime noise levels (Brainard et al. 2004). In
Marseilles, France, census blocks with intermediate levels of de-
privation had the highest estimated exposure to road noise,
whereas in Berlin, Germany, there was no straightforward associ-
ation between SES and noise exposure at the planning unit level
(Lakes et al. 2014).

At the individual level, one study in Wales, United Kingdom
(Poortinga et al. 2008) and another in Germany (Kohlhuber et al.
2006) found that lower SES participants reported more neighbor-
hood noise. However, in Paris, France, individuals living in

neighborhoods with the highest housing values and highest levels
of educational attainment also had the highest estimated noise
exposures (Havard et al. 2011).

To our knowledge, no prior studies have evaluated demo-
graphic disparities in noise pollution across the United States or
considered how racial segregation (an indicator of metrowide
social inequality) is associated with overall noise levels. Prior
U.S.–based studies have found increased racial segregation asso-
ciated with more air pollution (Bravo et al. 2016; Jones et al.
2014), ambient air toxins (Morello-Frosch and Jesdale 2006;
Rice et al. 2014), and less tree canopy cover (Jesdale et al. 2013).
In highly segregated metropolitan areas in the United States, po-
litical power is asymmetrical along racial, ethnic, and economic
lines. Further, segregation spatially binds communities of color
and working class residents through the concentration of poverty,
lack of economic opportunity, and exclusionary housing develop-
ment and lending policies (Massey and Denton 1993). These
power differences may lead to disparities in environmental hazard
exposures, including noise, as more powerful residents influence
decisions about the siting of undesirable land uses in ways that
are beneficial to them (Cushing et al. 2015; Morello-Frosch and
Lopez 2006). Because segregation can make it easier for more
powerful communities to displace hazardous land uses onto dis-
advantaged communities where regulations may not be consis-
tently enforced, this scenario can lead to higher pollution overall
(Ash et al. 2013). Segregation may also lead to spatial segmenta-
tion between neighborhoods, workplaces, and basic services,
resulting in more driving, longer commute times, and higher lev-
els of mobile source pollution (Ash et al. 2013; Morello-Frosch
and Jesdale 2006).

In the present study, we utilized a nationwide noise model
(Mennitt and Fristrup 2016) to a) estimate differences in noise
exposure along racial/ethnic and socioeconomic lines; and to b)
examine whether segregation modifies the association between
race/ethnicity and noise exposure across the contiguous United
States.

Methods
We conducted a cross-sectional analysis to investigate the spatial
distribution of demographic characteristics at the census block
group level in relation to noise exposure across the contiguous
United States. Prior work identified U.S. block group–level soci-
oeconomic measures as a relevant spatial scale for measuring
socioeconomic inequality (Krieger et al. 2003). In 2010, the study
area (i.e., the contiguous United States) contained 216,331 block
groups—statistical divisions of census tracts generally containing
600 to 3,000 people—that we assigned to 933 Core Based
Statistical Areas (CBSAs) based on the location of their centroid,
using 2010 TIGER/Line shapefiles (U.S. Census Bureau 2010a,
2010b). CBSAs are counties grouped by common commuting
patterns. We excluded 1,669 block groups without residents or
that were missing data on any socioeconomic variable (0.8%) and
557 block groups missing noise exposure estimates (0.3%). We
then designated block groups located in CBSAs containing
>100,000 people as urban (n=175,373) and those located else-
where as suburban/rural (n=38,732).

Dependent Variables

Exposure to noise was based on a previously published geospatial
model of environmental sound levels (Mennitt and Fristrup
2016). Similar to land use regression models of air quality,
expected noise exposure was modeled using empirical acoustical
data and geospatial features such as topography, climate, hydrol-
ogy, and anthropogenic activity. The acoustical data included
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1.5 million h of long-term (durations of ≥25 d at natural sites
and in 14 U.S. cities, and ≥30 d near all U.S. airports) measure-
ments from 492 urban and rural sites located across the contigu-
ous United States during 2000–2014. The explanatory variables
fell into seven groups (location, climatic, landcover, hydrologi-
cal, anthropogenic, temporal, and equipment) and are described
in detail elsewhere (Sherrill 2012). Cross-validation procedures
were used to evaluate model performance and identify variables
with predictive power. The method utilized random forest, a tree-
based machine-learning algorithm, to perform the regression. A
cross-validation procedure was used to evaluate the accuracy of
national scale projections (see Table S1; Mennitt and Fristrup
2016). The resulting geospatial sound model enabled mapping of
ambient sound levels at 270-m resolution. We then used the zonal
statistics function in ArcGIS (version 10.4; Esri) to estimate the
mean sound level in each block group across the contiguous
United States.

We examined three metrics of sound pressure from anthropo-
genic sources to assess the robustness of findings at different
times of day and different levels of noise: a) A-weighted L10

(representing the loudest transient events or proximate sources)
during the daytime; b) A-weighted L50 (median of the data, repre-
senting typical sound levels) during the daytime; and c) A-
weighted L50 during the nighttime. All levels were projected for
the summer season in order to maintain temporal consistency
across noise estimates. Daytime was defined as 0700 to
1900 hours and nighttime as 1900 to 0700 hours.

Independent Variables

We used block group-level data from the 5-y 2006–2010
American Community Survey (ACS) to characterize area-level
race/ethnicity and socioeconomic conditions (NHGIS Database).
We used self-identified race/ethnicity to generate variables for
the proportion of the population in each block group that fell in
five race/ethnicity categories: Non-Hispanic American Indian,
Non-Hispanic Asian, Non-Hispanic black, and Non-Hispanic
white, and Hispanic (any race), referred to as American Indian,
Asian, black, white, and Hispanic for the duration. Other block
group–level variables included total population, population den-
sity (defined as number of people per km2), age (defined as per-
cent of population <5 y old), and those selected to describe
multiple dimensions of neighborhood socioeconomic context
(Kawachi and Berkman 2003). We characterized neighborhood
socioeconomic context at the block group level by: low educa-
tional attainment (defined as percent of adults ≥25 y of age with
<high school education), median household income (defined as
block group median income in dollars in the past 12 mo), poverty
(defined as percent of individuals with income below the Census
Bureau poverty threshold based on family size and number of
children), civilian family unemployment (defined as percent of
families with ≥1 family member unemployed), housing tenure
(defined as percent of households comprised of renters or own-
ers), and linguistic isolation (defined as percent of households
where no one >14 y speaks English “very well”). Housing tenure
may reflect residential instability as well as area-level income
and wealth. Linguistically isolated households may face racial
discrimination and reduced access to public services and ability
to engage with regulatory processes (Gee and Ponce 2010). Some
variables, like housing tenure, may have differential meaning in
urban vs. rural settings, and, therefore, we conducted analyses
stratified by urban/rural status (Bertin et al. 2014). To test the hy-
pothesis that segregation was associated with higher levels of
noise for all race/ethnic groups, we calculated a CBSA-level seg-
regation measure (Sakoda 1981) for urban block groups only,
using 5-y 2006–2010 ACS data (Jesdale et al. 2013). Our focus

on urban areas was aimed at facilitating comparisons with prior
studies on segregation and environmental hazards (Bravo et al.
2016; Jones et al. 2014; Morello-Frosch and Jesdale 2006; Rice
et al. 2014). The multigroup dissimilarity index (Dm) character-
izes the residential distribution of Non-Hispanics: Asians, blacks,
and whites; and Hispanics (any race) among block groups located
in CBSAs. Dm ranges from 0 to 1 and represents the proportion
of the racial/ethnic minority population that would need to
change block groups within a metro area to achieve an even dis-
tribution (Massey and Denton 1989). Block groups located in the
same CBSA received the same Dm value. We selected Dm, a
metro-level indicator of social inequality, because prior research
indicated that land use decision-making tends to be regionally
rooted (Morello-Frosch 2002; Pastor et al. 2000).

Statistical Analysis

We used weights to extrapolate block group–level noise estimates
to the individual, family, and household level across the United
States. For each characteristic of interest (e.g., non-Hispanic
blacks), we used the wquantile function in R (version 3.2.3; R
Development Core Team) to compute the weighted 25th, 50th,
and 75th percentiles of noise.

We evaluated the association between 12 socioeconomic vari-
ables and log–transformed L50 nighttime, L50 daytime, and L10

daytime noise exposure by specifying 12 separate regression
models for each noise metric, controlled for population size and
population density. We checked the residuals from ordinary least
square models and found evidence of spatial autocorrelation
using Moran’s I statistic (p<0:001 indicating clustering; data not
shown). Therefore, we implemented a spatial econometric
approach in R using the spdep package (Bivand and Piras 2015).
To discriminate between spatial autocorrelation in the error terms
vs. the noise values themselves, we used a Lagrange multiple
diagnostic test (implemented with lm.LMtests in spdep). p-values
from this test suggested that a spatial error model was preferable
to a spatial lag model for our data. A spatial error model specifies
a linear relationship between the independent variable and the de-
pendent variable, but unlike a traditional ordinary least squares
model, errors are not assumed to be independent and identically
distributed; rather, they are distributed according to a spatial
autoregressive process:

y= bX+u

u= kWu+ e,

where y is an n × 1 vector of log L50 or L10 daytime or nighttime
sound pressure, and n is the total number of block groups; X is
an n × j matrix of independent variables, and j is the number
of independent variables; W is an n× n spatial weights matrix;
e∼Nð0,r2IÞ; and k is a spatial autoregressive coefficient
(Anselin 2002). In addition to adjustment for block group
population (continuous) and population density (continuous,
individuals=km2), all models included polynomial terms for
the independent variable of interest to allow for nonlinearity.
We hypothesized that nonwhite race/ethnicities would experi-
ence higher overall levels of noise and steeper slopes as
the percent minority increased in more segregated CBSAs.
Therefore, we conducted stratified analyses [i.e., Dm <0:4 (low
to moderate), 0.4 to <0:5 (high), 0.5 to <0:6 (very high), and
≥0:6 (extreme)] (Jesdale et al. 2013; Morello-Frosch and
Jesdale 2006) from which American Indians were excluded
due to small numbers in urban areas. In all analyses, we
selected the number of polynomial terms (up to 10) using like-
lihood ratio testing by adding polynomial terms until the
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improvement in model fit was no longer significant at
a=0:05. This procedure was completed separately for urban/
rural and for L50 nighttime=L10 and daytime=L50 daytime
models. In the results section, we refer to an association as
nonlinear and statistically significant when likelihood ratio test-
ing indicated that the final model with polynomial terms was a
significantly better fit at the a=0:05 level than the model
without the predictor. When the final model only included a
first-degree predictor, we refer to it as a linear association; sta-
tistical significance (at the a=0:05 level) was determined
using a t-test. We present results as scatterplots of fitted values
with locally weighted smoothing functions (LOESS lines) to

aid in interpretability. We did not predict noise exposure at
specific values of the independent variables because predicting
at specified populations and population densities would ignore
model-derived weights applied to each census block to account
for spatial correlations. Instead, we report median and inter-
quartile ranges to summarize the distribution of predicted val-
ues for each noise metric according to block group race/
ethnicity and socioeconomic characteristics.

In order to calculate W, the spatial weight matrix, in the main
analysis, we defined queen-based neighbors (i.e., only block
groups that share a common border or a single common point
were considered neighbors) and S-coding scheme weights (i.e.,

Figure 1. Spatial distribution of (A) anthropogenic L50 nighttime noise; (B) population density; (C) racial residential segregation (urban CBSAs only); (D)
non-Hispanic, nonwhite race/ethnicity; (E) poverty; and (F) <high school education (deciles) at the block group-level in the contiguous United States estimated
from 2006–2010 American Community Survey data; 2010 shapefiles used to generate these maps downloaded from the NHGIS site: http://www.nhgis.org.
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variance-stabilizing weights) (Bivand et al. 2008; Tiefelsdorf
et al. 1999). Because the choice of neighbors and weights can
influence model fit and coefficient estimates, we performed sev-
eral sensitivity analyses. First, we used distance-based neighbors,
where block groups within 5 km of a block group centroid were
classified as neighbors. Second, we applied a W-coding scheme
for weights (i.e., row-standardized). Third, we combined the first
two sensitivity analyses.

In additional sensitivity analyses, we simultaneously adjusted
models for poverty, education, and housing tenure to assess
whether these three dimensions of neighborhood socioeconomic
context were confounders. All statistical analysis was performed
in R (version 3.2.3; R Development Core Team) using Amazon
Web Services and mapping was conducted in QGIS (version
2.12.0; QGIS, http://qgis.osgeo.org).

Results
The analysis spanned the contiguous United States and included
933 CBSAs and 214,105 block groups—175,373 urban and
38,732 suburban/rural—after excluding 2,226 block groups miss-
ing census or noise variables (Figure 1). The urban block groups
contained 257,192,214 individuals, and the rural block groups
45,999,315 individuals. There was a concentration of poverty,
nonwhite individuals, and low educational attainment in the
South and Southwest. Urban block groups, compared to subur-
ban/rural areas, had, on average, more racial/ethnic minorities
(38.0% vs. 19.3%), more renter-occupied homes (34.6% vs.
26.9%), and slightly lower levels of poverty (13.3% vs. 16.8%)
[Table 1 (urban) and Table S2 (suburban/rural)]. We observed

moderate correlations (Spearman’s q=0:2–0:4) between many
of the independent variables, for example, q=0:20, 0.25, and
−0:43 between proportion in poverty and proportions unem-
ployed, linguistically isolated, and of white race, respectively,
in urban areas (see Figure S1). Individuals, households, and
families in urban areas with lower SES had, on average, higher
nighttime and daytime noise (Table 1). For example, in urban
areas, the median L10 daytime noise estimated for households in
the lowest quartile of median income (≤$39,224) was 54:5 dBA
[interquartile range (IQR): 52:4–56:5 dBA] compared to 52:6 dBA
(IQR: 50.4–54.5) estimated for households with median income
>$39,224. Racial residential segregation was common; 83.4% of
the urban study population resided in segregated CBSAs (Dm >
0:4) (Table 1), with the most segregated regions in the Northeast and
Midwest (Figure 1). Individuals living in more segregated CBSAs,
compared to those living in CBSAs with Dm ≤ 0:4, had higher L50

nighttime [median= 44:5 dBA (IQR: 42:5–46:7 dBA) vs. 42.9
(IQR: 39:2–45:2 dBA)] and L50 daytime [median= 48:2 dBA (IQR:
45:7–50:5 dBA) vs. 46:7 dBA (IQR: 41:5–49:4 dBA)] noise levels
(Table 1).

Median population-weighted anthropogenic L50 nighttime,
L50 daytime, and L10 daytime noise levels in urban block
groups were 44:3 dBA (IQR: 42:1–46:5 dBA), 48:0 dBA (IQR:
45:1–50:3 dBA), and 52:9 dBA (IQR: 50:7–55:0 dBA) (Table 1)
compared to 38:8 dBA (IQR: 33:7–42:2 dBA), 37:0 dBA (IQR:
32:8–43:2 dBA), and 43:7 dBA (IQR: 40.2–49.6) in suburban/
rural block groups (Table S1), respectively. While the noise
metrics differed in magnitude, the spatial distribution was simi-
lar with noise levels highest in major metropolitan areas and

Table 1. Distribution of anthropogenic L50 nighttime, L50 daytime, and L10 daytime noise among urban residents by race/ethnicity and socioeconomic charac-
teristics at the block group level from the 2006–2010 American Community Survey.

Characteristic Total, n (%)

Median (IQR) anthropogenic noise, dBAa

L50 nighttime L50 daytime L10 daytime

Total population 254,328,850 (100) 44.3 (42.1–46.5) 48.0 (45.1–50.3) 52.9 (50.7–55.0)
Population<5 y 17,112,446 (6.7) 44.5 (42.3–46.7) 48.1 (45.4–50.5) 53.0 (50.9–55.0)
Population≥5 y 237,216,404 (93.3) 44.3 (42.1–46.5) 48.0 (45.0–50.3) 52.9 (50.7–55.0)
Race/ethnicityb

Hispanic 44,095,827 (17.3) 45.6 (43.3–47.5) 49.5 (47.5–52.3) 54.1 (52.3–56.0)
Non-Hispanic
American Indian 1,209,132 (0.5) 42.9 (37.9–45.7) 46.1 (37.8–49.7) 51.5 (44.8–54.4)
Asian 13,081,414 (5.1) 45.4 (43.9–47.1) 49.1 (47.4–51.1) 54.0 (52.4–55.7)
Black 32,935,749 (13.0) 45.6 (43.8–47.6) 49.7 (47.6–52.6) 54.2 (52.4–56.3)
White 157,730,767 (62.0) 43.6 (41.3–45.7) 47.1 (43.3–49.2) 52.3 (49.6–54.2)
Income≤poverty threshold 33,194,588 (13.3) 45.2 (42.8–47.5) 49.2 (46.6–52.2) 54.0 (51.7–56.1)
Income>poverty thresholdc 216,181,346 (86.7) 44.2 (42.0–46.3) 47.9 (44.9–50.0) 52.8 (50.6–54.8)
CBSA-level segregation
0:14≤Dm <0:40 42,124,233 (16.6) 42.9 (39.2–45.2) 46.7 (41.5–49.4) 51.9 (48.0–54.3)
0:40≤Dm <0:70 212,204,617 (83.4) 44.5 (42.5–46.7) 48.2 (45.7–50.5) 53.1 (51.1–55.1)
Total population≥25 y 35,298,009 (100) 44.6 (42.4–46.8) 48.5 (45.7–50.9) 53.3 (51.2–55.4)
<High school education 5,837,943 (16.5) 45.4 (43.0–47.6) 49.4 (46.7–52.3) 54.1 (51.8–56.1)
≥High school education 29,460,066 (83.5) 44.4 (42.3–46.6) 48.3 (45.6–50.7) 53.2 (51.1–55.3)

Total households 95,455,047 (100) 44.3 (42.2–46.5) 48.1 (45.2–50.4) 52.0 (50.9–55.1)
Median household income (USD)
Quartile 1 ($2,868–$39,229) 23,863,693 (25.0) 45.6 (43.2–47.7) 49.8 (47.3–52.8) 54.5 (52.4–56.5)
Quartiles 2–4 ($39,230–$249,896) 71,591,354 (75.0) 44.0 (41.8–46.0) 47.6 (44.5–49.6) 52.6 (50.4–54.5)
Linguistically isolated households 5,140,332 (5.4) 45.9 (43.9–47.9) 50.4 (48.2–53.3) 54.8 (53.0–56.8)
Nonlinguistically isolated households 90,314,715 (94.6) 44.2 (42.1–46.4) 48.0 (45.0–50.2) 52.9 (50.7–54.9)
Housing tenure
Renter-occupied homes 32,996,266 (34.6) 45.3 (43.3–47.4) 49.5 (47.2–52.3) 54.2 (52.3–56.3)
Owner-occupied homes 62,458,781 (65.4) 43.8 (41.6–45.9) 47.4 (43.9–49.4) 52.5 (50.0–54.3)
Total families 63,521,803 44.1 (41.9–46.3) 47.7 (44.6–49.9) 52.7 (50.4–54.7)
Unemployed families 3,343,134 (5.3) 44.5 (42.3–46.8) 48.2 (45.4–50.6) 53.1 (51.0–55.2)
Employed families 60,180,669 (94.7) 44.1 (41.9–46.2) 47.7 (44.5–49.9) 52.7 (50.4–54.7)

Note: CBSA, Core Based Statistical Area; dBA, A-weighted decibels; IQR, interquartile range.
aPopulation-weighted by block group population (population<5 y, and race/ethnicity), by number of families (unemployment), by households (household income and linguistic isola-
tion, and renters/owners), by population for whom poverty status was determined (poverty), and by population≥25 y (<high school education).
bRace/ethnicity does not sum to total; 5,275,961 individuals were of mixed or other race/ethnicity.
c4,952,916 people did not have poverty status determined and thus are not included in the poverty summary.
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Figure 2. Race/ethnicity and socioeconomic characteristics and anthropogenic L50 nighttime noise in (A) urban block groups (n=175,373); and (B) suburban/
rural block groups (n=38,732). The figure displays the fitted values (points) showing the relationship between noise and each of 12 demographic characteris-
tics adjusted for block group population and population density and using a queen neighbor definition and variance-stabilizing weights. Four of the plots
[%<5 y, median household income (in thousands)], % unemployed, and % linguistically isolated) use a log scale x-axis as noted on the figure. The LOESS
line was only estimated when there were >100 observations.
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lowest in the western United States (Figure 1, Figure S2).
Overall, estimated noise levels were highest for Asians, blacks,
Hispanics, and those of lower SES (Table 1, Table S2).

Figure 2 presents the results from adjusted spatial error mod-
els of the association between our 12 racial/ethnic and sociode-
mographic variables and nighttime L50 noise in urban and
suburban/rural block groups. Daytime L50 and L10 results are
available in Figures S3 and S4. Patterns of associations between
each predictor and each noise metric were generally consistent
in both urban and rural census blocks; as the proportion of
nonwhite and low-SES individuals, families, and households
increased, estimated nighttime and daytime noise increased.
Table S4 summarizes the polynomial terms used for predictors
in spatial error models.

We observed significant associations between increased pro-
portions of Asian, black, and Hispanic individuals and higher lev-
els of noise in urban and suburban/rural areas, with the exception
of Hispanic ethnicity in rural areas, which was not associated
with noise. In urban block groups that contained 75% black resi-
dents, the median (interquartile range) nighttime noise level was
46:3 dBA (IQR: 44.3–47.8), while in block groups with 0% black
residents, the level was 42:3 dBA (IQR: 40.4–45.5) (Table S3).
Conversely, in urban block groups that contained 75% white, the
median noise level was 44:8 dBA (IQR: 43.0–46.5), which rose
to 47:0 dBA (IQR: 45.4–48.7) in block groups with 0% white res-
idents. For race/ethnicity, the models with best fit all included
polynomial terms (Table S4), except for Hispanic race/ethnicity,
where we estimated a linear association between nighttime noise
in both urban and suburban/rural block groups. Estimated urban
nighttime noise increased from 43:7 dBA (IQR: 40.1–45.9) in
block groups with 0% Hispanics to 46:5 dBA (IQR: 43.7–48.3)
within block groups with 75% Hispanics (Table S3). For
American Indian populations, we generally observed reduced

noise as the percent of American Indians increased. Particularly
for nighttime noise, the best model fit suggested shape of the
association was fairly flat until 7–8% of the population was
American Indian, and then there were more rapid reductions in
noise levels. In contrast, the best model fit suggested a steeper
slope (i.e., more rapid increases in estimated noise) for Asian and
black populations at the lower tail of the distribution. For exam-
ple, nighttime noise was estimated to be about 1:3 dBA higher in
block groups containing 0% compared to 10% black individuals,
but only 0:2 dBA higher in block groups containing 50% com-
pared to 60% black individuals.

Block groups with higher proportions of individuals with less
than a high school education, living in poverty, linguistically iso-
lated, renting, and with a higher proportion of children <5 y were
generally associated with higher nighttime and daytime noise lev-
els (Figure 2, Figure S3–S4). For example, urban block groups
with 50% of residents in poverty had nighttime noise levels, on
average, 3 dBA higher than block groups with 0% (Table S3).
The highest levels of noise were estimated in the block groups
with the lowest median income; from there, noise levels declined
until the median income, where noise levels plateaued.

Figure 3 shows the associations between race/ethnicity and
L50 nighttime noise across segregation categories (see Table S5
for summary of polynomial terms). Three patterns emerged: first,
that across all CBSAs and race/ethnicities, increasing segregation
was associated with increased nighttime noise; second, that
across all levels of CBSA-level segregation, block groups with
higher proportions of Asian, Hispanic, and black residents gener-
ally had higher levels of exposure to nighttime L50 noise than
those with higher proportions of white residents; and third, that
the estimated curve shapes (i.e., the LOESS line of the fitted val-
ues) remained similar across levels of segregation, with the
exception of Hispanics in the least segregated CBSAs, where
there was no estimated increase in nighttime noise as the propor-
tion of Hispanics increased above 25%. Results for L50 and L10

daytime noise were similar (Figures S6 and S7), but differences
were less pronounced by level of segregation.

Simultaneous adjustment for poverty, education, and housing
tenure in our main analysis had little effect on race/ethnicity and
SES estimates in suburban/rural block groups, except for <5 y
and education, which, after adjustment, were no longer statisti-
cally significant (data not shown). In urban block groups, after
adjustment for poverty, education, and housing tenure, the associ-
ations for <5 y, Hispanic race/ethnicity, education, and unem-
ployment became nonsignificant (data not shown).

In the primary analysis, we defined queen neighbors and used
variance-stabilizing weights. We also conducted sensitivity anal-
yses using three additional neighbor/weight combinations (i.e.,
queen/W-coding, distance/S-coding, and distance/W-cod-
ing). Estimated associations were similar for all neighbor/
weight combinations across both urban and suburban/rural
block groups (Figure S5).

Discussion
Our findings suggest inequality in the spatial distribution of noise
pollution along racial/ethnic and socioeconomic lines across the
contiguous United States. Multiple indicators of neighborhood
socioeconomic context were associated with increased night and
daytime noise, including poverty, unemployment, linguistic isola-
tion, and a high proportion of renters and those not completing
high school. Block groups with higher proportions of Asians,
blacks, and Hispanics had higher levels of noise, but relationships
were rarely linear. The magnitude of these differences may be
relevant for health outcomes (Basner et al. 2014); for example,
we estimated that census block groups containing 25% black

Figure 3. Race/ethnicity and anthropogenic L50 nighttime noise in urban
block groups (n=175,373), stratified by multigroup racial/ethnic segregation
(Dm) for (A) Asians; (B) blacks; (C) Hispanics; and (D) whites. American
Indians were excluded due to small numbers in urban areas. The figure dis-
plays the LOESS line of the fitted values from 16 (i.e., four categories of
segregation and four race/ethnicities) separate spatial error models adjusted
for block group population and population density and using a queen neigh-
bor definition and variance-stabilizing weights. The LOESS line was only
estimated when there were >100 observations.
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residents were exposed to a median 3:0 dBA higher nighttime
noise than those with 0% black residents. In general, for all race/
ethnicity groups evaluated, estimated noise exposures were
higher for CBSAs with higher levels of racial segregation.
However, disparities persisted between block groups with rel-
atively high proportions of white (>50%) compared to rela-
tively low proportions, except for block groups with high
proportions of Hispanics in the least segregated CBSAs. As
an example, the median nighttime noise level in block
groups containing 75% of each race/ethnicity in the most
segregated CBSAs were estimated to be 48:9 dBA, 46:9 dBA,
47:0 dBA, and 45:3 dBA for Asian, black, Hispanic, and
white race/ethnicity, respectively.

Early indications of inequality in noise pollution in the United
States came from the U.S. EPA in the 1970s. Survey respondents
of higher SES tended to live in quieter neighborhoods and
reported hearing fewer airplanes, traffic, and people’s voices, but
more motorcycles, garden power tools, and sports cars (U.S. EPA
1977). More recently, in nearly 2000 block groups in the Twin
Cities in Minnesota, Nega et al. (2013) modeled 24-h average
traffic noise using data on roadways, traffic volume, building
height, airplane flight paths, and other information. They reported
significantly increased traffic noise as block group median house-
hold income and housing value fell and the proportion of non-
white residents and persons aged >18 y increased, results from a
spatial error model that simultaneously adjusted for all four inde-
pendent variables. Nega et al. (2013) joined a handful of others to
account for spatial dependence in their models when assessing in-
equality in noise pollution, with heterogeneous results (Bocquier
et al. 2013; Carrier et al. 2016; Havard et al. 2011). Carrier et al.
(2016) modeled mean 24-h traffic noise levels in 7,456 city
blocks in Montreal, Canada, and used spatial error models to esti-
mate associations with race/ethnicity and SES at the city block
level. Like us, they observed increasing noise levels with an
increasing proportion of low-income and nonwhite individuals.
In Marseilles, France, Bocquier et al. (2013) reported that census
blocks of intermediate SES (defined by a deprivation index con-
structed from 17 variables) had the highest modeled noise levels.
In Paris, France, Havard et al. (2011) found an inverse relation-
ship where modeled noise levels were higher in a 250-m buffer
surrounding the residences of individuals with more education
and higher valued homes. Desire of individuals to live near
transportation networks may explain the inverse relationship.
Indeed, among nearly 2 million individuals in Rome, Cesaroni
et al. (2010) found that higher area SES and individual educa-
tion were associated with increased traffic in a 150-m buffer
around participants’ homes, except in the city center, where
traffic density was highest, and less affluent neighborhoods
and individuals were closer to roads. We observed indications
of the same phenomenon; the relationship between median
household income and noise was U-shaped in both urban and
rural areas.

There is a broad literature concerning variation in air pollu-
tion in relation to social factors (Bell and Ebisu 2012; Hajat et al.
2015; Miranda et al. 2011). Our results are consistent with and
may partially overlap this literature, due to co-occurrence of noise
and air pollution. However, despite co-occurrence, noise and air
pollution have only been moderately correlated (Spearman’s cor-
relation coefficients 0.3–0.6) in New York City, London, and
Vancouver (Davies et al. 2009; Fecht et al. 2016; Ross et al.
2011), and correlations did not differ by deprivation in London
(Fecht et al. 2016). Furthermore, epidemiologic studies have
reported associations between noise and multiple health outcomes
after adjusting for air pollution, including associations with cog-
nition and behavioral problems in children (Clark et al. 2012;

Hjortebjerg et al. 2016), birth weight (Gehring et al. 2014), cardi-
ovascular mortality (Gan et al. 2012), and diabetes (Sørensen
et al. 2013).

To our knowledge, no prior studies have reported a positive
association between noise levels and a community-level measure
of social inequality, in this case, racial segregation. This observa-
tion is consistent with Boyce’s power-weighted decision theory
(Boyce 1994) that social inequalities are associated with the dis-
tribution of environmental pollution, perhaps due to political
power imbalances between the wealthy and the poor. It is also
consistent with recent U.S. literature reporting positive associa-
tions between modeled air pollution and community segregation
(Bravo et al. 2016; Jones et al. 2014; Rice et al. 2014). In the
case of environmental noise, spatial segmentation of neighbor-
hoods, workplaces, and basic service locations due to CBSA-
level racial segregation may increase vehicle miles traveled
(Morello-Frosch and Jesdale 2006), which could, in turn, con-
tribute to noise pollution. This situation could create a feedback
loop in which worse noise pollution catalyzes segregation
(Bjørnskau 2005).

Our study suggests racial disparities in noise exposure, and noise
has previously been linked to a number of negative health out-
comes, including hypertension and sleep difficulties (Haralabidis
et al. 2008; Münzel et al. 2014; Muzet 2007). Future work is
needed to estimate how much differences in noise exposure may
explain racial disparities in noise-related health outcomes.
Disadvantaged populations may also have increased susceptibil-
ity to noise. For example, a recent German study reported that
among 3,300 participants free from depressive symptoms at
baseline, annual average noise exposure >55 dBA was associ-
ated with depressive symptoms at the 5-y follow-up, but only
among those with <13 y of education (Orban et al. 2016).
Worse quality housing, increased exposure to indoor noise, and
comorbid conditions may help explain this disparity (Evans and
Marcynyszyn 2004). Wealthier individuals may have greater
ability to invest in noise abatement technologies (e.g., triple-
paned windows, air-conditioning), and thus may have lower
actual exposures to noise than less affluent individuals living in
census blocks with the same estimated level of noise exposure.
While living near urban centers may provide benefits like
access to public transit and cultural assets, in some cities, the
accompanying road and rail traffic may also increase the level
of outdoor noise (Fyhri and Klaeboe 2006).

For the past 40 y, many noise studies have relied on a simple
relationship between population density and community noise ex-
posure to estimate ambient noise in the absence of in situ mea-
surements (Schomer et al. 2011). In addition to population
density, our geospatial sound model incorporated multiple
explanatory variables describing the type and intensity of
human activity, but did not include demographic descriptors.
Unfortunately, we were only able to assess the distribution of
noise at the block group level in this cross-sectional study. We
could not identify the processes and procedures—for example,
regulatory policies, neighborhood economic sorting, or land use
decisions—that might explain inequality in noise levels, nor
could we explain why some groups appeared more exposed to
noise than others. We were unable to examine individual modi-
fying characteristics, such as housing quality, work environment
and location, prevalent illness, or propensity to noise sensitivity
(Stansfeld and Shipley 2015). Additionally, our noise model did
not differentiate between various anthropogenic sources of
sound, which may have differential health effects (Basner et al.
2011). Although the noise model performed well (R2

≥ 0:8),
our prediction of outdoor noise is likely to contain measure-
ment error (Mennitt and Fristrup 2016). Finally, our analysis
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did not include Leq estimates (i.e., a measure of equivalent con-
tinuous sound often used for noise standards). Therefore, we
are unable to make comparisons to established WHO or U.S.
EPA noise guidelines or to the majority of epidemiologic stud-
ies (Basner et al. 2014).

Despite these limitations, our study made several contribu-
tions. We characterized noise pollution across the contiguous
United States for the first time since the early 1980s. The use of
polynomial terms in this large sample allowed us to characterize
nonlinear associations without assuming a constant slope over all
values of each predictor. We accounted for spatial autocorrelation
and implemented a spatial error model to avoid violating model-
ing assumptions. We defined neighbors and weights in multiple
ways, given prior evidence that changing these definitions can
impact inference (Bivand et al. 2008). Our sensitivity analyses
demonstrated the stability of our results. Regardless of neighbor/
weight definitions, we estimated similar relationships between
race/ethnicity, SES, and noise almost universally, with the high-
est estimated noise levels in block groups with higher percentages
of minorities and lower SES individuals.

Conclusion
Our analysis of estimated outdoor noise exposures in census
block groups throughout the contiguous United States found evi-
dence of higher noise exposures in census block groups charac-
terized by lower SES and higher proportions of American Indian,
Asian, black, and Hispanic residents. These associations were
stronger in more racially segregated communities. Differences in
noise exposure may have implications for more fully understand-
ing drivers of environmental health disparities in the United
States.
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